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Abstract

We derive a set of transient distributional laws that relate the number of customers in the

system (queue) at time t, denoted by L(t) (Q(t)) and the system (waiting) time, S(t) (W(t))

of a customer that arrived to the system (queue) at time t for non-stationary queueing systems

that do not allow overtaking. These transient distributional laws provide a complete set of

equations that describe the dynamics of the system in the transient domain, provide insight on

the influence of the initial conditions and generalize the classical Little's law in the transient

domain. Based on these transient distributional laws, we develop an efficient algorithm to

analyze the performance of a single server queueing system with non-homogeneous Poisson

arrivals and general time-dependent service requirements under arbitrary initial conditions. We

further propose an asymptotic approach for single server multiclass systems and, for the single

class case, report numerical results which are close to simulation and the traditional heavy traffic

analysis via Brownian processes.
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1 Introduction

Non-stationary queueing systems have been used extensively to model complex production and

service systems as well as communications and air-transportation systems.

In this paper we consider the general class of non-stationary queueing systems and we address

the following questions: Are there "laws" of non-stationary queueing systems? In other words, is

there a set of relationships between the fundamental quantities of non-stationary queueing systems

that completely characterize the performance of such systems? If so, how can they be used in

particular applications?

For systems in steady-state that do not allow overtaking, Keilson and Servi [14, 15] and Bert-

simas and Mourtzinou [4, 5] demonstrated that the steady-state distributional laws constitute the

"right" set of laws. For example, consider the M/GI/1 queue under FIFO and denote by L (Q)

the steady-state number of customers in the system (queue) and by S (W) the steady-state system

(waiting) time. Let also X be the service time. Then, we have from steady-state distributional

laws (see Keilson and Servi [14, 15]) that

E[zL] = E[e- X( -(1)s] and E[zQ] = E[e-A(-z)w].

Moreover, S = W + X and the relation between Q and L is

E[zL] = zE[zQ] + (1 - z)(l - p).

Combining the previous equations we obtain that:

E[ew]= s(1 -p) E-]= S(1 -p) E[e-x],
AE[e-"X] - + s' AE[e- X] - A +

E[Q ] (1 -z)(1 -p) E[zL] = (1-z)(1-P) E[e-(-Z)X]
-E[e(zL)X]-z)x] ' E[e-A(l-z)x] - z

Hence, we obtain a complete description of the performance measures in the case of M/GI/1

queueing system under FIFO.

Motivated by the success of steady-state distributional laws, we develop in this paper a set

of transient distributional laws that relate the transient performance measures of non-stationary

queueing systems, i.e.,

* the number of customers in the system at time t, denoted by L(t) and

* the system time, S(t), of a customer that arrived to the system at time t.

It is important to notice that the form of the transient distributional laws depends on the

initial conditions of the system and therefore it demonstrates the influence of the initial state on

the evolution of the system. Furthermore, the transient distributional laws provide a complete set

of equations that describe the dynamics of overtake-free non-stationary queueing systems.

Moreover, for general non-stationary queueing systems that may allow overtaking, we generalize

the classical Little's law in the transient domain.
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Finally, to demonstrate the power of transient distributional laws and the transient form of
Little's law we apply them to a variety of particular queueing systems from single server systems
with general non-stationary arrival and service distributions to infinite server systems with non-
stationary Poisson arrivals and general non-stationary service distributions. For all specific systems
we use the same approach: (a) Start the analysis by defining the performance measures of interest

and (b) Relate the performance measures using the established set of laws. In this way we have
a complete description of the system in the sense that we have a sufficient number of integral
equations and unknowns. Our approach has parallels in physics, where there exist fundamental
laws (laws of motion, Maxwell equations) that fully describe a physical system, and lead, using
mathematical tools, to a complete solution for the quantities of interest. Once we formulate the
stochastic system the next step is to actually solve it. For non-stationary Poisson arrival we can
solve the system exactly. For general stationary arrivals, on the other hand, we use asymptotic
expansions. Using the approach described above we are able to recover, in a unified way, existing
results in the literature in the case of infinite server systems and also obtain new results in the case
of single server systems.

The rest of this paper is structured as follows: In Section 2, we first review the steady-state
distributional laws and then derive transient distributional laws for both single class and multiclass
non-stationary queueing systems under arbitrary initial conditions. In Section 3 we develop a
transient extension of the well-known Little's law, which holds under very general assumptions.
In Section 4, we present the asymptotic expansions of the two kernels that are involved in the
integral form of the transient distributional laws. In Section 5, we apply the transient laws to
derive the transient performance analysis of several systems: infinite server systems with a single
non-homogeneous Poisson arrival process and general time-dependent services, and multiclass single
server systems with general time-dependent arrivals and services. Finally, in Section 6 we present
some concluding remarks.

2 Transient distributional laws

In this section we present laws that relate the distributions of the number of customers in a queueing
system and the system time for both single class queueing systems, where all the customers have the
same characteristics, as well as multiclass systems, where each class of customers has some special
characteristics and is treated differently by the system. These laws are called distributional laws
and hold in both the steady state and the transient domain, for systems that satisfy the following
assumptions:

Definition 1 (Distributional Laws Assumptions)
A.1 All arriving customers enter the system one at a time, remain in the system until served (there
is no blocking, balking or reneging) and leave also one at a time.
A.2 The customers leave the system in the order of arrival (FIFO).
A.3 New arriving customers do not affect the time in the system of previous customers.
A.4 Arrival streams from different classes are mutually independent.
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Assumption A.1 can be relaxed (see Mourtzinou [19]). Assumption A.2 is the crucial assumption
that restricts the class of systems that admit distributional laws to the class of overtake-free systems,
namely systems where customers exit in the order of their arrival. Assumption A.3 is exactly the
lack of anticipation assumption needed for PASTA (see Wolff [26]) and is not particularly restrictive.
Finally, Assumption A.4 is used only in the case of multiclass systems.

We define as overtake free queueing systems those systems that satisfy the Distributional
Laws Assumptions and therefore, satisfy distributional laws. We use the notation GI(t)/GI(t)/s
to denote s-server systems with non-stationary arrival and service distributions, where successive
interarrival and service times are mutually independent. The following systems are examples of
overtake free systems:
(a) Multiclass GI(t)/GI(t)/1 queueing system under FIFO (where we can define "the system" to
be either just the queue or the queue together with the server).
(b) Multiclass GI(t)/D/s under FIFO (where we can define "the system" to be either just the
queue or the queue together with the s servers).
(c) Multiclass GI(t)/GI(t)/s under FIFO (where we define the "the system" to be only the queue,
since if "the system" is the queue together with the s servers, overtaking can take place and therefore
Assumption A.2 is violated).
(d) Non-stationary single-server systems where the server is unavailable for occasional intervals of
time and customers are served under FIFO (see Bertsimas and Mourtzinou [4], Keilson and Servi
[15]) (where, once again, we can define we can define "the system" to be either just the queue or
the queue together with the server).

2.1 A review of steady-state distributional laws

In this section we first review steady-state distributional laws for single class systems, where all
the customers have the same characteristics, and then we briefly review distributional laws for
multiclass systems, where the system has N different customers classes.

The single class steady-state distributional law
Consider a general queueing system that satisfies Assumptions A.1-A.3. Customers arrive to the
system according to a single ordinary renewal arrival process described by N°(t), the number of ar-
rivals up to time t, where we use the term ordinary in the sense that all interarrival times, including
the first one, are independently and identically distributed. We denote, also, by Nae(t) the number
of arrivals up to time t for the corresponding equilibrium renewal process, where the time for the
first arrival is distributed as the forward recurrence time of the interarrival time of the ordinary
renewal process (see Cox [8], p. 54).

We assume that the system is in steady-state and denote by L the steady-state number of
customers in the system and by S the steady-state time a customers spend in the system, called
the system time. Finally, we denote by Fs(t) - P{S < t} the distribution function of S and by

GL(Z) E[zL] the generating function of L.
The single class steady-state distributional law can be stated as follows:
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Theorem 1 (Haji and Newell [10], Bertsimas and Nakazato [6]) For a system that satisfies As-
sumptions A.1-A.3 and has a single renewal arrival process, the steady-state number of customers,
L, and the steady-state system time, S, are related in distribution by:

L- N(S) equivalently GL(z) = j K.(Z,t)dFS(t), (1)

where Ke(z, t) _ E[zN(t)] = En=o z"P{N(t) = n} is the generating function of Nae(t).

Intuitively, (1) says that the number of customers in an overtake-free system in steady-state has
the same distribution as the number of arrivals from the equilibrium renewal process during an
interval of time distributed as the system time.

The multiclass steady-state distributional law
We consider now a multiclass queueing system, with N classes of customers. Customers of class i,
i = 1,..., N arrive at the system according to a renewal process with rate Ai and have their own
service requirements distributed according to a random variable Xi, i = 1,... , N. We assume that
the system satisfies Assumptions A.1-A.4.

Let N (t), N (t) be the number of customers up to time t for thee ordinary and equilibrium
renewal process of the ith class, respectively. Given that they exist in steady state, let Si be the
time spent in the system for class i customers in steady-state and let Li be the number of class
i customers in the system in steady-state. Finally let L A ENI Li, Fs,(t) P{Si < t} and

GLI,..LN ... ZN)=E[Z1 . ZNN]-
The multiclass steady-state distributional law can be stated as follows:

Theorem 2 (Bertsimas and Mourtzinou [5]) For a multiclass queueing system that satisfies As-
sumptions A.1-A.4, the joint generating function of the number of customers in the system from
all classes and the individual system times are related as follows:

N o t N

GL1 . ,LN(Z1,... ,ZN) =1 + E / f 17II Ke,j(zj,x) dK,i(zi,x) dFs,(t), (2)
i=1 j=l

jMi

where K,,i(zi, t) A E[z N,(t)] = o Z=oinP{Nae(t) = n} is the generating function of N, (t).

