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Abstract

The solution to an instance of the standard Shortest Path problem is a single shortest route in a directed
graph. Suppose, however, that each arc has both a distance and a cost, and that one would like to find a
route that is both short and inexpensive. In general, no single route will be both shortest and cheapest;
rather, the solution to an instance of this multi-criteria problem will be a set of efficient or Pareto optimal
routes. The (distance, cost) pairs associated with the efficient routes define an efficient frontier or tradeoff
curve.

An efficient set for a multi-criteria problem can be exponentially large, even when the underlying single-
criterion problem is in P. This work therefore considers approximate solutions to multi-criteria discrete
optimization problems and investigates when they can be found quickly. This requires generalizing the
notion of a fully polynomial time approximation scheme to multi-criteria problems.

In this paper, necessary and sufficient conditions are developed for the existence of such a fast approximation
scheme for a problem. Although the focus is multi-criteria problems, the conditions are of interest even in
the single criterion case. In addition, an appropriate form of problem reduction is introduced to facilitate
the application of these conditions to a variety of problems. A companion paper uses the results of this
paper to study the existence of fast approximation schemes for several interesting network flow, knapsack,
and lot-sizing problems.
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Glossary

This section contains brief explanations of many symbols and terms that are used in this paper and its
companion paper, along with references to their full definitions.

Symbols

AP (w), AR (w), AM (w) The set of additively separable functions that are, respectively, in P (w), R (w),
and M (w). ([2], section 3.2)

C (A1/CG/MG/NM/FS) ([2], section 2)

C' The subclass of C consisting of those networks in canonical form. ([2], section 4.1)

D (u, v) u dominates v w.r.t. w. ([1], section 3.3)

D(g) (u, v) u -dominates v w.r.t. w. ([1], section 3.4)

ek A vector of length k in which each component is one. ([1], section 3)

e, (x) The excess flow into node v that arises from the flow x. ([2], section 2)

E A non-negative bound on relative error. ([1], section 3.4)

-vPP VPP equivalent. ([1], section 5.1)

fi The it h component of the multi-criteria objective function f. ([1], section 3.1)

F A family of r-criteria objective functions. ([1], section 3.1)

If/v] The function f scaled by v. ([1], section 4.2)

G(--+) The directed graph defined by the partial order --*. ([2], section 8)

I An instance of a problem. ([1], section 3.1)

(S, f,w) An optimization instance.
(S, f, w, M) A feasibility instance.

L (I) The length of instance I. ([1], section 3.2)

log(x) Base 2 logarithm of x. ([1], section 3)

min {f, M} The function f with box constraints M. ([1], section 4.2)

Mv (I) The largest value of instance I. ([1], section 3.2)

Mv (I) A close upper bound on Mv (I) that can be found quickly. ([1], section 3.2)

n The number of variables in a problem instance. ([1], section 3.1)

IIxII The infinity norm of the vector x. ([1], section 3)

w A direction vector. ([1], section 3.1)

wD The dual of the direction vector w, obtained by reversing the direction of each component of w.
([2], section 3.3)

Q2 The set of all direction vectors. ([1], section 3.1)

Q2r The set of all direction vectors of dimension r. ([1], section 3.1)

P (w), R (w), M (w) The set of functions that are, respectively, order-preserving, order-reversing, and order-
monotone w.r.t. w. ([2], section 3.1)

II A problem. ([1], section 3.1)

(f, Xc, w, Opt) An optimization problem.
(F, F, w, Feas) A feasibility problem.

IIp,p The restriction of problem II to instances in which the integers in P are bounded by the polynomial
function p(.) of the instance length. ([1], section 5.3)
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r The number of criteria in a problem. ([1], section 3.1)

ocvP VPP reduces. ([1], section 5.1)
A family of feasible sets. ([1], section 3.1)

S The feasible set of a problem instance. ([1], section 3.1)

SCOv, .coV The covering forms, respectively, of the feasible set S and the family T of feasible sets. ([2],
section 6)

(/ / / /-) Specification of a class of STT networks. ([2], section 1)

u(S) A vector of upper bounds on the components of points in the feasible set S. ([1], section 3.1)

umax(S) The largest component of u(S). ([1], section 3.1)

Z+ The set of non-negative integers. ([1], section 3.1)

In an STT network G = (N, A, c, m, b): ([2], section 2)

N The set of nodes.
A The set of arcs.
c The vector of arc capacities.
m The vector of arc multipliers.
b The vector of node demands.

In the construction of the first VPP algorithm: ([2], section 4.1)

T The tree corresponding to the graph G.
p The root of the tree T.
1 (v) The postorder label of node v.

dv The number of children of node v in T.
T[v, j] The subtree of T defined by v, the first j children of v, and all the descendants of those

children.

G[v, j] The subgraph of G defined by node 0 and the nodes of G that correspond to the nodes
of T[v, j].

O(v, j, k) The maximum excess flow into node v over all flows x that are feasible w.r.t. G[v, j] and
have f (x) = k.

Terms

Additively separable Describes a function f: S -+ Z+ , where S C Zn+, that can be written as f (x) 

=1 f (xj). ([2], section 3.2)

Arborescent Describes a collection of sets, any two of which either are disjoint or for which one is properly
contained in the other. ([2], section 7.1)

/-strongly NP-hard Describes a problem II for which, for some polynomial p(.), the problem np,p is
NAP-hard. ([1], section 5.3)

Binary family A family of feasible sets with domain {0, 1. ([1], section 3.1)

Box constraint Upper bound imposed on the value of a function. ([1], section 4.2)

Box constraint neighbor A function that approximates the box-constrained value of another function.
([1], section 4.2)

Closed under box constraints Describes a family of r-criteria functions for which applying box con-
straints to any function in the family yields another function in the family. ([1], section 4.2)

Closed under scaling Describes a family of r-criteria functions for which scaling any function in the family
yields another function in the family. ([1], section 4.2)
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Domain With reference to a family t of feasible sets, the set of integers from zero through largest value of
Uma,(S) over sets S E T. ([1], section 3.1)

Dominate A vector u dominates v w.r.t. w) if u is component-by-component better than v in the direction
specified by w. Written Dw (u, v). ([1], section 3.3)

Efficient Set A set of points whose values define the efficient frontier. ([1], section 3.3)

e-dominate A vector u -dominates v w.r.t. w if each component of u is no more than a factor of E worse
than the corresponding component of v in the direction specified by w. Written D() (u, v). ([1],
section 3.4)

c-efficient set A set of points whose values are within a factor of e of each point on the efficient frontier.
([1], section 3.4)

e-efficient solution A minimal e-efficient set for an instance. ([1], section 3.4)

Exact solution For an optimization instance, a minimum cardinality set of feasible points whose values
constitute the efficient frontier; for a feasibility instance, a point whose value achieves the target. ([1],
section 3.3)

FAS Fast approximation scheme. Describes an algorithm for a problem II which for any > 0 and any

instance I E II, finds an e-efficient solution for I in time O ((L(I) /)k), for some k > 0. ([1],
section 3.4)

Feasible flow A flow that satisfies the flow requirements and capacity constraints. ([2], section 2)

Feasible set A bounded set S C Z' +. ([1], section 3.1)

In-tree partial order A tree partial order -- for which G(-) contains a node toward which all the arcs
of G(--) point. ([2], section 8)

Largest value of an instance For an optimization instance, the largest component of the objective func-
tion on a particular box-constrained superset of the feasible region; for a feasibility instance, the largest
component of the upper bound. Written Mv (I). ([1], section 3.2)

Length of an instance The number of bits needed to represent the feasible set and the largest value of
the instance. Written L (I). ([1], section 3.2)

Objective function A function f : S - Zr+. ([1], section 3.1)

Order-preserving, order-reversing, order-monotone Describes a multi-criteria objective function for
which increasing some components of its argument yields changes in values that are consistent with a
specified direction vector. ([2], section 3.1)

Out-tree partial order A tree partial order -- for which G(-'-) contains a node away from which all the
arcs of G(-) point. ([2], section 8)

Problem A collection of instances of the same kind (i.e., optimization or feasibility) with identical direction
vectors, feasible sets from the same families, and objective functions from the same families. ([1],
section 3.1)

Quasi-closure under box constraints A weaker variant of closure under box constraints. ([1], sec-
tion 4.2)

Quasi-closure under scaling A weaker variant of closure under scaling. ([1], section 4.2)

Scaling Truncating the low-order bits of a function value. ([1], section 4.2)

Scaling neighbor A function that approximates the scaled value of another function. ([1], section 4.2)
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STT Source-to-Tree. ([2], section 2)

STT network A generalized network which has a particular forest-like structure. ([2], section 2)

Sufficient, deficient, exact flow For a node, refers to the excess flow being, respectively, non-negative,
non-positive, or zero; for a network, refers to the flow into each node having the corresponding property.
([2], section 2)

Tree partial order A partial order -+ for which the undirected version of G(---) is a tree. ([2], section 8)

VPP V-pseudo-polynomial. Describes an algorithm for a problem H which for any instance I E II, finds a
solution for I in time O ((L (I) Mv (I))k), for some k > 0. ([1], section 3.3)

VPP equivalent Describes two problems, each of which is VPP reducible to the other. ([1], section 5.1)

VPP reduction A VPP algorithm for a problem that uses, as a subroutine, a VPP algorithm for another
problem. ([1], section 5.1)

w.r.t. With respect to. ([1], section 3.3)

References for Glossary

[1] Hershel M. Safer and James B. Orlin, Fast Approximation Schemes For Multi-Criteria Combinatorial
Optimization, 1994.

