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A Greedy Genetic Algorithm for the Quadratic Assignment Problem

Ravindra K. Ahujal , James B. Orlin2 , and Ashish Tiwari3

ABSTRACT

The Quadratic Assignment Problem (QAP) is one of the classical combinatorial optimization

problems and is known for its diverse applications. In this paper, we suggest a genetic algorithm for the

QAP and report its computational behavior. The genetic algorithm incorporates many greedy

principles in its design and, hence, is called the greedy genetic algorithm. The ideas we incorporate in

the greedy genetic algorithm include (i) generating the initial population using a randomized

construction heuristic; (ii) new crossover schemes; (iii) a special purpose immigration scheme that

promotes diversity; (iv) periodic local optimization of a subset of the population; (v) tournamenting

among different populations; and (vi) an overall design that attempts to strike a balance between

diversity and a bias towards fitter individuals. We test our algorithm on all the benchmark instances

of QAPLIB, a well-known library of QAP instances. Out of the 132 total instances in QAPLIB of varied

sizes, the greedy genetic algorithm obtained the best known solution for 103 instances, and for the

remaining instances (except one) found solutions within 1% of the best known solutions. Based on our

computational testing, we believe that the greedy genetic algorithm is the best heuristic algorithm for

dense QAP developed to date in terms of the quality of the solution.
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3 Department of Computer Science, State University of New York, Stony Brook, NY 11794.
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1. INTRODUCTION

The Quadratic Assignment Problem (QAP) is one of the classical combinatorial

optimization problems and is widely regarded as one of the most difficult problem in this class.
Given a set N = 1, 2, ..., n), and nxn matrices F = (fij), D = {dij), and C = cij), the QAP is to find a

permutation of the set N which minimizes

nn n n

z = Y_ fij d(i)o(j) + _ cio(i).
i= j1 i1

As an application of the QAP, consider the following campus planning problem. On a

campus, new facilities are to be erected and the objective is to minimize the total walking distances

for students and staff. Suppose there are n available sites and n facilities to locate. Let dkl denote

the walking distance between the two sites k and I where the new facilities will be erected.

Further, let fij denote the number of people per week who travel between the facilities i and j.

Then, the decision problem is to assign facilities to sites so that the walking distance of people is

minimized. Each assignment can be mathematically described by a permutation of N = (1, 2, ..., n)

such that ¢(i) = k means that the facility i is assigned to site k. The product fij do(i)o(j) describes

the weekly walking distance of people who travel between facilities i and j. Consequently, the

problem of minimizing the total walking distance reduces to identifying a that minimizes the

function z defined above. This is an application of the QAP with each Cik = 0. In this application,

we have assumed that the cost of erecting a facility does not depend upon the site. In case it does,

we will denote by cik the cost of erecting facility i at site k, and these costs will also play a role in

determining the optimal assignment of facilities to sites.

Additional applications of QAP include (i) the allocation of plants to candidate locations;

(ii) layout of plants; (iii) backboard wiring problem; (iv) design of control panels and typewriter

keyboards; (v) balancing turbine runners; (vi) ordering of interrelated data on a magnetic tape; (vii)

processor-to-processor assignment in a distributed processing environment; (viii) placement problem

in VLSI design; (ix) analyzing chemical reactions for organic compounds; and (x) ranking of

archaeological data. The details and references for these and additional applications can be found

in Burkard [1991], Malucelli [1993], and Pardalos, Rendl and Wolkowiez [1991].

On account of its diverse applications and the intrinsic difficulty of the problem, the QAP

has been investigated extensively by the research community. The QAP has been proved to be an

NP-complete problem, and a variety of exact and heuristic algorithms have been proposed. Exact

algorithms for QAP include approaches based on (i) dynamic programming (Christofides and

Benavent [1989]); (ii) cutting planes (Bazaraa and Sherali [1980]); and (ii) branch and bound
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(Lawler [1963], Pardalos and Crouse [1989]). Among these, the branch and bound algorithms obtain

the best solution, but are unable to solve problems of size larger than n = 20.

Since many applications of QAP give rise to problems of size greater than 20, there is a

special need for good heuristics for QAP that can solve large size problems. Known heuristics for

QAP can be classified into the following categories: (i) construction methods (Armour and Buffa

[1963], Buffa, Armour and Vollmann [1962]); (ii) limited enumeration methods (West [1983],

Burkard and Bonniger [1983]); (iii) local improvement methods (Li, Pardalos and Resende [1991]);

(iv) simulated annealing methods (Wilhelm and Ward [1987]); (v) tabu search methods (Skorin-

Kapov [1990], Taillard [1991]); and (vi) genetic algorithms (Fleurent and Ferland [1993], Bean

[1994]). Among these, (i) the tabu search method due to Skorin-Kapov [1990] and (ii) the

(randomized) local improvement method due to Li, Pardalos and Resende [1994] and Resende,

Pardalos and Li [1994], which they named as GRASP (Greedy Randomized Adaptive Search

Procedure), are the two most accurate heuristic algorithms to solve the QAP.

