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Abstract

The central trajectory of a linear program consists of the set of optimal solutions
z(u) and (y(p), s(p)) to the logarithmic barrier problems:

(P.(d)): min{cTz + up(z) : Az = b,z > 0},
(Du(d)) : max{bTy — up(s) : ATy + s =c,s > 0},

where p(u) = — > i, In(u;), is the logarithmic barrier function, d = (A, b, ¢) is a data
instance in the space of all data D = {(4,b,¢): A € R™" b € R™,c € R"}, and the
parameter p is a positive scalar considered independent of the data instance d € D.

This study shows that certain properties of solutions along the central trajectory
of a linear program are inherently related to the condition number C(d) of the data
instance d = (A, b, ¢), where the condition number C(d) and a closely-related measure
p(d) called the “distance to ill-posedness” were introduced by Renegar in a recent
series of papers [17, 15, 16]. In the context of the central trajectory problem, p(d)
essentially measures how close the data instance d = (A4, b, ¢) is to be being infeasible
for (P,(d)), and C(d) A ||d||/p(d) is a scale-invariant reciprocal of the distance to ill-
posedness p(d), and so C(d) goes to co as the data instance d = (A, b, ¢) approaches
infeasibility. We present lower and upper bounds on sizes of optimal solutions along
the central trajectory, and on rates of change of solutions along the central trajectory
as either u changes or the data d changes, where these bounds are all polynomial
functions of y and are linear or polynomial functions of the condition number C(d)
and the related distance to ill-posedness p(d) of the data instance d = (4, b, c).



1 Introduction, notation, and definitions

The central trajectory of a linear program consists of the set of optimal solutions z = z(u)
and (y,s) = (y(u), s(p)) to the logarithmic barrier problems:

(P,(d)): min{cTz + up(z) : Az = b,z > 0},
(D,(d)) : max{bTy — up(s) : ATy + s =c,s > 0},

where p(u) = — Y~ In(u;), is the logarithmic barrier function, d = (A,b,¢) is a data
instance in the space of all data D = {(A,b,c): A € R™",b € R™,c € R"}, and the param-
eter 4 is a positive scalar considered independent of the data instance d € D. The central
trajectory is fundamental to the study of interior-point algorithms for linear programming,
and has been the subject of an enormous volume of research, see among many others, the
references cited in the surveys by Gonzaga [8] and Jansen et al [10]. It is well known that
programs (P,(d)) and (D,(d)) are related through Lagrangian duality; if either program
is feasible, then both programs attain their optima, and optimal solutions z = z(u) and
(y,5) = (y(u), s(u)) satisfy T z—bTy = np, and hence exhibit a linear programming duality
gap of nu for the dual linear programming problems associated with (P,(d)) and (D,(d)).

The purpose of this paper is to explore and demonstrate properties of solutions to
(P,(d)) and (D,(d)) that are inherently related to the condition number C(d) of the data
instance d = (A,b,c), where the condition number C(d) and a closely-related measure
p(d) called the “distance to ill-posedness” were introduced by Renegar in a recent series
of papers [17, 15, 16]. In the context of the central trajectory problem, p(d) essentially
measures how close the data instance d = (A, b, c) is to being infeasible for (P,(d)), and
C(d) Alld||/p(d) is a scale-invariant reciprocal of the distance to ill-posedness p(d), and so
C(d) goes to oo as the data instance d = (A, b, ¢) approaches infeasibility. We now present
these concepts in more detail.

The data for the programs (P,(d)) and (D,(d)) is the array d = (A,b,c), where d =
(A, b,c) € D ={(A,bc): A€ R™ be R™,c e R} and the positive scalar y is treated
as a parameter independent of the data d = (A4, b,¢). Consider the following subset of the
data set D:

F ={(A,b,c) € D: there exists (z,y) such that Az = b,z > 0, ATy < ¢},

that is, the elements in F correspond to those instances in D for which (P,(d)) and (D,(d))
are feasible. The complement of F, denoted by FC, is the set of data instances d = (A,b,¢)
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for which (P,(d)) and (D,(d)) are infeasible. The boundary of F and F© is the set
B=0F =0F° = (F)n c(F°),

where 95 denotes the boundary of a set S, and cl(S) is the closure of a set S. Note that
B # () since (0,0,0) € B. The data instances d = (A, b, ¢) in B are called the ill-posed data
instances, in that arbitrarily small changes in the data d = (A, b, ¢) yield data instances in
F as well as data instances in FC.

In order to measure the “distance to ill-posedness” of a given data instance, we need
to define a norm over the data set D; and to do so we first define norms for £" and R™.
We assume that £” is a normed vector space and that for any ¢ € R”, ||z| denotes the
norm of the vector z. We also assume that R™ is a normed vector space and that for any
y € R™, ||ly|| denotes the norm of the vector y. Observe that even though we are using the
same notation for the norm in ™ and the norm in R", they are not necessarily the same
norms. We do not explicitly make the distinction because when computing the norm of a
given vector it is clear from the context or from the dimension of the vector what norm we
are employing. We associate with R" and R™ the dual spaces (R")* and (R™)* of linear
functionals defined on R™ and R™, respectively, and whose (dual) norms are denoted by
lic|l« for ¢ € (R™)* and ||v||« for v € (R™)*, and where the dual norm ||¢||. induced on the
space (R")* is defined as:

lells = max{c’z : ||z|| < 1,z € R},

and similarly for ||v|[« for v € (R™)*. Observe that there exists a natural isomorphism
*: R — (R™)* that assigns to each vector v € R" a linear functional v* € (R")* defined as
v*z = vTz for all z € R". Hence, we can define a new norm on R”, namely ||v||. = |[v*]| for
all v € R*, where the norm on the right hand side is the dual defined above. The operator
* is an isometry between the spaces (R",|| - |l«) and ((®™)*, || - ||). Similar remarks hold
concerning norms arising from R™.

We next define norms for linear operators. Let X and ) be finite-dimensional normed
vector spaces with norms || - ||x and || - ||y, respectively, and let L(X,Y) be the set of all
linear operators from & to Y. Then for a given linear operator T in L(X',Y) we define ||T|
to be the operator norm, namely,

IT]| = max {||Tz|ly: z € A, [Jz]lx < 1} .



Given a data instance d = (A,b,¢), A is both a matrix of mn real numbers as well
as a linear operator mapping the vector space (R, ]| - ||) into the vector space (R™, ]| - ).
Similarly, AT is both a matrix of mn real numbers as well as a linear operator mapping the
vector space ((R™)*, || - ||«) into the vector space ((R")*,|| - |lx). It is elementary to show
that by using these characterizations that ||A|| = ||AT]|.

Finally, if v and v are vectors in R and R', respectively, we can define the norm of
the product vector (u,v) as ||(u,v)|| = max{||u|, ||v||}, whose corresponding dual norm is

1wy 0) |« = Nlulle + [0l

For d = (A,b,¢) € D, we define the product norm on the Cartesian product £™" x
R™ x R™ as
1| = max{[|A[|, [[o]l, llll+},

for all d € D, where ||A]| is the operator norm associated with the linear operator A, ||b]|
is the norm specified in ™, and ||¢||« is the isometric dual norm on R".

For d € D, we define the ball centered at d with radius § as:
B(d,8)={de€D:||d-d|| <d}.
For a data instance d € D, the “distance to ill-posedness” is defined as follows:
o(d) = inf{|ld—d] : d € BY,

see [17, 15, 16], and so p(d) is the distance of the data instance d = (A4, b, c) to the set of
ill-posed instances B. It is straightforward to show that

_ | sup{é:B(d,0) CF} ifdeF,
f’(d)’{ sug{azB(d,agch} ifd e FC, (1)

so that we could also define p(d) by employing (1). The “condition number” C(d) of the
data instance d is defined as

4]

D=
when p(d) > 0, and C(d) = oo when p(d) = 0. The condition number C(d) can be viewed
as a scale-invariant reciprocal of p(d), as it is elementary to demonstrate that C(d) = C(ad)
for any positive scalar a. Observe that since d = (4,b,¢) = (0,0,0) € B and B is a closed
set, then for any d ¢ B we have ||d|| = ||d — d|| > p(d) > 0, so that C(d) > 1. The value of
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C(d) is a measure of the relative conditioning of the data instance d.

The study of perturbation theory and information complexity for convex programs in
terms of the distance to ill-posedness p(d) and the condition number C(d) of a given data
instance d has been the subject of many recent papers. In particular, Renegar in [15]
studies perturbations in the very general setting:

(RLP): z=sup{cz: Az <b,z >0,z € X},

where X' and Y denote real normed vector spaces, A : X — ) is a continuous linear
operator, ¢* : X — R is a continuous linear functional, and the inequalities Az < b and
z > 0 are induced by any closed convex cones (linear or nonlinear) containing the origin
in X and ), respectively. Previous to this paper of Renegar, others studied perturbations
of linear programs and systems of linear inequalities, but not in terms of the distance to
ill-posedness (see [12, 18, 19]). In [16] and [17] Renegar introduces the concept of a fully
efficient algorithm and provides a fully-efficient algorithm that given any data instance d
answers whether the program (RLP) associated with d is consistent or not.

