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Abstract

The central trajectory of a linear program consists of the set of optimal solutions
x(Mu) and (y(t), s(j)) to the logarithmic barrier problems:

(P,(d)): min{cT x + --p(x) : Ax = b, x > 0),
(D,(d)): maxb T y - /p(s) : ATy + s = c,s > 0),

where p(ul) - -= ln(u), is the logarithmic barrier function, d = (A, b, c) is a data
instance in the space of all data D = {(A, b, c) : A C Wmn, b E Rm, c E fn), and the
parameter u is a positive scalar considered independent of the data instance d E D.

This study shows that certain properties of solutions along the central trajectory
of a linear program are inherently related to the condition number C(d) of the data
instance d = (A, b, c), where the condition number C(d) and a closely-related measure
p(d) called the "distance to ill-posedness" were introduced by Renegar in a recent
series of papers [17, 15, 16]. In the context of the central trajectory problem, p(d)
essentially measures how close the data instance d = (A, b, c) is to be being infeasible
for (P(d)), and C(d) A Ildll/p(d) is a scale-invariant reciprocal of the distance to ill-
posedness p(d), and so C(d) goes to o as the data instance d = (A, b, c) approaches
infeasibility. We present lower and upper bounds on sizes of optimal solutions along
the central trajectory, and on rates of change of solutions along the central trajectory
as either ,u changes or the data d changes, where these bounds are all polynomial
functions of ,l and are linear or polynomial functions of the condition number C(d)
and the related distance to ill-posedness p(d) of the data instance d = (A, b, c).
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1 Introduction, notation, and definitions

The central trajectory of a linear program consists of the set of optimal solutions x = x(/,)
and (y, s) = (y(L), s(,u)) to the logarithmic barrier problems:

(Pg(d)): min{cT x + Ptp(x): Ax = b, x > 0},
(D,(d)): max(bT y - up(s): ATy + s = c, s > 0),

where p(u) = -E= 1 ln(ui), is the logarithmic barrier function, d = (A, b, c) is a data
instance in the space of all data D = {(A, b, c) : A E Rmn, b E sm, c E In}, and the param-
eter ,a is a positive scalar considered independent of the data instance d EC . The central
trajectory is fundamental to the study of interior-point algorithms for linear programming,
and has been the subject of an enormous volume of research, see among many others, the
references cited in the surveys by Gonzaga [8] and Jansen et al [10]. It is well known that
programs (P,(d)) and (D,(d)) are related through Lagrangian duality; if either program
is feasible, then both programs attain their optima, and optimal solutions x = x(/) and
(y, s) = (y(u), s(u)) satisfy cTx- bTy = n,, and hence exhibit a linear programming duality
gap of nju for the dual linear programming problems associated with (P,(d)) and (D,(d)).

The purpose of this paper is to explore and demonstrate properties of solutions to
(P,(d)) and (D,(d)) that are inherently related to the condition number C(d) of the data
instance d = (A, b, c), where the condition number C(d) and a closely-related measure
p(d) called the "distance to ill-posedness" were introduced by Renegar in a recent series
of papers [17, 15, 16]. In the context of the central trajectory problem, p(d) essentially
measures how close the data instance d = (A, b, c) is to being infeasible for (P,(d)), and
C(d) Alldlll/p(d) is a scale-invariant reciprocal of the distance to ill-posedness p(d), and so
C(d) goes to oo as the data instance d = (A, b, c) approaches infeasibility. We now present
these concepts in more detail.

The data for the programs (P,(d)) and (D,J(d)) is the array d = (A, b, c), where d =
(A,b,c) GE D = {(A,b, c) : A cE mn, b E Rm, c E Rn} and the positive scalar Lt is treated
as a parameter independent of the data d = (A, b, c). Consider the following subset of the
data set D:

f = {(A, b, c) E D : there exists (x, y) such that Ax = b, x > O, ATy < c},

that is, the elements in F correspond to those instances in D for which (P,(d)) and (D,(d))
are feasible. The complement of F, denoted by 3rC, is the set of data instances d = (A, b, c)
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for which (P,(d)) and (Dr(d)) are infeasible. The boundary of OF and Jr c is the set

B = T = .,TC = cl(Y) n cl(YFc),

where OS denotes the boundary of a set S, and cl(S) is the closure of a set S. Note that
B 0 0 since (0, 0, 0) E B. The data instances d = (A, b, c) in B are called the ill-posed data
instances, in that arbitrarily small changes in the data d = (A, b, c) yield data instances in
OT as well as data instances in yc.

In order to measure the "distance to ill-posedness" of a given data instance, we need
to define a norm over the data set D; and to do so we first define norms for Rn and Rm.

We assume that Rn is a normed vector space and that for any x E Rn, IIxII denotes the
norm of the vector x. We also assume that Rm is a normed vector space and that for any
y E Rm, Ilyll denotes the norm of the vector y. Observe that even though we are using the
same notation for the norm in Rm and the norm in Rn , they are not necessarily the same
norms. We do not explicitly make the distinction because when computing the norm of a
given vector it is clear from the context or from the dimension of the vector what norm we
are employing. We associate with Rn and ~R the dual spaces (n)* and (m)* of linear
functionals defined on IRn and Rm, respectively, and whose (dual) norms are denoted by
IIcII* for c E (n)* and IlvlI* for v E (m)*, and where the dual norm IIcII* induced on the
space (n)* is defined as:

IIcll* = max{cT x: Ix11 < 1,x E Rn},

and similarly for IlvII* for v E (m)*. Observe that there exists a natural isomorphism
*: Rn (n)* that assigns to each vector v E n a linear functional v* E (n)* defined as
v*x = vTx for all x E Rn. Hence, we can define a new norm on Rn, namely Ilvll* = llv*11 for
all v E en, where the norm on the right hand side is the dual defined above. The operator
* is an isometry between the spaces (n, I1 II,) and ((Tn)*, I11 II). Similar remarks hold
concerning norms arising from Rm.

We next define norms for linear operators. Let X and y be finite-dimensional normed
vector spaces with norms 11 Ixl and I11 Ily, respectively, and let L(X, Y) be the set of all
linear operators from X to y. Then for a given linear operator T in L(X, y) we define ITII
to be the operator norm, namely,

IITI = max {lITxlly: x E X, IIxiIx < 1}.
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Given a data instance d = (A, b, c), A is both a matrix of mn real numbers as well
as a linear operator mapping the vector space (n, II1 11) into the vector space ()m, II I1).
Similarly, AT is both a matrix of mn real numbers as well as a linear operator mapping the
vector space ((Rm)*, I11 * II) into the vector space ((Rn)*, 11 11 ). It is elementary to show
that by using these characterizations that IIAll = IIATIl .

Finally, if u and v are vectors in Rk and R', respectively, we can define the norm of
the product vector (u,v) as 11(u, v)ll = max{llull, IIvll}, whose corresponding dual norm is
I(u, v)11* = IIlull* + IIlvll*.

For d = (A, b, c) E D, we define the product norm on the Cartesian product Rmn X

Rm X Rn as

Ildll = max{IIAIAll, l lc, ll*},

for all d E 2, where j[A[l is the operator norm associated with the linear operator A, lIb][
is the norm specified in Rm, and IlcIl* is the isometric dual norm on Rn.

For d E D, we define the ball centered at d with radius a as:

B(d,) = {d E D : lld-dIl < S).

For a data instance d E 2D, the "distance to ill-posedness" is defined as follows:

p(d) = inf{ld - dl : d EC ),

see [17, 15, 16], and so p(d) is the distance of the data instance d = (A, b, c) to the set of
ill-posed instances B. It is straightforward to show that

(d)_ sup(S: B(d, S) C 'F} if d E F,
p(d) lsup{: B(d,S) C C} if d E C, (1)

so that we could also define p(d) by employing (1). The "condition number" C(d) of the
data instance d is defined as

C(d) = Ildll
p(d)

when p(d) > 0, and C(d) = oo when p(d) = 0. The condition number C(d) can be viewed
as a scale-invariant reciprocal of p(d), as it is elementary to demonstrate that C(d) = C(ad)
for any positive scalar a. Observe that since d = (A, b, c) = (0, 0, 0) E B and B is a closed
set, then for any d B we have Ildll = lld- dli > p(d) > 0, so that C(d) > 1. The value of
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C(d) is a measure of the relative conditioning of the data instance d.