In the past, genetic algorithms have been applied to a variety of combinatorial

optimization problems. In this paper, we suggest a genetic algorithm for the QAP which

incorporates many ideas based on greedy principles. We call this algorithm the greedy genetic

algorithm. The ideas we incorporate include (i) generating the initial population using a good

(randomized) construction heuristic; (ii) new crossover schemes; (iii) special-purpose immigrations

that promote diversity; (iv) periodic local optimization of a subset of the population; (v)

tournamenting among different populations; and (vi) developing an overall design that attempts to

strike a right balance between diversification and a bias towards fitter individuals. We test each

of these ideas separately to assess its impact on the algorithm performance, and also compare our

final algorithm on all benchmark instances in QAPLIB, a well-known library of QAP instances

compiled by Burkard, Karisch and Rendl [1994].

We find the greedy genetic algorithm to be a very robust algorithm for QAP; out of the 132

total instances in QAPLIB of varied sizes, it obtained the best known solution for 103 instances, and

for the remaining instances (except one) found solutions within 1% of the best known solutions. We

also compared the greedy genetic algorithm with GRASP on a selected set of instances from

QAPLIB and found it to outperform GRASP. Based on our computational testing, we believe that

the greedy genetic algorithm is the best heuristic algorithm for dense QAP developed to date in

terms of the quality of the solution. Our algorithm is also highly parallelizable. We note that the

performance of our greedy genetic algorithm depends upon the various parameter settings and using

a carefully selected mixture of various greedy principles, which we obtained through extensive

computational testing. We anticipate that extensive testing and experimentation would be

valuable if one were to apply the ideas presented here to solve related combinatorial problems.
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2. Greedy Genetic Algorithm for QAP

Genetic algorithms represent a powerful and robust approach for developing heuristics for

large-scale combinatorial optimization problems. The motivation underlying genetic algorithms

can be expressed as follows: Evolution has been remarkably successful at developing complex and

well-adapted species through relatively simple evolutionary mechanisms. A natural question is

the following: What ideas can we adapt from our understanding of evolution theory so as to solve

problems in other domains? This fundamental question has many different answers because of the

richness of evolutionary phenomenon. Holland [1975] provided the first answer to this question by

developing genetic algorithms.

Genetic algorithms (GA's) imitate the process of evolution on an optimization problem.

Each feasible solution of a problem is treated as an individual whose fitness is governed by the

corresponding objective function value. A GA maintains a population of chromosomes on which the

concept of the survival of the fittest (among string structures) is applied. There is a structured yet

randomized information exchange between two individuals (crossover operator) to give rise to

better individuals. Diversity is also added to the population by randomly changing some genes

(mutation operator) or bringing in new individuals (immigration operator). A GA repeatedly

applies these processes until the population converges.

GA's can be implemented is a variety of ways. The excellent books by Goldberg [1989] and

Davis [1991] describe many possible variants of GA's. We also refer to these books for various GA

notation such as chromosomes, genes, etc. In our research, we have used the GA with "steady-state

reproduction" instead of the traditional "generational reproduction" because researchers have

found it to be faster in practice (see, for example, Davis [1991]). Our GA has the following high-

level description:

algorithm genetic;
begin

obtain initial population;
repeat

select two individuals I1 and I2 in the population;

apply the crossover operator on I1 and 12 to produce a child 13;

choose two individuals out of I1, I2 and 13;

occasionally perform immigration;
until the population converges;

end;

This is the simplest description of our GA. Each execution of the repeat loop is called a

trial. We will now describe how various steps of the GA are implemented when specialized for the

QAP. We have incorporated several heuristics based on greedy principles to improve the

performance of the GA. We will also describe the details of these heuristics.
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Coding Scheme

A coding scheme maps feasible solutions of the problem to strings. The effectiveness of the

crossover operator depends greatly on the coding scheme used. The coding should be such that the

crossover operator preserves high performing partial arrangements (schemata) of strings, and minor

changes in the chromosome translate into minor changes in the corresponding solution. For the

QAP, a natural encoding is the permutation of n numbers in the set N = {1, 2, ..., n), where the jth

number in the permutation denotes the facility located on site j. In our implementation, we have

used this encoding scheme.

Initial Population Generation

The performance of a GA is often sensitive to the quality of its initial population. The

"goodness" of the initial population depends both on the average fitness (that is, the objective

function value) of individuals in the population and the diversity in the population. Losing on

either count tends to produce a poor GA. By having an initial population with better fitness values,

we typically get better final individuals. Further, high diversity in the population inhibits early

convergence to a locally optimal solution.

For the QAP, several heuristics can be used to generate the initial population. In our

implementation, we have used the initial solutions produced by GRASP (see Li, Pardalos, and

Resende [1991]). GRASP consists of two phases: a construction phase and an improvement phase.

The construction phase uses a randomized greedy function to assign facilities to locations one-by-

one, at each step minimizing the total cost with respect to the assignments already made. The

improvement phase uses a neighborhood search technique to improve the solution obtained by the

first phase iteratively. Each application of GRASP yields a (possibly) different solution because

of the randomization used in the construction phase. In our implementation of the GA, we have used

the initial population comprising of solutions produced by the construction phase of GRASP. We

didn't apply the improvement phase because it would have taken substantially more time and

computational tests suggested that it would not have led to better overall results.