[2] Hershel M. Safer and James B. Orlin, Fast Approximation Schemes For Multi-Criteria Flow, Knapsack,
and Scheduling Problems, 1994.
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1 Introduction

The solution to an instance of the standard Shortest Path problem is a single shortest route in a directed

graph. Suppose, however, that each arc has both a distance and a cost, and that a route that is both short

and inexpensive is to be found. Unfortunately, a typical instance of this multi-criteria problem does not

contain a route that is optimal for both criteria. Instead, a solution generally consists of multiple efficient or

Pareto optimal routes, each with the characteristic that the value of one objective can be improved within

the feasible region only at the expense of the value of the other objective. The objective function values of

these points define a tradeoff curve or efficient frontier.

Finding a set of efficient points is often difficult, in part because such a set can be exponentially large.

Furthermore, just determining if a particular feasible point is efficient is A/P-hard for many interesting

problems, even when the underlying single-criterion problem is in P.

This paper examines the possibility of solving multi-criteria problems approximately instead of exactly. This

idea is not new; methods for finding approximate solutions have been discussed extensively for single-criterion

optimization problems. In the single-criterion context, an -approximate algorithm finds a solution whose

relative error from optimal is no greater than e. For some problems, such algorithms exist only for values of

E that are at least as large as some positive lower bound, unless P = AJ/P.

For some other problems, however, -approximate algorithms exist for any positive value of e. An ap-

proximation scheme for a problem finds an -approximate solution for any specified E > 0. Two classes of

approximation schemes have received extensive attention. For any fixed > 0, a polynomial time approx-

imation scheme (PTAS) runs in time polynomial in the size of the instance, and a fully polynomial time

approximation scheme (FPTAS) runs in time polynomial in the size of the instance and in 1/e. An FPTAS

is sometimes called a fast approximation scheme (FAS)[GL79a, GL79b].

In contrast to the literature on single-criterion problems, most previous work on discrete multi-criteria

optimization problems has focused on exact solutions. When the efficient frontier contains many points,

however, exact solution techniques fail to terminate in a reasonable amount of time. Partial solutions may

be generated, but without any guarantee that the portion that has been identified is better than the part

that remains unknown.

The approach described here, however, generates solutions that characterize the entire efficient frontier by

extending the notion of FAS to multi-criteria problems. Although this idea has been used for some specific

problems, it has not been discussed previously in the context of general combinatorial optimization.

The primary results of this paper are necessary and sufficient conditions for the existence of an FAS for a

multi-criteria discrete optimization problem. The existence of a pseudo-polynomial time algorithm to solve

a problem is known to be necessary for the problem to have an FAS[GJ78]. It is also known that this is

not sufficient, but that the existence of an algorithm from a particular subclass of the pseudo-polynomial

time algorithms is sufficient[PS82]. Besides extending these conditions to the multi-criteria case, this paper
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bridges the gap between the necessary and sufficient conditions by identifying a smaller subclass that is

appropriate for both the necessary and sufficient conditions. The conditions derived here are therefore of

interest even in the single-criterion case. In addition, a new form of reduction that can be used to simplify

the application of the main theorem is introduced.

Section 1.1 highlights the foundations of this work, and Section 2 discusses the motivation for examining the

questions addressed here. Terminology and symbols are introduced in Section 3. The statement and proof of

the necessary and sufficient conditions for the existence of an FAS are presented in Section 4, and problem

reductions are described in Section 5.

A companion paper[S094] applies the results of this paper to several network flow, knapsack, scheduling,

and production planning problems. Many problems discussed in that paper have been previously considered

with only a single criterion; previously known results for those problems are extended to the multi-criteria

versions. The paper also treats the general integer version of some problems for which only the 0-1 case has

been considered until now. In addition, fast approximation schemes are demonstrated for several problems

that have not been discussed elsewhere.

1.1 Historical Perspective

Some papers that laid the foundations for this work are highlighted in this section. Detailed explanations of

many of the topics considered here can be found in [GJ79].

Some early examples of approximation algorithms for AP-hard problems are reviewed in [Joh74]. The

concept of approximation scheme seems to have been introduced in [Sah75, IK75, Bab75]. These papers

discuss simple knapsack problems; the first one presents PTAS's, and the others present FPTAS's, or FAS's,

for these problems. These papers inspired a lot of subsequent research. The running times of FAS's for these

knapsack problems were improved[GL79a, Law79]. FAS's were also found for other problems: for related

knapsack problems[CHW76, Bab78, GL79b, Gen81], for multiprocessor scheduling problems[HS76, Sah76,

GL78, GL81], and for some problems defined on trees[Sch83].

PTAS's are known for many problems for which FAS's are not known. PTAS's for several scheduling problems

with precedence constraints appear in [IK78]. Approximation algorithms and PTAS's for a continuous

knapsack problem are presented in [IHTI78, Iba80]. PTAS's for the multi-dimensional knapsack problem

are described in [Fin75, Fin77]. It has been shown that this problem cannot have an FAS unless P =

A(-P[GL79b, KS81, MC84]. Similar impossibility results for other problems are proved in [SG76, KK84].

Other existential questions about FAS's have also been investigated. The notion of strong NfP-hardness was

introduced and it was shown that no strongly NAP-hard problem can have an FAS unless P = P[GJ78].

The same work also proved that the existence of a pseudo-polynomial time optimization algorithm for a

problem is a necessary condition for the existence of an FAS for the problem.

The existence of a pseudo-polynomial time algorithm is, however, not sufficient for the existence of an

-2-
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FAS; understanding precise sufficiency conditions is one of the motivations for the present work. General

techniques for finding an FAS are described in [Sah77], which also describes "dominance relations" between

partial solutions that are sufficient to guarantee the existence of an FAS. These conditions are both necessary

and sufficient for the existence of an FAS for a particular single-criterion maximization problem over an

independence system[Kor79, KS81].

Many commonly treated optimization problems have a single criterion that is separable and linear. The

existence of an algorithm from a particular subclass of pseudo-polynomial time algorithms is sufficient to

guarantee the existence of an FAS for such a problem[PS82]. The present work generalizes this condition for

the single criterion case and extends it to cover multi-criteria problems as well.

Multi-criteria optimization problems have received a lot of attention in the literature; surveys and expla-

nations of results appear in [RV81, Ros85, Ste86]. Multi-criteria linear programs have been investigated in

detail[Har85a]. Discrete multi-criteria problems have, however, long been recognized as being particularly

difficult[Ser87]. Because of their importance, though, many solution approaches have been devised. The

state of the art at various times is described in [SZ77, Zio78, Zio79, HM79, FG80, Ser85a].

One difficulty with multi-criteria problems is that, unlike in many single-criterion problems, efficient points

of multi-criteria problems need not be at extreme points of the convex hull of the feasible set[Ser87]. Some

approaches to dealing with this are described in [Sha76, Bit77, Bit79]. These problems are also difficult

because even seemingly easy problems can have exponentially many solutions[EP88, Ruh88].

Dynamic programming is often used to solve discrete multi-criteria optimization problems[Whi69, Den82].

Techniques for extending traditional dynamic programming to multi-criteria problems are discussed in [BS65,

DdK80, Hen83, Hen85a, Hen85b]. Unfortunately, the "curse of dimensionality" conspires to make a naive use

of such algorithms impractical for large multi-criteria problems. Examples that explain this impracticality

appear in [Whi80, Whi82a, Har85b]. Some successful applications are described in [VK81, VK82]. Conditions

under which dynamic programming is useful are presented in [YS81, Har83].

Many related problems and approaches have been explored. Alternative definitions of efficiency are explored

in [Geo68, Kal86]. A duality-based approach is described in [Ser84]; extensions to convex programs are

discussed in [Ser85b]. An approach that converts the objective function into a scalar is presented in [Jah85].

The possibility of searching in the criteria space, rather than in the decision space, is examined in [AN79].