The study of perturbation theory and information complexity for convex programs in
terms of the distance to ill-posedness p(d) and the condition number C(d) of a given data
instance d has been the subject of many recent papers. In particular, Renegar in [15]
studies perturbations in the very general setting:

(RLP): z = sup{c*x: Ax < b, x > 0, x EX},

where X and y denote real normed vector spaces, A : X -+ y is a continuous linear
operator, c* : X -+ R is a continuous linear functional, and the inequalities Ax < b and
x > 0 are induced by any closed convex cones (linear or nonlinear) containing the origin
in X and y, respectively. Previous to this paper of Renegar, others studied perturbations
of linear programs and systems of linear inequalities, but not in terms of the distance to
ill-posedness (see [12, 18, 19]). In [16] and [17] Renegar introduces the concept of a fully
efficient algorithm and provides a fully-efficient algorithm that given any data instance d
answers whether the program (RLP) associated with d is consistent or not.

Vera in [23] develops a fully-efficient algorithm for a certain form of linear program-
ming that is a special case of (RLP) in which the spaces are finite-dimensional, the linear
inequalities are induced by the nonnegative orthant, and nonnegativity constraints x > 0
do not appear, that is, when the problem (RLP) is min{cT x : Ax < b,x CE n}). In [22],
Vera establishes similar bounds as Renegar in [15] for norms of optimal primal and dual
solutions and optimal objective function values. He then uses these bounds to develop
an algorithm for finding approximate optimal solutions of the original instance. In [24]
he provides a measure of the precision of a logarithmic barrier algorithm based upon the
distance to ill-posedness of the instance. To do this, he follows the same arguments as Den
Hertog, Roos, and Terlaky [4], making the appropriate changes when necessary to express
their results in terms of the distance to ill-posedness.

Filipowski [5] expands upon Vera's results under the assumption that it is known be-
forehand that the primal data instance is feasible. In addition, she develops several fully-
efficient algorithms that approximate optimal solutions to the original instance under this
assumption.

Freund and Vera in [6] address the issue of deciding feasibility of (RLP). The problem
that they study is defined as finding x that solves b- Ax E Cy and x E Cx, where Cx and
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Cy are closed convex cones in the linear vector spaces X and Y, respectively. They develop
optimization programs that allow one to compute exactly or at least estimate the distance
to ill-posedness. They also show additional results relating the distance to ill-posedness
to the existence of certain inscribed and circumscribed balls for the feasible region, with
implications for Haijan's ellipsoid algorithm [9].

This paper is organized as follows. In Section 2 we present several properties related
to the distance to ill-posedness of the data d = (A, b, c). Lemma 2.1 and Corollary 2.1
state characterizations of sets of ill-posed data instances. Lemma 2.2 and Lemma 2.3
present some elementary properties of the set of ill-posed instances B and the distance to
ill-posedness p(d), respectively.

In Section 3 we present results on lower and upper bounds on sizes of optimal solutions
along the central trajectory of the dual logarithmic barrier problems (P (d)) and (D,(d)).
The upper bound results are stated in Theorem 3.1, and the lower bound results are stated
in Theorem 3.2 and Theorem 3.3.

In Section 4 we study the sensitivity of optimal solutions along the central trajectory to
changes (perturbations) in the data d = (A, b, c). Theorem 4.1 presents upper bounds on
changes in optimal solutions along the central trajectory as the data instance d = (A, b, c)
is changed to a "nearby" data instance d = (A, b, c). Theorem 4.2 presents upper bounds
on changes in optimal solutions along the central trajectory as the barrier parameter / is
changed and the data instance d = (A, b, c) remains fixed. Corollary 4.3 states upper bounds
on the first derivatives x = i(>) and (, ) = ((/u), (/u)) of optimal solutions along the
central trajectory with respect to the barrier parameter . Finally, Theorem 4.3 presents
upper bounds on changes in optimal objective function values along the central trajectory
as the data instance d = (A, b, c) is changed to a "nearby" data instance d = (A, b, e).

Section 5 contains a brief examination of properties of analytic center problems related
to condition measures. These properties are used to demonstrate one of the lower bound
results in Section 4.

2 Properties related to the distance to ill-posedness

In this section we present several properties related to the distance to ill-posedness of the
data (A, b, c) for the logarithmic barrier problem (P, (d)) and its dual (P,(d)). In Lemma 2.1
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and Corollary 2.1, we characterize sets of ill-posed data instances. In Lemma 2.2 and
Lemma 2.3, we present some elementary properties of the set of ill-posed instances B and
the distance to ill-posedness p(d), respectively.

We first state three elementary propositions. The first two propositions are each a
different version of Farkas' Lemma, that are stated for the context of the central trajectory
problems studied here.

Proposition 2.1 Exactly one of the following two systems has a solution:

* Ax = b and x > O.

* ATy > 0, bTy < 0, and (Ae, - b)Ty > 0,

where e denotes the vector (1,... , 1)T in Rn.

Proposition 2.2 Exactly one of the following two systems has a solution:

* ATy < c.

* Ax = 0, x > , CTx < 0, and (en,-c)T x > O,

where e denotes the vector (1,..., 1)T in n.

The third proposition is a special case of the extension form of the Hahn-Banach The-
orem (see Corollary 2 in Luenberger [11], p. 112). A simple and short proof for finite-
dimensional spaces is presented in [6].

Proposition 2.3 Given u C ~R, there exists u (k)* such that uTu = IUI and jljllJ = 1.

Now consider the following subsets of the data space D:

.Fp = {(A, b, c) E D: there exists x E Jn such that Ax = b, x > 0),

'FD = {(A, b, c) E D: there exists y E Rm such that ATy < c},

that is, .Fp is the set of primal feasible data instances and YD is the set of dual feasible
data instances. Observe that 3F, which is the set of instances for which the logarithmic
barrier problem (P,(d)) (and its dual (P,(d))) have optimal solutions, is characterized by
X = Fp n FD. It is also convenient to introduce the corresponding sets of ill-posed data in-
stances: Bp = cl(Fp)n cl(FpC) = a0p- = Tp c and BD = cl(FD)fn cl(FDC) = TFD = &DC.
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Similarly, we define the following distances to ill-posedness of a data instance d =
(A, b, c). Let pp(d) = inf{lld - dll d E J3p} and pD(d) = inf{lld - dll d E BD}. Then
pp(d) and pD(d) denote the distance to primal ill-posedness and the distance to dual ill-
posedness of the data instance d.

We also have alternative definitions of pp(d) and pD(d) analogous to the one given in
definition (1):

pp(d) = sup{8: B(d, S) C Fp} if d E Yp,
sup{S: B(d, d) C Fp } if d E . (2)

(d) _d f sup{: B(d, ) C FD} if d E TFD,
PD(d) sup{: B(d,S) C TDr} if d (3)

Likewise, the corresponding condition measures for the primal problem and for the dual
problem are Cp(d) = Ildll/pp(d) if pp(d) > 0 and Cp(d) = oo, otherwise; CD(d) = Ildll/PD(d)
if pD(d) > 0 and CD(d) = oo, otherwise.

The following lemma describes the closure of various data instance sets.

Lemma 2.1 The data instance sets cl(rp), cl(rp), cl(.FD), and cl(FTD) are characterized
as follows:

cl(TFp) = {(A, b, c): there exist x E ~R and r E R such that
Ax-br = O,x > 0, r > 0, (x, r) =# 0},

cl(FpC) = {(A,b, c) there exists u E Rm such that
ATu < O,bu > O,u O},

cl(cFD) = {(A, b, c): there exist y E fRm and t E R such that
ct - ATy > O, t > O, (y, t) O},

cl(ZDC) = {(A, b, c) there exists v E Rn such that
Av = O, cTv < O, v > O, v 0}.

Proof: Let d = (A, b, c) E cl(YFp), then there exists a sequence {dh = (Ah, bh, Ch): h E AJ},
where JV denotes the set of natural numbers, such that dh C Ep for all h, and limh,,o dh =
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d. For each h, we have that there exists h such that Ahxh = bh, and h > 0. Consider
the sequence {(h,rh) : h E }, where h = h and rh for all h. Observe
that for each h, Ahxh - bhh = 0, I|Xhjl + rh = 1, and (h, h) > 0. Hence, there exist
a vector (,ri) E Rn+1 and a sequence ((hk,hk): k E Af} such that limk, hk = 00,

limkoo(xhk,rhk) = (e,), and I + r = 1. Since, limk-oodhk = d, it follows that
A - b = 0, > r > 0, (, () O.

On the other hand, for a given data instance d = (A, b, c) assume that there exist x
and r such that Ax - br = O, x > 0, r> 0, (x, r) O. Then [lxi! + Irl > 0. Let (xe,r,) =
(x+ee,, r+e) for any e > 0, where e denotes the vector (1,..., 1)T in Rn. Then (e, r,) > 0.
From Proposition 2.3, there exists (5, r-) such that 'xTX + rr, = IIxell + Irl > 0, and
max{lljll1., j1f} = 1. Define A = A - xl+ (Aen - b), b = b + iixEl+(Ae - b)r.
Then, Ax, - br, = 0, x > 0, and r > 0, whereby d = (A,, b, c) E Fp. Nevertheless,
since lIxljI + Irjl -+ Ixll + Irl > 0 as - 0, we have that lld - dll -+ 0 as e -+ 0, so that
d E cl(.Fp). This concludes the proof of the characterization of cl(YVp).

