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September 13, 1993

Abstract

We present the design and implementation strategy for an integrated programming environment

which facilitates specification, implementation and execution of persistent C++ programs. Our

system is implemented in E, a persistent programming language based on C++. The environment

provides type identity and type persistence, i.e., each user-defined class has a unique identity

and persistence across compilations. The system provides Run-time Type Information for the

user-defined types and it also provides efficient run-time access to the members of an object by

generating maps of the objects. It also supports incremental linking and loading of new classes or

modification of classes existing in the database.
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1 Motivation

C++ has proved itself to be an effective programming tool for a wide variety of applications.

Many additions to C++ have been proposed to make it more suitable for specific applications.

These proposed additions include: Persistence, Exception Handling, Object I/O, Run-time Type

Information, Incremental Compilation, Linking and Loading, Environment Support.

E [4] is an extension to C++ designed for writing software systems to support persistent ap-

plications. E augments C++ with database types, iterators, collections and transaction support.

E mirrors the existing C++ types and type constructors with corresponding database types (db

types) and type constructors. Db types are used to describe the types of objects in a database i.e.

the database schema. The persistent storage class provides the basis for populating the database.

If the declaration of a db-type variable specifies that its storage class is persistent, then that

variable survives across all runs of the program and also across crashes. For transaction support,

E provides library calls to begin, commit or abort a transaction. These calls are supported by the

EXODUS storage manager [10] which provides basic support for objects, files and transactions.

There are many complex, data-intensive applications such as CAD, CAE and CASE where E

is inadequate as the design language and where we need additional facilities such as access to type

information of objects at run-time, database querying, incremental linking in of classes etc.

COSMOS [11] is one such application tool for building object-oriented knowledge based systems

for engineering applications. It integrates rule-based and object-oriented programming paradigms

to provide a uniform framework for processing both procedural and heuristic knowledge. COSMOS

provides a framework in which a user can model the domain of his application in terms of classes

and their inter-relationships (with relations such as inheritance, composition etc). The domain

knowledge is modeled in terms of rules which perform inference over the attributes of a class and

also over the classes themselves. The Object Management part of COSMOS, which is built over

EXODUS/E platform, provides facilities for dynamic creation of classes and modification of class

hierarchy. It also provides persistence for the instances of the classes created. The persistent

instances of the classes and the classes themselves (class objects) are stored on the EXODUS

database.

In the following sections, we present the extensions to E that we have incorporated in the

COSMOS object-management system and motivate them.
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1.1 Run-time Type Information

So far there have been various attempts to provide a mechanism for accessing type information of

objects at run-time. There are several reasons for doing so:

* Support for accessing Inheritance information is often necessary. We would like to know if a

pointer to a base class actually points to an instance of a class derived from that base class.

If so, we can cast down the pointer in order to be able to access a derived class member.

* The exception handling mechanism requires run-time type identification. When an exception

is raised, an object of a particular type is thrown and in order to match the thrown object

with the correct catch clause, access to type information is necessary. Also, as it is possible for

a catch clause to catch a type which is a base class of the thrown object, we need to generate

information about inheritance hierarchy.

* Often, the virtual function mechanism is inadequate for type-specific actions.

* In addition to type identification, more information about a type is often necessary. For

example, the COSMOS object management system provides information such as the names

of the classes and their inheritance relations. It also provides the names of attributes of a

class and a map of the class. This is necessary to support the rulebase where the rules can

access the attribute values of an object by name.

* Query evaluation needs access to type information of objects.

1.2 Incremental Development

Usually a user changes only a small fraction of class descriptions between successive compilations

during the software development phase. If the cost of re-compilation can be made proportional

to the size of the change rather than the size of files in which the change occured plus the size of

header files included from the files, then the compilation of C++ programs using large libraries

would become much faster.

Incremental linking and loading are desirable for systems that are designed to allow a user to

extend a running system. For example, in a CAD/CAM system, it can be useful to allow a user to

define a new kind of component and add it to a layout currently on the screen. Using traditional
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compile, load and go techniques, it is difficult to add the new component class without having to

create the current layout from scratch after the recompilation. At best, there would be a noticeable

disruption of service.

The key problem with incremental linking is to provide a way of adding a new class to a

running program. It must be possible to define an interface to a yet-to-be-defined class and it must

be possible to invoke operations on objects of the new class.

1.3 Environment Support

An environment can support the programmer in two ways: by supporting the activity of program-

ming (providing tools for designing, specifying, implementing, and debugging programs) and by

providing a congenial environment for the final program to execute in.

The standard C/Unix model of creating and running programs is insufficient for supporting a

persistent language like E as we shall see below.

Type Persistence In C and C++, type definitions are shared between compilation units via the

textual inclusion of header files. Thus there is no notion of a type existing outside of any

particular run of the compiler. A given type T used to compile one module may or may not be

the same T used to compile another. For E programs, which provides persistence of objects,

it is critical that the definition of a type remain consistent across compilations. That is, if a

persistent object is created with a type T and later this object is manipulated by a program

with a different definition for T, the object will be corrupted. This problem is accentuated

in object-oriented systems because each object must carry sufficient information to identify

its own type uniquely so as to support virtual function mechanism. Hence object persistence

entails type persistence. A satisfactory solution to this problem requires an integrated program

environment that provides, among other features, a type library in which a type has a unique

identity across compilations.