Special cases with particularly tractable objective functions are discussed in [Geo67, DW83]. Much work has

been done on some problems with particularly simple structure. Shortest path problems have been notable in

this regard[HZ80, Mar84a, Mar84b, Hen86, Whi82b], and a variety of other network optimization problems

has also been treated[San86, SP87, Sni88, SOVM88]. In addition, knapsack problems[LM79] and scheduling

problems[MP89] have been considered.

The existence of approximation schemes for some multi-criteria problems has been investigated. Early work

along these lines was done on the shortest path problem[War83, War87]. Bicriteria minimum cost flow

problems are the topic of [FBR89, RF89], and several path problems in directed graphs are covered in
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[Han80]. General quasi-concave functions on convex regions are discussed in [KI87] and concave quadratic

programming is discussed in [Vav90]. Fractional packing and covering problems have been investigated in

[PST91].

General conditions for the existence of FAS's were presented in [Or182], which forms the basis for this work.

Somewhat similar techniques are used to find optimal solutions for single-criterion problems in [CGM89].

The present work generalizes those results to precisely identify necessary and sufficient conditions for the

existence of an FAS for combinatorial optimization problems in both the single criterion and multi-criteria

cases.

2 Motivation

This section discusses the difficulties that motivated this work. Some easy single-criterion problems become

hard when more criteria are added; the example of the Shortest Path problem is given in Section 2.1. The

solution to a multi-criteria problem can contain exponentially many points, as demonstrated in Section 2.2

using the Knapsack problem. Section 2.3 shows that the existence of a pseudo-polynomial time algorithm

does not guarantee the existence of a fast approximation scheme.

2.1 Adding Criteria to Easy Single-Criterion Problems

Some single criterion problems that are easy to solve are difficult when multiple criteria are considered

simultaneously. An example is the Shortest Path problem, which is polynomially solvable with a single

criterion[Tar83, AMOT88, AM093]. One reason the single criterion version of this problem is easy to

solve is that the constraint matrix of a common integer programming formulation of the problem is totally

unimodular (TUM)[Law76, PS82], so solving the linear programming relaxation of this formulation yields

an optimal solution to the original problem.

A two-criteria version might have both a distance and a cost for each arc, with the goal of finding a path

that is both short and inexpensive. Typically, though, no path is both the shortest and least expensive

among all paths. The value associated with a feasible path, that is, the (distance, cost) pair it achieves,

is non-dominated if every shorter feasible path is more expensive, and every less expensive feasible path is

longer; that is, if no other feasible path is at least as good in both criteria and strictly better in at least one.

Any path value that is not non-dominated must be dominated by the value of a path that is both shorter

and less expensive.

The set of non-dominated values constitutes a tradeoff curve or efficient frontier, and a path whose value

is non-dominated is called efficient or Pareto optimal. A solution to an instance of a multi-criteria shortest

path problem is not just a single path, but rather a collection of efficient paths whose values define the

efficient frontier.
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The two-criteria Shortest Path problem is AP-hard[GJ79, HZ80, Han80]. This is, at first, surprising,

because total unimodularity depends only on the constraints, not on the objective function; adding an

objective function would seem to not make a difference. The property that integrality constraints can be

relaxed without penalty for problems defined by a TUM matrix does not hold when multiple criteria are

considered simultaneously. The multiple criteria case causes at least three difficulties, even in the presence

of total unimodularity.

* A point that is efficient among a set of integer-valued points need not be efficient when the intervening

rational-valued points are considered as well, but this expansion of the feasible region is exactly what

happens when the integrality constraints are relaxed. Furthermore, when considering rational-valued

points, efficient points need not be at vertices of the feasible region. Example 1 demonstrates that the

solution to the linear programming relaxation of a multi-criteria problem need not solve the problem.

* Example 2 shows that locally efficient points need not be globally efficient, even when considering only

integer-value points.

* The number of efficient solutions can be exponential in the size of the problem, as illustrated in

Section 2.2.

Example 1 (Non-extreme efficient points) One difficulty with multi-criteria problems is demonstrated

using a simple example from [Ser87]; a similar example appears in [Sha76]. The problem is

min -1x + 3y

min 1x - 4y

over the feasible region [0, 1]2, as shown in Figure 1.

The origin is efficient when considering only integer-valued points. If the integrality constraints were relaxed,

however, (0, 0) would no longer be efficient; moving from any point along a ray with slope in the range [, ]

improves (decreases) at least one objective function without increasing the other. All points in the hashed

cone of Figure 1 dominate the origin, and the point (1, 24) is an efficient point in that cone. In addition, all

the points on the top and right sides of the square are efficient. ·

Example 2 (Locally efficient points need not be globally efficient) A locally efficient point might

not be globally efficient; an example is given in [Ser87]. Consider the objective functions

min -2x + ly

min lx - 2y

over the feasible region [0, 1]2. Although the origin is locally efficient when considering only integer-valued

points, it is not globally efficient, since it is dominated by (1, 1). ·
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Figure 1: Non-extreme efficient points in the presence of total unimodularity.
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The multi-criteria Shortest Path problem appears in many contexts; in particular, as pointed out in [Hen85a],

it is a natural topic for investigations in multi-criteria dynamic programming. An early yet extensive con-

sideration appears in [Han80], which discusses six kinds of objective functions: minsum, maxsum, minmax,

maxmin, minproduct, and maxproduct. Various combinations of pairs are considered as objectives of bicri-

teria path problems. Many efficient optimization algorithms, approximation schemes, and proofs of difficulty

are presented. Another kind of objective function is minratio, as discussed in [Meg79]. Most later works

consider only problems in which all the criteria are of the minsum form; one exception is [Mar84b], in which

one criterion is minmax and the second is either minmax, minsum, or minratio.

Many solution methods have been considered. A Lagrangian relaxation method for solving the bicriteria

problem appears in [HZ80]; the second objective function is treated implicitly by turning it into a constraint.

In [Mar84a], an algorithm reminiscent of the simplex method is used to move from one efficient solution to

the next on the convex hull of the polyhedron of feasible solutions. A dynamic programming approach is

explored in [Har85b]. Two criteria are combined using a single utility function in [Hen86], and algorithms

are described for the quasi-concave and quasi-convex cases.

Except for [Han80], these works only discuss ways to find optimal solutions. An FAS is presented in [War83,

War87]; the results in Section 4 generalize the results from these two papers.

2.2 Optimal Solutions can be Large

The solution to a multi-criteria problem can contain exponentially many points. This section presents two

examples in which this is true. The first example shows that the number of solutions can grow exponentially

with the number of criteria. The second example shows that the number of solutions can grow exponentially

with the problem size even if the number of criteria is fixed. The examples use variants of the Max Binary

Knapsack problem. This problem is AP-hard[GJ79], but it has an FAS[IK75, Bab75].

Max Binary Knapsack

Instance: (n,p, V, v). The number of items n; the profits pj, j = 1, ... , n; the knapsack volume V; and the

item volumes vj, j = 1, ... , n; are non-negative integers such that vj < V, j = 1, ... , n.

Question: Find x to solve n
max E pj xj

j=l
n

s.t. E VjXj V
j=l

Xj E {0,1},j=1,...,n.

Example 3 (Solution size exponential in number of criteria) The size of the efficient frontier for a

multi-criteria problem can grow exponentially with the number of criteria, even if the objective function

coefficients are small. This phenomenon is demonstrated here using a knapsack problem; a similar example

using a shortest path problem is alluded to in [War87].
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max obj. 1: X1,1 + + X,,n
max obj. 2: x 2,1 + .. + X2,n

max obj. r: r, 1 + + Xr,n

subject to: x1,1+ + ,,n + + X2,1 + + X2,n +' '+ Xr,1 + + Xr,n < n
Xi,k E {0,1}, i = 1,...,r, k = ,...,n

Figure 2: Instance (r, n) of Example 3.

Consider an r-criteria Max Binary Knapsack problem, with each criterion to be maximized. Define an infinite

family of instances indexed by r and n. Instance (r, n) contains rn variables and all the coefficients are either

O or 1, yet as will be shown below, the instance has (n+r-1) > nr-l efficient points. This is exponential in

the number of criteria r.

To be specific, instance (r, n) has variables Xi,k, j = 1, ... , r and k = 1, ... , n, with Xi,k E {O, 1} for all i

and k. The only constraint is the knapsack constraint

Xi,k < n 
i=1 k=1

Partition the variables into r groups of n variables each; the ih group contains the variables Xi,k, k = 1, ... , n.

The ith objective function, i = 1, ... , r, is the sum of the variables in the it
h set, that is, fi (x) = Ek=l Xi,k.

The value of fi (x) is therefore the number of variables Xi,k that have been set to 1 in the solution x. The

formulation is illustrated in Figure 2.