Similarly, for a given data instance d = (A,b,c) E cl(.pC), there exists a sequence
{dh = (Ah, bh, Ch) h E K}, such that dh E Ypc for all h, and limh, dh = d. For each
h, we have from Proposition 2.1 that there exists h such that ATUh < 0, buh > 0, and
(bh-Ahen)T uh > 0. Consider the sequence {h : h E A}, where h = uh for all h. Observe
that for each h, ATth < 0, bTth > 0, (bh-Ahen)Th > 0, and I1uhi = 1. Hence, there exists
a vector E m and a sequence {Uh : k E F} such that limk+o hk = 0o, limk+oo h = 
and I1UI1 = 1. Since limkoo dh, = d, it follows that AT < 0, juTb > 0, f 0.

Now, suppose that for a given data instance d = (A,b,c) there exists u such that
ATu < 0, bTu > 0, u 0. Without loss of generality we assume that IluII* = 1. Using
Proposition 2.3, there exists such that Tu = IlullI = 1 and l1il = 1. For a given

> 0, let Ab = eu, then since ATu < 0, u 0, and (b + Ab,)Tu > 0, it follows from
Proposition 2.1 that d = (A,b + Ab, c) E FpC. Since lim,,o d = d, it follows that
d cl(,FpC). This concludes the proof of the characterization of cl(7pC).

Similar arguments show the remaining characterizations of cl(,FD) and cl(7Dc).
q.e.d.

As an immediate consequence of Lemma 2.1 we obtain:

Corollary 2.1

13p = {(A, b, c) : there exist x C n, r c YR, and u Rm such that
Ax-br = 0,x > O0 r > 0, (x, r) O, ATu < O, bTu > O, u 0},
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and
BD = {(A, b, c): there exist y E Rm , t E ?, and v E Yn such that

ct - ATy > O t > O, (y, t) $4 0, Av = O, cTv < O v > 0, v 0}.

The next lemma relates the three sets of ill-posed data instances.

Lemma 2.2 ((B3p U D) n.F) C C (p U BD).

Proof: Suppose that d E B. Then, given any e > 0, we have that there exist d and d such
that d E B(d, c) n, and d E B(d, e) n.C . Since d E X, it follows that B(d, ) n.p ~ 0 and
B(d, e) n 'D 0. Therefore, it follows by letting e -+ 0 that d E cl(Fp) and d E cl(FD).
On the other hand, d E FC implies that d E FpC or d E FDC. Therefore, it also follows by
letting -+ 0 that d E cl(p) or d E cl(.DC). In conclusion, d E 1 p U 3 D.

Now, assume that d E (p U BD) n . Since d E , then d E cl(F) and we only
need to show that d E cl(FC). Given e > 0 and assuming that d E p, it follows that
B(d, ) n FpC $7 0, so that B(d, e) n cC # 0, and d E cl(;FC). If d E B3D, it follows that
B(d, ) n .FDc 0, so that again B(d, ) nf C $ 0, and d E cl(FC), and the result follows.
q.e.d.

Observe that d = (A,b, ) = (0,0,0) E B but d , hence the first inclusion of
Lemma 2.2 is proper. Moreover, if d is the following data instance:

then d d cl(p), and d cl(), so that d 1 p U . Nevertheless, d cl(),

then d E C, d E cl(.Fp), and d E Cl(pC)) so that d E p U D. Nevertheless, d cl(.F),
hence d B, and the second inclusion of Lemma 2.2 is also proper.

The next result relates the three distances to ill-posed sets.

Lemma 2.3 p(d) = min{pp(d), pD(d)} for each data instance d = (A, b, c) E F.

Proof: In this lemma we use the alternative definitions (1), (2), and (3) of p(d), pp(d),
and pD(d), respectively. Suppose that d E F. Given any > 0 such that < p(d), then
B(d, ) C , and it follows that B(d,S) C p and B(d,6) C D. Hence, S < pp(d) and

< pD(d), that is < min{pp(d),pD(d)}. Therefore, p(d) < min{pp(d),pD(d)}. On the
other hand, let be an arbitrary positive scalar, and without loss of generality assume that
min{pp(d),pD(d)} = pp(d). Since pp(d) = sup{ : B(d, ) C p}, it follows that there
exists S such that B(d, ) C p and pp(d) - < < pp(d) < pD(d). Moreover, S < pD(d)
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implies B(d,8) C FD. Hence, B(d,6) C p n FD = F, so that pp(d) - < S < p(d).
Therefore, because e is arbitrary, we have that p(d) > pp(d) = min{pp(d), pD(d)}, con-
cluding the proof.
q.e.d.

3 Upper and lower bounds of solutions along the
central trajectory

This section presents results on lower and upper bounds on sizes of optimal solutions along
the central trajectory, for the pair of dual logarithmic barrier problems (P,(d)) and (D,(d)),
as well as upper bounds on the sizes of changes in optimal solutions as the data is changed.
As in the previous section, we assume that d = (A, b, c) represents a data instance. Before
presenting the first bound, we define the following constant, denoted KC,(d), which arises
in many of the results to come.

.(d) = C(d)2 + /-n

The first result concerns upper bounds on sizes of optimal solutions.

Theorem 3.1 If d = (A, b, c) E Y' and p(d) > O, then

11I11 < C(d)2 + = k,(d),
p(d)

II�1,* < C(d)2 + Id = l.(d),
p(d)

1111.* < 211d1 ((d) + (d) dl(d)

for any optimal solution x to (P,(d)) and any optimal solution (, s) to the dual problem
(D. (d)).

This theorem states that the norms of optimal solutions along the central trajectory are
bounded above by quantities only involving the condition number C(d) and the distance to
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ill-posedness p(d) of the data d, as well as the dimension n and the barrier parameter .
Furthermore, for example, the theorem shows that the norm of the optimal primal solution
along the central trajectory grows at most linearly in the barrier parameter /u, and at a
rate no larger than n/p(d).

Proof of Theorem 3.1: Let be an optimal solution to (P,(d)) and (y,s ) an optimal
solution to the corresponding dual problem (D,(d)). Note that the optimality conditions
of (P,(d)) and (D,(d)) imply that cT = bTy+ n. Note also that by Proposition 2.3, there
exists a vector x such that xTx = i Sil and I llx. = 1. Similarly, by Proposition 2.3, there
exists a vector such that 9T/ = IIJII* and IIII = 1.

Observe that since s = c - AT/, then 1111. < IIcII, + IIATIIllIyll*, where IIATIIl =
max{IIA T yll : IlII. < 1} = IlAll. Thus, II11. < lid l(1 + IIYII.), and using the fact that
C(d) > 1 the bound on I1'11, is a consequence of the bound on IIII*. It therefore is sufficient
to prove the bounds on IIj1l and on IIYII*

The rest of the proof proceeds by examining three cases:

1. cT < 0,

2. 0 < CT5 < Utn, and

3. ln < cTi.

In case (1), let A = -1bT. Then (A + A)& = 0, x > 0, and cTx < 0. If
d = (A + AA, b, c) is primal infeasible we have ld- dll > p(d) > 0. If d is primal feasible,
then (P,(d)) is unbounded ( is a ray of (P,(d))) and so its dual (D,(d)) is infeasible, so that
again Ild- d > p(d) > 0. In either instance, p(d) < lid- dlii = I AAII l ! = Jly -11 < d11
Therefore, IIXI < C(d) < C(d)2 + (d), since C(d) > 1 for any d. This proves the bound on
IIII for this case.

The bound on II1II. is trivial if = 0, so we assume that y 4 0. Let 0 = bTy,
Ab = -0 AA, - - cT, and d = (A + A, b + Ab, c). Observe that (b + Ab)T = o
and (A+ AA)T < 0, so that p(d) < lid- dl = max{I I,10}1 Hence, IIYII < max{C(d), p() }
Furthermore, 101 = IcT - nl < iJll licI* + ,un < C(d)lldll + pn. Therefore, again using the
fact that C(d) > 1 for any d, we have IIYII* < C(d)2 + .

In case (2), let d = (A + AA, b,c + Ac), where AA =- 1 b iT and Ac = -ll
Observe that (A+AA)& = 0 and (c+Ac)T5 < . Using similar logic to that in the first part
of case (1), we conclude that p(d) < lid- dll = max{ll IAAI, IicII)* = max{,lbll,n < ldI+gn

11 11 - 11-IN I
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Therefore, llI < C(d) + p(d) < C(d)2 + pd since C(d) > 1 for any d. This proves the
bound on Illl for this case.