Note that for each individual class Theorem 2 yields

GLi(z) = j Ke,i(z,t) dFs,(t), (3)

the single class distributional law of Theorem 1. Moreover, the generating function of the total
number L 1=E Li in the system can be found if we set z = z2 = ... = ZN = z in (2):

N 0o t N

GL(Z) 1+ E J K,j(z, x) dKe,i(z, x) dFs,(t). (4)
i=l j=

i
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2.2 Transient single class distributional laws

In this section we generalize the single class distributional law to the transient domain for queueing

systems satisfying Assumptions A.1-A.3.

We first introduce the necessary notation. We let Tj be the arrival time of the jth customer,

with To = 0 and T o < T < **, and Si be his system time. We, also, let Na(t) be the number of

arrivals in (0, t] for all 0 < t < oo. Note that the counting process Na(t) is completely defined when

we know the joint probability distribution of the Tj's via the relationship

Na(t) > n if and only if T, < t . (5)

In the special case where Tj - T j_ for j = 1, 2,... are independent and identically distributed

random variables, the arrival process is an ordinary renewal process and we use the notation NO(t)

for the number of arrivals in (0, t] for all t > 0 (see Section 2.1). Similarly, if Tj- Tj_l for j = 2,...

are independent and identically distributed random variables and T, is distributed as the forward

recurrence time of T 2 - T, the arrival process is an equilibrium renewal process and we use the

notation Ne(t) for the number of arrivals in (0, t] for all t > 0 (again see Section 2.1).

However, in the general case we assume, in accordance with Assumption A.3, that the time

interval between two successive arrival epochs Ai(Ti) A Ti+l - Ti is independent of the serial order

i, for all i = 1, 2,..., but it might depend on the value of Ti. Examples of such arrival processes,

apart from the renewal processes we mentioned above, are (a) a non-homogeneous Poisson process

of rate A(t) and although somewhat contrived (b) a counting process with Ai(Ti) being uniformly

distributed in (2Ti, 2Ti + a) for fixed a.

We denote by E'=l Ai(x) the random variable that represents the sum of n sequential interarrival

times with the first one starting at time x. We further define N (to, t) to be the number of customers

that arrived in the time interval (to, t] given that to is an arrival epoch. The distribution of Na(to, t)

can be calculated from the equivalence:

n

Na(to, t) > n if and only if ~ Ai(to) t - to. (6)
i=l

Note, that for the case of renewal arrival processes NO(to, t) is the same as N(t - to).

Finally, we let h(t) At (as At -+ 0) be the probability of an arrival in (t, t + At]. As we do not

allow multiple arrivals (Assumption A.1), we have that

h(t) = lim I PN(t + At) - Na(t) > 0}).
At-Oo at

Note that for the special case of a nonhomogeneous Poisson arrival process with rate A(t), h(t) =

A(t). On the other hand, for a (time homogeneous) renewal arrival process with arrival rate A, the

calculation of h(t) depends on the distribution of the remaining time for the first customer to arrive

to the system. If we assume that this is distributed as the forward recurrence time of the arrival
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process, then

h(t) = A, t > 0.

This assumption physically means that we start counting arriving customers to the system at a

random time relative to the arrival process. Moreover, naturally as t -+ oo, h(t) - A, as the

influence of the initial distribution disappears.

The natural transient performance measures in such a system are

* L(t) the number of customers in the system at time t characterized by its generating function

GL(Z, t) E[L(t)] = znP{L(t) = n},
n=O

* S(t) the time that a customer who arrived at the system at time t spends in the system.

It is important to notice that L(t) and S(t) depend on the initial state of the system, i.e., the

initial number of customers, L(O), as well as on the initial work, V(O) - V(0) + EL() Xi, where

Vz(O) is the set-up work in the system, which is independent of the number of initial customers,

and Xi is the service requirement of the ith initial customer.

For ease of the presentation, we initially assume that the system is empty, i.e., L(O) = 0 with

probability 1 (w.p.1) and V(O) = 0 w.p.1; we will relax this assumption later. In particular, the

rest of this section is structured as follows. We first present the distributional law that relates L(t)

and S(t) for a general system that satisfies Assumptions A.1-A.3 and starts empty. Next, we relax

the initial condition assumption that the system starts empty and we extend the distributional

laws to account for an arbitrary distribution of L(O) and V(O).

A transient law between L(t) and S(t) when the system starts empty

The transient distributional laws that relate the distributions of L(t) and S(t) when the system

starts with no initial customers, i.e., L(O) = 0 w.p.1, and no initial work, i.e., V(O) = 0 w.p.1, is as

follows.

Theorem 3 For a queueing system that satisfies Assumptions A.1-A.3 and starts empty, the tran-

sient number in the system L(t) and the transient system time S(t) are related as follows:

GL(z,t) = 1+(z- 1) h(u) P{S(u) > t-u} K (z,u,t) du , (7)

where K(z, u, t) E[zN(u,t)] = z"P(N(u, t) = n.

Proof: The proof of the relationship between L(t) and S(t) is based on the following observation.

In an overtake-free system that starts empty, in order to have at least n (n > 1) customers in the

system at time t, the nth most recently arrived customer with respect to t, i.e., the nth customer

counting backwards in time, should still be in the system at time t.
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Figure 1: A scenario for a single class system in the transient regime.

This observation is based on Assumptions A.1 and A.2, since each customer arrives individually

and stays in the system until served and also customers leave the system in the order of their

arrival. Therefore, if the nth most recently arrived customer is in the system at time t, all the

customers that came after him (and there are n - 1 of those) are also still in the system at time t.

Therefore, the event {L(t) > n} is equivalent to the intersection of the following events:

El: the nth most recently arrived customer with respect to t arrives at time u,

E2: his system time, given that he arrived at time u, is greater than t - u, for all u E (0, t].

We can further decompose event E1 into the event of an arrival at time u (that occurs with

probability h(u) du) and the event of n - 1 arrivals in (u, t] given an arrival at u (that occurs with

probability P{N (u, t) = n - 1}). Furthermore, the probability of event E 2 is P{S(u) > t - u}.

Finally, according to Assumption A.3, S(u) is independent of the path of the arrival process after

time u and therefore events E1 and E 2 are independent. The previous discussion leads to the

relationship for n > 1:

P(L(t) > n} = h(u) P{S(u) > t-u} P{N(u,t) = n-1} du. (8)

Given that P{L(t) > O} = 1 and that P{L(t) = n} = P{L(t) > n} - P{L(t) > n + 1} we can

easily calculate the generating function GL(Z, t) to obtain (7). ·

Notice that from (6) we obtain the following alternative formula for Ko(z, u, t) E[zN(Ut)],

00 n n+l

K o(z, u, t) = P{T(u) > t - u} + Ak(U) < t-u}-P{ Ak() < t-u}]
n=l k=1 k=l

A transient law between L(t) and S(t) with arbitrary initial conditions
We, now, generalize the distributional law of Theorem 3 to account for the effect of initial customers.
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We assume, that the system starts with k initial customers, i.e., L(O) = k w.p.1 and initial work

V(0) = V(0) + X 1 + - + Xk, where V(0) is the set-up work and Xi is the service requirement of

the ith initial customer. We assume that the server finishes first the set-up work, then services the

initial customers and then starts working on the customers that arrived after time 0.

Theorem 4 For a queueing system that satisfies Assumptions A.1-A.3 and starts with L(O) = k

w.p.1 and V(O) = V/(O) + X1 + ' " * + Xk, the transient number of customers in the system, L(t),

and the transient system time S(t) are related as follows:

GL(z,t) = I(k)(z,t) + P{V(O) < t} + (z-1) j h(u)P{S(u) > t- u}Ko(z,u,t)du, (9)

where K(z, u, t) a E[zN:(ut)] = o% znp{Na(u, t) = n}, K(z,t) - E[zN-(t)] = o 0ZnP{Na(t)=

n}, and ViX 1+, t) = K(, t) i [P{Q(O) + Vi < t} - P{(O) + V,_ < t}] .

Proof: Let M(t) be the number of initial customers present in the system at time t, M(t) E

{1,... , k}. Let also V X1 + . -. + Xk-i. Then, since the server finishes first the set-up and starts

servicing the initial customers we have that

P(M(t) = 0} = P{V(0) < t}

P{M(t) = i} = P{V(O) + Vi < t} - P{V(O) + V_j < t} for all i = 1, 2,... ,k.

Let us define GLi(z, t) A E[zL(t)IM(t) = i], then

k

GL(z,t) = P{V(O) < t}GLo(z,t) + C [P{V(O) + V < t - P{V(O) + V_ < t}] GLi(z,t). (10)
i=l

In the special case where i = 0 the analysis of Theorem 3 holds, i.e., in order to have at least n

(n > 1) customers in the system at time t, given that no initial customer is present, the nth most

recently arrived customer with respect to t should still be in the system at time t. Hence,

GLo(t) = 1 + (z- 1) j h(u) P{S(u) > t - u} K(z, u, t) du. (11)

On the other hand, if i = 1, 2, ... , k of the initial customers are present at time t we have that

P{L(t) = n I M(t) = i} = P{Na(t) = n - i} for n > i,

P(L(t) = n I M(t) = i} = 0 for n < i.

Therefore, if we define K(z, t) E[zN-(t)] = o=oZP{Na(t) = n} we have that,

oo

GLi(z, t) = Znp{(N(t) = n - i} = z'K(z, t). (12)
n=i

Combining, (10), (11) and (12) we conclude the proof. ·
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2.3 Transient multiclass distributional law

We, now, consider a general queueing system, with N classes of customers having independent

arbitrary arrival streams and different service requirements. We assume that the system satisfies

Assumptions A.1-A.4.
Let NO. (u, t), be the number of customers from class i that arrived in the time interval (u, t],

given a class i arrival at time u, and hi(t)At (as At - 0) the probability of a class i arrival in

(t, t + At]. Furthermore, let Si(t) be the time spent in the system for class i customers that arrived
at time t and let Li(t) be the number of class i customers in the system as observed at time t.