Vera in [23] develops a fully-efficient algorithm for a certain form of linear program-
ming that is a special case of (RLP) in which the spaces are finite-dimensional, the linear
inequalities are induced by the nonnegative orthant, and nonnegativity constraints z > 0
do not appear, that is, when the problem (RLP) is min{c’z : Az < b,z € ®"}. In [22],
Vera establishes similar bounds as Renegar in [15] for norms of optimal primal and dual
solutions and optimal objective function values. He then uses these bounds to develop
an algorithm for finding approximate optimal solutions of the original instance. In [24]
he provides a measure of the precision of a logarithmic barrier algorithm based upon the
distance to ill-posedness of the instance. To do this, he follows the same arguments as Den
Hertog, Roos, and Terlaky [4], making the appropriate changes when necessary to express
their results in terms of the distance to ill-posedness.

Filipowski [5] expands upon Vera’s results under the assumption that it is known be-
forehand that the primal data instance is feasible. In addition, she develops several fully-
efficient algorithms that approximate optimal solutions to the original instance under this
assumption.

Freund and Vera in [6] address the issue of deciding feasibility of (RLP). The probleﬁ
that they study is defined as finding « that solves b— Az € Cy and z € Cy, where Cy and



Cy are closed convex cones in the linear vector spaces & and ), respectively. They develop
optimization programs that allow one to compute exactly or at least estimate the distance
to ill-posedness. They also show additional results relating the distance to ill-posedness
to the existence of certain inscribed and circumscribed balls for the feasible region, with
implications for Hadijan’s ellipsoid algorithm [9].

This paper is organized as follows. In Section 2 we present several properties related
to the distance to ill-posedness of the data d = (4,b,¢). Lemma 2.1 and Corollary 2.1
state characterizations of sets of ill-posed data instances. Lemma 2.2 and Lemma 2.3
present some elementary properties of the set of ill-posed instances B and the distance to
ill-posedness p(d), respectively.

In Section 3 we present results on lower and upper bounds on sizes of optimal solutions
along the central trajectory of the dual logarithmic barrier problems (P,(d)) and (D,(d)).
The upper bound results are stated in Theorem 3.1, and the lower bound results are stated
in Theorem 3.2 and Theorem 3.3.

In Section 4 we study the sensitivity of optimal solutions along the central trajectory to
changes (perturbations) in the data d = (A,b,¢). Theorem 4.1 presents upper bounds on
changes in optimal solutions along the central trajectory as the data instance d = (A, b, ¢)
is changed to a “nearby” data instance d = (4,b,¢). Theorem 4.2 presents upper bounds
on changes in optimal solutions along the central trajectory as the barrier parameter p is
changed and the data instance d = (A, b, ¢) remains fixed. Corollary 4.3 states upper bounds
on the first derivatives 2 = z(p) and (y,$) = (y(u), $(r)) of optimal solutions along the
central trajectory with respect to the barrier parameter . Finally, Theorem 4.3 presents
upper bounds on changes in optimal objective function values along the central trajectory
as the data instance d = (A4, b, c) is changed to a “nearby” data instance d = (A, b, ¢).

Section 5 contains a brief examination of properties of analytic center problems related
to condition measures. These properties are used to demonstrate one of the lower bound
results in Section 4.

2 Properties related to the distance to ill-posedness

In this section we present several properties related to the distance to ill-posedness of the
data (A, b, ¢) for the logarithmic barrier problem (P,(d)) and its dual (P,(d)). In Lemma 2.1



and Corollary 2.1, we characterize sets of ill-posed data instances. In Lemma 2.2 and
Lemma 2.3, we present some elementary properties of the set of ill-posed instances B and
the distance to ill-posedness p(d), respectively.

We first state three elementary propositions. The first two propositions are each a
different version of Farkas’ Lemma, that are stated for the context of the central trajectory
problems studied here.

Proposition 2.1 Ezactly one of the following two systems has a solution:
e Az =band z > 0.
o ATy >0, b7y <0, and (Ae, — )Ty >0,

where e, denotes the vector (1,...,1)T in ™.

Proposition 2.2 FEzactly one of the following two systems has a solution:
° ATy <ec.
o Az=0,2>0,cfz <0, and (e, — c)Tz > 0,

where e, denotes the vector (1,...,1)T in ™.

The third proposition is a special case of the extension form of the Hahn-Banach The-
orem (see Corollary 2 in Luenberger [11], p. 112). A simple and short proof for finite-
dimensional spaces is presented in [6].

Proposition 2.3 Given u € R*, there exists u € (R*)* such that aTu = ||u|| and ||a||, = 1.
Now consider the following subsets of the data space D:
Fp ={(A,b,c) € D: there exists € " such that Az = b,z > 0},

Fp ={(A,b,c) € D: there exists y € R™ such that ATy < c},

that is, Fp is the set of primal feasible data instances and Fp is the set of dual feasible
data instances. Observe that F, which is the set of instances for which the logarithmic
barrier problem (P,(d)) (and its dual (P,(d))) have optimal solutions, is characterized by
F = FpNFp. It is also convenient to introduce the corresponding sets of ill-posed data in-

stances: Bp = cl(Fp)N cl(Ff) = 0Fp = OFF and Bp = cl(Fp)N cl(F§) = dFp = 0F.
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Similarly, we define the following distances to ill-posedness of a data instance d =
(A,b,c). Let pp(d) = inf{||d — d|| : d € Bp} and pp(d) = inf{||d — d|| : d € Bp}. Then
pp(d) and pp(d) denote the distance to primal ill-posedness and the distance to dual ill-
posedness of the data instance d.

We also have alternative definitions of pp(d) and pp(d) analogous to the one given in
definition (1):

_ | sup{6: B(d,6) C Fp} ifde Fp,
pr(d) = { sup{d : B(d,8) C F§} ifd e F§. (2)
(d) = sup{é : B(d,8) C Fp} ifd € Fp, )
PPYE) = sup{s: B(d,6) c F§} ifd e F§.

Likewise, the corresponding condition measures for the primal problem and for the dual
problem are Cp(d) = ||d||/pp(d) if pp(d) > 0 and Cp(d) = oo, otherwise; Cp(d) = ||d||/pp(d)
if pp(d) > 0 and Cp(d) = oo, otherwise.

The following lemma describes the closure of various data instance sets.

Lemma 2.1 The data instance sets cl(Fp), c(FS), cl(Fp), and cl(FS) are characterized
as follows:

cd(Fp) = {(A,b,c): there exist z € " and r € R such that
Az —br =0,z > 0,r > 0,(z,r) # 0},

(FE) = {(A,bc): there exists u € R™ such that
ATy <0,6Tu > 0,u # 0},

c(Fp) = {(A,b,c): there exist y € R™ and t € R such that
ct — ATy > 0,t > 0,(y,t) # 0},

c(FS) = {(A,b,c): there exists v € R™ such that
Av = 0,cfv <0,v > 0,v # 0}.

Proof: Let d = (A,b,c) € cl(Fp), then there exists a sequence {d, = (An,bn,cr) : h € N},
where N denotes the set of natural numbers, such that d, € Fp for all A, and limj_o, dp, =



d. For each h, we have that there exists z; such that Az, = by, and z, > 0. Consider
1

the sequence {(&s,74) : h € N}, where &) = |Txfﬁﬁ and 7, = (eSS for all A. Observe
that for each h, ApZp — bufn = 0, ||&4]| 4+ |F4] = 1, and (&5,74) > 0. Hence, there exist
a vector (£,7) € R"*! and a sequence {(&,,7,) : k € N} such that limg_ e by = oo,
limyyoo(Zhys Phy) = (&,7), and ||Z]] + [#] = 1. Since, limg oo dn, = d, it follows that
Az —bf =0,z > 0,7 >0,(2,#) #0.

On the other hand, for a given data instance d = (4,b,c) assume that there exist z
and 7 such that Az —br = 0,z > 0,r > 0,(z,7) # 0. Then ||z + |r| > 0. Let (z,,r.) =

(z+€eq, m+¢) for any € > 0, where e, denotes the vector (1,...,1)7 in ®*. Then (ze,7e) > 0.

From Proposition 2.3, there exists (Z.,7.) such that z7z, + 7o, = |zl + |re] > 0, and
max{||Ze||«, [Fe|} = 1. Define A, = A — Wm(/&en —b6)zT b = b+ W:-Ir:!(Ae” — b)Fe.