Any efficient solution must satisfy the knapsack constraint at equality; given a feasible point in which fewer

than n variables have been set to 1, and in which x =z, - 0, setting x -- = 1 will strictly improve the value of

the it
h objective function without changing the value of any other objective function. So for each efficient

point exactly n variables have value 1, and so for each efficient point '=1 fi (x) = n. Furthermore, any

way of partitioning the n knapsack units among the r criteria can be achieved by some feasible point. Any

solution must therefore contain a point corresponding to each possible partition of the n units. The number

of partitions is (n+r-1) nrl[Fel68, Chapter 11.5], so the number of points on the efficient frontier is

exponential in the number of criteria. ·

Problems in which the number of criteria grow linearly with the problem size are not solvable by FAS's,

with the exception of members of some trivial problem classes. The present work therefore considers only

problems in which the number of criteria is fixed. Even so, the number of efficient points can be exponentially

large in the number of variables, as in the following example.

Example 4 (Solution size exponential in number of variables) The Arborescent Knapsack problem

is a variant of the Max Binary Knapsack problem in which some items are stored in sub-knapsacks or
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Figure 3: Instance n of Example 4.

stuffsacks; it is discussed in more detail in [S094]. Two stuffsacks either have no items in common, or else

one is wholly contained in the other. A knapsack constraint is specified for each stuffsack as well as for the

entire knapsack.

Define the following infinite family of two-criteria instances, indexed by n; recall that the number of criteria

is fixed. The nth instance has 2n items, represented by xj,1 and Xj,2, j = 1, ... , n. The vector of objective
23value coefficients for xj,1 is ( ° ) and for xj,2 is (), and both objective functions are to be maximized.

Items xj,1 and xj,2 may be put in a stuffsack Sj , and at most one of each pair can be chosen. This means

that at most n variables are to be chosen overall. The formulation is shown in Figure 3.

All constraints will be satisfied at equality for an efficient point; if stuffsack Sj is empty in some solution,

then putting either xj,1 or j,2 into the stuffsack would yield a feasible point that strictly improves one

objective function without affecting the other.

An instance of this problem has 2n efficient points; that is, each possible way of choosing one variable from

each pair xj,1 and j,2 yields a different objective value, and no value dominates another. To see this,

consider any two different feasible points y and z. The values corresponding to y and z must differ in the

first objective, but the sum of the two objectives is 2+1 - 2 at each point. Therefore the value of y does

not dominate the value of z, nor does the value of z dominate the value of y. ·

2.3 A Pseudo-Polynomial Time Algorithm is Not Sufficient for an FAS

An algorithm runs in pseudo-polynomial time if it solves any instance in time polynomial in the size of the

instance and in the value of the largest integer in the instance description. It is well known that the existence

of a pseudo-polynomial time algorithm is necessary for the existence of an FAS for the problem[GJ78]. If

P 0 .AfP, however, then this condition is not sufficient, but this is not as widely recognized. [PS82] identifies

a subclass of the pseudo-polynomial time algorithms; the existence of an algorithm from this subclass for a

problem is sufficient to guarantee the existence of an FAS for the problem. This section explains why the

restriction to such a subclass is necessary. Section 4 generalizes the condition of [PS82] to cover more general

-9-

max obj. 1: 2x1, 2 + 4x2,2 + .. + 2nXn,2
max obj. 2: 2x1,1 + 4x2,1 + ... + 2'x,1

subject to: x1,1 + x1 ,2 < 1
X2,1 + X2 ,2 <1

Xn,l + Xn,2 <

X1,1 + X1,2 + X2,1 + 2 ,2 + " + Xn,1 + Xn,2 < n

xj,,Xj,2 E {0,1}, j = ,...,n
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objective functions and multi-criteria problems.

An indication that the existence of a pseudo-polynomial algorithm is not sufficient to guarantee the existence

of an FAS if P AIP is contained in [Law79, Section 16]. The discussion there concerns the following

optimization problem:

Max 2-Dimensional Binary Knapsack

Instance: (n,p, V, v, W, w). The number of items, n; the profits pj, j = 1, ... , n; the knapsack volume V;

the item volumes vj, j = 1, ... , n; the knapsack weight capacity W; and the item weights wj,

j = 1, ... ,n; are non-negative integers such that vj < V and wj < W, j = 1, ... , n.

Question: Find x to solve n

max E pj xj
j=1
n

s.t. E VjXj < V
j=1

E Wjzj < W
j=1

xj E {0,1}, j1,... n.

An instance of this problem can be solved by a simple pseudo-polynomial time algorithm that runs in time

O (n2pmaxV), where Pmax is the largest pj value, j = 1, ... , n. More sophisticated dynamic programming

approaches to this problem are presented in [ME74, MM76, MM78]. Nonetheless, this problem cannot have

an FAS unless P = AIAP[GL79b, KS81, MC84].

As another example, consider the following optimization problem:

Max Equality-Constrained Binary Knapsack

Instance: (n,p, V, v). The number of items n; the profits pj, j = 1, ... , n; the knapsack volume V; and the

item volumes vj, j = 1, ... , n; are non-negative integers such that vj < V, j = 1, ... , n.

Question: Find x to solve n
max E pj xj

j=1
n

s.t. E Vj X = V
.=1

An instance of this problem can be solved by a pseudo-polynomial time algorithm that runs in time

O (npmaV). As with the previous problem, however, this problem cannot have an FAS unless P = NP,

since finding a single feasible solution is the NAP-hard Subset Sum problem[GJ79].

These examples show that the well-known necessary condition for the existence of an FAS for a problem, the

existence of a pseudo-polynomial time algorithm for the problem, must be restricted in order to guarantee

the existence of an FAS for the problem. Section 4 identifies the appropriate restriction precisely. First,

though, simplifying notation is presented.

- 10 -
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3 Terminology

This section introduces the terminology and notation used in the rest of the paper. Section 3.1 shows how to

specify instances and problems. Section 3.2 defines two characteristics of an instance that are used to measure

the computational complexity of solution algorithms. Sections 3.3 and 3.4 describe exact and approximate

solutions, respectively, and explain characteristics of algorithms that find such solutions.

The following conventions are observed, except where specified. Logarithms are to the base 2. Vector norms

are infinity norms, that is, Ix[ = max {lxj }. The vector ek is a vector of length k in which each component

is one. Some terminology regarding solutions is adapted from [War87].

3.1 Representing Instances and Problems

This section describes the representation of optimization and feasibility problems. Informally, an optimiza-

tion problem consists of instances, each of which is solved by a set of points whose objective values define an

efficient frontier. A feasibility problem consists of instances, each of which is solved by a single point whose

objective value achieves a specified target value.

An optimization instance is represented by a 3-tuple that specifies a feasible set, an objective function, and

a direction for each criterion, i.e., minimization or maximization. A feasibility instance is represented by a

4-tuple with the same three entries as well as a target value. The definitions of these concepts are followed

by an illustrative example.

Feasible Sets. An n-dimensional or n-variable feasible set is a bounded set S C Zn+, where Z+ is the set

of non-negative integers. A feasible set is often described by an integer program, but this representation is

not required for the results presented here. Because S is bounded, each variable can be considered as having

a simple upper bound constraint. In other words, the representation of a feasible set S contains explicit or

implicit constraints of the form x < u(S), where u(S) E Zn+ . Each element of u(S) is as small as possible,

that is, the upper bound constraints are tight. The largest element of u(S) is umax(S) = u(S)ll.

A family of feasible sets, represented by T, may contain feasible sets of different dimensions. The domain of

t is {O,..., U}, where U is the largest value of umax(S) over all feasible sets S E T. A family is binary if

its domain is {0, 1}.

Objective Functions. An r-criteria objective function f maps a feasible set S into Z' + . It is made up of r

component functions fi : S - Z+ . An objective function is assumed to satisfy the following two conditions.

These assumptions are needed for the proofs of the main theorems, in Section 4, and are typically satisfied

by objective functions encountered in practice.

The first condition just says that an objective function can be evaluated within a reasonable length of time.

It holds for polynomial functions as well as for other useful classes of functions that are discussed in [S094].

If computing f () takes longer than this length of time, then f cannot generally be evaluated as part of an
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effective solution procedure anyhow. An alternative, but less realistic, approach would be to let f be an

oracle function and allow its evaluation in one step[GJ79, HU79].

Assumption 1 An r-criteria objective function f can be evaluated at a point x E S C Zn+ in time polyno-

mial in the sizes of x and f (x), that is, in time 0 ([n. r log ( lxI) log (f (x)I)]k), for some k E Z+.

The second assumption says that determining if the value of an objective function is within some bound

can be achieved within a reasonable length of time. This is a technical condition that is needed in the

development of the sufficient conditions for the existence of an FAS. As with the previous assumption, it is

true of most commonly-used objective functions. Furthermore, the method for answering the question need

be no more complicated than an algorithm to compute the function fi (). Once the particular polynomial

time bound for fi is determined, the computation of fi (x) can be timed; if the time bound is reached, then

the conclusion that the bound is exceeded may be drawn.