Selection

The selection criteria is used to select the two parents to apply the crossover operator. The

appropriateness of a selection criteria for a GA depends upon the other GA operators chosen. In the

literature, a typical selection criteria gives a higher priority to fitter individuals since this leads

to a faster convergence of the GA. Nevertheless, we obtained better overall results when the

selection is not biased towards fitter individuals. In the GA, we selected both parents randomly

giving equal probability of selection to each individual in the population.
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Crossover

The crossover scheme is widely acknowledged as critical to the success of GA. The burden of

"exploration" and "exploitation" falls upon it simultaneously. The crossover scheme should be

capable of producing a new feasible solution (i.e., a child) by combining good characteristics of both

parents. Preferably, the child should be considerably different from each parent. We observed

that when the initial population is generated using a good heuristic method, then standard

crossover schemes, such as the order crossover given in Davis [1991], generally fail to produce

individuals better than both the parents. As the order crossover scheme did not give good results,

we tested two more sophisticated crossover schemes, called the (i) path crossover scheme, and (ii)

optimized crossover scheme. We shall now describe these schemes in more detail. We remark that

these crossover schemes are not specific to the QAP, and would apply to any problem with

chromosomes represented by permutations.

Path Crossover

Let I1 and 12 denote two individuals. Applying a crossover scheme to these two parents

produces a child, which we denote by 13. Let the chromosomes of I1 , 12, and 13 be represented by a1-

a 2-...-a n, bl-b 2-...-bn, and cl-c 2-... -cn, respectively. In any crossover scheme that we consider, the

child inherits any genes common to both the parents; that is, if ak = bk for some k, then ck = ak = bk.

In the two types of path crossovers described next, we define a path Pi - P2 - ... - Pr where (i) each

node in the path corresponds to an individual; (ii) the first node Pi corresponds to I1, the last node

Pk corresponds to 12, and, (iii) for each 1 < k < r-l, Pk+l is obtained from Pk by performing a

primitive transformation. We considered two types of primitive transformations: swap and insert.

If we use a swap transformation, we get the swap path crossover scheme. If we use an insert

transformation, we get the insert path crossover scheme. The path crossover was originally

developed by Glover [1994], who referred to it as "path relinking." We use the alternative term

"path crossover," because we think that it is more consistent with the usual terminology used in

genetic algorithms.

In the swap path crossover scheme, we start at some position of the chromosomes, which is

determined using a random process, and examine the chromosomes corresponding to I and 12 from

left to right in a cyclic fashion. If the alleles at the position (or gene) being looked at are the same,

we move to the next position; otherwise, we perform a swap of the alleles of two genes in I1 or in 12,

whichever gives the fitter solution, so that the alleles at the position being looked at become

alike. We repeat this process until all genes have been considered. All chromosomes obtained using

this process are valid children of I and I2; out of them we let 13 denote the fittest child.

_M�s�P�I_
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We illustrate the swap path crossover in Figure 1(a). Suppose we start at the first position.

In parent 1, facility 5 is located at the first site and in parent 2 facility is located at this site.

There are two ways in which the two parents can move closer to one-another; by swapping the sites

of the facilities 2 and 5 in parent 1 or in parent 2. We compute the objective function values of these

two solutions and we perform the swap for which the corresponding solution has a lower cost; the

resulting solution is the first child. We then consider the alleles in the two resulting solutions

starting at the second position and obtain possibly several children; the best among these is 13. In

this example, we start at the first position; in general, we start at a position selected randomly and

examine subsequent positions from left to right in a wrap-around fashion until all positions have

been considered.

The insert transformation is similar to the swap transformation; the only difference is that

to have the same alleles at a given position in the two chromosomes, we insert an allele at a new

place thereby shifting the other alleles to the right in a way so that common alleles do not move.

We illustrate the insert path crossover in Figure 1(b). For parent 1, the insert transformation

consists of removing facility 2 from site 2 and moving to site 1 and facility 5 shifts to site 2. For

parent 2, this transformation causes bigger changes. It moves facility 5 to site 1, facility 2 moves to

site 2, facility 1 moves to site 5 (because facilities at sites 3 and 4 are fixed), and facility 6 moves to

site 6. It is easy to see that the insert transformation causes changes which are radically different

than the swaps.

Parent 1: 5-2-3-4 -1-7-6 Swap in Parent 1: 2-5-3-4 -1-7-6

Parent 2: 2 - 1 - 3 - 4 - 6 - 5 - 7 Swap in Parent 2: 5 - 1 - 3 - 4 - 6 - 2 - 7

(a)

Parent 1: 5-2-3-4 -1-7-6 Insert in Parent 1: 2-5-3-4 -1-7-6

Parent 2: 2 - 1 - 3 - 4 - 6 - 5 - 7 Insert in Parent 2: 5 - 2 - 3 - 4 - 1 -6 - 7

(b)

Figure 1. Illustrating swap and insert path crossovers. The common genes are shown in bold type.

Use of the swap or insert path crossover scheme yields one child 13. One possible scheme is

to keep the best two individuals among the two parents (I1 and 12) and the one child (I3). We found

that this greedy scheme leads to premature convergence. If the parents are very good, the child is

usually less fit than both parents, and the crossover operation does not change the population.

Rather, we required the child to replace one of the parents. If the child is fitter than both the

parents, then it replaces the parent with which it is more similar; otherwise, the child replaces
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the worse parent. This crossover scheme ensures that the children not only inherit useful

information from their parents but also search new regions of the solution space. Further, our rule

for replacement of a parent by the child ensures that the best individual in the population is never

replaced. Such an approach is called as elitist approach in the literature.