Type Availability Often it is possible for a program to encounter an object whose type was

not unknown at the time the program was compiled. In a non-persistent C++ program,

the implementation of virtual function dispatch can assume that both the method dispatch

table (vtbl) and the method code itself are there in the address space of the program. In
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the presence of persistence, this assumption breaks down. Suppose a program P1 creates a

persistent graph G whose nodes are of type T1 and traverses G to execute a virtual function

f() on every node of G. Now another program P2 derives a type T2 from T1 and adds a node

of type T2 to G. If P1 is run again, it encounters a 'unknown type' error when it tries to

invoke virtual function f() on the newly added node.

The problem here is that the environment does not adequately support persistence. Providing

such support would involve storing programs as objects in the database and incremental

dynamic linking of the method code. The environment has to keep track of dependencies

between programs and the persistent objects created by them.

The remainder of the paper describes our approach to address the above mentioned issues.

2 The Run-time Type Information

C++ supports two kinds of types: fundamental types and derived types [1]. The fundamental types

are: int, char, float, double, long, short. One can construct an infinite number of derived types

from the fundamental types in the following ways:

* array of objects of a given type.

* function which takes a sequence of arguments of given types and returns an object of given

type.

* pointer to an object or function of a given type.

* reference to an object or function of a given type.

* class which contains a sequence of objects of various types, a set of functions for manipulating

these objects, and a set of access restrictions.

* pointer to class member which identifies members of a given type within an object of a given

class.

The C++ type system can be summarised by the following type grammar:
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T ::= int I char I float I double long I short

I T []

T (T, ..., T)

I T*

T&

class T

T class T::*

where T is any type.

Our run-time type support system is based on this type grammar. Since types are to be stored as

persistent objects in the database, we need to represent the type information in the form of a class

definition. The class Type captures the type information as described below.

dbclass Type {

public:

virtual int equal?(Type*)=0;

virtual int overloadable(Type*){return 0;};

};

Class Type is a top-level abstract class from which various other types are sub-typed. The

method equal is a boolean test to test the equality of two types. The method overloadable is a test

to decide if a type can be overloaded by another type.

The class Type is sub-classed into the following classes: PrimitiveType, ClassType, ArrayType,

PointerType, Reference Type, Function Type, PointerToMemberType.

dbclass PrimitiveType :public Type {

public:

dbint ptype; //integer code for each of primitive types

PrimitiveType (dbint i) {ptype = i;}

int equal?(Type*);

int overloadable(Type*);
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dbclass ClassType :public Type {

public:

dbchar *classname; // name of the class

Type** baselist; // list of base classes

MetaClass* mptr; // pointer to a metaclass object

int equal?(Type*);

int overloadable(Type*);

int same (Type*);

int hasbase(Type*, int direct=O);

int cancast(Type*);

dbclass ArrayType :public Type {

public:

Type *elemtype;

dbint size;

ArrayType(Type* t,dbint sz)

elemtype = t;

size = sz;

int equal?(Type*);

int overloadable(Type*);
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dbclass PointerType :public Type {

public:

Type *obj_type;

PointerType(Type* ot){objtype = ot;}

"PointerType();//{delete objtype;}

int equal?(Type*);

int overloadable(Type*);

dbclass ReferenceType :public Type {

public:

Type *objtype;

ReferenceType(Type* ot){objtype = ot;}

'ReferenceType(){delete objtype;}

int equal?(Type*);

int overloadable(Type*);

dbclass FunctionType :public Type {

public:

Type *rettype; // return type

collection <Type*> arg_typelist; // list of argument types

FunctionType(Type* rt) {rettype = rt;}

'FunctionType(){delete rettype;}

int equal?(Type*);

int overloadable(Type*);
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dbclass PointerToMemberType: public Type {

public:

MetaClass* mptr; // pointer to the metaclass object

Type* memtype; // type of the member

int equal?(Type*);

int overloadable(Type*);

The class MetaClass is the class representation of a class type which contains information about

the various attributes and methods of a class. This is described in detail in the next section.

2.1 MetaClass

Type Persistence is provided by creating, for each user-defined class, a persistent instance of Meta-

Class which contains information about the user-defined class. The unique ID of this object provides

the type identity across compilations. The persistent collection of user-defined types can looked

upon as a kind of a type library from which an end-user can choose the required classes and build

his application.

The class representation for MetaClass is described below:
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dbclass MetaClass {

private:

MetaClass** publicbases; //list of public base classes

MetaClass** friends;

dbchar *classname;

Attribute** attrtbl; //table of member names and types

collection<root> extent; // the extent of the class

public:

MetaClass(dbchar* n);

const dbchar* name() const;

int addbase(dbchar* basename,int base);

deletebase(dbchar*);

int isbase(dbchar* basename);

int addfriend(dbchar* fname);

Type* gettype(dbchar* an); // get the type of a given attribute

addattribute(Attribute*);

deleteattribute(dbchar *);

createinstance(dbchar* iname, int pers=i); //create a instance

deleteinstance(dbchar* iname);

root* findinstance(dbchar* iname);

generatecode();

dbclass Attribute {

dbchar* name;

Type* type;

enum {public, private, protected} access;

int offset;

}
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The class Attribute describes each member of a class (whether a data or a function member).