Assumption 2 For any objective function component fi : S -- Z +, Mi E Z + , and x E S, the truth of the

statement "fi (x) < Mi " can be determined in time polynomial in the sizes of x and Mi, that is, in time

O ([n. log (x) . log (Mi)]k), for some k E Z + .

A family of r-criteria objective functions is denoted by Y. Although a family T of feasible sets may contain

feasible sets of different dimensions, the functions in Y all have r criteria. If r were allowed to vary, many

problems considered here would be intractable, as demonstrated in Example 3 of Section 2.2. Because of

the exponential dependence of the running time on the number of criteria, the existence of an FAS need not

imply the existence of an approximation scheme that works well in practice.

Directions of Optimization. Suppose that Y is a family of r-criteria functions. The direction in

which to optimize each criterion is specified by an r-dimensional direction vector with entries from the set

{" < ", " > ", " = " }. Intuitively, an entry of " < " for an optimization problem means that the corresponding

component of the objective function is to be minimized; for a feasibility problem, it means that the value

of the corresponding component must be no more than the target value. The use of a direction vector is

explained more precisely when solutions are defined in Sections 3.3 and 3.4.

A direction vector is generally represented by w. The symbols wr,<, Wr,>, and wr = represent r-dimensional

direction vectors with a single kind of entry. The set Q contains all direction vectors and Q' contains all

direction vectors of length r. The sets fQ<, Q>, and Q= contain wr,<, wr,>, and wr,=, respectively, for all

rE Z + .

Instances and Problems. An instance of an optimization problem is represented by a 3-tuple I =

(S, f, w), where for positive integers n and r, S is an n-dimensional feasible region, f is an r-criteria objective

function, and w is an r-dimensional direction vector. An optimization problem II = (,. , w,Opt) is a

collection of instances (S, f, w) with S E I, f E 'F, and w = w.

An instance of a feasibility problem is represented by a 4-tuple I = (S, f, w, M). The first three components
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are the same as for an optimization instance. The fourth component is M E Zr+, the vector of target values.

The precise use of M is explained in Section 3.3. A feasibility problem II = (, Y, w, Feas) is a collection of

instances (S, f, W-, M) with S E , f E , = w, and M E Zr+.

If II is a problem of either kind, then I E II means that I is an instance of II.

Example 5 (Instance and problem definitions) The definitions from this section are illustrated using

a knapsack problem in which each item contains both a desirable and an undesirable feature. This problem

can be formulated as follows:

Max-Min Binary Knapsack

Instance: (n,p, q, V, v). The number of items n; the profits pj, j = 1, .. ., n; the costs qj, j = 1, ... , n; the

knapsack volume V; and the item volumes vj, j = 1,..., n; are non-negative integers such that

vj < V, j = , ...,n.

Question: Find x to solve n
max E pj j

j=1
n

min E qj xj
j=1
n

s.t. E vjxj < V
j=1

xj E {0,1}, j=l,...,n

The feasible set for an instance of this problem can be specified as

S(n, V, v)= x E {O, 1}n : vjx= j < V

the upper bounds are

u(S) = e ,

the objective function has the form

n

fi (x) fi (x; n,p) _ jZxP

( f2 (x) f2(x; n, q) )
and the direction vector is

- 1, > 

The optimization form of the problem can be written as II = (T, , w, Opt), where

= { S(n, V, v) : n, V E Z +, v E Z + , and vj < V, j = 1, . . .,n}
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and

r =X (x np) : n E +, p E Zn+ q E Z n + .

Note that 9 is binary.

The related feasibility problem is the set of instances (S, f, w, M) where S, f, and w are as above, and M is

any vector in Z2 +. 

3.2 The Largest Value and the Length of an Instance

The largest value of an optimization instance I = (S, f, w) is the largest component of the objective function

on a particular box-constrained superset of the feasible region:

Mv (I) = maxt lf (x) : < x < u(S) }

In a feasibility instance I = (S, f, w, M), values of f (x) with Ilf (x) > M need not be considered, so the

largest value of I is Mv (I) = IIMII. The subscript "v" is a reminder that this is the largest value of the

instance. It is not the largest number of the instance that is used in discussions of pseudo-polynomial time

algorithms.

The length of an n-variable instance I of either kind, written L (I), is the number of bits needed to represent

both S and Mv (I).

In order to avoid the intricacies required to explicitly address the representation of general functions, the

length of an instance is defined independently of the representation of the objective function. This does not

result in the loss of much generality, because most interesting objective functions can be represented in space

that is polynomial in the length of the instance as defined here. The objective functions could be added

by recasting the discussion in terms of Turing machines[HU79]. The added complexity of the presentation,

however, would not add insight to the results.

In addition, the length of an instance is independent of the number of criteria in its objective function.

Accounting for this number would increase the length by at most a constant factor since, as explained in

Sections 2.2 and 3.1, all the instances of a problem have the same number of criteria.

Although Mv (I) may be difficult to determine exactly, it is assumed that it can be quickly approximated

to within a factor that is polynomial in the length of the instance.

Assumption 3 For any instance I, a close upper bound Mv (I) of Mv (I) can be found in time polynomial

in the length L (I) of the instance. Here "close" means within a factor that is polynomial in L (I). That is,

for some k1, k2 E Z+, time O ([L(I)]k,) is sufficient to find a bound Mv (I) satisfying

Mv(I) < (I) E O (Mv (I) [L ()]k2) . (1)
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In most interesting discrete optimization problems, a bound of this sort can be found easily. Creative

approaches to finding such bounds are described in [IK75, Law79].

Example 6 (Largest value and length of an instance) The Max-Min Binary Knapsack problem was

discussed in Example 5. An instance I = (S (n, V, v) , f (x; n, p), w) has largest value

n n

Mv(I) = max Ep, qJ}
j=l j-=1 

= n IPx{max, qmax}

and length

L (I) E O (n log (V) + n {log (pma,) + log (qmax)})

The value Mv (I) = Mv (I) can be found in time O (n) C O (L (I)) by scanning the components of p and q.

3.3 Exact Solutions and Algorithms

Given a direction vector w E Q' and two vectors u, v Zr+, u dominates v with respect to (w.r.t.) w if u

is at least as good a value as v in each component in the direction specified by w. So if wi is " < ", then

ui < vi if u dominates v, and similarly for other values of wi. This relation is expressed using the predicate

Dw (u, v), which means that, for i = 1,..., r,

Wi = "" U i Vi

0 i " U " : i > Vi

CWi = " = = = i Vi

Keep in mind that u and v in this definition are in criterion space, that is, they are in the space of objective

function values.

A solution to an optimization instance I = (S, f, ) is a set of feasible points whose values constitute the

efficient frontier. This is the second of the approaches to vector optimization listed in [Ser87]. More precisely,

an efficient set for I is a set Y C S such that for each E S, there is some y E Y, depending on x, such

that y is at least as efficient as in the sense specified by w; that is, D, (f (y), f (x)). A solution to I is

a minimum cardinality efficient set for I. Here and y are in decision space, and f () and f (y) are in

criterion space.

A solution to a feasibility instance I = (S, f, w, M) is a point E S such that D, (f (x), M), if such a point

exists. In other words, it is any element of the set of feasible points whose values dominate M. Note that a

feasibility instance is not a recognition instance. A solution to the former is an appropriate feasible point; a

solution to the latter is just a statement that an appropriate feasible point exists[GJ79].
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An algorithm for an optimization or a feasibility problem II is V-pseudo-polynomial, or VPP, if for any

instance I G II, the algorithm finds a solution for I in time polynomial in the length and largest value of

the instance, that is, in time O ([L (I)- Mv (I)]k), for some k E Z +. The "V" in VPP stands for "value."

If some VPP algorithm exists for II, II is said to "have a VPP algorithm." Any VPP algorithm is also

pseudo-polynomial, but the converse is not true.

Example 7 (Exact solutions) Recall the Max-Min Binary Knapsack problem discussed in Examples 5

and 6. Consider the instance with n = 8, V = 3, and the following coefficients:

j1 2 3 4 5 6 7 8

pj 1 2 4 5 6 7 9 11

qj 2 2 4 4 5 6 10 9

vj 2 1 1 1 2 2 3 3

Figure 4 shows all the values of the objective function at feasible points. The point (6) dominates the point

(5), since the first objective is a profit and the second is a cost.

The solid dots constitute the efficient frontier. An efficient set is a collection of feasible points whose values are

shown by the solid dots. If x1 = (0, 0, 0, 0, 0, 0, 0, 1) and X2 = (0, 0, 0, 1, 1, 0, 0, O), then f (xl) f(x 2) = (11);

either x1 or x2, but not both, will occur in a solution, since a solution is an efficient set of minimum

cardinality.