The bound on III*1. is trivial if y = 0, so we assume that Q - 0. Let d = (A + AA, b +
Ab, c), where AA = - -CT and Ab = tn . Observe that (b + Ab)TP = bT + un -and +, <0e11. t in f- 11c11
cTx > 0 and (A + AA)Ty < 0. Using similar logic to that in the first part of case (1),
we conclude that p(d) < lid- dl = max{fllAAl, IIAbll} = max{llcllc.,in < II1+i . Therefore,
111* < C(d) + (d) < C(d)2 + ~p(d) - p(d),

In case (3), we first consider the bound on I YlI. Again noting that this bound on IIYII is
trivial if y = 0, we assume that Y 4 0. Then let d = (A + AA, b, c), where AA = -Y1 -cT.

Since (A+ AA)Ty < 0 and bTp = CT -- n > 0, it follows from the same logic as in the first
part of case (1) that p(d) < lid- dll = II* Therefore, IIYII* <* L < C(d) < C(d)2 + p(d).IIIIll.' - p(d) - )

Finally, let AA = - bxr and Ac = -0-f, where 0 = cx. Observe that (A+AA): =
0 and (c + Ac)Tx = 0. Using the same argument as in the previous cases, we conclude
that p(d) < lid - dl = max{llAAl, llAcIl*} = max l11I,0}, so that lIIjl < max{C(d), pd.

Furthermore, 0 = bT + < lbllll +n bn < lldllC(d) + un. Therefore, llll < C(d)2 + p(d),
because C(d) > 1.
q.e.d.

Remark 1 Note that IC,(d) is scale invariant in the sense that CxAu(Ad) = IC,(d) for any
A > 0. From this it follows that the bounds from Theorem 3.1 on Is1i, and IIII*. are also
scale invariant. However, as one would expect, the bound on I1s11. is not scale invariant,
since Illl. is sensitive to scalings of the form Ad. Moreover, observe that as /f -+ 0 these
bounds converge to the bounds presented by Vera in [22] for optimal solutions to linear
programs of the form min{cT x : Ax = b, x > 0}.

We next consider upper bounds on solutions of (P, (d)) and (D,(d)), where d is a data
instance that is a small perturbation of the data instance d. Let

PZ(d, ) = {x x is an optimal solution to (P,(d)) for some d B(d, 6)},

D,(d, 8) = {(y, s): (y, s) is an optimal solution to (D,,(d)) for some d E B(d, S)}.

13
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Then P,(d, ) and D (d, 8) consist of all optimal solutions to perturbed problems of
the form (P,(d)) and (D,(d)), respectively, for all d satisfying lid - ll < 8. Then from
Theorem 3.1 we obtain the following corollary, which presents upper bounds on the sizes
of solutions to these perturbed problems:

Corollary 3.1 Let a E (0, 1) be given and fixed, and let be such that 
d E F and p(d) > O. Then

llxll < (1- () + ( p(d) = c()I - a p~~d) I-,-/a

IIYII* < (1 + )2 (C(d)2 + -(d)) =

< ap(d), where

1 -+ a 2 )1 -a k4(d),

IlslI. < 2(-ldll + ) (1 ) (C(d)2 + pd) = 2(lld

for all x E P,(d, ) and (y, s) E D* (d, ).

Proof: The proof follows by observing that for d E B(d, S)
p(d) > (1 - a)p(d), so that

C(d) < (I - a)p(d) ( 1a
(1 -u)p(d) 1-)

(C(d) + 8/p(d)) < ( a) (C(d) + a) <

since C(d) > 1.
q.e.d.

Note that for a fixed value a that Corollary 3.1 shows that the norms of solutions to
any suitably perturbed problem are uniformly upper-bounded by a fixed constant times
the upper bounds on the solutions to the original problem.

The next result presents a lower bound on the norm of any primal optimal solution to
the central trajectory problem (P,(d)).

Theorem 3.2 If the program (P,1(d)) has an optimal solution x and p(d) > O, then

1 /~n ) Cn1> 21dll (d)+ ;n 2alldl;(d)
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and,

A 1 ( Hino _ _ _MO

2- 21dll C(d)2 + p(d) 2jjdI k,(d)

for all j = 1,...,n, where m = min{ lvI* : v E RnI, Ivlo = 1}, and II,1oo = max{lvl :
1 < j < n}.

This theorem shows that IIlI and xj are bounded from below by functions only involv-
ing the quantities Ildll, C(d), p(d), n, and (plus the constant mo, which only depends on
the norm used). Furthermore, the theorem shows that for close to zero, that j grows at
least linearly in ,u, and at a rate that is at least mo/(2lldllC(d)2 ).

The theorem offers less insight when - o, since the lower bound on II~1 presented in
the theorem converges to (2C(d))-1 as - oo. When the feasible region is unbounded, it is
well known (see also the results at the end of this section) that I1(t)II - oc as -4 oo, so
that as - o the lower bound of Theorem 3.2 does not adequately capture the behavior
of the sizes of optimal solutions to (P,(d)) when the feasible region is unbounded. We will
present a more relevant bound shortly, in Theorem 3.3.

Note also that the constant mo is completely independent of the data (A, b, c), and in
fact mo only depends on the properties of the norm Ilv I relative to the infinity norm Illv II.

Proof of Theorem 3.2: By the Karush-Kuhn-Tucker optimality conditions of the dual
pair of problems (P,(d)) and (D,(d)), we have that TS = ftfn, where s is the correspond-
ing dual variable. Since T < , it follows that jjiij > II and the first inequality
follows from Theorem 3.1.

For the second inequality, observe that = jxj, thus

j = f >ftmo

Observe that mo is such that 1111. > mojlllo.. Therefore, the result follows again from
Theorem 3.1.
q.e.d.

The following corollary uses Theorem 3.2 to provide lower bounds for solutions to per-
turbed problems.

15



Corollary 3.2 Let a E (0, 1) be given and fixed, and let be such that < ap(d), where
d E F and p(d) > O. If x E P,(d, ), then

1 - a 2 I-L n

- 1 2(11dl + )C2(d ,(d)'

and
>1 - a 2 /ZmO

x _1> + - a 2(lldll + )lC (d)'

for all j = 1,..., n, where mo is the constant defined in Theorem 3.2.

Proof: The proof follows the same logic as that of Corollary 3.1.
q.e.d.

Note that for a fixed value a that Corollary 3.2 shows that the norms of solutions to
any suitably perturbed problem are uniformly lower-bounded by a fixed constant times the
lower bounds on the solutions to the original problem.

The last result of this section, Theorem 3.3, presents different lower bounds on com-
ponents of x along the central trajectory, that are relevant when -+ o and when the
primal feasible region is unbounded. We will prove this theorem in Section 5. In this
theorem, CD(dB) denotes a certain condition number that is independent of t and only
depends on part of the data instance d associated with a certain partition of the indices of
the components of x. We will formally define this other condition number in Section 5.

Theorem 3.3 If the central trajectory problem (P,(d)) has an optimal solution x(yt), then
there exists a unique partition of the indices {1,... , n} into two subsets B and N such that

ftmO

2l dl CD(dB )

for all j E B, and xj(pl) is uniformly bounded for all ft > 0 for all j E N, where dB =
(AB,b, cB) is a data instance in R m lIBIm++IBI composed of those elements of d indexed by
the set B, and mo = min{lvl*, : v E Rn, Ilvlloo = 1}.

Note that the set B is the index set of components of x that are unbounded over the
feasible region of (P,(d)), and N is the index set of components of x that are bounded over
the feasible region of (P,,(d)). Theorem 3.3 states that as yt - oo, that xj(/) for j B

16



will go to oo at least linearly in as -+ oo, and at a rate that is at least mo/(211dllCD(dB)).

Of course, from Theorem 3.3, it also follows that when the feasible region of (P,(d)) is
unbounded, that is, B 7 0, that lim+,, Ilx(p)II = oo.

Finally, note that Theorem 3.1 combined with Theorem 3.3 state that as - co, that
j(ft) for j E B will go to oo exactly linearly in it.

