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ABSTRACT

In this paper, we study the primal and dual simplex algorithms for the maximum flow

problem. We show that any primal simplex algorithm for the maximum flow problem can be converted

into a dual simplex algorithm that performs the same number of pivots and runs in the same time. T he

converse result is also true though in a somewhat weaker form.
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1. INTRODUCTION

The maximum flow problem is the problem of determining the maximum amount of flow that

can be sent from a source node s to a sink node t through a capacitated network. The maximum flow

problem arises in a wide variety of situations and in several forms (see, for example, Ahuja, Magnanti

and Orlin [1993]). The maximum flow problem is a special case of the linear programming problem.

Consequently, the primal simplex algorithm and the dual simplex algorithm for linear programming

can be adapted for this problem. Goldfarb and Hao [1990, 1991] developed the first polynomial-time

primal simplex algorithms for the maximum flow problem. Their algorithms run in O(n2 m) time.

Goldberg, Grigoriadis and Tarjan [1991] showed how to implement some of these algorithms in

O(nm log n) time using a variant of the dynamic trees data structure. Armstrong and Jim [1992],

Goldfarb and Chen [1992], and Armstrong et al. [1994] have developed dual simplex algorithms for the

maximum flow problem. These algorithms performs O(nm) pivots and run in O(n 2m) time if

implemented in a straightforward manner. The algorithm by Armstrong et al. [1994] runs in O(n3) time

if implemented in an appropriately clever way as a preflow-push algorithm.

In this paper, we show that any primal simplex algorithm for the maximum flow problem can

be converted into a dual simplex algorithm. The converse result is also true, though in a somewhat

weaker form. This paper unifies some results from the literature on primal and dual simplex

algorithms for the maximum flow problems, and gives an efficient mechanism to go from a primal

simplex algorithm to a dual simplex algorithm and vice-versa. Applications of our results to the

primal simplex algorithms by Goldfarb and Hao [1990, 1991] yield the dual simplex algorithms

presented in the papers by Goldfarb and Chen [1992], and Armstrong and Jim [1992]. Further, when our

results are applied to the algorithm of Goldberg, Grigoriadis and Tarjan [1991], it shows the existence

of an O(nm log n) time dual simplex algorithm, which is currently the fastest dual simplex algorithm

for most classes of maximum flow problem.

This paper is organized as follows. Section 2 presents some background material. Section 3 and

4, respectively, present brief descriptions of primal and dual simplex algorithms for the maximum flow

problem. Section 5 establishes equivalences between the primal and dual simplex algorithms.

2. PRELIMINARIES

We consider a directed network G = (N, A) with node set N, arc set A, a specified source node s,

and a specified sink node t. Let n = INI and m = IAI. Each arc (i, j) E A has a nonnegative capacity uij.

We assume that the network contains an arc (t, s) with capacity uts = M, where M is a strict upper bound
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on the maximum flow that can be sent from node s to node t. The maximum flow problem can be stated as

the following linear program:

Minimize -xts (la)

subject to

A xij - xi=O for all i E N, (lb)
{j: (i, j)e A {j: (j, i)e A

<xiijuij for all (i, j) A, (lc)

We use standard network flows terminology as defined, for example, in Ahuja et al. [1993].

Terms such as paths, cycles, fundamental cycles, and cuts are consistent with that reference. We use the

notation S \ Q to denote the set theoretic difference of S and Q, that is those elements of S that are not

in Q.

Simplex algorithms for the maximum flow problem maintain a basic solution at each stage. A

basic solution of the minimum cost flow problem is denoted by the triple (B, L, U), where B, L, and U

partition the arc set A. The set B denotes the set of basic arcs (that is, the arcs of a spanning tree), and

L and U denote, respectively, the sets of nonbasic arcs at their lower and upper bounds. We refer to the

triple (B, L, U) as a basis structure. A basis structure (B, L, U) is called primal feasible if by setting xij =

O for each (i, j) e L, and by setting xij = uij for each (i, j) E U, the problem has a primal solution x

satisfying (lb) and (c).

A dual solution of the minimum cost flow problem is a vector Xt of node potentials. For a given

dual solution I, we define the reduced cost of an arc (i, j) as c = cij - (i) + (j). Recall that in the case

of the maximum flow problem, cts = -1, and cij = 0 for (i,j) • (t,s). A basis structure (B, L, U) is called dual

feasible if there exists a set of node potentials nr satisfying the following optimality conditions:

&c = O for each arc (i, j) E B, (2a)

cj 2> 0 for each arc (i, j) E L, (2b)

cj < O for each arc (i, j) E U. (2c)

In the subsequent discussion, we will refer to a primal feasible basis structure (B, L, U) simply as

a primal basis structure, and in it we refer to B as a primal basis. Similarly,. we will refer to a dual

feasible basis structure (B, L, U) simply as a dual basis structure, and in it we refer to B as a dual basis.