Then, Acz, — bore = 0, z. > 0, and 7, > 0, whereby d, = (Ac,be,c) € Fp. Nevertheless,
since ||ze|| + [re] = ||z|| + |7] > 0 as € — 0, we have that ||d, — d|| — 0 as € — 0, so that
d € cl(Fp). This concludes the proof of the characterization of cl(Fp).

Similarly, for a given data instance d = (A,b,c) € cl(F§), there exists a sequence
{dn = (An,br,cn) : h € N}, such that d;, € FE for all h, and limj_yoo d;, = d. For each
h, we have from Proposition 2.1 that there exists uj such that ATu, < 0, bfup > 0, and
(bn—Aper)Tup > 0. Consider the sequence {tn : h € N'}, where @, = n‘ziﬂ for all . Observe
that for each h, AT4;, <0, 674, > 0, (bh— Anen)Tay > 0, and l@n|l = 1. Hence, there exists
a vector 4 € R™ and a sequence {4y, : k£ € N'} such that limy_,o hx = 00, limg—yoo tp, = 1,
and ||@|| = 1. Since limj_,o dp, = d, it follows that AT4 < 0,476 > 0,a #0.

Now, suppose that for a given data instance d = (A,b,c) there exists u such that
ATu < 0,6y > 0,u # 0. Without loss of generality we assume that lu|l« = 1. Using
Proposition 2.3, there exists @ such that 4"u = |[ull, = 1 and ||a|| = 1. For a given
€ > 0, let Ab, = e, then since ATu < 0, u # 0, and (b + Ab)Tu > 0, it follows from
Proposition 2.1 that d. = (A,b+ Ab,c) € FS. Since lim,od. = d, it follows that
d € cI(F§). This concludes the proof of the characterization of (FS).

Similar arguments show the remaining characterizations of cl(Fp) and (F§).

q.e.d.

As an immediate consequence of Lemma 2.1 we obtain:

Corollary 2.1

Bp = {(A,b,c): there ezist z € R",r € R, and u € R™ such that
Az —br =0,z 2 0,r > 0,(z,7) # 0,ATu < 0,06Tu > 0,u # 0},



and
Bp = {(A,b,c): there ezisty € R™,t € R, and v € R" such that

ct — ATy >0,t > 0,(y,t) #0,Av = 0,cTv < 0,v > 0, v # 0}.
The next lemma relates the three sets of ill-posed data instances.
Lemma 2.2 ((BP UBD) ﬂf) CcBcC (BP U BD).

Proof: Suppose that d € B. Then, given any € > 0, we have that there exist d and d such
that d € B(d,e)NF and d € B(d,e)NFC. Since d € F, it follows that B(d,e)NFp # 0 and
B(d,e) N Fp # 0. Therefore, it follows by letting e — 0 that d € cI(Fp) and d € cl(Fp).
On the other hand, d € F implies that d € FS or d € F§. Therefore, it also follows by
letting € — 0 that d € cl(Fg§) or d € cl(F§). In conclusion, d € Bp U Bp.

Now, assume that d € (Bp UBp) N F. Since d € F, then d € cl(F) and we only
need to show that d € cl(F¢). Given ¢ > 0 and assuming that d € Bp, it follows that
B(d,e) N FE # 0, so that B(d,e) N FC # 0, and d € cl(FC). If d € Bp, it follows that
B(d,e) N F§ # 0, so that again B(d,e)NFC +# 0, and d € cl(F%), and the result follows.
q.e.d.

Observe that d = (4,6,6) = (0,0,0) € B but d ¢ F, hence the first inclusion of

Lemma 2.2 is proper. Moreover, if d is the following data instance:

i=(lo (=12 ]):

then d € FC, d € cl(Fp), and d € cl(F§), so that d € Bp U Bp. Nevertheless, d ¢ cl(F),
hence d ¢ B, and the second inclusion of Lemma 2.2 is also proper.
The next result relates the three distances to ill-posed sets.

Lemma 2.3 p(d) = min{pp(d), pp(d)} for each data instance d = (A,b,c) € F.

Proof: In this lemma we use the alternative definitions (1), (2), and (3) of p(d), pp(d),
and pp(d), respectively. Suppose that d € F. Given any § > 0 such that § < p(d), then
B(d,6) C F, and it follows that B(d,6) C Fp and B(d,6) C Fp. Hence, § < pp(d) and
6 < pp(d), that is 6 < min{pp(d), pp(d)}. Therefore, p(d) < min{pp(d), pp(d)}. On the
other hand, let € be an arbitrary positive scalar, and without loss of generality assume that
min{pp(d), pp(d)} = pp(d). Since pp(d) = sup{s : B(d,8) C Fp}, it follows that there
exists & such that B(d,$) C Fp and pp(d) — e < § < pp(d) < pp(d). Moreover, § < pp(d)
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implies B(d,d8) C Fp. Hence, B(d,0) C Fp N Fp = F, so that pp(d) — € < § < p(d).
Therefore, because € is arbitrary, we have that p(d) > pp(d) = min{pp(d), pp(d)}, con-
cluding the proof.

q.e.d.

3 Upper and lower bounds of solutions along the
central trajectory

This section presents results on lower and upper bounds on sizes of optimal solutions along
the central trajectory, for the pair of dual logarithmic barrier problems (P,(d)) and (D,(d)),
as well as upper bounds on the sizes of changes in optimal solutions as the data is changed.
As in the previous section, we assume that d = (A, b, ¢) represents a data instance. Before
presenting the first bound, we define the following constant, denoted K,(d), which arises
in many of the results to come.

— 2 BT
Kuld) = (& +

The first result concerns upper bounds on sizes of optimal solutions.

Theorem 3.1 Ifd = (A,b,c) € F and p(d) > 0, then

wnsa>-w%%~nA@,

I3l < €(d)* + —— = K,(d),

@
Il < 21al (@ + £2-) = e, o)

for any optimal solution & to (P,(d)) and any optimal solution (y,8) to the dual problem
(Dy(d)).

This theorem states that the norms of optimal solutions along the central trajectory are
bounded above by quantities only involving the condition number C(d) and the distance to
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ill-posedness p(d) of the data d, as well as the dimension n and the barrier parameter L.
Furthermore, for example, the theorem shows that the norm of the optimal primal solution
along the central trajectory grows at most linearly in the barrier parameter y, and at a
rate no larger than n/p(d).

Proof of Theorem 3.1: Let & be an optimal solution to (P,(d)) and (§,3) an optimal
solution to the corresponding dual problem (D,(d)). Note that the optimality conditions
of (P,(d)) and (D,(d)) imply that c'# = 7§+ un. Note also that by Proposition 2.3, there
exists a vector Z such that z7# = ||2|| and ||Z||. = 1. Similarly, by Proposition 2.3, there
exists a vector § such that g7§ = ||g||. and ||7| = 1.

Observe that since § = ¢ — AT, then [|3|l, < |le/l« + |AT||+||y]l«, where AT, =
max{[|ATy[l. : |lyll. < 1} = [|A|l. Thus, |3l < (1 + ||y|l.), and using the fact that
C(d) = 1 the bound on ||3]|. is a consequence of the bound on ||§||,. It therefore is sufficient
to prove the bounds on ||Z|| and on ||7[..

The rest of the proof proceeds by examining three cases:

1. T2 <0,
2. 0< 2 < pn, and
3. un < c’'g.

In case (1), let AA = —”lT”ba"cT. Then (A + AA): =0, 2 > 0, and T& < 0. If
d = (A+ AA,b,c) is primal infeasible we have ||d — d|| > p(d) > 0. If d is primal feasible,
then (P,(d)) is unbounded (% is a ray of (P,(d))) and so its dual (D,,(d)) is infeasible, so that
again ||d—d|| > p(d) > 0. In either instance, p(d) < ||[d—d|| = |AA|| = Lol — i < .
Therefore, ||Z|| < C(d) < C(d)? o since C(d) > 1 for any d. This proves the bound on
||| for this case.

The bound on |||« is trivial if § = 0, so we assume that § # 0. Let § = bTy,
Ab=—0-2- AA= .—ﬂﬂngcT’ and d = (A + AA,b+ Ab,c). Observe that (b4 Ab)Tj =0

(1311« B
and (A+AA)7 <0, so that p(d) < ||d—d]| = 2={l=PD. Hence, ||j]l. < max{C(d), 3.
Furthermore, 0] = |c"# — un| < ||2[[]lc||x + pn < C(d)||d|| + pn. Therefore, again using the
fact that C(d) > 1 for any d, we have ||9||. < C(d)? + ;%.

In case (2), let d = (A + AA,b,c+ Ac), where AA = _I—I—él—lbiT and Ac = —,unng:ﬂ.