4 Bounds on changes in optimal solutions as the data
is changed

In this section, we present upper bounds on changes in optimal solutions to (P,(d)) and
(D,(d)) as the data d = (A, b, c) is changed or as the barrier parameter ft is changed. The
major results of this section are contained in Theorem 4.1, Theorem 4.2, Theorem 4.3,
and Theorem 4.4. Theorem 4.1 presents upper bounds on the sizes of changes in optimal
solutions to (P,,(d)) and (D,(d)) as the data d = (A, b, c) is changed to data d = (A, b, c)
in a specific neighborhood of the original data d = (A, b, c). Theorem 4.2 presents upper
bounds on the sizes of changes in optimal solutions to (P,(d)) and (D,(d)) as the barrier
parameter ft is changed. Theorem 4.3 presents an upper bound on the size of the change in
the optimal objective function value of (P,(d)) as the data d = (A, b, c) is changed to data
d = (A, b, c) in a specific neighborhood of the original data d = (A, b, c). Finally, Theo-
rem 4.4 presents an upper bound on the size of the change in the optimal objective function
value of (P, (d)) as the barrier parameter t is changed. Along the way, we also present upper
and lower bounds on the norm of the matrix (AfX2 AT)-1 in Corollary 4.2 as well as upper
bounds of the first derivatives of the optimal solutions x(u) and (y(,/), s((y)) of (P,(d)) and
(D,(d)) with respect to the barrier parameter /t, in Corollary 4.3. Before presenting the
main results, we first define some constants that are used in the analysis, and we prove
some intermediary results that will be used in the proofs of the main results of this section.

We start by defining the following constants, which relate various norms to various
other norms:

mo = min{JllJvJ: v E Rn, IvJloo = 1}, (4)

Mo = max{llvll: v E Rn, Ilvllo = 1), (5)

m2 = min{llvll: v sm, Ilvll2 = 1}, (6)

17



M2 = max{lvll : v E Rm, iIv1l2 = 1i,

m 3 = min{l11v : E Rn, 1Vl112 = 1,

M3 = max{llIvll: v E Rn, lv112 = 1,

m4 = min{llvll : v E Rn, I|vl1* = 1},

(7)

(8)

(9)

(10)

M4 = max{l Ivl: v E n, I = 1 },vI* (11)

where Ilvll, = max{Ivjl: 1 < j n} and j1l112 is the Euclidean norm of v. Observe that
mo is the same constant defined in Theorem 3.2. Note that all of these constants are finite
and positive, and are independent of the data d = (A, b, c), and are only dependent on the
choice of the norms used.

For the matrix A, recall that IIAll denotes the usual operator norm for A. Let Al1t2
denote the norm defined by:

JlAI12 = max{llAxIl 2 : II112 < 1}.

The following three propositions establish some
constants and the above definition.

elementary properties based on the

Proposition 4.1 The following inequalities hold for the constants (4)-(11).

(i) mollvllo _< lvj* < Moliv011l for any v CE n.

(ii) m2llvl12 < Ilvll < M2llvll2 for any v E Rm.

(iii) m311vll2 < Ilvll < M3 11vll 2 for any v E Rn.

(iv) m411vil* < lvl < M411vll* for any v C Rn.

(v) (1/M2)|lvll2 < 1lvll* < (l/m2)IIvll2 for any v E Rm.

(vi) (1/M3 )liIlv2 < v1111* < (l/m3)lIvll2 for any v E Rn.

(vii) (m 2/M 3)llAll2 < AllII < (M12/m 3)IAI12.

Proposition 4.2 Consider the matrix AAT as a linear operatorfrom (m, .11 *) to (Jm, 1L.

II). Then

18
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(ii) p(d) < (M 2 /m 3)V/XI(AAT),

where A1(AA) denotes the smallest eigenvalue of AAT.

Proof: The proof of (i) follows directly from Proposition 4.1, inequalities (ii) and (v). For
the proof of (ii), let A1 = A(AAT). There exists v E ?Rm with llvll12 = 1 and AATV = Alv, so
that ATl = VTAA = A1. Let A = A-vvTA, b = b+ev for any e > 0 and small. Then,
ATv = O and bTv = bTV + e / 0, for all > 0 small. Hence, by Farkas' Lemma, Ax = b and
x > 0 is an inconsistent system of inequalities. Therefore, p(d) < max{IA- All, lb- bl) =
[lA - All < (M 2/m 3)IIA - All 2 = (M 2/m 3)IlAT ll 2 = (M 2 /m3) 1, thus proving (ii).
q.e.d.

Proposition 4.3 If D E Snxn is a diagonal matrix with positive diagonal entries, then

llDvll* < (Mo/mo) max {D3jjI vll
l<j<n

for any vector v E Rn.

Proof: Given any v E Rn, we have that llDvll* < MollDvlloo < Mo maxl<j<,{Djj}llvllo <
(Mo/mo) max<j<n{Djj}llvll. 
q.e.d.

We now introduce the following notational convention which is standard in the field of
interior point methods: if x E Rn and x > O, then X = diag(xl,..., xn). For any vector
v E n, we regard Xv as a vector in "Rn as well. We do not regard X as an operator, but
rather as a scaling matrix in Rnxn.

The next result establishes upper and lower bounds on certain quantities as the data
d = (A, b, c) is changed to data d = (A, b, c) in a specific neighborhood of the original data
d = (A, b, c). This result will prove useful in proving the theorems in this section. Recall
the definition of P,(d, ) is:

P4*(d, J) = {x : x is an optimal solution to (P,(d)) for some d E B(d, 8)}.
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Lemma 4.1 Suppose that d = (A, b, c) E F and p(d) > O. Let a E (0,1) be given and fixed,
and let be such that < cap(d). If is the optimal solution to (P,(d)), and E Pa(d, ),
then for j = 1,..., n,

fA (l dK (d ) ~ xjj < h1 a )),I (12)

and for any v E n,

I XXV [* < gi 1 IlvI., (13)

where fi = , h gl = and mo, Mo, and m 3 are the constants defined in (4),
32 = ~--~ gl = mom 3om

(5), and (8), respectively.

Proof: From Theorem 3.1 we have that jIJj < iC(d), and from Corollary 3.1 we also
have that 1111l < (4/(1 - )2 ):C,(d). Therefore, using Proposition 4.1, we obtain jX;j <

TX < II&XII1111I2 < 3Illllll/m < (4/m2)(C(d)2/(1 - ) 2) = hl-(d)2/(1- ) 2 for all
j = 1,...,n.

On the other hand, from Theorem 3.2 and Corollary 3.2, it follows that

j > /ImO
2lldllI /(d)'

(1 - a)2 mo (1 - a)2 [mo
> 8(I dll + S)IC,(d) - 16i1dlj(d) '

for all j = 1,..., n. Therefore,

2 i2 (1- _ ) 2 (i _ a) 2
-X- Ž32 11dll 2KC(d) 2 f Ildlllk(d) '

for all j =1,...,n.
Finally, for any v E ~R we have that IIXXvII.* MollXXvlloo < (4Mo/mrn)(1C(d)2/( -

aO)2)VlIo < 4 ((d) 2/(1 - a)2)1llII. = g(C(d)2/(1 - a)2 )vlljj.

q.e.d.
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Corollary 4.1 Let d = (A, b, c) be a data instance in F such that p(d) > O. Let x and
x be the optimal solutions of (P,(d)) and (P,,(d)), respectively, where , fi > O. Then for
j = 1, ... , n,

8f ildl ip<.(a),:(a) -ij < (d)JC(d),

and for any v E Rn,
IXXvII* < 91 IC,(d)iCF(d)llvjii,

4

II-1X-1vII, < h2 1C(d)lCk(d)lldl 1211vllII,

where fi , h, and gl are the constants defined in Lemma 4.1, and h2 = . In particular,
we have that for j = 1, ... , n,

/ 2 hi
8fl d < j) < - IC(d)2

idIlA~d ) -- 4

and for any v E jn,
2 vj* < gl k(d) 2 vlII*,.112~·11,1 2 

lII-2vll < h K()lladl llvl*

Proof: From Theorem 3.1 we have that j11II < (d) and t1lX11 < IK(d). Hence, by
Proposition 4.1, jxj < X < I12 XII 2 11< (1/m)111 1111 < (hl/4)x,(d)akj(d), for j =
1,... n.

On the other hand, from Theorem 3.2 we have that jxj > jim/(411d 12 1C(d)C(d)) =
8flt/(llIdlI2 KC(d)AC,(d)), for j = 1,. .. ,n.

Next, for any v E Rn we have that

IlXXvll* < MollXXvlloo <Mo hc,(d)ka(d)llvl <

Mo h Kc,(d)C,(d) IIvII = 1C(d)C(d) llvI*..
m 0 4 4

Furthermore,

IIkX-1vI.I < Mo XIIX'-1X-1vI < Mo (min {.jXj} llVIIoo <1:5j~)_
21



M 1 C(d)kCaf(d)ldI2 Ilvll h C(d)C, (d ) lld ll I

m0 8fl / / Y

q.e.d.

Let x > 0 and ix > 0 be two positive vectors in Rn. These two vectors can be used to
create the matrix AXXAT defined by using the diagonal scaling matrices X and X. Then
AXXAT can also be considered to be a linear operator from ((Rm)*, 11 I,*) to ( m , 11 11).

The next lemma presents lower and upper bounds on the operator norm of the inverse of
this linear operator.