Finally let L(t) - E=l Li(t), z- (zl,... ,ZN) and GL1 ,... LN(,t)- E[z1() .ZN()]

Assuming that the system starts empty the multiclass distributional law can be stated as follows:

Theorem 5 For a queueing system that satisfies Assumptions A.1-A-4 and starts empty, we have

that

N t N

GL1 , . LN (Z t) = 1- J -aKej (zj, a,t) Ke,i(z, a, t)P{Sj(a) > t - a}da, (13)
j=-l i1

its

where Ko,i(z, , t) E[zNi(ut)] = E 0 zP{N:, (u, t) = n} and

Ke,,i(,,a,t) A 1 + (z- 1) hi(u)K,i(zi, u,t)du.

Proof: The essential observation of the proof is that, for all i = 1,... ,N, in order to have at

time t at least ni customers of the ith class in the system, where ni > 1, we must have that the

nith most recently arrived customer of the ith class is still in the system at t. Hence, the event

{iN= 1(Li > ni)} is equivalent to the intersection of the following events (for all ti E (0, t] and for
all i = 1...N):

Eli: a customer of the ith class arrives at time ti,

E2, : the system time of the customer who arrived at ti is greater than t - ti,

E3 : there are exactly ni - 1 arrivals at (ti, t] given an arrival at ti for the ith class.

Therefore taking probabilities we can write that:

N t t N N N

P{n(Li > ni)} = I . I P EiinE2i nE 3,i} dt, dtN.
i=1 -0 -0 i=1 i=1 i=1

From Assumption A.3 events E1,i, E 2,1 and E3,i are independent for any fixed ti. Moreover, from
Assumption A.4, the events E1,i and E 3,i for all i = 1,... , N, are also mutually independent.
Hence, we can write that

N t t N N

P{n(Li Ž ni)} = ... P{nE2i} iP{Ei}P{E3,i} dtl .. dtN-
i=1 i=1 i=1
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Figure 2: A scenario for a 2-class system in the transient regime.

Conditioning on the type of customer that arrived first to the system we have

N

P{ n(Li > ni) n(rj,nj = min i,ni)} =
i=1

Lt t t l~tjrtt .N N

i i 3 ~ .tj .. P{nE 2 ,i} lP{El,i}P{E3 ,i} d t l ... dtN.
=o t=tj - 1=tj t+ =tj t=tj i=l i=l

Conditioning on the event E2, we have that
N

P{ n(Li > ni) n(j,nj = min Ti,n,)} 
i=1 t t t N N

j=O tl=tj =tNtj i=1 i=l

Since the discipline is FIFO (Assumption A.2), for any arbitrary choice of time epochs ti i = 1,... , n

such that tj = mini ti we have that

N

P{nE2 , I E = 1,
i=1

i.e., if the customer that arrives first is still in the system at an observation epoch r, all the

customers that arrived after him are, also, still in the system at r. Therefore,

V A- 

T2,j+n2 Tl,k+nl
J

N t N t

P{(Li > ni) j = m.in i,n,)} = J P{E 2,j}P{Elj}P{E 3 ,j} r 

iij

From the definitions of the events El,i, E 2, 1 and E3,i we have that

-tj
t= tj

P({E,i}P{E3 ,i} dti = J hi(ti) P{N.°(ti,t) = ni- 1} dti,

P{E,i,}P{E3,i} dti dtj.

i j,

11
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P{E2,j}P{El, }P{E3,,} = hj(tj)P{(S(tj) > t - t,} P{N,j(tj,t) = nj - 1},

where in the second formula we use the fact that Sn conditioned on the arrival time of the njth

customer does not depend on nj. Hence,

NN t N

P{n(Li > ni)} = f hj(tj) P{S(t) > t-t}P{Naj(tj,t) = nj - }lHi(tj,t,ni)dtj, (14)
i=1 j=1 i=1

isi

where we define Hi(tj, t, n i) ftt hi(ti) P{N.,(ti,t) = ni- 1} dti.

In the general case where at time t there are no customers from class k E A C {1,... ,N} in

the system, and there are ni > 1 customers from class i 0 A we can prove in a similar way

P{f (Li(t) > ni)} = f hj(tj)P{Sj(tj) > t-tj}P{N.'(tj,t) = nj - 1} II Hi(tj,t,ni)dtj. (15)
i0A j0A i j

i0A

We now compute P{ni=1 (Li(t) = ni)} iteratively, using (14), (15) and the fact that for ni > 0

i N i-- N

P{ n (Lk(t) = nk) n (L(t) > n)} = P{n (Lk(t) = nk) l(Li(t) > n)}
k=1 j=i+I k=l j=i

-P{ik=l(Lk(t) = nk) n(Li(t) Ž ni + 1) fl+ 1(Lj (t) > nj)}.

Having calculated P{L1 (t) = nl,... , LN(t) = nN}, some tedious but straightforward manipu-
lation yields (13). ·

In the case of a single class (13) yields:

GL(, t) = 1- K(z, a, t) P{S(a) > t - a} da,

where Ke(z, a, t) 1 + (z - 1) t h(u) Ko(z, u, t) du.

Hence, substituting °K(z,a,t) = -h(a) (z - 1)Ko(z, a, t), we obtain (7). Moreover, the

generating function of the total number of customers L(t) in the system can be obtained if we set

zl = z =... =zN in (13):

GL(z,t) = 1- Ke,j(Z,u,t) IIKe,i(z,u,t) P{S(t - u) > u} du. (16)
j=1 ifS

Finally, notice that for renewal arrival processes K,i(zi, u, t) = Ko,i (zi, t-u) and Ke,i(zi, u, t) =

K,i(zi,t - u), where K,i(zi,t - u) _ E[zN2(t-u)] and Ke,i(zi, t - u) _ E[zN2(t-u)] are the gener-
ating functions of the number of arrivals from an ordinary and an equilibrium renewal process,

respectively.
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3 Transient Little's law

One of the most celebrated results in queueing theory is that under natural and rather mild as-

sumptions (see Heyman and Sobel [11]), the expected number of customers in the system E[L] and

the expected system time E[S] in steady-state are linearly related via

E[L] = AE[S],

where A is the arrival rate.

Using the transient single class distributional laws of Theorem 1 we can obtain the following

generalization of Little's law in the transient domain.

Corollary 1 For a single class system that satisfies Assumptions A.1-A.3 and starts empty, we

have that

E[L(t)] = h(u)PS(u) > t- u}du. (17)

Proof: Since we consider a system that satisfies Assumptions A.1-A.3 the single class transient

distributional law, (7), holds, i.e.,

GL(z,t) = + (z- 1) jh(u) PS(u) > t - u} K(z,u,t) du,

where Ko(z, u, t) E[zN. ( ut ) ] = O°o znP{N°(u, t) = n}. We take derivatives in the above

equation, let z = 1, and prove the corollary. ·

The previous corollary raises the question whether (17) holds not only for overtake-free systems

(Assumptions A.1-A.3) but more generally. The next theorem shows that this is indeed the case.

Theorem 6 For a single class system that starts empty with k initial customers, L(O) = k, and

initial work V(O) = X1 + ... Xk, if we denote by Na(t) the number of arrivals in (O, t], by h(u) the

probability of an arrival at time u, by L(t) the number of customers in the system at time t and by

S(u) the time spent in the system for a customer that arrived at time u, we have that

E[L(t)] = P{V(O) < t} j h(u)P{S(u) > t- u}du + P{V(O) > t}E[Na(t)]

+ k=~ i [P{V < t} - P(V._1 < t}], (18)

where Vi X + ... + Xk-i.

Proof: To enhance our intuition let us first assume that the system starts empty and consider

a particular realization of the system w. We define l(t; w) to be the number of customers in the

system at time t for this particular realization and introduce the indicator function

ft(u; P) = ( 1 if we have an arrival at u who is still in the system at t
0 otherwise.
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Then it is clear that

l(t; w) = ft(U; w) du.

If we denote by Ft(u) the stochastic process that corresponds to ft (u; w) we have that

E[L(t)] = E Ft(u) du] = E[Ft(u)] du, (19)

where the second equality follows from the bounded convergence theorem.

Moreover,

t t

|E[Ft(u)] du = P{an arrival at u who is still in the system at t} du

= h(u)P{S(u) > t - u} du. (20)

Hence we proved (18) in the case where the system starts empty. In the general case where

L(O) = k w.p.1 and V(0) = X1 + -.. + Xk, let us again consider a particular realization of the

system w. We denote by v(0; w) the initial work for this particular realization and with m(t; w)

the number of initial customers that are still present in the system at time t. We define l(t; w) and

ft(u; w) as before and we further define the indicator function

(u 1 if we have an arrival at u
g(u;:- w0 otherwise.

Then, for t < v(O; w) the system is still working on the initial customers, so l(t; w) is equal to m(t; w)

plus the number of customers that arrived to the system before t. On the other hand, if t > v(O; w),

no initial customer is present in the system and l(t; w) is equal to the number of customers that

arrived before t and are still in the system at t. In other words,

I(t;) ) { m(t; w) + ft g(u; w) du if t < v(0;w)

fo ft(u; w)du otherwise.

If we denote by G(u) and M(t) the stochastic processes corresponding to g(u; w) and m(t; w) we

have that

E[L(t)] = P{V(O) < tE [j t Ft(u) d u] + P{V( O) < t (E[M(t)] + E [ t G(u) d]).