Observe that (A+AA)E = 0 and (c+Ac)T2 < 0. Using similar logic to that in the first part

of case (1), we conclude that p(d) < ||d — d|| = max{||AA]|,||Ac|l.} = maxwgllll»un} < ”dl!g;ll‘m’
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Therefore, ||Z|| < C(d) + 2 < C(d)? + ﬁ%, since C(d) > 1 for any d. This proves the
bound on ||Z|| for this case.

The bound on |||« is trivial if § = 0, so we assume that § £ 0. Let d = (A+ AA b+
Ab, c), where AA = —Z—gcT and Ab = ynm}gﬁ:. Observe that (b + Ab)Ty = b7¢ + un =

1191«
¢’s > 0 and (A + AA)T§ < 0. Using similar logic to that in the first part of case (1),

we conclude that p(d) < ||d — d|| = max{]|AA]|,]|Ab||} = mexdllcloun}  Jldltun Therefore,

(191« = l9ll
191l < Cd) + 225 < C(d)? + 2.

In case (3), we first consider the bound on [|9]|«- Again noting that this bound on ||| is
trivial if § = 0, we assume that § # 0. Then let d = (A+ AA, b, ¢), where AA = —-“—271”—*37cT.
Since (A+AA)T§ < 0 and b7 = T —pun > 0, it follows from the same logic as in the first

part of case (1) that p(d) < ||d — d| = Ha”ﬁ ’_I‘herefore, 9l < J,J)%% <C(d) < c(d)? p;zg).

Finally, let AA = —-ﬁbz’:T and Ac = —0!—’—2—”, where § = cT'%. Observe that (A+AA): =
0 and (¢ + Ac)T# = 0. Using the same argument as in the previous cases, we conclude

that p(d) < [|d — d|| = max{||AA]L[|Ac]l.} = ==, so that |13]] < max{C(d), ;&)
Furthermore, 6 = 674 +un < [Bl|[[3]l. + pn < [|d][C(d) + . Therefore, ||2]| < C(d)? + 22,
because C(d) > 1.

q.e.d.

Remark 1 Note that K,(d) is scale invariant in the sense that K1,(\d) = K,(d) for any
A > 0. From this it follows that the bounds from Theorem 3.1 on ||| and ||§||, are also
scale invariant. However, as one would expect, the bound on |||, is not scale invariant,
since ||5||« is sensitive to scalings of the form Ad. Moreover, observe that as u — 0 these
bounds converge to the bounds presented by Vera in [22] for optimal solutions to linear
programs of the form min{c’z : Az = b,z > 0}.

We next consider upper bounds on solutions of (P,(d)) and (D,(d)), where d is a data
instance that is a small perturbation of the data instance d. Let

P;(d,8) = {z : z is an optimal solution to (P,(d)) for some d € B(d, 8},
D(d,8) = {(y,$) : (y,s) is an optimal solution to (D,(d)) for some d € B(d,d)}.
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Then P(d,d) and Dj(d,$) consist of all optimal solutions to perturbed problems of
the form (P,(d)) and ( M(d)) respectively, for all d satisfying ||d — d|| < §. Then from
Theorem 3.1 we obtain the following corollary, which presents upper bounds on the sizes
of solutions to these perturbed problems:

Corollary 3.1 Let a € (0,1) be given and fized, and let § be such that § < ap(d), where
d € F and p(d) > 0. Then
) Kuld),

foi < (12 (ewr+ 25 - (H
Itk < ($22) (etar + £5) = (122)
|du+5>(1 )

ol < 2(1al +8) (12) (ca2 + 4 d))
for all z € P}(d,8) and (y,s) € D;(d,9).

Il

Proof: The proof follows by observing that for d € B(d,d) we have ||d|| < ||d|| + &, and
o(d) 2 (1 - a)p(d), so that

lldll + 6
a)p(d)

= <1 i a) (C(d) +6/p(d)) < (—ﬁ—(—;) (C(d) + a) < C(d) G i a) |

o

C(d) < -

since C(d) > 1.
q.e.d.

Note that for a fixed value o that Corollary 3.1 shows that the norms of solutions to
any suitably perturbed problem are uniformly upper-bounded by a fixed constant times
the upper bounds on the solutions to the original problem.

The next result presents a lower bound on the norm of any primal optimal solution to
the central trajectory problem (P,(d)).

Theorem 3.2 If the program (P,(d)) has an optimal solution & and p(d) > 0, then

. 1 un _ un
1#1= oy (C( 27+ p(d)) = 21K @
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and,

s> 1 ©mg _ _ kMo
T2l \e@d? + 5 ) 2ldliKu(d)
forall j =1,...,n, where mg = min{||v|l. : v € R*, ||v|lc = 1}, and ||v]|c = max{|v;] :

1<j<n}

This theorem shows that ||2|| and #; are bounded from below by functions only involv-
ing the quantities ||d||, C(d), p(d), n, and g (plus the constant mg, which only depends on
the norm used). Furthermore, the theorem shows that for i close to zero, that #; grows at
least linearly in p, and at a rate that is at least mo/(2||d||C(d)?).

The theorem offers less insight when p — oo, since the lower bound on ||Z|| presented in
the theorem converges to (2C(d))™" as p — co. When the feasible region is unbounded, it is
well known (see also the results at the end of this section) that ||Z(u)|| — oo as p — o0, so
that as g — oo the lower bound of Theorem 3.2 does not adequately capture the behavior
of the sizes of optimal solutions to (P,(d)) when the feasible region is unbounded. We will
present a more relevant bound shortly, in Theorem 3.3.

Note also that the constant mg is completely independent of the data (A, b, ¢), and in
fact mo only depends on the properties of the norm ||v||« relative to the infinity norm |[v}|co.

Proof of Theorem 3.2: By the Karush-Kuhn-Tucker optimality conditions of the dual
pair of problems (P,(d)) and (D,(d)), we have that §T# = un, where § is the correspond-
ing dual variable. Since 87% < ||3|[.]|2]], it follows that ]| > Tii; and the first inequality
follows from Theorem 3.1.

For the second inequality, observe that p = §;2;, thus

n 4 Y prm
;= —2> > —
! 131l

8 Nlslleo
Observe that mq is such that ||3][. > mo)|3]|cc. Therefore, the result follows again from
Theorem 3.1.
q.e.d.

The following corollary uses Theorem 3.2 to provide lower bounds for solutions to per-
turbed problems.
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Corollary 3.2 Let o € (0,1) be given and fized, and let § be such that § < ap(d), where
de F and p(d) > 0. If z € P;(d,6), then

1—a\? un
el 2 (15) 2(]ldll + $)Ku(d)’

and )
Lj 2 (1 - a) adloy 3
L+a/ 2()|d|| + 6K .(d)
for all 3 =1,...,n, where mg is the constant defined in Theorem 3.2.

Proof: The proof follows the same logic as that of Corollary 3.1.
q.e.d.

Note that for a fixed value o that Corollary 3.2 shows that the norms of solutions to
any suitably perturbed problem are uniformly lower-bounded by a fixed constant times the
lower bounds on the solutions to the original problem.

The last result of this section, Theorem 3.3, presents different lower bounds on com-
ponents of Z along the central trajectory, that are relevant when gy — oo and when the
primal feasible region is unbounded. We will prove this theorem in Section 5. In this
theorem, Cp(dp) denotes a certain condition number that is independent of y and only
depends on part of the data instance d associated with a certain partition of the indices of
the components of z. We will formally define this other condition number in Section 5.

Theorem 3.3 If the central trajectory problem (P,(d)) has an optimal solution z(u), then
there exists a unique partition of the indices {1,...,n} into two subsets B and N such that

HMo
ralp) > — 0
) 2 3o )
for all 7 € B, and z;(u) is uniformly bounded for all p > 0 for all 5 € N, where dg =

(Ap,b,cB) is a data instance in RIBIFmHBl composed of those elements of d indezed by
the set B, and mo = min{||v]|« : v € ™, ||v||c = 1}.

Note that the set B is the index set of components of z that are unbounded over the

feasible region of (P,(d)), and N is the index set of components of z that are bounded over
the feasible region of (P,(d)). Theorem 3.3 states that as ¢ — oo, that z;(u) for j € B
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will go to co at least linearly in y as g — 00, and at a rate that is at least mo/(2||d||Cp(dB)).

Of course, from Theorem 3.3, it also follows that when the feasible region of (P,(d)) is
unbounded, that is, B # 0, that lim,_,« ||z(x)|| = oo.

Finally, note that Theorem 3.1 combined with Theorem 3.3 state that as 4 — oo, that
z;(p) for j € B will go to oo exactly linearly in p.