Lemma 4.2 Let a E (0, 1) be given and fixed, and let be such that 5 < ap(d), where
d E .F and p(d) > O. If x is the optimal solution to (P,(d)), and x E P,(d, ), then

f2 k(d)11,/I < I(AXXAT)-1iI < 2 ( a)( -~ ' (14)

where f2 = M, g2 = 9 2 32M2 and mO, 2 , M 2, m 3, and M 3, are the constants defined in
2 -mmm3

(4), (6), (7), (8), and (9), respectively.

Proof: Using Proposition 4.2 part (i), we have that 11 (AXXAT)- 1 • (1/m2) (AXXAT1)-1 2

<(1/~m2)(min 1_n{ x })-l][(AAT)- 112 . Now, by applying Proposition 4.2, part (ii), and
Lemma 4.1, we obtain that

-T-1 1 Ildj12I,(d)2 1 1 ldl12/ (d)2 M2
II(AXXA)II <-

-m2 fi/ 2 (1 - a) 2 )A(AAT) - m2 f1 2 (1 - a) 2 mp(d)2

(C(a)A, (d) 2

On the other hand, by Proposition 4.2 part (i), I[ (AXXA T )-111 > (1/M22) (AXXAT) - 1 12
> (1/M2)(maxl<j<n{j})-ll(AAT)-1 112 . Now, by applying Proposition 4.2, part (ii), and
Lemma 4.1, we obtain that

(AXXAT )I , 1 (1 a)2 1 1 (1a)2 1
MAX )hk,(d)2 Mh(AAT) > A~22hiC(d)2 Am(AAT)

1 (1-a) 2 1 1 (1_a)2 nm2 1 

M22 h1l2(d)2 IIAll - 22 hlM1 ,(d) 2 M32 IAI 2 - ;(d))Id1
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where Am(AAT) is the largest eigenvalue of AAT.
q.e.d.

The next corollary is important in that it establishes lower and upper bounds on the
operator norm of the matrix (AX2AT) - 1, which is of central importance in interior point
algorithms for linear programming that use Newton's method. Notice that the bounds in
the corollary only depend on the condition number C(d), the distance to ill-posedness p(d),
the size of the data instance d = (A, b, c), the barrier parameter ,L, and certain constants.
Also note that as - 0, the upper bound on I (AX 2A T )-lII in the corollary goes to oc
quadratically in 1/u in the limit. Incidentally, the matrix (Ak2AT)-1 differs from the
inverse of the Hessian of the dual objective function at its optimum by the scalar -f 2 .

Corollary 4.2 Let d = (A, b, c) be a data instance in .F such that p(d) > O. Let x and x
be the optimal solutions of (P(d)) and (Pft(d)), respectively, where t, fi > O. Then

1 IAXT 1 92 C(d)2 K(d)ka(d)
4f2 K(d)(d)ld 2 < II(AXXA ) 11 < 

where f2 and g2 are the constants defined in Lemma 4.2. In particular, when I = we
have:

4f2 (Jd) ldll- II (AX 2 A T )- 1 ll < 2 

Proof: Following the proof of Lemma 4.2, we have from Proposition 4.2 and Corollary 4.1
that

II(AXXA T)'i M2 1
) m 2 (minl<<n{ij 3}) m2p(d)2

1 Ildl2kC(d) r,(d) M22 g2 C(d)2k,(d)K(d)

m2 8fiuF m2p(d) 2 8 / tF

On the other hand, we have again from Proposition 4.2 and Corollary 4.1 that

II(AX AT)-1 I > II(A T)-1 112

4

- M2hlICk(d)kf(d)Al(AAT)
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4
- M2hlju(d)Akj(d)Am(AAT)

4
= 2M2 hl C,(d)](d) IAl12

4m2> 2
M22M32hl( d)C(dd) llAll2

4f 2

KC(d)C(d)l All2

4f2

-I(d)k;~(d)dll2'

where A (AAT) and Am (AAT) are the smallest and largest eigenvalues of the matrix
AAT, respectively.
q.e.d.

We are now ready to state and prove the first theorem of this section, which presents
upper bounds on changes in optimal solutions as the data is changed.

Theorem 4.1 Let a E (0, 1) be given and fixed, and let be such that < ap(d), where
d E F and p(d) > O. If x is the optimal solution to (P,(d)), and ( Z,s) is the optimal
solution to (D,(d)), then

C(d)2IC.(d)5 (y + Ildll)j1X - j11 -g3o~ It2(1 _ )6

g4 C(d)2k(d)5(t + Ildll)
2(1 - ) 6 '

and
S _- 51* < g5 a C(d)2KC(d)5 (yt + Ildtl) 2

I 11~-~ I_< 95 5 / 2(1 _ a) ) 6

for all E P;* (d, 5) and for all (y, S) D;(d, 8), where g3 - 5M 3 hl max{M 3 , -2}, g4 =

592 max{1, M 4 g1), g5 = 6 max{1, 9g4}, and h1 , gi, and 92 are the constants defined in Lem-
mas 4.1 and 4.2, respectively.
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Before proving the theorem, we offer the following comments. Notice that the bounds
are linear in which indicates that the central trajectory associated with d changes at
most linearly and in direct proportion to perturbations in d as long as the perturbations
are smaller than ap(d). Also, the bounds are polynomial in the condition number C(d) and
the barrier parameter /u. Furthermore, notice that as - 0 these bounds diverge to oo.
This is because small perturbations in d can produce extreme changes in the limit of the
central trajectory associated with d as - 0.

Proof of Theorem 4.1: Let x be the primal optimal solution to (P,(d)) and let E
P* (d, 6). Then from the Karush-Kuhn-Tucker optimality conditions we have that for some
d = (A, b, ) E B(d, S):

pXi- en = 5 ~-- e, = s,

= C- AT, = c- ATY

A: = b, Ax = b,

x,+x > 0,

where , y E sm. Therefore,

X- -XXQ = (kX ((c - A T A-

-(XX (c - + (A - A)T) + kXAT(-y)) (15)

On the other hand, A( - ) = - b - (A - A). Since A has rank m (otherwise p(d) = 0),
then P = AXXAT is a positive definite matrix. By combining these statements together
with (15), we obtain

b- b- (A- A) =- AXX (c- + (A- A)Tq) + P( -),

P- 1 (b - b - (A - A)x) = P 1 AXX (c-c + (A - A)T y) + -

and so

ye (b-b-(AA))P AXX (c- + (A-A)TY). (16)

Therefore, we obtain
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II - P11* < llP-ll (llb - b - (A -A)x-II + IIAIIIXX (c- + (A -A)T-) 1)

< llP-ll (ll - b - (A - A)ll + M 4llAllllkX (c-c + (A - A)Ty) II)
using Proposition 4.1. From Corollary 3.1, we have that

lib - b -(A-A).ll (< ( l) (1 ++d)) ( a)2K (d),

IIc - + (A- A)T 911, < S(1 + l111) < (1 +
(1 - a)2

< (15 _1A,(d).
- (1 - a)2

Therefore, by combining (13), (14), (17), and (18), we obtain the following bound on
IIy - A l [

C(d)IC4 (d) 2

p (-a),J

< 592 max{ 1, M 4 l1} 8 C(d)2 (d) 5 (l +5 djj)
1 (1 - a) 6

thereby demonstrating the bound for IIY - Y.
Now, by substituting equation (16) into equation (15), we obtain that

x -x - X' (I - A 1 AXX) ( - - + (A - A)T)
!1t

= D (I-DATP-1AD) D (c- + (A
Li - AfTy) +

+ _XATP- 1 ( _ b -

DATP - 1 (b - b - (A

where D = XX. Observe that the matrix Q = I- DATP-1AD' is a projection matrix,
and so IIlQ112 Ill 2 for all x E Rn. Hence, from Proposition 4.1 part (iii), we obtain that

lix -xll <i M3 x - xli2 <- 4 2D2HD2 2 lllc - + (A - A) T iy2/z
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+M 3 liDII2 11ATP- 1 ( - b - (A - A)x) 112-

It follows from Proposition 4.1 parts (ii), (v) and (vi), Lemma 4.1, Lemma 4.2, and in-
equalities (17) and (18) that

(_ ) (d) a)25S_ < 3h
II· -- ~~IIII

+ M 3 hg 2 (KtI(d)) 2 (C(d)() ))
from which we obtain the following bound: a)

from which we obtain the following bound:

- ll < 5M 3 h maxf{M 3 , 92}
m2

5S k (d),
(I - a) 2

a C(d)2KZ(d)5(/1 + ldll)
[12(1 - ) 6

which thereby demonstrates the bound on I[ - IjI.
Finally, observe that - = - c + (A - A)T- + AT(P - ), so that 1S - .1, <

jji- c + (A - A)Tl11* + llA 11J9 - ll.. Using our previous results, we obtain

l <- .i* • ( a)2 K;(d) + jldlljj (g4I11- 41, (1 - ) 2 a C(d)2K:(d)5( + ldll)
/a2(1 - )6 ) <

6max{1, g4 } C(d)2KC(d) 5(/ + lldll)2

Y2 (1 - a)6

and this concludes the proof of this theorem.
q.e.d.