From the discussion in Theorem 4 we have that

k

E[M(t)] = Z i[P{Vi < tj V(O) > t} - P({V_ 1 < tl V(O) > t}].
i=l

14



Moreover we have from (19) and (20),

E F(u) du = E[F(u)] du = h(u)P{S(u) > t - u} du,

and similarly

E G(u) d = E[G(u)] du : h(u) du = E[N(t)].

Combining the last four relationships we prove (18). ·

Notice that unlike Little's law, E[L(t)] depends on the entire distribution of S(t), not just its

expectation, and on the initial conditions.

If we further assume that the arrival process is renewal and that the initial interarrival time is

distributed as the forward recurrence time of the interarrival distribution, i.e., h(t) = A we obtain

in the case where the system starts empty

E[L(t)] = A P{S(u) > t - u} du.

We will use this transient version of Little's law to obtain the mean number of customers in a

GI(t)/G(t)/oo system in Section 5.1.

4 Asymptotic forms of Ko(z, t) and Ke(z, t)

The main contribution of our analysis so far is that we established a set of relationships between the

distributions of the number of customers in the system and the system time in both the transient and

steady-state regime for a class of systems that satisfy Assumptions A.1-A.4. These distributional

laws relationships are expressed as integral relationships between the generating function of the

number of customers in the system and the distribution of the system time. For example, for the

single class system in steady state we have that:

GL(z) = Ke(Z, t) dFs(t),

and for multiclass systems in the transient regime

N t a N

GLL,... ,LN (Z, t) = 1-K Z] yaKe,j (zi, a, t) f Ke,i(zi, a, t) P{Sj(a) > t - a} da,
j=1 ifj

where the kernels Ke (z, t) and Ke,i(zi, a, t) were defined in Theorem 1 and Theorem 8, respectively.

Since we only consider renewal processes where Ko,i(z, a, t) depends only on z and the difference

t - a, so in accordance with Section 2 will use the notation K,i(z, t - a). Similarly, for Ke,i(z, a, t)
we will use the notation Ke,i(z, t- a)

It is important to notice that in the special case of a Poisson arrival process the kernel Ke (z, t) =
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e- x t(l - z) and the distributional laws are linear relationships between transforms, for example,

GL(Z) = S(A(1 - Z)),

where Os(s) is the Laplace transform of the system time distribution.
For mixed generalized Erlang arrivals Ke(z, t) is given explicitly in Bertsimas and Nakazato [6].

For arbitrary renewal arrivals, however, Ke(z, t) is not known in closed form. In order to exploit
the distributional laws we try to understand in this section the asymptotic behavior of Ke (z, t) and
Ko(z, t) as t -+ oo and z -+ 1, for a renewal process with arrival rate A and squared coefficient of
variation c.

We use the notation that h(x) r(x) as x - a means that limr a ( = 1 and following the
asymptotic approach introduced in Smith [24] (see also Cox [8], ch. 4-6) we obtain (see Mourtzinou
[19]):

Proposition 1 Asymptotically, as t -+ oo and z -+ 1 the kernels Ke(z, t) and K(z, t) behave as
follows:

Ke(z,t) e- tf(Z), (21)

Ko(z, t) .~ [1 - (1 - z)(c2 - 1) + 0((1 - z) 2 )]e- tf (), (22)

where f(z) = A(1 - z) - A(1 - )2(C2 - 1).

Given that we will extensively use the asymptotic forms in later chapters we will evaluate
numerically the accuracy of our asymptotic expansion as a function of time for different values of
z and different arrivals processes. In the following figures the solid line corresponds to the exact
value of the kernel K, (z, t), obtained via numerical Laplace inversion, and the dashed line to the
asymptotic expansion. To invert the Laplace transform of K, (z, t) we used the two algorithms in
Hosono [12] and in Abate and Whitt [1] which we programmed in Matlab and we got exactly the
same results. The results are shown in Figures 4-7.

Notice that our expansion is indeed asymptotically exact as z -+ 1 and t -+ oo. Moreover, in
all the cases we consider it is exact for t > 20. It is also interesting to notice that our asymptotic
expansion is more accurate for values of C2a close to 1 and indeed is exact for Poisson arrivals c2 = 1.
In other words it performs better for Erlang 2 than Erlang 16 arrivals and it also performs better
for hyperexponential arrivals with c = 1.5 than for arrivals with c = 2.

It is important to notice that according to the line of arguments in Mourtzinou [19], -f(z) is
the root of 1 - zc(s) = 0 for small values of s and for values of z close to 1, in other words

1- za(-f(z)) = 0. (23)
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Figure 3: The function Ke(z,t) for Erlang 2 arrivals.
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Figure 4: The function Ke(z, t) for Erlang 16 arrivals.

5 Transient performance analysis

In this section we apply the transient distributional laws to derive the transient performance anal-
ysis of several systems: infinite server systems with a single non-homogeneous Poisson arrival
process and general time-dependent services, and multiclass single server systems with general
time-dependent arrivals and services.

5.1 The M(t)/G(t)/oo queueing system

In this section we investigate the transient behavior of the M(t)/G(t)/oo queueing system; that
often arises in air-traffic control and wireless communications systems where we use the nonhomo-
geneity to capture the important time-of-day effect and we ignore the resource constraints (limited
number of lines) by assuming an infinite number of servers (see Massey and Whitt [18]). Since
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Figure 5: The function Ke(z, t) for Hyperexponential arrivals with c2 = 1.5.
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Figure 6: The function Ke(z, t) for Hyperexponential arrivals with c2 = 2.

this system is not overtake-free, the distributional laws presented in the previous sections do not
directly apply. However, we can still use them as the building blocks of our analysis since they do
apply in the special case of the M(t)/D/oo system, when all customers have the same deterministic
service requirement and hence they leave the system in the order of their arrival.

Hence we start by proving the following proposition.

Proposition 2 For a M(t)/D/oo queueing system with arrival rate A(t) and service time x that
starts empty with no initial work, if we define A(t) f A(r) dr, we have that

{ e(A(t)-A(t-Z))(1-z) if t > 
GL') = e-A(t)(1-z) otherwise. (24)
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Proof: From Theorem 3 we have that

GL(Z, t) = 1 + (z- 1) A(u) PS(u) > t - u} K(z, u, t) du, (25)

where S(u) denotes the system time of a customer that arrived at time u. Since there are infinitely

many servers and no initial work there is no waiting time, so that S(u) = x. Moreover,

*if t<x then P{x>t-u}=l for uE[O,t)

*if t >x then P{x>t-u}=l1 for uE[t-x,x) (26)
P{x>t-u}=O for uE[O,t-x)

On the other hand, since the arrival process is a non-homogeneous Poisson of rate A(t) we have

that Ko(z, u, t) = e- (A(t )- A(u))(-z). Substituting Ko(z, u, t) and (25), (26) we obtain (24). ·

We next consider the M(t)/G(t)/oo queueing system and denote by X(t) the service time of a

customer entering service at time t and we prove the following theorem.

Theorem 7 For a M(t)/G(t)/oo queueing system that starts empty, we have that the number

of customers in the system at time t, L(t), is a non-homogeneous Poisson process with rate

fo A(r) P{X(r) > t- -} dr, i.e.,

GL(Z, t) = e- (1- z) fo X(T) P{X(r)>t-r} d (27)

Proof: We can decompose this system into a number of M(t)/D/oo systems. Suppose that instead
of having a general time-dependent service distribution the service time has P{X(t) = xj} = pj(t)
for j = 1,2,... , k. The customers with service times x; can be treated as a separate class Cj

of customers with arrival process being a non-homogeneous Poisson process of rate A(t) pj(t).
Therefore, if we denote by Aj(t) fj A(r) pj(r) dr, we have that

GLj(z,t) = { e-(Ai(t)-Ai(t-z))(1-z) if t > X
e-Ai(t)(1-z) otherwise.

Moreover as discussed in Ross [23], p. 224, these processes are mutually independent and thus

k k

GL (Z t) = I GLj (Z, t) = e(1z) = A e(1 ) Ej: < A(t (28)
j=1

We will evaluate now the exponents

k k t t k t

,Aj(t) = J )(r)pj() dr = O A()Epj() dr = (r) dr, (29)
j=1 j= j=1
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rt-Z~j ~ k rt

Aj(t-xj) = f A(r)pj(r) d = A (r)pj(r) P{r < t - xj} dr
j:zj <t j:zj <t j=

= A() pj() P{r t - xj} dr = A(r) P{X(r) < t - r} dr. (30)
j:zjt /o

Combining (28)-(30) we get (27) for this case. Since any general distribution is the limit
of a sequence of mixtures of deterministic distributions, (27) holds in general. Moreover, the
generating function GL(z,t) in (27) corresponds to a non-homogeneous Poisson process of rate
ft A(i) P{X(-) > t - r} d. 

One can actually obtain the expected number of customers in the M(t)/G(t)/oo system,

E[L(t)] = A(u)PX(u) > t - u}du, (31)

directly from the transient form of Little's law, (18), by substituting h(u) = A(u) and S(u) = X(u)
since there is no wait. Furthermore, (31) is independent of the Poisson assumption and gives the
expected number of customers in any GI(t)/G(t)/oo system.

In the special case of the M(t)/GI/oo system, Theorem 7 can be traced to Palm [21], Bartlett
[2], Doob [9], Khintchine [16] and Prekopa [22], all before 1958. For a recent reference on Theorem
7 and its extension to networks of infinite server queues with non-stationary Poisson input see
Massey and Whitt [18].