Optimized Crossover

In the optimized crossover scheme, the genes of the parents are selected so as to optimize

the fitness of the child. Use of optimized crossover in GA's has yielded encouraging results for the

independent set problem (Aggarwal, Orlin and Tai [1994]).

Using the optimized crossover scheme, the two parents produce a child, which is called the

optimized child. We will now explain how to determine an optimized child for QAP. Let I = a1 -

a2 - ... - an and I2 = b1 - b2 - ... - b n be two parents. An optimized child of I1 and 12 is an individual

13 = c1 - c2 - ... - cn (i) which satisfies ci = ai or b i for all 1 < i < n, and (ii) has the smallest objective

function value among individuals satisfying (i). To understand how to obtain the optimized child, a

network formulation will be helpful. Each solution of a QAP can be represented by a perfect

matching in a complete undirected bipartite graph G = (UuV, UxV) with U = u1, u2 , ..., un}

representing facilities and V = {v1, v2, ..., vn} representing sites. We can represent an individual I

by an arc set E in G as follows: ( i, vj) E E if and only if facility i is located at site j. Now, consider

the union of two arc sets E1 and E2 corresponding to two parents I1 and 12. An optimized child of I1

and 12 is a perfect matching in G' = (UuV, E1uE 2) with the least objective function value. See, for

example, Figure 2. E1uE2 is a collection of (i) singleton arcs (corresponding to common alleles), and

(ii) node-disjoint cycles (corresponding to different alleles). Suppose that there are k cycles. In

this case, there are exactly 2k perfect matchings in G', because once we select any arc in any node-

disjoint cycle for inclusion in the matching, we must select every other alternate arc. Hence arcs in

any cycle can be selected in exactly two ways. Since there are k cycles, there will be exactly 2k

children of I1 and I2; for each such child, we determine the objective function value, and the child

with the least objective function value is the optimized child. This child replaces one of the

parents using the same strategy as in the path crossover scheme. One might wonder whether we can

identify an optimized child in polynomial time. This is not likely because it can be shown (proof

omitted) that determining an optimized child is also an NP-hard problem. Nevertheless, the

exhaustive enumeration method may be efficient in practice because k may be very small. For most

problems in our test bed, the number of cycles is less than 5.
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Figure 2. Illustrating the optimized crossover. There are two cycles and four candidates for

the optimized child.

In our investigations, we used all three crossover schemes outlined above. In preliminary

testing, we obtained best results from the insert path crossover scheme. Subsequently, we performed

detailed computational testing using the insert path crossover scheme.

Mutation/Immigration

Mutation refers to the process of increasing diversity in the population by introducing

random variations in the members of the population. Researchers have used immigration in place

of mutation to achieve the same purpose (see, for example, Davis [1991]). Immigration refers to the

process of replacing poor members of the current population by bringing in new individuals. For our

implementation of GA, we choose immigration. We also used a variant of mutation, which we

discuss below in the subsection on local optimization.

We could use the same method to generate immigrants which we used to generate the

initial population. We found that this did not introduce new genetic material to the population

and the GA converged prematurely, possibly because the method did not introduce sufficient new

genetic material. Therefore, we use a different scheme to generate immigrants that produces

individuals significantly different than the ones already in the population and hence forces the

algorithm to search newer regions of solution space.

Let us define an nxn matrix seen[i, ji, whose (i, j)th position stores the number of individuals

in the population (present as well as all past members) in which facility j has been assigned to site

i. A lower value of seen[i, j] implies that fewer individuals in the population had facility i

assigned to site j. To promote diversity, we encourage this assignment in new individuals. We

j�ii
P·.:,:,�f;;;�-----7�..·.·.· ;/
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generate a new individual for immigration using the following method. We first select a

permutation of n numbers obtained using a random process; this gives us the order in which we

consider the sites one-by-one. To each site under consideration, say site k, we assign the unassigned

facility I for which seen[k, l] is minimum. This assignment promotes individuals from the under-

explored solution space, and though the process does not explicitly use randomness, it typically

yields new individuals.

We experimented with three rates of immigration: 10% (that is, one immigration after

every 10 trials), 20%, and variable immigration rate. In the variable immigration rate, we start

with the immigration rate of 10% and increase this rate by 2% after every 200 trials. We also

introduced immigration when we found that the diversity in the population is below an accepted

threshold level.

Local Optimization

Commonly used approaches for solving NP-hard problems are local optimization,

simulated annealing, and tabu search; all three approaches rely on a neighborhood structure. For

the QAP problem, the 2-exchange neighborhood (that is, obtained by swapping two numbers in the

permutation) has been extensively investigated and found to be a fairly powerful heuristic. Local

optimization based upon the 2-exchange neighborhood can be used to improve the quality of any

population. We observed that periodic local optimization of a subset of the population improves

the performance of the GA, and hence we incorporated it into the algorithm. After every 200 trials,

we locally optimize 20% of the population. We store individuals using arrays: after 200 trials we

locally optimize the first 20%, after 400 trials we locally optimize the next 20%, and so on. When

we reach the end of the array, we return to the beginning of the array.