Let 3 = (0, 0, 1, 0, 0, 0, 0, 0) and 4 = (0, 0, 0, 1, 0, 0, 0, 0). The point (4) is dominated by both f ( 3) = (4)

and f ( 4 ) = (5). So if M = (43) in an instance of the feasibility form of this problem, 3 and X4 are each

solutions, even though 5 is not efficient. ·

3.4 Approximate Solutions and Algorithms

This section defines concepts for approximate solutions that are analogous to those for exact solutions in

Section 3.3. Given a direction vector w E r, two vectors u, v E Zr+ , and > 0, u -dominates v w.r.t. w

if each component of u is no more than a factor of e worse than the corresponding component of v in the

direction specified by w. So if wi is " < ", then ui < (1 + )vi if u -dominates v. This relation is expressed

using the predicate Dg) (u, v), which means that, for i = 1, ... , r,

Wi= " = ui (1+ )vi

Wi = 
"

>
"

(1-e)vi < ui

=W =" (1-E)vi < ui (1+ E)vi

When using this notation, recall from Section 3.1 that objective function values are non-negative. When

E = 0, then -domination reduces to domination; that is, D(°) (u, v) is the same as D,, (u, v).
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Figure 4: Feasible solution values for the instance in Example 7. The solid dots constitute the efficient frontier.
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For an r-vector v and any > 0, call the set of points that are within a factor of v in each component an

e-ball around v. Figure 5 shows -balls around the points on the points on the efficient frontier of Figure 4. The balls are

rectangles because the difference from v is measured separately for each dimension. The balls grow bigger

as the values increase because is a measure of relative error from v, not absolute error.

An -efficient solution to an optimization instance is a set of feasible points with the property that each

point of the efficient frontier is close to, or approximated by, the objective function value of at least one

point in the set. In other words, an -ball drawn around any point on the efficient frontier contains the

objective function value of at least one point of the solution set. More formally, an -efficient set for an

instance I = (S, f, w) is a set Y C S such that for each x E S, there is some y E Y, depending on x, such

that D(£) (f (y) , f (x)). An -efficient solution to I is a minimal e-efficient set for I.

Note that an -efficient solution is minimal with respect to the property of --efficiency. It need not have

minimum cardinality, as will be explained in Example 8, but by definition it must not have a proper subset

that is -efficient. If = 0, however, then any minimal exact solution will also have minimum cardinality;

the solution will consist of one efficient point for each point on the efficient frontier.

The notion of -efficiency is defined only for optimization problems, not for feasibility problems. An algorithm

for an optimization problem H = (, , w, Opt) is a fast approximation scheme, or FAS, if for any e > 0

and any instance I E II, the algorithm finds an -efficient solution for I in time polynomial in the length of

the instance and in 1/e, that is, in time O ([L (I) /lk), for some k E Z +. If some FAS exists for H, H is

said to "have an FAS." When restricted to the single-criterion problems commonly considered in work on

approximation algorithms, an FAS is a fully polynomial time approximation scheme (FPTAS)[GJ79, PS82].

In these definitions the -balls are centered on the points of the efficient frontier, so that each efficient point

is sure to be approximated. One could instead think of centering the -balls on the approximate solutions

or use alternative approaches similar to those described in [Whi86].

Although widely used in single-criterion optimization, this approximation measure is sometimes problematic,

such as in a minimization problem whose optimal solution can have the value zero. This issue is discussed

in detail in [CFN77, NWF78, Fis80, Zem81], and is not addressed further here.

Example 8 (Approximate solutions) Approximate solutions are demonstrated using the instance dis-

cussed in Example 7. If E = , then (11) -dominates both (11) and (1). To see the first of these, notice

that 11 > (1- e)11 and 10 < (1 +E)9. However, () does not -dominate either () or (7), even though these

two points are the same absolute distance from () as (19) and () are from (). Points in an approximate

solution may or may not be on the efficient frontier; for example, consider the elements of A2 discussed in

the next paragraph.

An -efficient solution is an -efficient set of minimal cardinality, whereas an exact solution is an efficient set

of minimum cardinality. To see that two minimal e-efficient solutions need not have the same size, consider

the set C of efficient points other than () and (2) in Figure 5. Each point of C is -dominated by some

point of A and also by some point of A2 = { (), ( ) }. Removing any point from either5 9 4 6 9~n llvv alle ylli u 1
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Figure 5: Feasible solution values and -balls around points on the efficient frontier for the instance in Example 8.4
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Al or A2, however, would destroy the -dominance property of that set. Therefore both are minimal in this

respect, even though they have different numbers of elements. ·

4 Existence of Fast Approximation Schemes

The primary theoretical results of this paper are derived in this section. A necessary condition for the

existence of a fast approximation scheme for a problem is stated and proved in Section 4.1. This theorem

is followed by an example that demonstrates that its converse is false, but Section 4.2 develops conditions

under which the converse is true. A theorem about the sufficient condition for the existence of an FAS is

formally stated and proved in Section 4.3. Finally, some aspects of the relationship of this work to previous

work are discussed in Section 4.4.

4.1 Necessary Condition

A necessary condition for the existence of an FAS for a problem is the existence of a VPP algorithm for the

problem. The proof consists of showing how an FAS for the problem can be used to create a VPP algorithm.

This is done by setting the error tolerance for the FAS small enough so that for any efficient point x, some

element y of the c-efficient solution has an absolute error from x that is strictly smaller than unity in each

criterion. Since the function values are integral, this means that x and y have identical function values; in

other words, an exact solution will have been found.

Theorem 1 (Necessary condition for existence of an FAS) Consider an optimization problem II =

(1, , w, Opt). If H has an FAS, then II has a VPP algorithm.

Proof. Suppose that an FAS 7 for II is specified. The following algorithm will be shown to be a VPP

algorithm for solving H. Let I = (S, f, w) be an n-variable instance of R.

1. Determine Mv (I) satisfying Equation 1 and set 1
1+Mv(I)

2. Use - to solve I with accuracy .

The proof that this is a VPP algorithm for II has two parts: first the algorithm is proved to run in VPP

time, then the solution it finds is shown to be correct.

Running time: By Assumption 3, Step 1 takes time O ([L (I)]k), for some kl E Z+ . Because X is an FAS

for , Step 2 takes time O ([L (I) /e]k2) C O ([L (I) .Mv ()]k 3 ), for some k 2, k3 E Z + . The algorithm

therefore runs in VPP time.

Accuracy: Suppose that the algorithm returns a set Y C S; then for any x E S, some y E Y satisfies

D() (f (y) , f (x)). It will be shown that D (f (y), f (x)); this means that Y is an efficient set and will

therefore complete the proof.
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For i = 1,...,r, fi (x) < Mv(I) < Mv (I), so efi (x) < Mv(I) / (1 + Mv (I)) < 1. Since fi maps into Z+,

the statement that D(£) (f (y), f (x)) becomes

Wi = ">" > fi (Y) fi (x),

= "=" (y) = fi (X);

so D (f (y), f ()). 

The converse of Theorem 1, however, cannot true unless P = NP. The following example presents a problem

that has a VPP algorithm but no FAS unless P = NP. Conditions under which the converse is true are

developed in Section 4.2 and stated formally in Section 4.3.

Example 9 (Problem with VPP algorithm, but no FAS unless P = ANfP) In order to show that the

the converse of Theorem 1 is false the following problem will be useful:

Minimum Exact Cover by 3-Sets (Min-X3C)

Instance: (n, m, A, B, c). The number of triples n and the solution size m are non-negative integers such

that m < n. A is a set of items with Al = 3m. B is a collection of n triples Bj C A with Bj = 3,

j = 1, ... , n. The triple costs cj, j = 1,.. ., n, are non-negative integers.

Question: If B' C B, then the cost of B' is EjlBj E' cj. An exact cover of A is a set B' C B, with IB' = m,

such that UjlBjE3' Bj = A. Find an exact cover of A of minimum cost.

Restricting attention to those instances in which cj = 1, j = 1, . . ., n, yields the problem Exact Cover by

3-Sets (X3C). Since X3C is N/P-hard[GJ79], Min-X3C is strongly NJlP-hard. Therefore no FAS can exist

for Min-X3C unless P = .JIP[GJ78]. Notice, though, that the number of possible solutions is (n) < 2n, so

Min-X3C can be solved by enumeration in time O (n2n). This time bound is not pseudo-polynomial.