5.2 The GI(t)/GI(t)/l queueing system under FIFO

In this section we consider a single server system with general mutually independent non-stationary
arrival and service time distributions, namely, the GI(t)/GI(t)/1 queue under FIFO. We denote by
Q(t) the number of customers waiting in the queue at time t and by L(t) the number of customers
in the system, i.e., the queue plus the server, at time t. Similarly, we denote by W(t) the time that
a customer who arrived at time t spends in the queue and by S(t) the time that a customer who
arrived at time t spends in the system, i.e., the queue and the server. We assume, without loss of
generality, that the server of the system is working with unit speed as long as there is work in the
system and we denote by X(t) the service requirement of a customer that enters the server at time
t. Finally, we denote by GL(Z, t) (resp. GQ(z, t)) the generating function of L(t) (resp. Q(t)).

For this system we first prove another distributional law that relates L(t) and Q(t) and which in
contrast with the laws presented in Section 2, does not hold for all overtake-free systems but it re-
quires the existence of a single server, and it is, therefore, specialized to the case of a GI(t)/GI(t)/1
system under FIFO.

Proposition 3 For a GI(t)/GI(t)/1 queueing system that starts with L(O) = k w.p.1, set-up work
V(O), and total initial work V(O) = (O) + X + ... + Xk and satisfies Assumptions A.1-A.3, the
transient quantities L(t) and Q(t) are related as follows:

GL(Z, t) = (1 - z)idle(t) + (1 - z)zkP(f{(O) > t}K(z, t) + zGQ(z, t), (32)
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where idle(t) is the emptiness function, i.e., idle(t) P{the system is empty at time t} and K(z, t)

E[ZNa(t)] = E= 0 Znp{Na(t) n}.

Proof: Notice that at time t the system can be in either of the following states:

1. It is empty (with probability idle(t)).

2. It is still working on the set-up work, V(O) (with probability P({(O) > t}, as the server has

unit speed).

3. It is busy servicing customers (with probability 1 - Pf{(O) > t} - idle(t)).

In the first case, the number of customers in the queue, Q(t), and in the system, L(t), satisfy

Q(t) = L(t) = 0. Similarly, in the second case, Q(t) = L(t) = k + Na(t), as in this case, all the

initial customers plus the customers that arrived to the system up to time t are still waiting for the

server to finish the set-up work, V/(O). However, in the third case, L(t) = Q(t) + 1, as one of the

customers is receiving service at time t. We can, therefore, decompose the generating functions of

Q(t) and L(t), GQ(z,t) A E[zQ(t)] and GL(z,t) A E[zL(t)] as follows:

GQ(Z, t) = idle(t) + zkK(z, t)P{V(O) > t} + (1 - idle(t) - P{V(O) > t}) GQB (z, t),

GL(Z, t) = idle(t) + zkK(z, t)P{V(O) > t} + z(1 - idle(t) - P{V(O) > t}) GQ, (z, t),

where GQB (z, t) A E[zQ(t) I the server is servicing customers]. Combining the last two relations we

obtain (32). ·

The above proposition together with the transient distributional laws of Section 2 leads to a

complete description of the GI(t)/GI(t)/1 system as a function of the emptiness function as the

following theorem demonstrates.

Theorem 8 For a GI(t)/GI(t)/1 system under FIFO with initial work V(O) the probability distri-

bution function of the waiting time of a customer who arrived to the system at time t, Fw(t) (x) -

P{W(to) < x}, satisfies the following integral equation

j h(u) Ko(z, u, t) [ dFw() (a) P{X(u + a) > t-u-a} - zP{W(u) > t-u} du

= 1 - idle(t) - P{V(0) > t}K(z, t), (33)

where idle(t) P{the server is idle at time t}, dFw(u)(-) is the pdf of W(u), K(z, u, t) E[Nm(Ut)]

Z,=o zP{Na(u,t) = n} and K(z, t) E[zN(t)] = E%=o Z"P{Na(t) = n).

Proof: We start by noticing that W(t) given the initial work in the system, V(O), is independent

of the actual number of the initial customers; hence we assume wlog that the system starts with

L(O) = 0 and V(O) = V(O). In this case, Theorem 4 holds for the pair (L(t), S(t)), if we regard "the
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system" as the queue and the server, as well as the pair (Q(t), W(t)), if we regard "the system" as

just the queue. Therefore,

GQ(z,t) = 1+ (z-1) h(u) P{W(u) > t-u} Ko(z, u,t) du (34)

GL(Z,t) = 1 +(z-1) h(u) P{S(u) > t-u} Ko(z,u,t) du . (35)

Moreover, from the definitions of S(t), W(t) and X(t) we have that

P{S(t) > x} = j P{a < W(t) < a + da} P{X(t + a) > x - a}, (36)

so that from (35) we get

GL(Z,t) = 1 + (- 1) h(u) dFw() (a) P{X(u + a) > t - u - a} K(z, u, t) du,

where dFw(u) is the pdf of W(u) and Ko(z, u, t) - =o ZnP{NO(u, t) = n}.

Combining the last equation with (32) for k = 0 and V(O) = 0(O), since we assumed that no

customer is present, we complete the proof. ·

By solving Equation (33) and then using (36) we also obtain the pdf of S(t) as a function of

idle(t). Moreover, using the distributional laws of Theorem 3 we obtain the description of the

GI(t)/GI(t)/1 system with no initial customers, again as a function of idle(t). In the case where

L(O) = k we can use the distributional laws of Theorem 4. However, solving the equation of

Theorem 8 for the general GI(t)/GI(t)/1 case is quite complicated and therefore in the sequel

we consider two special cases: the GI/GI/1 queue and the M(t)/GI(t)/1 queue. For both cases

we solve for the fundamental quantities of the system as function of idle(t) and then we calculate

idle(t) from analytic properties of Laplace transforms.

5.2.1 Transient analysis of GI/GI/1 queueing system under FIFO

In this section we focus our attention to an important class of systems where customers arrive

according to a single equilibrium renewal arrival process and have general (though time independent)

service requirements.

We use the notation of the Section 5.2. Moreover, since the arrival process is renewal, the

number of arrivals, NO (u, t) only depends on the difference t - u. Therefore, in this section we write

Ko(z, u, t) as Ko(z, t- u). Moreover, as the arrival process is an equilibrium process Na(t) = Ne(t),

h(u) = A for all u > 0, where A is the arrival rate, and also K(z,t) E[zN(t)] = K(z, t).

Since the GI/GI/1 queueing system is just a special case of the GI(t)/G(t)/1 system, Theorem
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8 still holds and the integral equation takes the following form

Ko(z, t-u)(P{W(u) + X > t - u} - zPW(u) > t- - u})du

= 1 - idle(t) - P{V(O) > t}Ke(z, t). (37)

The integral equation (37) is still difficult to solve analytically for general arrival processes. One

possibility would be to solve it numerically, and then use the distributional laws to find the complete

description of the GI/GI/1 system numerically. In the next section we follow another approach and

we examine the behavior of the GI/GI/1 system for large times t >> t and under the assumption

that the traffic intensity p -+ 1.

In the rest of this section we focus our attention to another pair of performance measures,

namely, the expected number of customers in the system at time t, E[L(t)], and the expected

number of customers in the queue at time t, E[Q(t)]. We define £{E[L(t)]} and £{E[Q(t)]} to be

the Laplace transform of E[L(t)] and E[Q(t)], respectively, i.e.,

£{E[L(t)]} e-St E[L(t)] dt and £{E[Q(t)]} A- e- t E[Q(t)] dt,

and we also define by Ow(w, t) the Laplace transform of W(t) and by ~w(w, s) the double Laplace

transform of W(.), i.e.,

w(w, t) _j e- wx dFw(t)(x) and 'w(w,s) etw (w, t) dt.

Similarly, S(t) is the system time of a customer that arrived at t and has Laplace transform OSs(w, t)

and double Laplace transform s (w, s). As an illustration of the importance of the transient version

of Little's law we obtain the following theorem.

Theorem 9 For a GI/GI/1 system under a work conserving policy, that starts empty with initial

work V(O), the Laplace transform of the expected number of customers in the system and in the

queue are given as follows:

£{E[Q(t)]} = A - s idle(s) - v(o)(s)
C(E[Q(t)]} - 1) (38)

;i sS(Ox(S)- 1)

£{E[L(t)]} = A s idle(s)-V(o)(s) qx(S), (39)
= S(ox(5) - 1)

where idle(s) A fo e-stidle(t)dt is the Laplace transform of the emptiness function and Ov(o)(s) A

f0° e-tdP{V(O) < t} is the Laplace transform of V(O).

Proof: From the transient form of Little's law we have that

E[L(t)] = A PS(u) > t- u} du and E[Q(t)] = A P{W(u) > t- u} du.i 
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Taking Laplace transforms in the first of the previous two equations we obtain

L{E[L(t)]} = A e- t P{S(u) > t - u} du dt = A e- '
a e-uP{S(u) > a} du da,

where we set a t - u and we changed integration variables. Equivalently, from the definition of

the double Laplace transforms:

A A
£C{E[L(t)]} = -SS(S,S), (40)

S

A A
£{E[Q(t)]} = - - W(S, ). (41)

Moreover, we know that S(u) = W(u) + X, so taking Laplace transforms

-S(S, S) = Ox(S) &w(S, S). (42)

On the other hand we have from Proposition 3 that for a system that starts empty with initial

work V(0),

GL(Z, t) = (1 - z) idle(t) + (1 - z)P{V(O) > t}K,(z, t) + zGQ(z, t),

where Ke(z, t) _ E[zNa(t)] = =o znP{Ne(t) = n}. By differentiation we get that

E[L(t)] = -idle(t) - P{V(O) > t} + 1 + E[Q(t)],

or equivalently in the Laplace domain

£{E[L(t)]} = -idle(s) + ! v(o)(S) + £{E[Q(t)]}. (43)

Solving the linear system of equations (40)-(43), we conclude the proof. ·

It is important to notice that since the transient form of Little's law holds for any work conserv-

ing policy, (38) and (39) hold for any work conserving policy. However, the form of the emptiness

function, which is not in general known and can not be obtained from the analytic properties of

£{E[L(t)]} and £{E[Q(t)]}, changes with the policy and so do E[Q(t)] and E[L(t)]. It is, however,

interesting to observe that the transient form of Little's law leads to a solution for the expected per-

formance measures up to a function. Moreover, for FIFO policy we will actually use the asymptotic

method to obtain a closed form expression for idle(s), from the analytic properties of 1w(, s), in

the next section.