Tournamenting

In principle, one can apply a GA many times starting with different populations, and choose

the best individual obtained among all the runs. As an alternative, we consider the following

approach, one that takes the final population of two different runs, keeps 50% of the individuals in

the two runs, and applies the GA again with this mixed population as the initial population. The

basic idea behind this scheme is that it allows the best alleles of two different runs to be combined

through crossover operator to create fitter individuals. In a sense it permits the GA to search

regions that are "in between" the regions to which the two populations converged. Generalizing

this idea further for multiple runs gives us a GA with "tournamenting". Figure 3 describes the

tournamenting scheme with four teams; one can easily generalize this approach to a larger number

of teams.
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I Initial Population P1 Initial Population P2 |

Apply GA Apply GA

jmproved Popul. I Improved Popul. P I

InitialPopulation P3 J InitialPopulation P4

Apply GA Apply GA

Improved Popul. 3 I lmproved Popul. P4 |

Eliminate| 50%

Initial Population P12

Apply GA

Improved Popul. P

Eliminate

Eliminate 50%

Initial Population P34

Apply GA

Improved Popul. P |! Z .~~~3

50%

Initial Population P1234

Apply GA

]Improved Popul. I234

Figure 3. GA with tournamenting with four teams.

When we use tournamenting, we terminate the execution of a GA before the population

converges, since we found that allowing the GA to run until the population converges leads to poorer

solutions, possibly because of the lack of diversity in the final populations. We found that after

1,000 trials of our GA, the population quality is good and there is sufficient diversity. We choose to

terminate the GA after 1,000 trials.

We considered several options for eliminating 50% of the two populations, say P1 and P2 in

order to obtain the initial population 2 for the next round, including the following two options: (i)

select the best 50% of the union of the two populations; and (ii) the union of the best 50% of the

populations P1 and P2. Both these schemes have the drawback that multiple copies of the fitter

individuals might dominate the population. We obtained a better mix by performing a one-to-one

competition between individuals of the two populations; we compare the kth individual of PI with

the kth individual of P2 and the fitter one moves to the next round.

3. COMPUTATIONAL RESULTS

In this section, we present the computational results of the greedy GA when applied to all

the 132 instances of the QAPLIB compiled by Burkard, Karisch and Rendl [1994]. We present results

that give insight into the behavior of our algorithm for QAP, and also give insight into the various

= i "II I I I I i~~~~ -- I --~~~~~~~~~~~~~~~

-. III 1

I I I I
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greedy principles we have incorporated into our algorithm. We also compare our algorithm with

GRASP, and the random keys GA due to Bean [1994].

Computational Time and Accuracy. We present in Table 1 the running times and the accuracy of the

greedy GA applied to all the instances in QAPLIB. Problem sizes in QAPLIB vary from 10 to 100,

and all problems are dense. The middle numeric digits in the problem identification state the

problem size. We present results for the following three versions of the algorithm.

Version 1. The initial population is generated using Phase 1 of GRASP, all individuals in the

population are equally likely to be selected for crossover; insert path crossover is used; immigration

rate is set to 10%; after every 200 trials, 20% of the population is locally optimized; and

tournamenting with four teams is used.

Version 2. Same as Version 1 except that the immigration rate is variable. The algorithm starts

with the immigration rate of 10%, and after every 200 trials the immigration rate is increased by

2%.

Version 3. Same as Version 2 except that the tournamenting with eight teams is used.

The objective function value of the best known solution is given in Burkard, Karisch and

Rendl [1994]. We will give only the percent deviation from the best known solution, in the columns

marked GA-1, GA-2, and GA-3. We give the computational times only for version 1; the time taken

by version 2 is comparable to the time taken by version 1, and version 3 takes time approximately

twice the times taken by version 1.

We find that the second version (in which immigration rate is variable) has a somewhat

better overall performance than the version in which the immigration rate is constant. For small

size problems, all versions obtain the best known solutions. Only for the larger size problems are

the algorithmic differences apparent. The greedy GA with tournamenting with eight teams has a

very robust performance. We find that out of 132 problem instances, the greedy GA obtains the best

known solution for 103 problem instances; and out of the remaining 29 problems only one problem has

deviation more than one percent from the best known solution. Moreover, we obtained these results

by applying the algorithm only once. We anticipate that the results will improve if we apply the

greedy GA several times starting with different seeds for the random number generator.

We now present results contrasting the various schemes employed by us in the greedy GA.

We select Version 1 of the greedy GA (without tournamenting) as the benchmark algorithm and

investigate how its performance changes as we modify its attributes (such as, the selection scheme,

or the crossover). For the sake of brevity, we do not present results for modifications made in two or

more schemes simultaneously; we tried some of these modifications, and found them to be by and



Table 1. Computational results of several versions of greedy genetic algorithms.