4 Bounds on changes in optimal solutions as the data
is changed

In this section, we present upper bounds on changes in optimal solutions to (P,(d)) and
(D,(d)) as the data d = (A, b, c) is changed or as the barrier parameter 4 is changed. The
major results of this section are contained in Theorem 4.1, Theorem 4.2, Theorem 4.3,
and Theorem 4.4. Theorem 4.1 presents upper bounds on the sizes of changes in optimal
solutions to (P,(d)) and (D,(d)) as the data d = (A,b,c) is changed to data d = (A,b,¢)
in a specific neighborhood of the original data d = (A,b,¢). Theorem 4.2 presents upper
bounds on the sizes of changes in optimal solutions to (P,(d)) and (D,(d)) as the barrier
parameter u is changed. Theorem 4.3 presents an upper bound on the size of the change in
the optimal objective function value of (P,(d)) as the data d = (A, b,¢) is changed to data
d = (A,b,¢) in a specific neighborhood of the original data d = (4,b,¢). Finally, Theo-
rem 4.4 presents an upper bound on the size of the change in the optimal objective function
value of (P,(d)) as the barrier parameter y is changed. Along the way, we also present upper
and lower bounds on the norm of the matrix (AX2AT)~! in Corollary 4.2 as well as upper
bounds of the first derivatives of the optimal solutions z(x) and (y(x), s(x)) of (P,(d)) and
(D,(d)) with respect to the barrier parameter p, in Corollary 4.3. Before presenting the
main results, we first define some constants that are used in the analysis, and we prove
some intermediary results that will be used in the proofs of the main results of this section.

We start by defining the following constants, which relate various norms to various
other norms:

mo = min{[lv]l. : v € ", |ole = 1, (4)
My = maxloll- : v € ®, o]l = 1}, (5)
ma = min{[lv] : v € ®™, [Jollz = 1}, (6)
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M, = max{[[v| : v € ®™, [[v]2 = 1}, (7)

ms = min{||v|| : v € R, ||v||2 = 1}, (8)
M3 = max{||v]| : v € 8", ||v]|. = 1}, (9)
ma = min{||v|| : v € R", ||v]|« = 1}, (10)
My = max{||v]| : v € R, ||v|l« =1}, (11)

where ||v]|eo = max{|v;| : 1 < j < n} and ||v]|; is the Euclidean norm of v. Observe that
mg 1s the same constant defined in Theorem 3.2. Note that all of these constants are finite
and positive, and are independent of the data d = (A, b, c), and are only dependent on the
choice of the norms used.

For the matrix A, recall that ||A| denotes the usual operator norm for A. Let ||A]2
denote the norm defined by:

[A]lz = max{||Az||z : [|]}; < 1}.

The following three propositions establish some elementary properties based on the
constants and the above definition.

Proposition 4.1 The following inequalities hold for the constants (4)-(11).
(i) mol[v]leo < [[v]l« < Mo|lv]leo for any v € ™.
(i) mallvll2 < [[v]| < Ma|vllz for any v € B™.
(ii1) ms||v]l2 < ||v]| £ Ms||v||2 for any v € R™.
(iv) mallv]ls < o]l < Mlv]ls for any v € R™.
(v) (1/M)|[vllz < |lvll« < (1/ma)llv]lz for any v € R™.
(vi) (1/Ms)[vllz < [[vlls < (1/ms)]lv]l2 for any v € R™.
(vit) (ma/Ms)||All2 < [|A]l < (Mz/ma)]| All2-

Proposition 4.2 Consider the matriz AAT as a linear operator from (R™,||-||.) to (R™, ||-
). Then
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(i) (/M) (AAT) |2 < I(AAT) M < (1/md)(AAT) ]2,
(i) p(d) < (Mz/m3)\/M(AAT),

where A\ (AAT) denotes the smallest eigenvalue of AAT.

Proof: The proof of (i) follows directly from Proposition 4.1, inequalities (ii) and (v). For
the proof of (ii), let A\; = A;(AAT). There exists o € R™ with ||5]|, = 1 and AATT = A5, so
that || AT5||2 = 5T AATo = A;. Let A= A-95TA, b=b+eb for any € > 0 and small. Then,
ATy =0 and bT% = bT5 4 € # 0, for all € > 0 small. Hence, by Farkas’ Lemma, Az = b and
z > 0 is an inconsistent system of inequalities. Therefore, p(d) < max{||A— 4]|,||6—b||} =
I|A— bt A” S (Mz/m:)v)”A - A”2 = (Mz/m;g)”AT'Z)”2 = (Mz/mg)\/)q, thus pI‘OViIlg (11)
q.e.d.

Proposition 4.3 If D € R"*" is a diagonal matriz with positive diagonal entries, then
1Dvllx < (Mo/mo) max {D;;}vll.,
for any vector v € R™.

Proof: Given any v € £”, we have that || Dv||, < Mo||Dv||cc £ Momaxi<j<n{Dj;}|v]lc0 <
(Mo/mo) maxigj<a{ Djs }|v]]s-
q.e.d.

We now introduce the following notational convention which is standard in the field of
interior point methods: if z € R* and = > 0, then X = diag(zy,...,2,). For any vector
v € R*, we regard Xv as a vector in R as well. We do not regard X as an operator, but
rather as a scaling matrix in £"*".

The next result establishes upper and lower bounds on certain quantities as the data
d = (A, b,c) is changed to data d = (A, b,¢) in a specific neighborhood of the original data
d = (A,b,c). This result will prove useful in proving the theorems in this section. Recall
the definition of P;(d,J) is:

P(d,8) = {z : z is an optimal solution to (P,(d)) for some d € B(d, )}
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Lemma 4.1 Suppose that d = (A,b,c) € F and p(d) > 0. Let o € (0,1) be given and fized,
and let § be such that § < ap(d). If & is the optimal solution to (P,(d)), and Z € P}(d,6),

then for y=1,...,n,
i (fiia) <om<m (122) -

and for any v € N",
XXl < ( ”) ol (13)

2
where fy = 32, hy = 543’ g1 = 7;%?’ and mg, Mo, and ms are the constants defined in (4),
(5), and (8), respectively.

Proof: From Theorem 3.1 we have that ||Z|| < K,(d), and from Corollary 3.1 we also
have that ||Z|| < (4/(1 — @)?)K,(d). Therefore, using Proposition 4.1, we obtain £;z; <
87z < |22zl < N2lZ)/m3 < (4/m3)(Ku(d)?/(1 — a)?) = hiKu(d)?/(1 — @)? for all
ji=1,.
On the other hand, from Theorem 3.2 and Corollary 3.2, it follows that
pmg

55 2 S @)

_ (1—a)?umo (1= a)’pmo
r; =~ jel ’
77 8(lldll + )Ku(d) T 16[|d|IKu(d)
for all y =1,...,n. Therefore,

o omdptl—aP  (p(l-a)\’
P2 R Ky (udnm@) ’

forallj=1,...,n o o

Finally, for any v € ®" we have that || X Xv|[. < Mo||X Xv||eo < (4Mo/m2)(K.(d)?/(1—
a)?)[vlleo < o (Ku(d)?/(1 = e))[[vlls = g1(Ku(d)?/(1 = @)*)]Jv] .
qg.e.d.
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Corollary 4.1 Let d = (A,b,c) be a data instance in F such that p(d) > 0. Let & and
z be the optimal solutions of (P,(d)) and (Pg(d)), respectively, where p,ii > 0. Then for
7=1,..,n,
P
8
" P (d)Ka(d)
and for any v € R",

h
< 8% < 7 Kuld)Kx(d),

|XXo]l. < T Ku(@Ka(@)lo]l,

pil "
where fi , hy, and g, are the constants defined in Lemma 4.1, and hy = i’;nMsﬁ, In particular,
we have that for 3 =1,...,n, ’

|XX 0, < o

n Nt e
o (i) <@ <3 r

and for any v € R, g
X%, < 2 K@l

" K (d)2d]?
1X2]l. < hs —“(Z)zllnvu*.

Proof: From Theorem 3.1 we have that ||z]] < K,(d) and ||Z|| < Kz(d). Hence, by
Proposition 4.1, #;7; < &7z < ||Zl2ll2ll2 < (1/m3)|2|Z]] < (/4K (d)Ka(d), for j =
1,...,n.

On the other hand, from Theorem 3.2 we have that £;z; > pm?2/(4]|d||?K .(d)Kz(d)) =
8f1pit/ (|dl*Ku(d)Ka(d)), for j =1,...,n.

Next, for any v € R" we have that

- - h
[ X X[l < Mo[[ X X]joo < Mozl’Cu(d)’Cn(d)HvHoo =

%%Ku(d)l@;(d)”vll* = 2K DEADI[o]l

Furthermore,
n _ " _ -1
|1 X0l < Moll &~ X0l < Mo (pin (35853) [olle <
SISn
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Mo 1 Ku(d)Ka(d)]|d]”
mo 8 f1 M

[[oll« = A2

o -

q.e.d.

Let £ > 0 and Z > 0 be two positive vectors in £". These two vectors can be used to
create the matrix AXX AT defined by using the diagonal scaling matrices X and X. Then
AXX AT can also be considered to be a linear operator from ((R™)*, | - ||+) to (R™, - 1D-
The next lemma presents lower and upper bounds on the operator norm of the inverse of
this linear operator.