Finally notice that we can obtain the steady-state queue length, E[Q], from the properties of

the Laplace transforms as follows

E[Q] = lims £{E[Q(t)]} = lim [A s idle(s) - v(o)(S)]
8-+o 8-+~o ~ 4x(s)- : A
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In the Section 5.3.2 we will show using the asymptotic form of idle(s) that under FIFO

E[Q] p (C2 - 1) + p2(C2 + 1)
2(1 - p)

where c2 and c2, are the squared coefficients of variation for the arrival and service process respec-
tively. This is exactly the formula we obtained in Bertsimas and Mourtzinou [5].

The asymptotic heavy traffic analysis of the GI/GI/1 queue under FIFO
We, now, analyze the asymptotic heavy traffic transient behavior of the GI/GI/1 queueing system,
where we define asymptotic heavy traffic behavior to mean the behavior as the traffic intensity p - 1
and the observation time t is large, i.e., as t -4 oo. As we will see in the proof of the next theorem,
we can equivalently define in the transform domain, where we are dealing with

GQ(, s) - o e-tE[zQ(t)]dt and w(, s) et o ezdFw(t)(x)dt,

the asymptotic heavy traffic behavior to mean the behavior for z relatively large, i.e., z - 1, and
s, w relatively small, i.e., s, w - 0.

In particular, in the rest of this section we first obtain asymptotic expressions of the distribu-
tional laws in the transform domain under heavy traffic conditions. Using these expressions we
obtain an asymptotic closed form expression of the double Laplace transform of the waiting time
under heavy traffic conditions as a function of the Laplace transform of the emptiness function,
idle(s). Then, we also obtain an asymptotic closed form expression for idle(s) under heavy traffic
conditions, and hence we complete our asymptotic heavy traffic analysis of the GI/GI/1 queueing
system.

To start, let us denote by A the arrival rate and by c2a the squared coefficient of variation of
the arrival process (recall that the arrival process is an equilibrium renewal process). The main
theorem of this section is the following.

Theorem 10 In a GI/GI/1 queueing system under FIFO that starts empty with initial work V(O),
the distributional laws take the following form, asymptotically in heavy traffic:

GQ(z, s) + ) [1 + f(z) 'w(s + f(z), s)], (44)
s f (z)

1
GL(Z, ) [1 + f(z) s(s + f(z), s)], (45)

s + f(z)

with f(z) = A(1 - z) - A(1 - z) 2(c2 - 1). Moreover, asymptotically under heavy traffic conditions

w(W S) ~ w idle(s) - v(o)(W) 1 - a(s - w) (46)
1 - a(s-w) x (w) (w- s)

where a(s) is the Laplace transform of the interarrival times, Oqv(o)(s) is the Laplace transform of
the initial work and idle(s) is calculated from the analytic properties of w(W, s) in Proposition 4.
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Proof: To justify (44) we can argue as follows: By taking the Laplace transform of the transient
distributional law applied to the pair (Q(t), W(t)) we obtain

GQ(z, ) = - + A(z - 1) e- [t P{W(U) > t - u}Ko(, t - u) du dt. (47)

We initially defined the asymptotic heavy traffic behavior of the system to mean the behavior as the
traffic intensity p - 1 and the observation time t is large, i.e., as t - oo. We know from the theory

of Laplace transforms (Tauberian theorems, see Cox [8]) that the behavior of GQ(z, t) as t -+ oo is

associated with the behavior of GQ(z, s) as s -+ O. Moreover, as p -+ 1 and t -+ oo we have that

Q(t) -+ oo. From the definition of GQ(z,t) A E[e-Q(t)O° g(z) ] we observe that the behavior of Q(t)

when Q(t) -+ oo is associated with the behavior of GQ(Z, t) as z -+ 1. Hence, the asymptotic heavy

traffic behavior of Q(t) is associated with the behavior of GQ(z, s) for small values of s and z close
to 1.

Hence, we have to prove that for small values of s and large values of z the RHS of (47) yields

the RHS of (44). Notice, now, that in (47) the second term is the Laplace transform of the function

=(t) A ft=o P{W(u) > t - u}Ko(z, t- u) du. Therefore, its behavior for s relatively small is related

to the behavior of P(t) for t relatively large. Since we are also interested in z close to 1, we can
substitute the asymptotic form of the kernel Ko(z, t) from (22)

Ko(z, a) A-f(Z) ef(z)a as a -+ oo and z -+1.
(1 - z)

Setting a - t - u and changing the integration variables, we obtain

GQ(z,s) = - -f(z) 8e a e8Q P{W(u) > a} e- (z) a da] du.s U=o =o0

In other words,

GQ(z,s) -- f(z, - W( f)(Z) j) du, for small s and z close to 1.
s =0 s + f(z)

Equivalently,

1
GQ(z, s) ~ [1 + f(z) (~w(s + f(z), s)], for small s and z close to 1.

s + f(z)

Similarly, we can prove (45).
Next, we take double Laplace transform of the relation S(t) = W(t) + X to obtain

(s(s + f(z),s) = s(S + f(z),s) x(s + f(z)). (48)

Finally, we use (32) in the case where L(O) = 0 and the initial work is V(O), i.e,

GL(z,t) = (1 - z) idle(t) + (1 - z)P{V(O) > t}Ke(z,t) + zGQ(z,t)
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and we take Laplace transform with respect to t to obtain

(1- z)
GL(Z, S) = (1 - Z) idle(s) + () [1 - V(O)(S + f(z))] + zGQ(z, s). (49)

s f(z)

Combining (44),(45) with (48) and (49) we obtain

Dw(S + f(z), s) = (s + f(z)) idle(s) - bv(o)(s + f(z)) 1 - z (50)
w(s+f(),s)= •x(s+f(z)-z f(z (50)

Recall that -f(z) is one of the roots of 1 - za(s) = 0 where a(s) is the Laplace transform of the
interarrival times (in particular it is a root of 1 - za(s) = 0 for s small and z close to 1, see Section
2.4.2, equation (23)). Multiplying and dividing with a(-f(z)) in (50) we obtain (46) where both s

and w are small. The unknown function idle(s) may be determined by insisting that the transform

Dw(w, s) is analytic in the region R(s) > 0 and R(w) > 0. This implies that the zeroes of the
numerator and denominator must coincide in this region (see Proposition 6.3). The same approach
is used by Kleinrock [17] p. 229 to obtain idle(s) for the M/G/1 queue. [

Using (44) we can also find the heavy traffic form of GQ(z, s) if the system starts empty, once
again for s relatively small and z close to 1.

It is important to note, that if the renewal process is Poisson, the asymptotic expressions of this
theorem are exact with f (z) = A(1 - z). Therefore, if we consider a system with Poisson arrivals,

the asymptotic relations of Theorem 10 are exact under any traffic conditions and for any s. In
particular, (46) is exact and yields:

WM/a1, (W,S) -= v(o)(W) - w idle(s)
A + s - - AOx(w)'

which is the exact transient solution for a M/G/1 queue (see Kleinrock [17]).
We can obtain the Laplace transform of the steady state waiting time, denoted by 'Dw(W), if

we observe that Dw(w) = lim,, 0 s w(W, s). Indeed,

(Qw(w) = lim s w (w, s) (-W) lim s idle(s).8-Wo 1 - (-w) x(w) -o

Moreover, we know (either from the properties of w(w) or from the physical meaning of idle(s);

see Section 2) that lim,,o s idle(s) = 1 - p, where p is the traffic intensity of the system, and

therefore,

w(W) (1-p)(1 a(- w))
1 - a(-w) x(w)

This is exactly the result obtained in Bertsimas and Mourtzinou [4].
We can also obtain an asymptotic closed form expression for idle(s) as follows.

Proposition 4 In a GI/GI/1 queue with FIFO service policy and initial work V(O), asymptotically
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in heavy traffic the Laplace transform of the emptiness function for p < 1 is given as

idle(s) ( with w -- pl (s)- /(pl(s)) 2 - 4 po(s) P2(S) (51)
W2 2 p2(s)

where
where As (C + 1)82

A 2A2

(s) A (1- + ( + 1)s2) E[X] - + 1)s

psa 12 s (C + 1)s2 a ~+I)E[X ]P2(=) 2 1-s + (c ) (c: + 1) (E[X])2 + (C2 ( 1)S)E[X] c +

Proof: See Appendix.

Using the asymptotic expression for idle(s) we can rewrite $w (w, s) as follows

OV(o0) (2) _ V(O)(W) 1 - c(s - w)
i'DW(W S) W2 - (52)

P2((W - )( - W) (W -) )(52)

On the other hand, using the Brownian approximation method for general arrival we get (see for

example Kleinrock [17])

V(O) (12)- V(O)(tw)

'w(w, ) (( (53)

with

2-(l -p) 2c2 ( c))31,[p2(2 ) p(1 - p) 2 J
which is different from (52).