Problem Name GA-1 Time GA-2 GA-3

1 bur26a.dat 0.00 117.3 0.00 0.00
2 bur26b.dat 0.00 112.7 0.00 0.00
3 bur26c.dat 0.00 113.5 0.00 0.00
4 bur26d.dat 0.00 106.7 0.00 0.00
5 bur26e.dat 0.00 109.1 0.00 0.00
6 bur26f.dat 0.00 102.2 0.00 0.007 bur26g.dat 0.00 97.1 0.00 0.00
8 bur26h.dat 0.00 101.9 0.00 0.00
9 carlOga.dat 0.00 3.9 0.00 0.00

10 car10gb.dat 0.00 3.9 0.00 0.0011 carl Ogc.dat 0.00 4.3 0.00 0.00
12 car10gd.dat 0.00 4.2 0.00 0.0013 carlOge.dat 0.00 4.0 0.00 0.0014 car10gf.dat 0.00 4.4 0.00 0.0015 car10gg.dat 0.00 4.3 0.00 0.0016 car10gh.dat 0.00 4.0 0.00 0.0017 carlOgi.dat 0.00 3.9 0.00 0.00

18 carl Ogj.dat 0.00 4.1 0.00 0.00
19 carlOgk.dat 0.00 3.8 0.00 0.00
20 carlOgl.dat 0.00 4.9 0.00 0.0021 car10gm.dat 0.00 4.2 0.00 0.0022 carlOgn.dat 0.00 4.3 0.00 0.00

23 carlOgo.dat 0.00 3.9 0.00 0.00
24 carlOpa.dat 0.00 4.6 0.00 0.0025 car10lOpb.dat 0.00 4.3 0.00 0.0026 car10lOpc.dat 0.00 4.3 0.00 0.0027 carlOpd.dat 0.00 4.4 0.00 0.0028 car10lOpe.dat 0.00 3.9 0.00 0.0029 carlOpf.dat 0.00 4.5 0.00 0.0030 car10 pg.dat 0.00 4.5 0.00 0.0031 car10lOph.dat 0.00 4.2 0.00 0.0032 car10Opi.dat 0.00 4.0 0.00 0.0033 carl Opj.dat 0.00 4.6 0.00 0.0034 car10Opk.dat 0.00 4.4 0.00 0.0035 carlOpl.dat 0.00 4.6 0.00 0.00

36 catlOpm.dat 0.00 4.4 0.00 0.0037 car10 Opn.dat 0.00 4.1 0.00 0.0038 car10 Opo.dat 0.00 3.8 0.00 0.0039 chrl2a.dat 0.00 9.8 0.00 0.0040 chr1l2b.dat 0.00 9.2 0.00 0.0041 chrl2c.dat 0.00 10.1 0.00 0.0042 chr1la.dat 0.00 20.3 0.00 0.4043 chrl5b.dat 0.00 20.9 0.00 0.0044 chr1l5c.dat 0.00 22.0 4.59 0.0045 chrl8a.dat 0.00 39.5 0.18 0.4046 chr1l8b.dat 0.00 39.4 0.00 0.0047 chr2a.dat 0.18 47.3 7.21 0.00

48 chr2Ob.dat 7.40 48.2 3.48 5.1349 chr2f.dat 4.72 48.9 0.00 0.00

50 chr22a.dat 0.62 72.9 0.62 0.7551 chr22b.dat 1.19 76.1 2.87 0.00

52 chr2a.dat 10.54 96.8 12.86 0.00
53 esl9.dat 0.00 40.3 0.00 0.0054 escOa.dat 0.00 3.5 0.00 0.0055 escOb.dat 0.00 3.7 0.00 0.0056 escO8c.dat 0.00 3.8 0.00 0.0057 O d.dat 0.00 3.6 0.00 0.0058 scOS.dat 0.00 3.6 0.00 0.0059 scO f.dat 0.00 3.7 0.00 0.0060 escl6a1.dat 0.00 23.7 0.00 0.0061 escl6b.dat 0.00 24.1 0.00 0.0062 escl6c.dat 0.00 26.7 0.00 0.00
63 scl6d.dat 0.00 26.6 0.00 0.0064 sc1 6e.dat 0.00 23.4 0.00 0.0065 esca1 .dat 0.00 23.0 0.00 0.0066 escl6ap.dat 0.00 24.9 0.00 0.00