In a primal or dual basis, there is a unique path consisting of basic arcs between any pair of nodes; we

refer to this path as a basis path.
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3. THE PRIMAL SIMPLEX ALGORITHM

We preset here a brief review of the primal simplex algorithm for the maximum flow problem.

A detailed description of the algorithm can be found in Ahuja et al. [1993]. The primal (network)

simplex algorithm maintains a basis structure (B, L, U), which is primal feasible but dual infeasible.

The algorithm performs a sequence of primal pivots until the basis structure maintained by it also

becomes dual feasible.

s t

Figure 1. An example of a primal basis.

A primal basis B of the maximum flow problem consists of two subtrees Ts (containing the source

node), and Tt (containing the sink node), and an arc (t, s) connecting these two subtrees. An example of a

primal basis is shown in Figure 1. The node potentials associated with a primal basis are: i7(i) = 1 for

all i E Ts and 7t(i) = 0 for all i E Tt. The set of arcs with one endpoint in Ts and another in Tt defines an s-

t cut [Ts , Tt]. The nonbasic arcs, which violate the dual feasibility conditions stated in (2b) or (2c), are

eligible to enter the basis; Table 1 lists such arcs.

Arc Type Reduced Cost

(i) i E Ts , j E Tt and xi =O = -1

(ii)1 1T

Table 1. Arcs eligible to enter a primal basis.

At each iteration, the primal simplex algorithm selects an eligible arc to enter the basis. In

principle, the primal simplex algorithm can select any eligible arc to enter the basis. Different

specific implementations can be obtained by specifying different rules for the selection of entering arcs.

Suppose that the algorithm selects an arc (k, ) to enter the basis B. Adding arc (k, ) to B forms a

fundamental cycle W = Pu{(t, s)}, where P is the path from node s to node t in B u {(k,l)} \ {t,s}. The

s _ -- -
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algorithm then augments the maximum possible flow along W. The maximum increase Aij permitted by

an arc (i, j) is given by

uij - xij if (i, j) is a forward arc in W (3)
Aij = lxij if (i, j) is a backward arc in W

The algorithm augments A = min {Aij: (i, j) E WI units of flow along W. An arc (p, q) satisfying

Apq = A is the leaving arc. A new basis structure is obtained by replacing arc (p, q) by (k, ) in B, and

updating L and U. The process of moving from one primal basis structure to another primal basis

structure is called a primal pivot operation. Thus the primal simplex algorithm performs a sequence of

primal pivot operations until the set of eligible arcs is empty. At this point, the primal basis structure

is also dual feasible, and its associated flow is a maximum flow.

4. THE DUAL SIMPLEX ALGORITHM

In this section, we describe the dual simplex algorithm for the maximum flow problem. This

algorithm is a special case of the dual simplex algorithm for the minimum cost flow problem,

described, for example, in Ahuja et al. [1993]. The dual (network) simplex algorithm maintains a basis

structure (B, L, U), which is dual feasible but primal infeasible. The algorithm performs a sequence of

dual pivots until the basis structure maintained by it also becomes primal feasible.

The flow x associated with the dual basis structure (B, L, U) maintained by the dual simplex

algorithm satisfies the mass balance constraint (lb) at all nodes, but basic arcs might violate their flow

bound constraints (c). We refer to an arc B violating its flow bounds as an infeasible arc, and the

amount by which it violates one of its bounds as its infeasibility. The dual basis structure (B, L, U)

maintained by our dual simplex algorithm satisfies the following invariant properties:

Invariant 1. (t, s) E U.

Invariant 2. All infeasible arcs lie on the basis path P from node s to node t. Moreover, it is possible to

decrease flow in the cycle (P U {(t,s)} so that the resulting flow is feasible.

A consequence of Invariant 1 is that the dual basis B is a spanning tree of A/{(t, s)}. Figure 2

shows an example of a dual basis B; in this basis, only the arcs in the path 1-4-7-9-11 are allowed to be

infeasible.

�"xr*rpllilLarrprrrrsracrrs3a��---------
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Figure 2. An example of a dual basis.