Using the asymptotic form of idle(s) we can also obtain an asymptotic form of the Laplace

transform of the expected queue length, £(E[Q(t)]} via Theorem 9. Indeed,

A s idle(s) - 'v(o)(s) A Sqv(O)(W2) - W2q5 V(o)(S)
£(E[Q(t)]} - 1) W2(X(S) - 1) (54)

It is interesting to note that if we calculate the asymptotic steady-state queue length, using the

asymptotic value of w2 we obtain

p(- 1) + p2(~ + 1)E[Q] = lims £{E[Q(t)]} p
s-4 2(1 - p)

the same result we obtained in Bertsimas and Mourtzinou [4].
Another important performance measure is the expected waiting time of a customer that arrives

at time t denoted by E[W(t)]. If we denote by £{E[W(t)]} its Laplace transform, i.e.,

LE[W(t)]}- e-'tE[W(t)]dt,I 0
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we have from the properties of Laplace transform that L(E[W(t)]} = lim,,o o 4(w(w, s). Hence,

we can prove the following corollary of Theorem 10.

Corollary 2 In a GI/G/1 queue with FIFO service policy, and initial work V(O), asymptotically

in heavy traffic:

E[W(t)]} idle(s) E[V(0)] E[X]c(s) 155)
s +s s( - (s)) s 2'

where E[V(O)] is the expected initial work in the system.

Proof: Taking derivatives in (46) with respect to w and then calculating the limit as w - 0 we

we get (55). ·

If we calculate the steady-state expected waiting time E[W] = lim,,o s L(E[W(t)]} we get that

E[W] = lims £{E[W(t)]} p(c -1) + p2(c + 1)
.-.o 2(1 - p)

the same result we obtained in Bertsimas and Mourtzinou [4].

It is important to notice that although Theorem 9 holds for any traffic intensity and for any s,

Corollary 2 only holds asymptotically in heavy traffic.

Numerical Results

In order to obtain a better understanding of the asymptotic method we now present some numerical

results. We start by evaluating the function idle(t) for an M/G/1 queue with A = 0.75, E[X] = 1

and c = 2 that starts empty with no initial work, the same queue if V(0) = 5 units and if

V(0) = 10 units. Recall that limt, idle(t) = (1 - p) = 0.25. To invert the Laplace transform

we used two algorithms, one proposed by Hosono in [12] and one proposed by Abate and Whitt in

[1], and we got exactly the same results. Notice that we have asymptotically evaluated idle(t) for

t >> to, so our results for t < 15 are not very accurate and therefore we do not report them. The

results for idle(t) via our asymptotic method as well as the Brownian approximation are depicted

in Figure 3. Notice that for times t > 20 the two methods produce identical results.

We next evaluate idle(t) for an E 2/E 2/1 queue and an H 2/H 2/1 with c2 = 3 and c = 1.5,

in Figure 4. In both cases we assume that V(0) = 0 units and we plot the results of both the

asymptotic method and the Brownian approximation. For the E 2/E 2/1 queue the two methods

give rise to identical results for t > 12; however in the case of the H 2/H2/1 queue the two methods

give rise to almost identical results only for t > 30.

Next, we calculate the difference E[Q(t)] - E[Q] for an E 2/H 2/1 queue with A = 0.75, E[X] = 1

and c = 3, when V(0) = 0 units using our asymptotic method. Notice that for this system

E[Q] = 2.625, according to our asymptotic method. For this particular system our results are

relevant for t > 80 as the Figure 5 indicates.

Furthermore, we calculate the difference E[Q(t)] - E[Q] for an H 2/E 0/1 queue with A = 0.75,

E[X] = 1 and c2 = 1.5, when V(0) = 0 units. Now, E[Q]=1.9875 and our results are relevant for

t > 20.
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Figure 10: A semilogarithmic plot of E[Q] - E[Q(t)] -p = 0.75, E[X] = 1.

From the above figures we see that the performance of our asymptotic method in sensitive to
the variance of the arrival and service time distributions. In particular, if we denote by t the
earliest time for which our asymptotic method correctly predicts the behavior of the system, we
observe that for systems where both the arrival and the service distributions are close to Poisson
(i.e., C2 and c2 close to 1), to z 20. Moreover, to 20 even if c is big, provided that c is small
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(see Figure 5, the case of the H 2 /E1 o/l queue). On the other hand, for systems where c is small

and c2 is big, t is bigger, for example t w 80 in Figure 5, the case of the E 2/H 2/1 queue.

It is also interesting to compare the predictions of the asymptotic method for E[Q] - E[Q(t)]

versus the exact values of E[Q] -E[Q(t)]; we do so in Figure 6, where use the exact results presented

in Odoni and Roth [20] for various systems that start empty. Notice that the asymptotic method

is performing very well and for all systems for t > to : 30.

The previous results for the GI/G/1 system can also be used in a GI/D/s queue. Since the

service times are deterministic, every s customers are served by the same server. Therefore, as it

is well known (see Iversen [13]), each customer sees a GI()/D/1 queue, where GI(s ) is the s fold

convolution of the interarrival distribution. As a result, the waiting time in queue in the GIlD/s

queue is the same as in the GI(')/D/1 queue.

5.2.2 The M(t)/GI(t)/1 queueing system under FIFO

In this section we analyze single server systems with non-homogeneous Poisson arrivals and general

time-dependent service time distributions that satisfy the following set of assumptions

Assumptions B:

B.1 There exists a set of ordered time epochs, tai, i = 0,1, 2,... with tao 0, such that the arrival

rate A(t) is piecewise constant with value A(t) = Ai for t E [tai, tai+l).

B.2 There exists a set of ordered time epochs, tsi, i = 0, 1, 2,... with tso 0, such that the service

time distribution X(t) d Xi for t E [tsi, tsi+1) 

We define the set of all times epochs T ({tai, i E Z+} U{tsi, i E Z+ and let the set

O- ({ , tl 2,. . ) be the ordering of the elements of T such that ti < tj for i < j.

Since the arrival process is memoryless, we can decompose the system in the time intervals

[ti, ti+l), for i = 1, 2,..., in order to calculate the distribution of the waiting time. In other words,

for t E [ti, ti+), if also t E [tak, tak+1) and t E [tsm, tsm+i), the original system behaves as an

M/GI/1 queueing system with arrival rate Ak, service time distribution represented by the random

variable Xm and the appropriate initial work conditions.

Based on the above observation we define,

' (), )= o) - v(56)
,0S X (W) - A0 - s + w'

where qv(o)(W) is the Laplace transform of the initial work at t = 0, V(0) and o0 7io(s) is the

unique root of AOx 0 (w) - Ao -s + w = 0 in the region R(s) > 0, R(w) > 0. We also define qwo (w, t)

to be the inverse Laplace transform of wo (w, s), i.e.,

Wo (W,S) A o e-'stqwo(w, t) equivalently qwo(w,t) = £-1{wo(w,s)}.

32



Finally, we define for all i = 1, 2,...

w, (w, s) = ' W-, (7 t) (, ti)- 4w.. (W, ti)
Akhxb (w)- : - s +w

where r7i - i(s) is the unique root of AkbXm (W) - Ak - s + W = 0 in the region R(s) > 0, R(w) > 0
(recall that Benes [3] has shown that in this region this equation has a unique solution).

We next state the main theorem of this section (see Mourtzinou [19]).

Theorem 11 For an M(t)/GI(t)/1 queueing system under FIFO that satisfies Assumptions B and
starts with an arbitrary initial work V(O) we can evaluate the Laplace transform of the distribution
of W(t) as follows.

qw(w,t) = wi,(w,t - ti) for t E [ti,ti+l), (58)

where to - 0 and Qw (w, t) is calculated recursively as follows

w0o (w,t) = C-{7 q V(o)(o) - v(o)(w)Aoqxo (w)- \o - s + 

,'wi (w, t) = - { " ' 'wi ( t) - Ow, (w, t)),AO(WX (W) - A - W for t E [t, ti+),

where [ti, ti+) [tak, tak+1) n[tsm, tSm+l).

The above theorem provides a recursive algorithm for obtaining the Laplace transform of the waiting
time in a M(t)/G(t)/1 queue that satisfies Assumptions B.

Independently, Choudhury et. al. in [7] used a very similar approach to obtain the performance
of the M(t)/GI(t)/1 queue under Assumptions B. The only difference is that we obtained the
performance of the M/GI/1 queue using distributional laws and they obtained it using the Takdcs
integrodifferential equation (see Takdcs [25]). In the same paper the authors also proposed an
algorithm to numerically invert the Laplace transforms. We do not report numerical results since
they coincide with those reported in Choudhury et. al. [7].

5.3 The GI(t)/GI(t)/1 queue under FIFO

In this section we consider the multiclass EGI(t)/G(t)/1 queue under FIFO. We denote by Li(t)
(Qi(t)) the number of class i customers in the system (queue) at a random observation time t.
We, also, denote by GL(z,t) - E[zLi(t)] the generating function of L(t) and with GL(Z,S) its
Laplace transform (similar definitions hold for GQ (z, t), GQi (z, s)). Furthermore, Wi (t) represents

the waiting time of a customer that arrived at time t and dFw, (t)(-) is the pdf of Wi(t). We assume,
without loss of generality, that the server of the system is working with unit speed as long as there
is work in the system and we denote by Xi(t) the service requirement of a class i customer that
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enters the server at time t. Finally, we denote by A (zl,... ZN) and by GL ... LN ( ,t) (resp.

GQ1 ... Q (, t)) the joint generating function of Li (t), ... , LN(t) (resp. Ql(t), .- , QN(t)).

As in the single class case we first prove another distributional law that relates GL1,....LN (z, t)

and GQ1... Q. N (z, t) and requires the existence of a single server.