The next theorem presents upper bounds on changes in optimal solutions as the barrier
parameter [a is changed.

Theorem 4.2 Let d = (A, b, c) be a data instance in F such that p(d) > O. Let and 
be the optimal solutions of (P,,(d)) and (PF(d)), respectively, where , > O. Let (, ) and
(., ) be the optimal solutions of (D,(d)) and (D,(d)), respectively. Then

I - l <I g I - (d)K(d)lldll,
[L/

i/p C(d)2 , (d)11(d) dj,
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and

I - II. < g7 _C(d)2C,(d)kC(d)lldll2,

where g6 = M2h 1/4, g7 = g2/8, and hi and g2 are the constants defined in Lemma 4.1 and
Corollary 4.2, respectively.

Before proving the theorem, we offer the following comments. Notice that the bounds
are linear in fi - I which indicates that solutions along the central trajectory associated
with d change at most linearly and in direct proportion to changes in ,u. Also, the bounds
are polynomial in the condition number C(d) and the barrier parameter .

Proof of Theorem 4.2: From the Karush-Kuhn-Tucker optimality conditions we have
that

X-- en = -, X-en = 

= c- AT, = c - ATe,

Ax = b, Ax = b,

, 5 > 0,

where E, Ry E sm. Therefore,

- = !-XX ( ) = ! ((c - A) -( (c ) ) =

lXi ((i - ,)c - A T (f - it_)). (19)

On the other hand, A( - ) = b - b = 0. Since A has rank m (otherwise p(d) = 0), then
P = AXXAT is a positive definite matrix. By combining these statements together with
(19), we obtain

0 = AXX ((t - )C - A T(fi - ))

and so

P (Fp - Cj) = (f - ,)AXXc,

equivalently
ft - pY = ( - )-)P- 1 AXXc. (20)
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By substituting equation (20) into equation (19), we obtain:

- ^= - fX (c- A T P-1 AXXc) =

--L D (c - ATP-ADc) =
1f/I

fi --D½ (I - DATP-1AD½) Dc,

where D = XX. Observe that the matrix Q = I - DATP-1AD2 is a projection matrix,
and so IIQx112 < I1X112 for all x E Rn. Hence, from Proposition 4.1 parts (iii) and (v) and
Corollary 4.1, we obtain:

I1x - X1 < M 3 | l- X112 < M31 ID I2 21ID2 11211c2 <

M32 I~ -h :(d)IC(d)lldll

which demonstrates the bound for Ilj - x11.
Now, since c = ATP + s and c = ATy + s, it follows that

AT(y _ ) + s _ = 0,

which yields the following equalities in logical sequence:

AT(y- y) + - 1 X'-l(fi - C/X) = 0,

AT( -y) = -tx-1(ii -_ ),

X AT(- y) = x ( -f ,

so that by premultiplying by A, we obtain

AXA T( - y) = ( - )b,

y_ = ( - -l)P-lb.
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Therefore, from Corollary 4.2,

ip-Y <L • _ - [t llP' I ilbll l- 92 C(d)2KI(d)CA(d) lldll
jj - -11. < Ip - yj IIP-ll l l jbl < I8 /

which establishes the bound for II[ - jll,.
Finally, using that s - = AT(- _), we obtain jj~ - [l = AIIl 1P- ll, and so this

concludes the proof of this theorem.
q.e.d.

Using the same arguments as in Theorem 4.2 and the smoothness of the function x([) =
arg min{cT x + 1 p(x): Ax = b, x > 0} for /t > 0, it is straightforward to demonstrate that

() lim x(f)>- x() 1 X(u)2 (c- ATP-1AX(t)2c),
A-+L ft-/I ft

where P = A(X(u)) 2 A T , and similarly

(/) = lim y ( ) - y ( ) = 1 (y() _- P-AX(P)2c),

) li S()- S(/A) = (s() + A T P'AX(/) 2 c c) .

These same results were previously derived by Adler and Monteiro in [1]. However,
with the help of Theorem 4.2, we have the following upper bounds on these derivatives,
whose proofs are immediate from the theorem:

Corollary 4.3 Let d = (A,b,c) be a data instance in TF such that p(d) > O. Let x(p)
and (y(,/), s(ll)) be the optimal solutions of (P.(d)) and (D,(d)), respectively, where u > 0.
Then

I1~(P)11 < g6 2(d)2 lldll,

jj*(I)11 < 7 C(d)2C(d)2 lldll,

Ii(8)l < 7 2C(d)2C(d)2 lldll 2.
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The next theorem establishes a relation between the condition number and changes in
the optimal objective value of (P,(d)) as the data (A, b, c) changes.

Theorem 4.3 Suppose that d = (A,b,c) E F and p(d) > O. Let al
and fixed, and let be such that < cp(d), and let d = (A,b,c) 
z = min{cT x + lup(x): Ax = b, x > 0} and define = min{fiTx + lup(x)
Then

Z- 3 (1 - Ia/(d)2

E (0,1) be given
B(d, ). Define

: Ax = b, x > O}.

Notice that the upper bound in this theorem is linear in S so long as S is no larger than
cp(d), which indicates that optimal objective values along the central trajectory will change
at most linearly and in direct proportion to changes in d for small changes in d. Note also
that the bound is polynomial in the condition number C(d) and in the barrier parameter A.

Proof of Theorem 4.3: Consider the Lagrangian functions associated with these prob-
lems,

L(x, y)
L(x,y)

= c x + p(x) + YT(b- Ax),
= Jx + p(x) + yT(_ Ax),

and define <(x, y) = L(x, y) - L(x, y). Observe that,

z = maxy min>0 L(x, y)
= maxymin>o0 L(x,y)

= minx>o maxy L(x, y),
= minx>o maxy L(x, y).

Hence, if (, ) is a pair of optimal solutions to the primal and dual programs corresponding
to (A,b, c), and (, ) is a pair of optimal solutions to the primal and dual programs
corresponding to (A, b, c), then

z = L( , ) = max({L(, y)}
= maxy{L(, y)+ (i(, y)}
> L(x, ) + (, y)
> + (x,W).

Thus, z - > <(x, -). Similarly, we can prove that z - < (I (, ).
Therefore, we obtain the following bounds

I z-z
Iz-Zl

_< [ I(,y) , or

< I (, I).
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On the other hand, using H61lder's inequality and the bounds from Corollary 3.1 we have

I ( I(, Y) I = I (C - )T + yT(b_ ) _ T(A _ A) I
l ic- lllllb - b + b - 11 + 1II(A- A)jI
< ,JI II + ,1191. + ,11.911&114
< 3 ( + a )4 (d)2

Similarly, we can show that

I (X-,) I< 38 ( a) K (d)2

and the result follows.
q.e.d.

The last theorem of this section establishes an upper bound on changes in the optimal
objective function value of (P,(d)) as t changes.

Theorem 4.4 Let z(,) = min{c T x + [zp(x) : Ax = b, x > O} where d = (A, b, c) c Y and
ft > O. Then

Iz(u) - z(fi)l < n I - 1 (g + In (C ,(d)iCF(d)) + I ln(ldll)l + max {I ln(,u) I In() ) ),

for all Al, fi > O, where g9 = max{I ln(mo/2) , I ln(m3)l}.

Before proving the theorem, we offer the following comments. Notice that this upper
bound is linear in i/ - /l which indicates that optimal objective function values along the
central trajectory associated with d change at most linearly and in direct proportion to
changes in /l. Also, the bounds are logarithmic in the condition number C(d) and in the
barrier parameter l.

Proof of Theorem 4.4: For any [ > 0 define x(t) = arg min{cT x+upp(x) : Ax = b, x > 0}
and (y(ft), s(Fp)) = arg max{bT y - tip(s) ATy + s = c, s > 0}. As in Theorem 4.3, for given
Ft, ,i > 0, consider the following Lagrangian functions: L(x, y) = CTx + Utp(x) + yT(b - Ax)
and L(x, y) = cTx + Up(x) + yT(b - Ax). Define ¢(x, y) = L(x, y) - L(x, y) = ( - )p(x).

By a similar argument as in the proof of Theorem 4.3, we have that z(p) - z(t) >
D(x(Ft), y(t)) and z(fu) - z(t) < (x(t), y(u)). Therefore, we obtain the following bounds:
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either Iz(ft)-z(F)l I I(x(pU),y(P))I = I-Pll p(x(1Lt))I, or Iz(P)-z(i))I I (x(ft),y())I =
I| - i Ijp(x ())I. In other words,

IZ() - z(ft)l < I - FlI max{(p(x(/))f, jp(x(P))l}.