Our dual simplex algorithm obtains an initial dual basis structure (B, L, U) satisfying

Invariants 1 and 2 in the following manner. Let T be any spanning tree of A/{(t, s)}. We set B = T, L =

A/(B u {(t, s)}), and U = {(t, s)}. We obtain the flow x corresponding this basis structure by first setting x

= 0 and then augmenting M units of flow in the cycle P u {(t, s)}, where P is the basis path from node s to

node t. This basis structure is dual feasible, because t(i) = 0 for all i E N satisfying the conditions in (2),

but is not primal feasible because at least one arc in the basis path P violates its lower or upper bound.

Observe that there is no feasible circulation with xts = M, since M is a strict upper bound on the

maximum flow from node s to node t.

We now explain how to perform a dual pivot. We define ij for an arc (i, j) in the basis path P in

the following manner:

xij - uij if (i, j) is a forward arc in P (4)

5ij = -Xij if (i, j) is a backward arc in P.

Observe that if ij O, then it denotes the infeasibility of the arc (i, j). Let 6 = max {6ij: (i, j) E

P}. Then, 6 > 0, and 6 denotes the maximum infeasibility of an arc. In the generic version of the dual

simplex algorithm, any arc with positive infeasibility 8ij can be selected as the leaving arc. Our more

restrictive dual simplex algorithm uses the following rule to select the leaving arc.

Invariant 3. Select an arc with the maximum infeasibility in the basis path P as the leaving arc.

We point out that there may be several arcs in the basis path P with infeasibility equal to 5;

the dual simplex algorithm can select any one of these arcs as the leaving arc. Suppose that the

algorithm selects arc (p, q) as the leaving arc. Dropping arc (p, q) from the basis B forms two subtrees:

Ts (containing node s) and Tt (containing node t). The arcs eligible to enter the dual basis are given in

Table 2.

�gglsD·llOlr**l;�··--·�·"-"---�prms�ansr
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Table 2. Arcs eligible to enter the dual basis.

In the dual simplex algorithm, the entering arc is selected by using the minimum ratio pivot

rule. According to this rule, any arc of type (i) or type (ii) can be selected to enter the basis. If no arc of

type (i) or type (ii) exists, then arc (t, s) will enter the basis. Let arc (k, ) be the entering arc. The dual

simplex algorithm performs the dual pivot operation according to the following two cases.

Case 1. (k, 1) • (t, s). Replacing the leaving arc (p, q) by the entering arc (k, ) gives us a new dual basis

B' with the corresponding basis path P'. The pivot consists of (i) decreasing the flow in the path P by 6

units (after which no arc in P will be infeasible); and (ii) increasing the flow in the path P' by 8 units

(after which some arcs in P' will become infeasible).

Case 2. (k, l) = (t, s). Replacing arc (p, q) by the arc (t, s) gives us the new dual basis B' with the

corresponding basis path P'. The basis path P' contains the arc (t, s) as a backward arc. The dual

operation consists of decreasing the flow in the cycle P'u{(k, I)} by 6 units, after which all arcs become

feasible.

Thus the dual simplex algorithm repeats the above process performing dual pivots according to

Case 1, until finally arc (t, s) is selected as an entering arc, a dual pivot according to Case 2 is

performed, and the algorithm terminates with an optimal flow.

We would like to point out that in Case 1 if the leaving arc is not an arc with the maximum

infeasibility, then the next dual basis may not satisfy Invariant 2. The purpose of selecting an arc with

the maximum infeasibility is to ensure that the next dual basis satisfies Invariant 2.

Arc Type Reduced Cost

(i) i Ts, j Tt and xi =0 _ =O

(ii) i E Tt, j E Ts and x =ui c =0

(iii) (t, s) Cts = -1
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5. EQUIVALENCE OF PRIMAL AND DUAL BASIS STRUCTURES

In this section, we prove the main result of the paper, which is to show the equivalence

between the primal and dual simplex algorithms for the maximum flow problem. To do so, we need to

define the dual basis structures induced by the primal basis structures and, conversely, the primal basis

structures induced by the dual basis structures.

Induced Dual Basis Structure

Let B= (B, L, U) be any primal basis structure of the maximum flow problem with an associated

flow x. Then, the primal basis structure B together with an arc (k, 1), which is eligible to enter the

basis, induces a dual basis structure B'= (B', L', U') according to the following two cases:

Case 1. (k, 1) E L. Augment (M - xts) units of flow along the fundamental cycle W induced by the arc (k,

1), and set B' = Bu{(k, )}/{(t, s)}, U' = Uu{(t, s)}, and L' = L/{(k, 1)}.