Each Attribute instance contains an integer offset of that attribute which gives the offset of the

attribute from the starting address of the instance. Each MetaClass instance contains a pointer

to a table of attributes (attrtbl) which is a map of an object of the class. This facilitates faster

access to the attributes of an instance. In the next section we shall see how this map is generated

for each user-defined class.

The class root is the top-level class in the hierarchy of all the user-defined classes. This class

provides the basic scaffolding needed to provide the RTTI and dynamic linking facilities. This class

is described in detail in the next section.

Each MetaClass class contains an attribute called 'extent' which is the collection of all the

instances of the class represented by that MetaClass instance. The methods createinstance and

deleteinstance manipulate the extent of the class. Each instance is uniquely identified by its name

and the method findinstance returns a pointer to the appropriate instance (as a root pointer) given

the instance name.

3 The Root Class

The key problem with incremental linking is to provide a mechanism for adding a new class to

a running program. This reduces to two sub problems. First, it must be possible to define an

interface to an hitherto unknown class and second, it must be possible to create instances of these

newly linked in classes and invoke methods on them from the original program.

A user can try to invoke any operation on such an object and the object examines the request to

decide if it is a valid operation. If so, the operation is simply invoked. Else, a run-time error occurs.

That means, static type-checking (i.e., checking the validity of an operation invokation statically)

is impossible in that kind of situation. This contradicts with the view that every object in a C++

program must be of a specific type so that the set of valid operations is known at compile time.

One way to solve this problem is to extend the virtual function mechanism of C++. The

virtual function dispatch of C++ allows objects to be manipulated in a type-safe manner without

actually knowing their exact type. If the new class is derived from an already known class with

virtual function members, the interface of the base class can be used to type-check calls to member

functions of the derived class. In effect, the virtual function mechanism provides the link between
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the existing code and the new code.

This forms the motivation for the definition of the root class. It sits at the top of the hierarchy

of all the user-defined classes.

dbclass root

static MetaClass* classptr;

public:

dbchar *instancename;

root(dbchar* cname,dbchar* iname);

'root();

Type* gettype(dbchar* aname); //return the type of an attribute

virtual void copy(root*){}; // make a copy of this object

virtual Val getvalue(dbchar* )(}; // get the value of an attribute

virtual int putvalue(dbchar*,Val ){}; // store a value into an attr

virtual void invoke_method(char*,ValList){}; //invoke a method

Each root instance contains a pointer to the appropriate MetaClass object in order to get

access to the type information at run-time. The getvalue() and putvalue() methods give access to

individual members of an object by making use of the map information provided by the MetaClass

instance.

4 Implementation Strategy

The user defines new classes by means of a class editor. The class definitions are parsed and a

MetaClass instance is created on the database for each class definition. The parser is generated by

LEX/YACC tools and it can captures the grammar for C++ class attributes.

For each class definition, E code is generated in the form of .h and .e files. These files are then

compiled into .o files by the E compiler. The entire program is maintained in a sort of 'program data

base' of compiled fragments. The fragments are annotated with information such as dependency

12



graphs between classes, cross references etc. Whenever a change is made to the class hierarchy

(such as adding a new class, changing the inheritance relation between classes, or changing a class),

this information is used to decide what fragments need to be recompiled.

4.1 Dynamic Linker/Loader

We use the dynamic linking and loading facilities provided by the SUN OS [8]. The SUN OS

provide a simple programmatic interface to the services of the dynamic link-editor. Operations are

provided to add a new shared object to an program's address space, obtain the address bindings of

symbols defined by such objects, and to remove such objects when their use is no longer required.

These functions are:

* dlopen() provides access to a shared object returning a descriptor (handle) that can be used

for later references to the object in calls to dlsym() and dlclose().

* dlsym() returns the address binding of the symbol described in the null-terminated character

string symbol as it occurs in the shared object identified by handle.

* dlclose() deletes a reference to the shared object refer- enced by handle. If the reference count

drops to 0, then if the object referenced by handle defines a function fini, that function will

be called, the object removed from the address space, and handle destroyed.

The set of all user-defined class definitions is compiled into a shared library. Whenever a change

is made to the class hierarchy, the existing shared library in the address space of the running program

is deleted from the address space by calling the function dlclose(), and the newly recreated shared

library is linked in by the function dlopen(). Whenver the shared library is linked into a running

program by dlopen(), map for each class is reloaded by means of the dlsym() function.

5 Conclusions

We have described the design and implementation of an environment which facilitates persistent

C++ programming by providing various utilities such as run-time type information etc. We are

yet to work out the strategy for incrementally adding new virtual functions to a class. We also

have to work out the strategy for handling data layout changes in existing instances. This means
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that we have to implement a cutover member function that converts existing objects of a certain

class into a new version whenver that class is altered.
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