On the other hand, from Theorem 3.2 and Corollary 4.1, we have that

mO p
2 IldllkC(d) < X() <_ -()

m3

for all j = 1,..., n. Hence,

< -p(x(u)) < n (in (-) +
m3

jp(x(II))I < nmax{Iln ('O) 
j(dII ,(d)) '\m3)

I+ I ln(C, (d)) }

n (g9 + ln(K(d)KC(d)) + I ln(lldll)l + max {I ln(t) j, I ln(if)l)).

Similarly, using fp instead of pt we also obtain

Ip(x(f))I < n (go + ln(C(d)/C(d)) + I ln(lldll)l + max {I ln(a)lI, I ln(P)l}),

and the result follows.
q.e.d.

Remark 2 Since z(/) = cTx(p) + p(x(p)), it follows from the smoothness of x(y) that
z(,) is also a smooth function. Furthermore, from Theorem 4.4 we have that

I;(f) < 2n (g9 + ln(KC,(d)) + Iln(lldll)l + Iln(/)l) ·

5 Bounds for analytic center problems

In this section, we study some elementary properties of primal and dual analytic center
problems, that are used in the proof of Theorem 3.3, which is presented at the end of this
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section.

Given a data instance d = (A, b, c) for a linear program, the primal analytic center
problem, denoted AP(d), is defined as:

(AP(d)) : min{p(x) : Ax = b, x > 0}.

Structurally, the program (AP(d)) is closely related to the central trajectory problem
(P,(d)), and was first extensively studied by Sonnevend, see [20] and [21]. In terms of
data dependence, note that the program (AP(d)) does not depend on the data c. It is well
known that (AP(d)) has a unique solution when its feasible region is bounded and non
empty. We call this unique solution the (primal) analytic center.

Similarly, we define the dual analytic center problem, denoted AD(d), as:

(AD(d)) : max{-p(s) : s = c- ATy, s > 0}.

In terms of data dependence, the program (AD(d)) does not depend on the data b. The
program (AD(d)) has a unique solution when its feasible region is bounded and non empty,
and we call this unique solution the (dual) analytic center. Note in particular that the
two programs (AP(d)) and (AD(d)) are not duals of each other. As we will show soon,
the study of these problems is relevant to obtain certain results on the central trajectory
problem.

We will now present some particular upper bounds on the norms of feasible solutions
of the analytic center problems (AP(d)) and (AD(d)), that are similar in spirit to certain
results of the previous sections on the central trajectory problems (P,(d)) and (D,(d)).
In order to do so, we first introduce a bit more notation. Define the following data sets:
Dp = {(A,b) : A E ~Rmn, b E RIm} and D = {(A,c) : A E Rmn,c E Rn}. In a manner
similar to the central trajectory problem, we define the following feasibility sets for analytic
center problems:

.%p = {(A, b) E )p: there exists (x, y) such that Ax = b,, x > 0, and ATy < 0},

jFD = {(A, c) E DD: there exists (x, y) such that ATy < c, and Ax = 0, x > 0},

that is, 'p consists of data instances d for which (AP(d)) is feasible and FD consists of
data instances d for which (AD(d)) is feasible. It is also appropriate to introduce the cor-
responding sets of ill-posed data instances: p = cl(Yp) n cl(.p) = Yp = V'pC, and
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BD - cl('D) n cl(CFDC ) = .FD = 0FD.

For the primal analytic center problem AP(d), the distance to ill-posedness of a data
instance d = (A,b,c) is defined as pp(d) = inf{ll(A,b) - (A,b)p1 (A,b) E 13p}. For
the dual analytic center problem AD(d), the distance to ill-posedness of a data instance
d = (A, b, c) is defined as iD(d) = inf{ll(A, c)- (A, D)D: (A, ) C BD}, where II(A, b)llp =
max{llAIl, llbll} and II(A,c)D max{llAII, cII*. Likewise, the corresponding condi-
tion measures are Cp(d) = (A,b)llp/pp(d) if pp(d) > 0 and Cp(d) = oo otherwise;
CD(d) = II(A, c)IID/pD(d) if pD(d) > 0 and CD(d) = oo otherwise.

Proposition 5.1 If d = (A, b, c) is such that (A, b) E .Fp, then pp(d) < p(d).

Proof: Given any > 0, consider a = pp(d) - e. If d = (A, b, c) is a data instance such
that lid- dll < , then Il(A,b) - (A, b)llp < . Hence, (A,b) E Fp, so that the system
Ax = b, x > 0, ATy < 0 has a solution, and so the system Ax = b, x > 0, ATy < c also
has a solution, that is, d E F. Therefore, p(d) > = pp(d) - e, and the result follows by
letting E -+ 0.
q.e.d.

The following two lemmas present upper bounds on the norms of all feasible solutions
for primal and dual analytic center problems, respectively.

Lemma 5.1 Let d = (A, b, c) be such that (A, b) E Fp and pp(d) > O. Then

Ix11 < Cp(d)

for any feasible x of (AP(d)).

Proof: Let x be a feasible solution of (AP(d)). By Proposition 2.3, there is a vector
x such that xT = lx11 and JI1I11 = 1. Define AA = ib T and d = (A + AA,b,c).

Then, (A + AA)x = 0 and x > 0. Now, consider the program (AP(d)) defined as
min{p(x) : (A + AA)x = b, x > 0}. Because (A + AA)x = 0, x > 0, has a solution,
there cannot exist y for which (A + AA)Ty < 0, and so (A + AA, b) E p, whereby
p-p(d) < II(A + AA, b) - (A, b)llp. On the other hand, II(A + AA, b) - (A, b)lip < I11.llbIl <

JL(A,b)11, so that IIlxI < II(A,b)llp/p-p(d) = Cp(d).
q.e.d.
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Lemma 5.2 Let d = (A, b, c) be such that (A, c) E fv and pD(d) > O. Then

IIYII. < CD(d),

jfs 11.* 211(A, c) IDCD(d),

for any feasible (y, s) of (AD(d)).

Proof: Let (y, s) be a feasible solution of (AD(d)). If y = 0, then s = c and the bounds
are trivially true, so that we assume y 4 0. By Proposition 2.3, there is a vector y
such that IIIll. = -Ty and lijl = 1. Let AA = - . and d = (A + AA, b,c). Hence,

(A + AA)Ty = ATy - c < O. Because (A + AA)Ty has a solution, there cannot exist
x for which (A + A/A)x = 0 and x > 0, and so (A + AA, c) C D, whereby pD(d) <
II(A + znA, c) - (A, C)llD. On the other hand, Il(A + zAA, c) - (A, )lJD = tll < (A : so

EIII.- IMI-Y. so
that IIYlI* I(A, c)ID/pD(d) = CD(d). The bound for IIsII* can be easily derived using the
fact that IIIs. l I< IclL + IIAljllyllj and CD(d) > 1.
q.e.d.

With the aid of Lemma 5.2, we are now in position to present the proof of Theorem 3.3.

Proof of Theorem 3.3: From Tucker's strict complementarity theorem (see Dantzig [3],
p. 139), there exists a unique partition of the set {1,..., n} into subsets B and N, BnN = 0
and BUN = {1,.. ., n}, such that

1. Au = 0, u > 0 implies UN = 0 and there exists u for which Aut = 0, fZB > 0, and
UN = 0,

2. ATy = v, v > 0 implies VB = 0 and there exists (, ) for which ATP = , VB = 0,
and VN > 0.

Consider the set S = (SB E IBl sj = CB - Ay for some y e m,SB > 0O. Because
(P,(d)) has an optimal solution, S is non empty. Also, S is bounded. To see this, suppose
instead that S is unbounded, in which case there exists y such that A i > 0 and AY 7 0.
Then AT(P + Ay) > 0 for A sufficiently large, whereby AT(Y + AP) = . This in turn implies
that ATB = 0, a contradiction.

Because S is non empty and bounded, dB = (AB, b, CB) E FD. Therefore, by Lemma 5.2,
for any SB E S, IISBII* < 211(AB, cs)DCD(dB), and in particular

[sSB(P)11* < 2(AB,CB)IIDCD(dB) < 2dIICD(dB)
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where s(/u) is the optimal solution of (D,(d)). Hence, for any j E B, sj(/a) < IIsB()o <

IlsB(/l)11*/mo < 2dlICD(dB)/mo. Nevertheless, since xj(/t)sj(y) = fu, then xj(/t) > 2IdoIKD(dB)

for j E B.
Finally, by definition of the partition of {1,..., n} into B and N, xj(/u) is bounded for

all j E N and for all y > 0. This also ensures that B is unique.
q.e.d.
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