Case 2. (k, 1) E U. Augment (M - xts) units of flow opposite to the orientation of the fundamental cycle

W induced by the arc (k, ) and set B' = Bu{(k, I)}/{(t, s)}, U' = Uu{(t, s)}/{(k, 1)1, and L' = L.

We illustrate this process in Figure 3. Figure 3(a) shows a primal basis. Let arc (6, 8) be the

entering arc at its lower bound. Figure 3(b) shows the induced dual basis.

(a) (b)

Figure 3. Illustrating induced dual basis structures.

Notice that the dual basis structure B' induced by the primal basis structure B and the

entering arc (k, 1) is dual feasible with respect to n = 0. Also notice that the flow x' corresponding to B'

is x plus (M - xts) units of flow along the cycle W, which is the union of the basis path P' in B and arc (t,

s). Consequently, xts = M and all infeasible arcs lie on the basis path P'. Moreover, decreasing the flow

1BBEl�dlu�- -
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on W by M-xts units results in the feasible flow x. Therefore, the dual basis structure B' satisfies

Invariants 1 and 2. We denote the dual basis structure induced by the primal basis structure B and the

eligible arc (k, 1) by f(B, (k, 1)), and summarize the preceding discussion by the following lemma.

Lemma 1. Let B be any primal basis structure for the maximum flow problem, and (k, ) be any arc

eligible to enter the basis. Then, the induced dual basis structure B' =f(B, (k, 1)) satisfies Invariants 1

and 2.

Induced Primal Basis Structures

Let B = (B, L, U) be any dual basis structure of the maximum flow problem satisfying Invariants

1 and 2, and which has an associated flow x. Let P denote the basis path in B. Assume that B is not

primal feasible. Let denote the maximum infeasibility of any arc, and (p, q) be an arc with 8pq = 6.

Then the dual basis structure B together with the leaving arc (p, q) induces a primal basis structure B'

= (B, L, U) according to the following two cases:

Case 1. Arc (p, q) violates its lower bound. Decrease the flow in the cycle W = Pu{(t, s)} by 8 units, and

set B' = Bu{(t, s)}/{(p, q)}, L' = Lu{(p, q)}, and U' = U/{(t, s)}. Let x' denote the modified flow.

Case 2. Arc (p, q) violates its upper bound. Decrease the flow in the cycle W = Pu{(t, s)} by 5 units, and

set B' = Bu{(t, s)}/{(p, q)}, L' = L, and U' = Uu((p, q)}/{(t, s)}. Let x' denote the modified flow.

(a) (b)

Figure 4. Illustrating induced primal basis structures.

We illustrate this process in Figure 4. Figure 4(a) shows a dual basis. Let arc (6, 7) be an arc

with the maximum violation. Figure 4(b) shows the induced primal basis. By assumption, the dual

basis structure B satisfies Invariants 1 and 2. Let x' be obtained by decreasing the flow in the cycle W =

Pu{(t, s)} by 6 units, and let (p,q) be the exiting arc. By Invariants 1 and 2, the flow x' is feasible, and

3
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Xpq = 0 or ~q = Upq, and As < uts. It follows that !R is a primal basis structure. We denote the primal

basis structure induced by the dual feasible structure B and the leaving arc (p, q) by B' = g(B, (p, q)),

and summarize the preceding discussion by the following lemma.

Lemma 2. Let B be any dual basis structure for the maximum flow problem, and let (p, q) be any arc

eligible to leave the basis. Then, the induced basis structure B' = g(B, (p, q)) is primal feasible.

Equivalence

We have shown in Lemma 1 that any primal basis structure plus an arc eligible to enter the

basis induces a dual basis structure satisfying Invariants 1 and 2. We now extend this result to a

sequence of primal basis structures.

Theorem 1. Let B1 , B2 , ..., Bk+l be a sequence of primal basis structures for the maximum flow problem,

terminating at an optimal primal basis structure. Let (k1 , 11), (k2 , 12), ..., (kK, K) be the sequence of

entering arcs, and let (pl, ql), (p2 , q2 ), ..., (K, qK) be the sequence of leaving arcs. Then the following

results are true:

1. f(B1 , (k1, 11)), f(B 2, (k2, 12)), ..., f(Bk, (kK, K)) is a sequence of dual basis structures for the

maximum flow problem satisfying Invariants 1 and 2, terminating at an optimal dual basis

structure.

2. For each 1 i < K, the dual basis structure (Bi+l, (ki+l, li+l)) is obtained from the dual basis

structure (Bi, (ki, i)) by performing a dual pivot which pivots out the arc (pi, qi) and pivots in

the arc (ki+l, li+l).