Now consider the restriction of Min-X3C to the problem Min-Expensive-X3C, which consists of those in-

stances of Min-X3C in which cj E [2,3n] , j = 1,..., n, where n is the number of variables in the in-

stance. An instance I of Min-Expensive-X3C has length L (I) E (n log(m)+ n log(cma,)) C (n2) and

largest value Mv(I) E Q (cmin) C Q (2n), so Min-Expensive-X3C can be solved by enumeration in time

O (n2n ) C O (L (I) Mv (I)). In other words, Min-Expensive-X3C has a VPP algorithm. It cannot, how-

ever, have an FAS unless P = NP, because restricting Min-Expensive-X3C to instances in which all costs

are 2n yields the X3C problem. Therefore the converse of Theorem 1 cannot be true unless P = NP. ·

4.2 Regularity Conditions

Despite the previous example, if a problem satisfies suitable regularity conditions, then the existence of an

FAS corresponds exactly to the existence of a VPP algorithm. Of course, Min-Expensive-X3C does not

satisfy these conditions.
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The conditions will be developed in this section by examining a common way to devise an FAS. In the course

of analyzing the algorithm being considered, two difficulties will be encountered that would prevent the

algorithm from being an FAS. Simple regularity conditions on a problem that preclude these difficulties from

arising will be described. In the next section these conditions will be proved to be sufficient to guarantee

the existence of an FAS for a problem.

One way to solve a problem approximately but quickly is to use a fast algorithm to solve a simpler version

of the problem. In the present context, "approximately but quickly" means within the accuracy and time

bounds that define an FAS. One method that has been used to implement this idea is to use a VPP algorithm

to solve a version of the original instance in which some precision is lost in the objective function. In other

words, the low-order bits of the objective function values are dropped, thereby creating a new instance that

is solved using a VPP algorithm. This approach is called scaling.

One effect of scaling is to reduce the magnitude of the largest value of the objective function. Since the time

bound of the VPP algorithm typically increases monotonically with this largest value, scaling an instance

reduces the time needed to apply the algorithm.

The price of this decreased time requirement, however, is that the wrong instance has been solved. Although

solutions to the scaled instance may not exactly solve the original instance, the loss of accuracy may be

acceptable because an FAS need only generate approximate solutions. The key is to find a method of scaling

that reduces the running time sufficiently without losing too much accuracy, that is, to scale so as to meet

the requirements of an FAS.

The remainder of this section shows how to do just that. First the notion of scaling is formalized. The

performance of the scaling algorithm is then analyzed to ensure that it is accurate and fast enough to qualify

as an FAS. As mentioned above, this analysis will uncover two difficulties that will be circumvented by

requiring problems to satisfy regularity conditions.

Scaling. Scaling is simply the loss of low-order precision in objective function values. The definition is given

in terms of arbitrary scale factors. Later analysis will use scale factors that are powers of two so that the

loss of precision can be counted as a number of bits.

Definition 1 (Function scaling) Let f be an r-criteria function and t E Z r+ with ti > 0, i = 1,..., r.

The function f scaled by t, written g = f/tJ, is defined by gi (x) = fi (x) / tiJ, i = 1, ... , r. 

The following inequalities highlight some effects of scaling. If vi > 0 and ti > 0, then

vi - ti < ti vi/tid < vi < t Lvi/tij + ti. (2)

Choosing an appropriate value for t will be discussed later in this section. First, however, another difficulty

must be addressed. The idea described above is to scale the instance and then apply a VPP algorithm.

Unfortunately, an algorithm that is VPP using the original objective function need not be VPP using
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the scaled objective function. To see this, consider scaling an n-variable instance of Min-Expensive-X3C

by t 2nen. Although Min-Expensive-X3C has a VPP algorithm, the problem consisting of the scaled

instances does not, unless P = XAfP.

In order to avoid this problem with scaling, attention in the rest of this paper will be restricted to problems

with which this difficulty cannot occur. The following regularity condition on the class of objective functions

guarantees that the scaled instances can be solved in VPP time.

Definition 2 (Closure under scaling) A family Y of r-criteria functions is said to be closed under scaling

if [f/t E for any f E Y and any t E Z + with ti > O, i = 1, r. 

The following example illustrates this definition.

Example 10 (Closure under scaling) Some examples of function families that are closed under scaling

are:

1. The class of all weakly monotonically increasing functions. A function f : S - Z r + is in this class if

for x, y E S, x < y implies that f (x) < f (y).

2. The class of all functions that map into {0, .. ., k} for some fixed k > 0.

Some examples of function families that are not closed under scaling are:

1. The class of all linear functions.

2. The class of all functions that map into {1,..., k} for some fixed k > 0. The objective function in

Min-Expensive-X3C is not closed under scaling for the same reason.

3. The class of all convex functions.

The last fact is seen using the convex function f(x) = x 2 and the scale factor t = 9. Let g(x) = Lf(x)/9J.

Some values of these functions are illustrated in Figure 6; the round dots represent values of f(x) and the

square dots represent values of g(x). The dashed line shows that g(x) is not convex. 

Accuracy. In order to determine an appropriate value for the vector t of scale factors, consider what

happens when a VPP algorithm is used to solve an instance with a scaled objective function. As mentioned

above, using scale factors that are powers of two is convenient because the loss of precision can be measured

as a number of bits. For some p E Zr+, set ti = 2i, i = 1, ... , r, and let g = f/tJ be a scaled objective

function. Solve the scaled instance It = (S, g, w) to find a solution set Ct. Now consider how closely any

particular value of f (x) is approximated by Ct.

The set Ct must contain a point y such that D, (g(y), g(x)). Suppose that for some i E {1,..., r}, wi = " < ";

then

gi(y) < gi(x) . (3)
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Figure 6: Round dots are values of f (x) = x2 and square dots are values of g(x) = f (z) /9j. The dashed line

shows that g(x) is not convex.
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In order for Ct to be the output of an FAS, the value of Pi must be chosen so that fi (y) < (1 + ) fi (x).

Substituting for g in Equation 3 and applying Equation 2 yields fi (y) < fi (x) + ti, so pi must be chosen so

that ti < efi (x). When efi (x) > 1, setting

Pi = log(ef (i (x)) (4)

will guarantee that fi (y) is close enough to fi (x). When efi (x) < 1, setting pi = 0 works, and the original

objective function can be used. Setting the value of the scaling vector t in this way ensures that the solution

to the scaled instance will be sufficiently accurate, at least as regards this particular value of f (x).

Running Time. The FAS must, however, find a solution for each possible value of f (x). This will

be achieved by solving a sequence of scaled instances, each with a distinct scaling vector t, so that an

appropriate scaling vector is used for each possible value of f (x). This means that instances must be solved

with Pi = O,..., p*, where p* = max { [log (eMv (I))J, O}.

The problem with solving so many scaled instances is the time required for the computations. A simple

upper bound on the time needed is the product of the number /7 of instances that must be solved and the

maximum time r needed to solve a single scaled instance.

The number of instances is 7 = (1 + p*)r. If EMv (I) < 1, then 1 = 1. Otherwise,

_1 < (1 + log(EMv ()))

< (1 + log()+ log (Mv (I)))'

The value of grows with the value of , that is, as the required accuracy decreases. If E is too large, i.e.,

if not much accuracy is required, then too much time will be required for this approach to be an FAS. The

analysis so far will, however, remain valid if greater accuracy is used. Therefore if E > 2, it will be replaced

by ' = 2 in order to bound the running time. With this modification to the solution scheme,

77 < (2 + log (Mv ()))r

E O([L(I)]kl)

for some k E Z+ , because log (Mv (I)) < L (I) and r is fixed.

All that remains is to bound r, the time needed to solve a single scaled instance It. For starters, r E

O ([L (It) Mv (It)]k2), for some k2 E Z+ , because the algorithm used to solve It is VPP. If Mv (It) is large,
however, then r will be large as well. But instances with large values of Mv (It) are superfluous: for any
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x E S, define t as described above, and then

gi(x) = [fi (x) /tiJ

< f (x)/ti
= f ()/2 Log( ('fs())J

< 2/E'

< [4/c'J .

The final inequality is true because ' < 2 implies that e - > 1. In other words, scaling to attain a

relative accuracy of c allows attention to be restricted to objective function values that do not exceed 4/J .

It is sufficient to consider only those instances It in which Mv (It) < L[4 = i*. If the largest value of each

other instance is set to *, the unneeded instances will effectively be automatically discarded. The limits on

the values of the objective function values are called box constraints.

Definition 3 (Box constraints) Let f be an r-criteria function and M E Zr+. The function f with box

constraints M, written g = min{f, M}, is defined by gi (x) = min{fi (x), Mi}, i = 1, ... , r. ·

Assumption 2 ensures that a box-constrained function can be computed efficiently, and the discussion fol-

lowing that assumption explains why the assumption can be made essentially without loss of generality.