Problem Name GA-1 Time GA-2 GA-3

escl6h.dat 0.00 24.0 0.00 0.00
esc6i.dat 0.00 25.8 0.00 0.00
esc6j.dat 0.00 201.1 0.00 0.00
esc32a.dat 3.08 190.9 0.00 0.00
esc32b.dat 0.00 200.1 0.00 0.00
esc32c.dat 0.00 194.6 0.00 0.00
esc32d.dat 0.00 176.3 0.00 0.00
esc32e.dat 0.00 184.9 0.00 0.00
esc32f.dat 0.00 184.4 0.00 0.00
esc32g.dat 0.00 185.5 0.00 0.00
esc32h.dat 0.00 174.5 0.00 0.00
esc64a.dat 0.00 1315.4 0.00 0.00
kra3a.dat 1.34 150.7 1.57 0.00
kra3b.dat 0.18 165.3 0.08 0.00lipal Oa.dat O.0 48 .00.00 4.8 0.00 0.00lipal Ob.dat 0.00 4.5 0.00 0.00
lipa2oa.dat 0.00 37.4 0.00 0.00
lipa2b.dat 0.00 37.2 0.00 0.00lipa3oa.dat 0.00 172.3 0.00 0.00
lipa3b.dat 0.00 168.6 0.00 0.00
lipa4oa.dat 0.00 510.9 1.10 0.96lipa4b.dat 0.00 513.2 0.00 0.00lipa5Oa.dat 0.95 743.1 0.93 0.95
lipaSb.dat 0.00 754.7 0.00 0.00
lipa6Oa.dat 0.90 1528.5 0.82 0.77
lipa60b.dat 0.00 1523.7 0.00 0.00
lipa7Oa.dat 0.72 3074.2 0.73 0.71
lipa7b.dat 0.00 3061.6 0.00 0.00lipa80a.dat 0.65 4759.5 0.67 0.61
lipa8Ob.dat 19.69 4749.4 0.00 0.00ipa0a.dat 0.59 6179.2 0.62 0.58ipa9ob.dat 0.00 6159.7 0.00 0.00nugO5.dat 0.00 1.2 0.00 0.00
nugO6.dat 0.00 1.8 0.00 0.00nugO7.dat 0.00 2.4 0.00 0.00
nugO8.dat 0.00 3.4 0.00 0.00nugl2.dat 0.00 9.5 0.00 0.00
nuglS.dat 0.00 20.7 0.00 0.00nug2O.dat 0.00 48.9 0.00 0.00nug30O.dat 0.07 177.1 0.07 0.07roulO.dat 0.00 5.1 0.00 0.00roul 2.dat 0.00 9.8 0.00 0.00roul5 O.dat 1. ooo0.00 17.3 0.00 0.00
rou2o0.dat 0.08 37.6 0.20 0.16scrlO.dat 0.00 5.3 0.00 0.00scrl2.dat 0.00 9.4 0.00 0.00scrl5.dat 0.00 17.6 0.00 0.00scr2O.dat 0.03 39.8 0.03 0.00sko42.dat 0.23 503.1 0.00 0.25sko4g.dat 0.27 629.1 0.27 0.21sko56.dat 0.08 1488.0 0.07 0.02sko64.dat 0.38 1894.1 0.17 0.22sko72.dat 0.44 2539.0 0.27 0.29sko8l1.dat 0.23 5482.1 0.40 0.20skooO.dat 0.43 6348.9 0.33 0.27skolOOa.dat 0.19 8304.1 0.30 0.21

skoloob.dat 0.48 7364.7 0.24 0.14
kol O0c.dat 0.01 10157.1 0.27 0.20skolOOd.dat 0.35 10151.1 0.38 0.17

s ko00e.dat 0.23 10563.5 0.24 0.24
s kol 0f.dat 0.19 10739.5 0.32 0.29
ste36a.dat 1.47 354.8 1.39 0.27tho3O.dat 0.31 197.8 0.39 0.00
tho4O.dat 0.33 479.1 0.20 0.32wil5O.dat 0.09 1057.6 0.10 0.07willOO.dat 0.18 10271.9 0.2. 1 0.20= ~~~~~~~~~~~02

I ....- 
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large consistent with modifications in single scheme. We investigated the algorithmic

modifications using the following 11 benchmark instances selected from QAPLIB:

Prob. No. 1 2 3 4 5 6 7 8 9 10 11

Prob. Id. kra30b lipa50a lipa60a lipa70a lipa80a sko49 sko90 sko100a tho30 wil50 will100

Initial Population. We compare GA's using three methods of generating the initial population: (i)

random population; (ii) using the first phase of GRASP; and (iii) using both phases of GRASP.

Figure 4 gives the % deviation of the best individual for the 11 benchmark instances. It appears

that using Phase 1 of GRASP gives the best overall results. Using both phases gives the worst

results, possibly because the initial population is not sufficiently diverse.

z
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W0
e

1.2-

1.0

0.8

0.6

0.4

0.2

0.0 
2 4 6 8

PROBLEM NUMBER
10 12

Figure 4. Comparison of various ways to generate the initial population.

Selection. In Figure 5, we compare two selection strategies: when all individuals are equally likely

to be selected for crossover, and when fitter individuals have greater likelihood for selection (the

most fit individual is twice as likely to be selected as the least fit individual). For most of the

benchmark instances, unbiased selection is as good or better than biased selection.

---Using phase I & II of GRASP---
* Using phase I & II of GRASP
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Figure 5. Comparison of biased selection with random selection.

Crossover. In Figure 6(a), we give the % deviation for the best individual obtained by GA using

three different crossover schemes: optimized crossover, swap path crossover, and insert path

crossover. Though the results are mixed, the insert path crossover gives modestly better results for

these benchmark instances. The insert path crossover is found to be more effective than the swap

path crossover possibly because the local optimization done periodically also performs swaps, and

insert path crossover considers changes that cannot be captured by swaps alone. Surprisingly, the

performance of the GA with optimized crossover is worse among all the versions. One possible

explanation is the following: in the optimized crossover for any two parents, the optimum child is

typically one of the two parents, and so this approach does not add sufficient diversity to the

population. Figure 6(b) gives the best objectives function value as a function of the number of trials

for the benchmark instance sko100a.dat. After 200 trials, GA with optimized crossover does not

improve the objective function value, through the GA with insert crossover occasionally does.

W Kandom selection

I I I I I
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Figure 6. Comparison of various crossover schemes.

Immigration. The performance of a GA can depend upon the method used to generate immigrants.