Lemma 4.2 Let o € (0,1) be given and fized, and let § be such that § < ap(d), where
d € F and p(d) > 0. If 2 is the optimal solution to (P,(d)), and T € P;(d,6), then

1—a \? . CdK.())’
f (——~—) <(AXXAT) Y <g ( £ : 14
> @) = 1AXXATI= e \Na—g =
where fo = %%; g2 = % and mg, ma, My, m3, and Ms, are the constants defined in

(4), (6), (7), (8), and (9), respectively.

Proof: Using Proposition 4.2 part (i), we have that [|(AX X AT)~Y|| < (1/m2)|[(AX X AT)~|,
< (1/m)(mini<j<n{&;Z;}) " ||[(AAT)~!||5. Now, by applying Proposition 4.2, part (ii), and
Lemma 4.1, we obtain that

L dIPEu(@)® 1 _ 1 [dPKu(d)? M

A T ___1 < . — =
l(AXXAT)™H| < mZ fip2(1 — a)? M (AAT) = m2 fip(l — o)? m2p(d)?

(a@KA@)Z

g2 .

p(l—a)

On the other hand, by Proposition 4.2 part (i), |[(AX X AT)=|| > (1/M2)||(AX X AT)~1|,

> (1/M3})(maxi<j<n{2;z;}) || (AAT)"!||5. Now, by applying Proposition 4.2, part (ii), and
Lemma 4.1, we obtain that

1 1= 1 1 (-0 1 _

o v AT\~1 > gy -
“(AXXA ) ” = Mzz hllCu(d)2 )\I(AAT) - M22 hll(:u(d)z )\m(AAT)

1 1-af 1 1 (1-amj 1 >f( l1-a )2
M} K (d? A} = M3 hiK,(d)? METIA? = P \Ku(@)lld]l)
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where A\, (AAT) is the largest eigenvalue of AAT.
q.e.d.

The next corollary is important in that it establishes lower and upper bounds on the
operator norm of the matrix (AX2AT)~, which is of central importance in interior point
algorithms for linear programming that use Newton’s method. Notice that the bounds in
the corollary only depend on the condition number C(d), the distance to ill-posedness p(d),
the size of the data instance d = (A4, b, ¢), the barrier parameter p, and certain constants.
Also note that as u — 0, the upper bound on ||(AX2AT)~!|| in the corollary goes to oo
quadratically in 1/ in the limit. Incidentally, the matrix (AX2AT)~! differs from the
inverse of the Hessian of the dual objective function at its optimum by the scalar —p?.

Corollary 4.2 Let d = (A,b,c) be a data instance in F such that p(d) > 0. Let 2 and
be the optimal solutions of (P,(d)) and (Ps(d)), respectively, where p, i > 0. Then

g2 C(d)’K,(d)Ky(d)
8 pfi ’

1
e k@ <!

(AXXAT)| <

where fy and g, are the constants defined in Lemma 4.2. In particular, when u = g we
have:

if, (,C_(gm) < l(ag2an) Y < & (9@5—@)

Proof: Following the proof of Lemma 4.2, we have from Proposition 4.2 and Corollary 4.1
that

2

JAXXAD) | < e

m3 (mini<j<n{%;Z;}) m3p(d)? ~

1 PPRu(dKa(d) M7 _ g2 C(d)*Ku(d)Ki(d)

m3  8fipp  mip(d)? 8 pid '
On the other hand, we have again from Proposition 4.2 and Corollary 4.1 that
[(AAT) ]Iz

AXX AT > -
”( ) ” - ]\422 (maXlstn{mjjj})

4
>
= MZhK (d)Kn(d) M\ (AAT)
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4
>
- Mghlﬁu(d)}cﬁ(d)’\m (AAT)

4
- MEh K, (d)K(d)] Al

2
4m;

>
T MIMEhKu(d)Ka(D)| A

_ 4fs
 Ku(d)Kg(d)] A1

.4
~ Ku(d)Kg(d)ld]*’

where A\ (AAT) and \,(AAT) are the smallest and largest eigenvalues of the matrix
AAT, respectively.
q.e.d.

We are now ready to state and prove the first theorem of this section, which presents
upper bounds on changes in optimal solutions as the data is changed.

Theorem 4.1 Let a € (0,1) be given and fized, and let § be such that § < ap(d), where
d € F and p(d) > 0. If & is the optimal solution to (P,(d)), and (§,5) is the optimal
solution to (D,(d)), then

C(d)*Kou(d)*(u + ||d]I)

lz -2 <gsé 12(1 = a)® ’
- 9l < g0 6 LD 1D,
and
<o g LK@+ )
IE [« <g56 12(1 — a) ’

for all z € Pj(d,8) and for all (3,5) € Dj(d,d), where g5 = 5Mzhy max{M;, 2}, g4 =
59, max{l, Myg:1}, g5 = 6 max{1, g4}, and h1, g1, and g, are the constants defined in Lem-
mas 4.1 and 4.2, respectively.
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Before proving the theorem, we offer the following comments. Notice that the bounds
are linear in § which indicates that the central trajectory associated with d changes at
most linearly and in direct proportion to perturbations in d as long as the perturbations
are smaller than ap(d). Also, the bounds are polynomial in the condition number C(d) and
the barrier parameter p. Furthermore, notice that as 4 — 0 these bounds diverge to co.
This is because small perturbations in d can produce extreme changes in the limit of the
central trajectory associated with d as p — 0.

Proof of Theorem 4.1: Let & be the primal optimal solution to (P,(d)) and let z €
P*(d §). Then from the Karush-Kuhn-Tucker optimality conditions we have that for some

= (A,b,¢) € B(d,6):
,uX “le, =8, uX e, =

s,
§= c-ATg,gz E—ATg,
Az =b,Az = b,
z,z >0,
where ¢,y € R™. Therefore,
F—d= %)‘Q‘((g —5) = % (XX ((c— 4Tg) - (e - ATp))) =
1
p (XX (c—c+(A— A)Tg) + XXAT(5-3)). (15)

On the other hand, A(Z — %) = b—b—(A— A)Z. Since A has rank m (otherwise p(d) = 0),
then P = AXX AT is a positive definite matrix. By combining these statements together
with (15), we obtain

_ - 1 oo _ 1
—(A—- Az =~-AXX (c—e+ (A= A)Tg)+=PH -1,
(A= Az = AKX ( (A= 4)Tg) + 2P - )

pP7t (b—b— (A— A)7) = PAXX (c— 2+ (A— A)"5) +7 -4,
and so
g—g=pPt (b—b—(A- A)z) - PTTAXX (c—c+ (A A)Ty). (16)

Therefore, we obtain
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1 = 9ll- < UPHI| (ull b~ (A= Az + AKX (c— e+ (A - 4)77) )

<P (ullo — b~ (A= A)z] + Ml AKX (c— 2+ (A - 4)7F) |.)

using Proposition 4.1. From Corollary 3.1, we have that

[6—b—(A—A)z| <51L+|z|)) <6 (1 1 fa)leﬂ(d)) < (—1%/%(61), (17)

o=+ (A= A7gll <50+ 1ol <8 (1+ o) < 2@, oy

Therefore, by combining (13), (14), (17), and (18), we obtain the following bound on
17— gl

o< (SR (2igmtn) (s o (22) )

C(d)’Ku(d)’(u + ||d])
pA(1 — a)® ’

< 5gp max{l, Myg:} §

thereby demonstrating the bound for ||§ — §]|..
Now, by substituting equation (16) into equation (15), we obtain that

XX (I-ATPAXX) (c— e+ (A~ A)Ty) + XX ATP! (b-b-(4-a)z)

&l

(

D (I - DsA"P™'AD?) D% (c—c+ (A~ A)Tg) + DATP- "b—b—(A-A)),

=

where D = X X. Observe that the matrix Q=1I1-D:ATP-'AD% is a projection matrix,
and so [|Qz||2 < ||z|2 for all z € R". Hence, from Proposition 4.1 part (iii), we obtain that

Iz — 3]l < Ms|jz — 4|, < 73||D%||2||D%n2||c — e+ (A= ATl
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+Mo| Do ATP (b~ b — (A = 4)z) |z,

It follows from Proposition 4.1 parts (ii), (v) and (vi), Lemma 4.1, Lemma 4.2, and in-
equalities (17) and (18) that

Iz -2 < Mzhl (’f “_“2) i E(Sa)2lc,,(d)

e () 1o (SH2F) e

from which we obtain the following bound:

(d)*Ku(d)® (1 + |ld]})
2l — )t ’

Hi—ﬂﬁSMMumﬂM@%ﬁéc
2

which thereby demonstrates the bound on ||z — ]|
Finally, observe that 3 — 3 = ¢ —c+ (A — A)Ty + AT(§ — 7), so that Is = 3|l <
llc —c+ (A— A)Tg|l. + ||Allll§ — ]|« Using our previous results, we obtain

58l = G2l + e (v § LA MDY

pA(l - )¢ -
C(d)*K,u(d)*(p + l1d]])?
6 max{l,g4} ¢ (1= a)p )

and this concludes the proof of this theorem.
q.e.d.