Proposition 5 In a EGI(t)/GI(t)/1 system with N-classes of customers that satisfies Assump-

tions A.1-A.4:

N t N

GL1 ... LN (, t) = idle(t) + , zj f hj(a) Kj(zj, a, t) Mj(a, t) II Ke,i(zi, a, t) da, (59)
j=1 i-1

N t N

GQ1,..QN (Z, t) = idle(t) + o hj(a) Kj(zj, a, t) Mj(a, t) l K e,i(zi, a, t) da, (60)
j=1 i=1

GL(z, t) = zGQ,(z,t) + (1- z) idle(t) + E hj(a)Ke s(z, a,t)Mj(at)da (61)
j=l

where idle(t) is the emptiness process, Mi(a, t) P{Si(a) > t - a _ Wi(a)}, and

00oo

Ko,i(zi, a, t) > zi P{Ni(a; t) = n,
n=O

K,i(zi, a, t) A 1 + (zi - 1) hi(u) K,i(zi, u, t) du.

Proof: The proof of this theorem is based on the main ideas used to prove Theorem 5. Hence,

we define ri,ni to be the arrival time of the nith customer of the ith class and Si^, to be his system

time. Recall that according to the notational convention we keep using customers are indexed

backwards in time.

The key idea is that in order to have at time t, exactly ni customers of the ith class in the

system, where ni > 1, we must have that for i = 1, . , N the nith customer of the ith class is still

in the system at t and that the customer who arrived the first to the system (independent of class)

is in the service facility.

In other words, if we denote by A C {1,... , N} the set of classes such that k E A iff nk > 1,

the event

{L1 (t) > n, * . ,Lj(t) = n, , LN(t) > nN and Tj,ni = min i,n,} forj E A

is equivalent to the intersection of the following events, for all i E A i j:

rl,j a customer of the jth class arrives at time aj E (0, t],

r2, : the system time of the customer who arrived at aj is greater than t - aj,

r 3 ,j the waiting time of the customer who arrived at aj is less than t - aj,
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r4,j: there are exactly nj - 1 arrivals at (aj, t] for the jth class, given an arrival at aj,
Irli a customer of the ith class arrives at time ai E (aj, t],
r4,i there are at least ni - 1 arrivals at (ai, t] for the ith class, given an arrival at ai.

From the definition of events rl,i and r 4,i are independent for any fixed ai, for i = 1,..., N.
Similarly, the events rlIj and r 4 ,j are independent form each other and also independent of the
events r 2,j and r3,j for any fixed aj . Moreover, from Assumption A.4, the events rl,i and r 4,i for
all i = 1,..., N, are also mutually independent. Hence,

P{Ll(t) > nl, Lj(t) = nj, , LN(t) > nN and Tj,nj = min ri,n,}
t t tN N

- ,= I .. aNa =l P fr2,jnr3 ,j} P{r4 i} iP{rli} dal ... daN.
a=O al=aj N=aj i=l i=l

Conditioning on the event r2,i n r 3 ,j, and following the proof of Theorem 5, after some tedious
but straightforward manipulations, we obtain relation (59).

Next, to prove (60) we observe that for j, i E A,

P{Ql(t) > n,... ,Qj(t) =nj... ,QN(t) > nN and rj,,j = min 'i,ni}

= P{Ll(t) r> ni,-- ,Lj(t) = nj + 1,.-. ,LN(t) > nN and rj.nj = min i,n,}.
i

Finally, by combining (59) and (60) and setting zi = z and zj = 1, j # i, we also obtain (61). 

Using Proposition 5 together with the multiclass transient distributional and the fact that for
all i = 1,... ,N

P{Si(t) > x} = P{a < Wi(t) < a + da} P{Xi(t + a) > x - a},

we obtain a system on N integral equations on N unknowns, the cdf of Wi(t) for i = 1, .. ., N. This
system constitutes a complete description of the fundamental quantities of a EGI(t)/G(t)/1 queue
as functions of idle(t) and can be solved numerically. We, next, focus our attention to the EGI/G/1
queueing system, where under heavy traffic conditions we can obtain closed form expressions.

Transient analysis of the EGI/GI/1 queue under FIFO

Consider the multiclass EGI/GI/1 queue under FIFO and denote by bw (w, t) the Laplace trans-
form of Wi(t) and by w (w, s) the double Laplace transform of Wi(-). Similarly, Si(t) has Laplace
transform Obs, (w, t) and double Laplace transform DIsi (w, s). Since all arrival processes are renewal
we write Koi(z, u, t) as Koi(z, t - u). Moreover, as the arrival processes are equilibrium processes
hi(u) = Ai for all u > 0, and Na, 0() where Ai is the arrival rate for class i.

Theorem 12 In a EGI/GI/1 system under FIFO that starts empty the Laplace transforms of the
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individual waiting times asymptotically under heavy traffic conditions are given by

C(w,s) (1- aYi(s- w))
W (W,8) ~ ' 1 - ai(s - W),xi (W) - (1 - ai(s - w))px()' (62)

where oai(s) is the Laplace transform of the interarrival distribution of the ith class and C(w, s) -
idle(s) and

1-D(w,s)

N i Pix()(1 - ai(s - ))
i=l 1 - i(s - w)x (W) - (1 - i( - ))piX, ()'

Proof: For any class i we apply the single class transient distributional law to the pair (Qi(t), Wi(t))

and also (Li(t), Si(t)) to obtain

GQ,i (z,t) = 1 + Ai(z- 1) P{W,(u) > t-u)} Ko,(z, t-u) du

GL,(z,t) = 1 + Ai(z-1) P{Si(u) > t-u} K,(z, t-u) du

Taking Laplace transforms and using the same line of arguments used to prove (44) and (45) we

obtain

GQ (z, s) 1 [1 + fi(z) wi (s + fi(z), )], (63)
s + fi(z)

1
GL (z,s) s + [1 + fi(z) si (s + fi(z), s)] (64)

s - fi(z)

where fi(z) = Ai(1 - z) - (1 - )2 (Ci -1)

We take double the Laplace transform of the relation Si(t) = Wi(t) + Xi to obtain

si(S + fi(z), S) = si(s + fi(z),s) x(s + fi(z)). (65)

Finally, we take Laplace transforms in (61) and we obtain

GL,(ZS) zGQ(z, s) + (1 - z) idle(s) + E Ajo e-st e-(t-a)(8+fi(z))Mj(at)dadt]

If we go through the algebra of Laplace transforms we obtain that

e - set e-(t-a)(s+fi(z))Mj(a,t)dadt = w,(s + fi(z), s) x; (s + fi(z)) E[Xj],

where Xj is the age of the service time distribution and E[Xj] is the expected service time. So we
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can write that

GL, (Z, ) zGQ,(z,s) + (1- z) idle(s)+ Epjbwj(s+ fi(z),s) x;( + fi(z)) (66)
j=l

Combining (63)-(66), and multiplying and dividing by ai(-f(z)) (as in the single class case) and
finally setting w = s + fi(z) we have for all i = 1,..., N

i)w, (w, s)(1 - ai(s - w)ex,(w)) -. (1-ai(s-w)) idle(s) + -pj(w, (w, s) x; (w)
j=1

The previous equations form a N x N linear system which can be solved by adding and subtract-
ing pi(1 - ai(s - w))qx,(w) tIw (w, s). We can then solve for each (wIw,(w,s) as a function of

N=1 PjiSx (w) ~wj (w, s), from which (62) follows.
Notice that the function idle(s) can be determined from the analytic properties of I)w (w, s)

for all i = 1,***, N. ·

6 Concluding Remarks

In this paper we established a set of "laws" that completely characterize the performance of a
broad class of multiclass queueing systems that are operating in a time-varying environment. An
important characteristic of the laws we derived, is that they provide insight on the influence of
the initial conditions for systems that are operating under a time-varying environment. Moreover,
they give rise to structural results such as a transient extension of Little's law. Finally, we applied
this set of laws as well as the transient extension of Little's law to specific queueing systems and
presented several insights and new results.

Although we demonstrated in this paper the power of the proposed approach in several appli-
cations there exist many systems widely used in real world applications that our method does not
address, such as multiserver queueing systems and queueing networks. The major open problem
is to identify queueing laws for these systems. A solution to this rather challenging but important
problem will lead to a more complete theory of queues and is likely to provide very valuable new
insights.
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Appendix

In this Appendix we give a proof of Proposition 4: Recall that idle(s) may be determined by
insisting that the transform iIw(w, s) is analytic in the region R(s) > 0 and R(w) > 0, where

w idle(s) - Ov(o)(W) 1 - (s - w)
a(s -w) kX(W) -1 (w - s)

Since our asymptotic formula holds for both s, w small, we can expand a(s - w) as a Taylor series

around s - w and obtain

1 c 2 +1
a(s-w) = 1- (s-w)+ (S - ) + ((s-) 3 ).

Hence, we have that:

1 - a(s --w) 1 1c +1
=1 _ -_=a + (W- S) + O((S -W)2)

(w- ) A 2 A (

so that 1(-) is analytic in the region R(s) > 0 and R(w) > O. Therefore, Dw(w,s) is analytic

in the region R(s) > 0 and R(w) > 0 if and only if 1 id2L(8)-.v(o)(w) is analytic in the same region.

Expanding the denominator around w = 0 and s = 0, we get that

1 - a(s - w) X(W) - Po(S) +pl(s)w +p 2 (s)w,

where if we denote by E[X] the mean service time and by c2 the squared coefficient of variation of
X we have:

poAs) 1 2

PM(S)& 1 - + 2A2_ , - +(1 s ("+1)S2)E[X]_ 1 (c + 1)s
2 22A 2

Equivalently, we have that

1 - a(s - w) bx(w) - P2(s) (w - w 1 )( - W2 ) with w1,2 =-Pi(s) T (p (S)) 2 - 4 po(S) P2(S)
2 p2(s)

with wl corresponding to the + sign and w 2 to the - sign. Notice that for s z 0 we have that

1 I E ][X] 1
p (s) E[X]- = , ( p - 1) < Oand p2(s) E[X] (2(c + 1) + c+ 1) < .

Therefore we have that R(w 2) > 0 and R(wl) < O0 for s small. Then, from the analytic properties
of w(w, s) we obtain (51). ·
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