Figure 7 compares two schemes of generating the immigrants - the first scheme generates immigrants

using the same method as used to generate the initial population and second scheme using a

different method that promotes diversity (see Section 2).
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Figure 7. Comparing two ways to generate the immigrants.

Local Optimization. In Figure 8(a), we assess the effect of periodically optimizing a part of the

population. Evidently, the GA in which local optimization is performed is much more robust than

the GA in which local optimization is not used. To assess the role of local optimization further, we

take the benchmark instance sko100 and plot in Figures 8(b) the best objective function values as a

function of the number of trials. We see that the local optimization plays an important role in

improving the quality of the individuals in the population. In fact, the local optimization

contributes more to the quality of the solution than any of the other features that we analysed.
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Figure 8. Effect of local optimization on the performance of GA.

Tournamenting. We now give some graphs to show the effectiveness of tournamenting. In Figure

9(a), we compare the percent deviations of the best objective function value obtained using the GA

without tournamenting, and GA with tournamenting (4 or 8 teams). We find that tournamenting

improves the performance of the GA substantially over a single run of GA. In the GA with

tournamenting with 4 teams, GA is applied 7 times 4 of which generate the 4 teams. As a fairer

comparison, we compare the GA with tournamenting with 4 teams with the best individual among 7

runs of the GA without tournamenting in Figure 9(b). Here the GA with tournamenting modestly

outperforms the GA without tournamenting. We conclude that tournamenting slightly helps to

improve the quality of the individuals. We also investigated how the quality of the best solution

improves as tournaments are played. For this, we take a benchmark instance and show in Figure 10

the objective function values of the best individuals at different rounds of tournament. We find that

different rounds monotonically improve the objective function value.

* Without local opt.
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Figure 9. Effect of tournamenting on the performance of GA.
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Figure 10. Illustrating tournamenting on a benchmark instance.

Comparison with Random keys Algorithm. Bean [1994] gives a general purpose GA for an

optimization problems with a permutation encoding, called the random keys GA. This approach

applies to QAP as well. We developed a computer program for this algorithm and compared it to

the greedy GA on the benchmark instances. Figure 11 presents these results. The greedy GA is

substantially superior to the random keys GA in terms of the quality of the solution obtained. We

note that the random key GA is a generic approach and was not fine-tuned for the QAP. In contrast,

the greedy GA incorporates a number of features that exploit the structure of the QAP.
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Figure 11. Comparing greedy GA with random key GA.
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Comparison with GRASP. Li, Pardalos and Resende [1994] developed GRASP and presented

extensive computational results that suggested that GRASP is the most accurate method for solving

QAP for medium to large size problems. GRASP is an iterative method and is applied a large

number of times with (possibly) different starting solutions. The accuracy of the best solution

improves as more iterations are performed. In a similar fashion, the greedy GA can be applied

several times and tournamenting with a larger number of teams can be used to improve the

performance of the algorithm. To obtain a fair comparison between GRASP and GA, we compared

the accuracy of the two algorithms while running GRASP for the same time as that taken by the

greedy GA. We apply GA with tournamenting (4 teams) once and note the time taken, say x seconds.

We then run GRASP for x seconds and compare the best solution obtained with the GA solution.

Figure 12 gives this comparison on the benchmark instances. We could not do the comparison on all

the 11 benchmark problem instances because 4 of these instances are nonsymmetric and GRASP can be

applied to symmetric instances only. Nevertheless, the comparison using 7 benchmark instances

suggests that the greedy genetic algorithm is superior to GRASP. To compare these two algorithms

from a different perspective, we take two benchmark instances, will50 and tho40, and plot the best

objective function value as a function of time; we give these plots in Figures 13(a)and (b). These

plots confirm our previous finding that the greedy GA converges more quickly to the optimum

solution than does GRASP. We plotted these curves for several other benchmark instances too, and

found them to be similar to the ones given in Figure 13.
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Figure 12. Comparison of greedy GA with GRASP.
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Figure 13. Solutions of will50 and tho40 by GRASP and GA on the same time scale.

4. SUMMARY AND CONCLUSIONS

In this paper, we developed a new genetic algorithm for QAP and presented computational

results of the algorithm on a large set of standard problems in the literature. We call our algorithm

the greedy genetic algorithm since it incorporates many greedy principles. The principal findings

of our paper are the following:
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1. The quality of the initial population affects the performance of the genetic algorithm.

Randomizing a (greedy) construction heuristic method is one reasonable method to generate the

initial population.

2. Path crossover performed better than optimized crossover, possibly because it keeps the

population sufficiently diverse.

3. The algorithm had better performance when the method used to generate immigrants was

different than the method used to generate the initial population.

4. Periodically optimizing a subset of the population improves the overall performance of the

genetic algorithm substantially.

5. Tournamenting was modestly helpful in obtaining high quality individuals.

We find that success of a greedy genetic algorithm depends upon striking a right balance

between greediness and maintaining diversity of the population. Greediness improves the quality

of the individuals substantially, but overdoing it is detrimental to the overall performance of the

genetic algorithm. We obtained the right balance through extensive computational testing. We

believe that the greedy principles obtained in this paper might lead to improved genetic

algorithms for other combinatorial optimization problems as well. It is plausible that using these

ideas one could develop genetic algorithms for several hard combinatorial optimization problems

that are better than or comparable to algorithms based on other heuristic optimization techniques.
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