The next theorem presents upper bounds on changes in optimal solutions as the barrier
parameter y is changed.

Theorem 4.2 Let d = (A,b,c) be a data instance in F such that p(d) > 0. Let & and 7
be the optimal solutions of (P,(d)) and (Py(d)), respectively, where u, i > 0. Let (9,38) and
(y,3) be the optimal solutions of (D,(d)) and (Dy(d)), respectively. Then

12 — 2|l < g6 i uldKa(d)]dl,

15— 91l < g1 '—%“—'cu)%u(d)/ca(d)udu,
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and I |
I5 = 8 < g7 ==EC(dPKu(@Ka(d) ],

where g6 = M3h1/4, gr = g2/8, and hy and g are the constants defined in Lemma 4.1 and
Corollary 4.2, respectively.

Before proving the theorem, we offer the following comments. Notice that the bounds
are linear in | — | which indicates that solutions along the central trajectory associated
with d change at most linearly and in direct proportion to changes in . Also, the bounds
are polynomial in the condition number C(d) and the barrier parameter .

Proof of Theorem 4.2: From the Karush-Kuhn-Tucker optimality conditions we have
that )
pX te, =8, pX te, = 3,

s=c— ATj,5=c— ATy,
b

where g,y € £™. Therefore,

1 - 1 ..
T—2=—XX(ad—pus)=—XX (a(c— AT9) — u(c — ATg)) =
py (18 — p3) p (a( 9) — u( 7))
1 o5 _ T/~ a _
;EXX (& - p)e—a (B9 — 1)) - (19)

On the other hand, A(Z — &) = b~ b= 0. Since A has rank m (otherwise p(d) = 0), then
P = AXXAT is a positive definite matrix. By combining these statements together with
(19), we obtain

= AKX (5~ p)e — A3 - 7)),
B
and so L
P(pg — py) = (B — p)AX X,
equivalently o
By —pg= (i —p)P'AX Xe. (20)
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By substituting equation (20) into equation (19), we obtain:

P-4 = ﬂ—_:ﬁ)‘()“( (c — ATP—lAXXc) —

pid
pit
M __HD% (I - D%ATP_lAD%) D%C,
pit

where D = XX. Observe that the matrix Q=1- DiATP-1AD?% is a projection matrix,
and so ||Qz||z < ||z||2 for all z € R". Hence, from Proposition 4.1 parts (iii) and (v) and
Corollary 4.1, we obtain:

Iz = | < M|z — 3]s < Malﬁh;—MHD%llzlllellzllcllz <

2|l — #Ihl
M; P WKz (d)]|d],

which demonstrates the bound for ||z — x||
Now, since ¢ = ATf) + 5 and ¢ = AT§ + 3, it follows that

AT(G—9)+5-35=0,

which yields the following equalities in logical sequence:
AT(§— )+ X' X7 (g2 — pz) =0,
AT(§ —g) = X X7 (4 — pa),
XXAT(j - y) = if — pz,
so that by premultiplying by A, we obtain
AXXAT(§ - §) = (7 — p)b,
( y)=(B— #)
= (B —p)P~
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Therefore, from Corollary 4.2,

2 -
19— 7l < 1 =l P8 < 17 — g 2D Tl DR D]
8 pi
which establishes the bound for ||§ — ||«

Finally, using that § — 5 = AT(§ — §), we obtain ||§ — 3||. = ||A||||§ — #l|«, and so this
concludes the proof of this theorem.
q.e.d.

Using the same arguments as in Theorem 4.2 and the smoothness of the function z(u) =
arg min{c’z + up(z) : Az = b,z > 0} for u > 0, it is straightforward to demonstrate that

i) = iy "I~ )t (o AP AX (i)

where P = A(X(u))2A7T, and similarly

i) = Jig LI 2 (44 - Pt ax ),
$(p) = lim M = —ATy(p) = S (S(p) + ATPYAX (p)%c — c)
Ao L —p z '

These same results were previously derived by Adler and Monteiro in [1]. However,
with the help of Theorem 4.2, we have the following upper bounds on these derivatives,
whose proofs are immediate from the theorem:

Corollary 4.3 Let d = (A,b,c) be a data instance in F such that p(d) > 0. Let z(p)
and (y(p), s()) be the optimal solutions of (P,(d)) and (D,(d)), respectively, where p > 0.

Then !
)1 < 9o zKCu(a ],
i) < gr l—}cw)m(d)?ndn,

15() ]| < gr -F%cw)?/cu(d)?udnz.
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The next theorem establishes a relation between the condition number and changes in
the optimal objective value of (P,(d)) as the data (A, b, c) changes.

Theorem 4.3 Suppose that d = (A,b,c) € F and p(d) > 0. Let a € (0,1) be given
and fized, and let § be such that § < ap(d), and let d = (A,b,¢) € ( 8). Define

z = min{cTz + pp(z) : Az = b,z > 0} and define z = min{e’z + pp(z) : =b,z > 0}.
Then ) .
12— 2|<36 (lfo‘) K, (d).

Notice that the upper bound in this theorem is linear in § so long as § is no larger than
ap(d), which indicates that optimal objective values along the central trajectory will change
at most linearly and in direct proportion to changes in d for small changes in d. Note also
that the bound is polynomial in the condition number C(d) and in the barrier parameter p.

Proof of Theorem 4.3: Consider the Lagrangian functions associated with these prob-
lems,

L(z,y) = cfz+pp(z )+yT(b Az),

L(z,y) = "o+ pp(z)+y"(b— Az),

and define ®(z,y) = L(z,y) — L(z,y). Observe that,

z = maxymingso L(z,y) = mingsomax, L(z,y),
Z = max,mingsg L(z,y) = mingsomax, L(z,y).

Hence, if (2, 9) is a pair of optimal solutions to the primal and dual programs corresponding
to (A,b,¢), and (Z,y) is a pair of optimal solutions to the primal and dual programs
corresponding to (A, b, ¢), then

z=L(2,9) = max{L(%y)}
= max,{L(2,y) + ®(2,y)}
> L(2,y)+ ®(%,7)
> zZ+9(z,7).

Thus, z — z > ®(&, 7). Similarly, we can prove that z — z < ®(Z, 9).
Therefore, we obtain the following bounds




On the other hand, using Holder’s inequality and the bounds from Corollary 3.1 we have

| 8(2,5) | = (=T +5"(b—b) — 7" (A~ A)i |

lle = ells[l2]l + {14116 — Bll + 1]l /I|(A — A)&]
S|z [l + ol|ylle + ollgll-[IZ]

35 (22)" K, (d)?

ININIA

Similarly, we can show that

1 4

- )l 2
19(2,9) <36 (1) Kuld),
and the result follows.
q.e.d.

The last theorem of this section establishes an upper bound on changes in the optimal
objective function value of (P,(d)) as p changes.

Theorem 4.4 Let z(u) = min{c’z + up(z) : Az = b,z > 0} where d = (A,b,c) € F and
p>0. Then

|2(1) — z(B)] < 7 | — f] (g0 + In (Ku(d)K5(d)) + [In([|d]))] + max {| In()|, [ In(&)[}),
for all p, i > 0, where go = max{|In(mq/2)|,|1n(ms)|}.

Before proving the theorem, we offer the following comments. Notice that this upper
bound is linear in |z — p| which indicates that optimal objective function values along the
central trajectory associated with d change at most linearly and in direct proportion to
changes in p. Also, the bounds are logarithmic in the condition number C(d) and in the
barrier parameter p.

Proof of Theorem 4.4: For any p > 0 define z(u) = arg min{c’ z+up(z) : Az = b,z > 0}
and (y(u), s()) = arg max{bTy — up(s) : ATy+s = ¢,s > 0}. As in Theorem 4.3, for given
w, fi > 0, consider the following Lagrangian functions: L(z,y) = ¢Tz + up(z) + yT (b — Az)
and L(z,y) = "z + ap(z) + y* (b — Az). Define ®(z,y) = L(z,y) — L(z,y) = (1 — p)p(z).