Proof. The first result in Theorem 1 follows directly from Lemma 1. We will present a proof of the

second result. To understand this proof, a reference to the example shown in Figure 5 will be helpful.

Let Figures 5(a) and (b) depict two consecutive primal bases !B and B i+l . Let Figure 5(c) and (d) depict

the dual bases induced by i and Bi+ l , respectively.

_·_____·___··l__·LB__s__l�·sjl________�



10

li

(a) (b)

i i

(c) (d)

Figure 5. Illustrating equivalence of primal and dual basis structures.

Consider the primal basis Bi with (ki , 1i) as the entering arc and x as the corresponding flow.

Let P denote the path from node s to node t (not containing arc (t, s)) created by adding the arc (ki, i') to

Bi . The following results are true:

1. P is a basis path from node s to node t in the dual basis induced by Bi and the entering arc (ki , / i).

2. The flow x' corresponding to the dual basis is x plus a = (M - xts) units of flow augmented along

the path P.

3. For each infeasible arc (u, v) in the path P, its residual capacity Auv in the primal flow x (given

by (3)), and its infeasibility 5uv in the dual flow x' (given by (4)) satisfy the relation Auv + uv

= Xa.

It follows from the above facts that if the arc (pi, qi) is an arc of minimum residual capacity in P

in the primal flow x, then the arc (pi, q) is an arc of maximum infeasibility in the induced dual basis.

)

!
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In other words, in the dual basis structure f(Bi , (ki , ii)), arc (pi, qi) is an eligible arc to leave the basis.

When we pivot out arc (pi, qi), then the dual basis is partitioned into two subtrees Ts and Tt, which are

exactly the same subtrees as in the primal basis Bi + l (see, for example, Figures 5(b) and (c)). Next

observe from Table 1 and 2 that an arc (k, ) • (t, s) is qualified to be an entering arc in the primal basis

B'i + if and only if it is qualified to be a entering arc in its induced dual basis. This implies that the arc

(ki+ l , li+ l) can be pivoted in to obtain a new dual basis (see for example, Figure 5(d)). To summarize, we

have shown that for the dual basis structure f(B, (ki , li)), there exists a valid dual pivot which pivots

out the arc (pi, qi) and pivots in the arc (k i+ l , li+l ) and obtains the dual basis structure f(' i+ l , (k i+ l ,

li+l)). This completes the proof of the theorem.

We now state the converse of Theorem 1.

Theorem 2. Let (1, B 2 , ..., BK+1) be a sequence of dual basis structures for the maximum flow problem

satisfying Invariants 1 and 2, and terminating at an optimal dual basis structure. Let (pl, ql), (p2 , q2 ),

., (pK, qK) be the sequence of leaving arcs, and let (k1 , 11), (k2 , 12), ..., (k K , K) be the sequence of

entering arcs. Then the following results are true:

1. g(B 1 , (pl, q1 )), g(B 2 , (p2 , q2 )), ..., g(qBK, (pK, qK)) is a sequence of primal basis structures for the

maximum flow problem, terminating at an optimal primal basis structure.

2. For each 1 i < K, the primal basis structure g(Bi+ l, (pi+l, qi+l)) is obtained from the primal

basis structure g(B i , (pi, q)) by performing a primal pivot which pivots in the arc (k i, li) and

pivots out the arc (pi+l, qi+l).

Proof. The first result in the theorem is a byproduct of Lemma 2. The proof of the second result is

analogous to the proof of the second result in Theorem 1, and we only outline the proof here. First, one

can establish that arc (ki, li) is an eligible entering arc of g(Bi , (pi, qi)). Next, as in the proof of

Theorem 1, one can establish the equivalence of the minimum residual capacity arc on the path P from s

to t in g(B i, (pi, qi)) u { (ki , li)} and the maximum violating arc on the path P from s to t in Bi+l . The

equivalence establishes that an eligible leaving arc for Bi+ l is also an eligible leaving arc for g(B i,

(pi, qi)) u { (ki , li)}. ·

An immediate consequence of Theorems 1 and 2 is that for every primal simplex algorithm for

the maximum flow problem, there is a corresponding specialization of the dual simplex algorithm

which performs the same number of pivots and runs in the same time. The converse result is true with

some added restrictions. If a dual simplex algorithm for the maximum flow problem satisfies

Invariants 1 and 2, then there is a corresponding primal simplex algorithm performing the same number

of pivots and running in the same time.

�--��-�� -�
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