By a similar argument as in the proof of Theorem 4.3, we have that z(p) — z(@) >
O(z(u),y(i)) and z(u) — z(f) < ®(z(a),y(r)). Therefore, we obtain the following bounds:
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either |z(p) —2(i)| < |®(z(n),y(B))| = lu—Ellp(z(w)]; or |2(p) = 2(B)| < |®(2(), y(1))| =
|¢ — @l||lp(z(R))]- In other words,

|2(k) — 2(2)| < |p — Bl max{|p(z(x))], Ip(=(a))I}.
On the other hand, from Theorem 3.2 and Corollary 4.1, we have that

mo [,L

3 @ = W = k),

forall 7 =1,...,n. Hence,

(ln(”;)” (ndnm(d))) ~ple() < 0 (In (=) + In(()

so that

() < {1 (52 1 (k) o () 1+ @ <

n (g0 + In(Ku(d)5(d)) + | In(||d|])] + max {|In(u)], [ In(E)[}) .

Similarly, using i instead of p we also obtain

p(2(2))] < 7 (g0 +In(K,(d)K5(d)) + [In(]|d]l)| + max {|In(w)], [In(@)[})

and the result follows.
q.e.d.

Remark 2 Since z(k) = cTz(p) + p(z(n)), it follows from the smoothness of z(u) that
z(p) is also a smooth function. Furthermore, from Theorem 4.4 we have that

()] < 21 (go + In(K,(d)) + | In([|d]))] + [n(w)]) -

5 Bounds for analytic center problems

In this section, we study some elementary properties of primal and dual analytic center
problems, that are used in the proof of Theorem 3.3, which is presented at the end of this
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section.

Given a data instance d = (A,b,c) for a linear program, the primal analytic center

problem, denoted AP(d), is defined as:
(AP(d)) : min{p(z) : Az = b,z > 0}.

Structurally, the program (AP(d)) is closely related to the central trajectory problem
(P,(d)), and was first extensively studied by Sonnevend, see [20] and [21]. In terms of
data dependence, note that the program (AP(d)) does not depend on the data c. It is well
known that (AP(d)) has a unique solution when its feasible region is bounded and non
empty. We call this unique solution the (primal) analytic center.

Similarly, we define the dual analytic center problem, denoted AD(d), as:
(AD(d)) : max{—p(s):s=c— ATy,s > 0}.

In terms of data dependence, the program (AD(d)) does not depend on the data b. The
program (AD(d)) has a unique solution when its feasible region is bounded and non empty,
and we call this unique solution the (dual) analytic center. Note in particular that the
two programs (AP(d)) and (AD(d)) are not duals of each other. As we will show soon,
the study of these problems is relevant to obtain certain results on the central trajectory
problem.

We will now present some particular upper bounds on the norms of feasible solutions
of the analytic center problems (AP(d)) and (AD(d)), that are similar in spirit to certain
results of the previous sections on the central trajectory problems (P,(d)) and (D,(d)).
In order to do so, we first introduce a bit more notation. Define the following data sets:
Dp = {(A,b): A€ R be R} and Dp = {(A,c) : A € R™,c € R*}. In a manner
similar to the central trajectory problem, we define the following feasibility sets for analytic
center problems:

Fp = {(A,b) € Dp : there exists (z,y) such that Az = b,,z > 0, and ATy < 0},

Fp ={(A,c) € Dp : there exists (z,y) such that ATy < ¢, and Az =0,z > 0},

that is, Fp consists of data instances d for which (AP(d)) is feasible and Fp consists of
data instances d for which (AD(d)) is feasible. It is also appropriate to introduce the cor-
responding sets of ill-posed data instances: Bp = cl(Fp) N cl(FE) = 0Fp = OFF, and
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BD = Cl(j';D) N Cl(j_:g) = 6.¢D = 87?5

For the primal analytic center problem AP(d), the distance to ill-posedness of a data
instance d = (A,b,c) is defined as pp(d) = inf{||(A,b) — (4,d)||p : (A,b) € Bp}. For
the dual analytic center problem AD(d), the distance to ill-posedness of a data instance
d = (A,b,c) is defined as pp(d) = inf{||(A4,¢c) — (4,8)||p : (4,¢) € Bp}, where ||(A4,b)|p =
max{|| 4|, ]|6]|]} and ||(A,¢)|lp = max{||A]|,]lc|«}. Likewise, the corresponding condi-
tion measures are Cp(d) = ||(4,b)|lp/op(d) if pp(d) > 0 and Cp(d) = oo otherwise;
Cp(d) = ||(A,¢)|lp/pp(d) if pp(d) > 0 and Cp(d) = oo otherwise.

Proposition 5.1 If d = (A,b,c) is such that (A,b) € Fp, then pp(d) < p(d).

Proof: Given any € > 0, consider § = pp(d) — e. If d = (A,b,¢) is a data instance such
that ||d — d|| < &, then ||(A4,0) — (A,b)||p < 6. Hence, (A,b) € Fp, so that the system
Az =b,z > 0, ATy < 0 has a solution, and so the system Az = b, z > 0, ATy < ¢ also
has a solution, that is, d € F. Therefore, p(d) > § = pp(d) — ¢, and the result follows by
letting € — 0.

q.e.d.

The following two lemmas present upper bounds on the norms of all feasible solutions
for primal and dual analytic center problems, respectively.

Lemma 5.1 Let d = (A,b,c) be such that (A,b) € Fp and pp(d) > 0. Then
2]l < Cr(d)
for any feasible z of (AP(d)).

Proof: Let z be a feasible solution of (AP(d)). By Proposition 2.3, there is a vector
z such that 27z = ||z|| and ||Z|[ = 1. Define AA = ——‘{’f‘F and d = (A + AA,b,c).
Then, (A 4+ AA)z = 0 and z > 0. Now, consider the program (AP(d)) defined as
min{p(z) : (A + AA)z = b,z > 0}. Because (A + AA)z = 0, z > 0, has a solution,
there cannot exist y for which (4 + AA)Ty < 0, and so (A + AA,b) € F§, whereby

pp(d) < [[(A+ AA,b) = (4,b)||p. On the other hand, [|(A+ AA,b) — (4,b)[[p < Il <
IeBlle  so that |lo|| < [|(4,8)llr/pp(d) = Cp(d).
q.e.d.
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Lemma 5.2 Let d = (A,b,c) be such that (A,c) € Fp and pp(d) > 0. Then
lyll < Co(d),

lIsll« < 2[I(4, 0)llnCp(d),
for any feasible (y, s) of (AD(d)).

Proof: Let (y,s) be a feasible solution of (AD(d)). If y = 0, then s = ¢ and the bounds
are trivially true, so that we assume y # 0. By Proposition 2.3, there is a vector y
such that ||y|l« = 77y and |[y]] = 1. Let AA = — . and d = (A-I— AA,b,c). Hence,
(A+ AA)Ty = ATy — c < 0. Because (A + AA)Ty has a solution, there cannot exist
z for which (A + AA)z = 0 and = > 0, and so (A + AA,c) € F§, whereby pp(d) <

I(A+ A4, )= (A,¢)|lp. On the other hand, [|(A+AA,¢) - (4,¢)|lp = fdl < Itele 5o

that ||y[l« < ||(A4,¢)llp/pp(d) = Cp(d). The bound for ||s||« can be easily derived using the
fact that [[s|l. < |lll« + [ Allllyll and Cp(d) = 1.
q.e.d.

With the aid of Lemma 5.2, we are now in position to present the proof of Theorem 3.3.

Proof of Theorem 3.3: From Tucker’s strict complementarity theorem (see Dantzig [3],
p. 139), there exists a unique partition of the set {1,...,n} into subsets B and N, BNN = {
and BU N ={1,...,n}, such that

1. Au = 0, v > 0 implies uy = 0 and there exists @ for which A4 = 0, 4 > 0, and
iy =0,

2. ATy = v, v > 0 implies vg = 0 and there exists (¢, 9) for which AT§ = 9, 95 = 0,
and on > 0.

Consider the set S = {sg € RIBI ;. sp = cp — AZy for some y € R™,sp > 0}. Because
(P,(d)) has an optimal solution, S is non empty. Also, S is bounded. To see this, suppose
instead that S is unbounded, in which case there exists § such that ALZj > 0 and A 5y # 0.
Then AT(y+ Ag) > 0 for A sufficiently large, whereby AL(§+ A9) = 0. This in turn implies
that AL§ = 0, a contradiction.

Because S is non empty and bounded, dg = (Ag, b,c5) € Fp. Therefore, by Lemma 5.2,
for any sp € 9, ||ss|l« < 2||(AB,cB)||pCp(dB), and in particular

llsa(t)ll« < 2/[(AB, cB)lIpCp(dp) < 2||d||Cp(dB),
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lsB(1)]|«/mo < 2||d||Cp(dB)/mo. Nevertheless, since z;(u)s;(u) = p, then z;(u) > e s
for 7 € B.

Finally, by definition of the partition of {1,...,n} into B and N, z;(x) is bounded for
all 7 € N and for all g > 0. This also ensures that B is unique.
q.e.d.

where s(u) is the optimal solution of (D,(d)). Hence, for any j € B, s;(1) < |lsp()]eo <
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