An algorithm that is VPP for a problem with box constraints requires less running time than it does for the

unconstrained problem if the unconstrained problem has function values larger than the bound. If the box

constraints constraints are not tight, then the time bounds are the same. The box constraints are used to

avoid spending too much time solving any particular instance. The second regularity condition on the class

of objective functions guarantees that each box-constrained instance can be solved quickly enough for the

entire scheme to fit the running time requirements of an FAS.

Definition 4 (Closure under box constraints) A family F of r-criteria functions is said to be closed

under box constraints if for any f E Y and any M E Zr+, min {f, M} E T. 

By further restricting attention to objective functions that are closed under box constraints as well as under

scaling, the time r required to solve a particular instance can be no greater than O ([L (It) /6]k), for some

k3 E Z +. The total time needed to solve all the scaled instances is therefore bounded by r E O ([L (I) /Es]k),

for some k E Z+. Since E' = c or E' = 2, the FAS running time requirements are satisfied.

Separable Objective Functions. As will be seen in [S094], certain classes of functions that are commonly

encountered in practice are closed neither under scaling nor under box constraints. In particular, the class of

additively separable functions is not closed under either of these operations. Modifying the closure conditions

to accommodate separable objective functions would be appropriate because they are so common. Each term

of a separable function must satisfy the two previous closure conditions, so the modified conditions must

account for the error that accumulates in the sum of n terms. The following weaker conditions capture the
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behavior of separable functions.

Definition 5 (Quasi-closure under scaling) Let 9F be a family of r-criteria functions. Suppose that for

any f E and any t E Zr+ with ti > 0 for i = 1,..., r, there is a g E such that for any x E Zn+ and

i= 1, ... ,r,
if ti = 1, then gi (z) = fi (x);

if ti > 1, then fi (x) /tiJ - n + 1 < i (x) < fi (x) /ti].

Then the family F is said to be quasi-closed under scaling and the function g is called a scaling neighbor of

f w.r.t. t. 

Definition 6 (Quasi-closure under box constraints) Let jF be a family of r-criteria functions. Suppose

that for any f E j and any M E Zr+, there is a g E c such that for any x G Zn+ and i = 1,...,r,

iffi () < Mi, then gi(x) = fi(z);

if fi (x) > Mi, then Mi < gi (x) < min {fi (x), nMi}.

Then the family Y is said to be quasi-closed under box constraints and the function g is called a box

constraint neighbor of f w.r.t. M. 

A function class that is closed under scaling is also quasi-closed under scaling, since in that case f/tJ is a

scaling neighbor of f w.r.t. t. A function class that is closed under box constraints is also quasi-closed under

box constraints, since in that case min {f, M} is a box constraint neighbor of f w.r.t. M.

The theorem about the sufficient condition is stated using the quasi-closure regularity conditions so that it

applies to problems that have separable objective functions. In addition, the error tolerance is reduced by a

factor of n so that any loss of accuracy can be spread among the n terms of the objective function.

4.3 Sufficient Condition

The sufficiency condition is stated and proved in this section. The theorem is the converse of Theorem 1

except for the quasi-closure conditions on F. It is primarily useful if a scaling neighbor and a box constraint

neighbor of a function are reasonably easy to find for each function in F, though it is of interest even if they

are not. As discussed in [S094], however, such neighbors are often conveniently available.

The proof follows the development of the previous section. It shows that the existence of a VPP algorithm

for a problem is sufficient for the existence of an FAS for the problem by using the VPP algorithm to define

the FAS. Because of the generality of the method, however, the FAS so derived may not be the most efficient

approximation scheme possible. Typically, an FAS constructed as described in this proof can be improved

by adapting it to the special characteristics of the problem.

Theorem 2 (Sufficient conditions for existence of an FAS) Consider an optimization problem =

(4, ', w, Opt), where F is a class of r-criteria functions that is quasi-closed both under scaling and under

box constraints. If i has a VPP algorithm, then II has an FAS.
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Proof. Suppose that a VPP algorithm A for II is specified. Let I = (S, f, w) be an n-variable instance of

II and E > 0. Define

= kmin{e,2}

p = [4/e'J er (recall that er is the r-vector of ones),

P I[log (e'MV (I))J if e'Mv (I) > 1,

t0 otherwise,

T = {tE r+ : 3p E O,...,p*}r ti =2P, i=l.r}

So T is the set of all r-vectors whose components are integral powers of two up to E'Mv (I). The following

algorithm will be shown to be an FAS for II:

1. Determine Mv (I) satisfying Equation 1. Set C 0.

2. For each t E T, let g be a scaling neighbor of f w.r.t. t and let h be a box constraint neighbor of g

w.r.t. tp. Use A to solve the instance It = (S, h, w), obtaining the solution set Ct. Set C - C U Ct.

3. Eliminate redundant entries from C, yielding C', an s-efficient solution to I.

The algorithm is first shown to run within the time allowed for an FAS, then its correctness is demonstrated.

Running Time: The running time can be bounded by the product of the number of instances It that are

solved and the worst case time to find some Ct; Step 3 can be performed in time O ([ICl]k4), for some

k4 E 2 + . By Assumption 3, Step 1 can be performed in time O ([L (I)]k 5), for some ks E Z +.

Let 7r be the number of instances It that are solved; so r = ITI = (1 + p*)r. If E'Mv (I) < 1, then p* = 0

and = 1. Otherwise,

< (1 + log ('Mv (I)))

< (2 - log (n) + log (Mv (I)))"

E O ([L (I)k),

for some kl E Z+ , since e' < 2/n, log(Mv (I)) < L (I), and r is fixed.

For any t E T, let r be the time needed for A to find Ct. Then

E 0 ([L(It) Mv(It)]k2)

C 0 ([L(It). IllI]k2)

= O([L (I) IE]k-)

for some k2 , k3 E Z +. So the total time needed by the algorithm is at most, for some k E Z+, 7r E

O ([L (I) /e,]k). But 'l = e/n or = 2/n, so the algorithm runs within the time allowed for an FAS.

Accuracy: In order for the algorithm to be correct, it must be the case that for each x E S, there is some
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y E C' such that D(£) (f (y) , f (x)). For any t E T, the function g satisfies, for x E S:

ifti = 1, then

if ti > 1, then

gi (x) = fi (x) ,

lfi () tij - n + 1 gi () < fi () tiJ ;

(5a)

(5b)

and the function h satisfies

if gi (x) < Ii,

if gi () > Ii,

Define t as follows: for i = 1,. . ., r,

ti{

then hi (x) = gi (x) ,

then i < hi (x) < min{gi (x), nii} 

2 19g(F'fi'())]

1

if e'fi (x) 1,

otherwise.

In particular, if e'fi (x) > 1, then the following relationships hold, as in Equation 2:

/ fi (x) / 2 < ti < 'fi(z) (7)

The reason to use this value for t is that the box constraints yI are redundant when f (x) is scaled by t. To

see this, note that for i = 1, . . ., r,

fi (x) /ti < fi (x) /ti

< 2/E'

< L4/e'J

= Iti- (8)

The first strict inequality, which is straightforward when 'fi (x) < 1, follows from Equation 7 otherwise.

Equation 8 shows that the box constraints I are not tight at x when f is scaled by t. Combining Equations 5

and 8 yields

gi(x) < iji , (9)

so by Equation 6a,

hi(x) = gi(x) , (10)

and substituting into Equations 5,

(11)

Now t E T, so It is solved in Step 2 and an efficient set of solutions Ct is computed. The set Ct therefore
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contains a point y, depending on x, that satisfies D,, (h(y), h(x)). It will be shown that y also satisfies

D(' ' ) (f (y) , f (x)). Since E' < E, this will complete the proof.

Consider any index i {1,...,r}. Assume that wi = " < "; the proofs for wi E {" > ", " = "} are similar.

So

(12)

it must be shown that fi (y) < (1 + e') fi (x). By Equations 12, 10, and 9,

hi(y) < hi(X)

= 9i(x)

< lii,

which means, because of Equation 6b, that gi(y) < pi. By Equation 6a,

and substituting into Equations 5,

[fi () tiJ - n + 1 < hi (y) < fi () tiJ 

Consider two cases for the value of e'fi (z).

Case 1: e'fi (x) > 1. Then

Lfi () tij < hi(y) + n-1

< hi(x)+n-1

< i (x) /ti + n-1

fi (y) < ti fi (y) /tiJ + ti

< ti [fi (x) /ti + nti

fi (x) + nti

< (1 + ne')fi (x)

< (1 + )fi (X) -

by Equation 14

by Equation 12

by Equation 11 ,

by Equation 2

by Equation 2

by Equation 7
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Case 2: 'fi (x) < 1. Then ti = 1, and

fi (y) = gi(y) by Equation 5a

= hi(y) by Equation 13

< hi(x) by Equation 12

- gi(x) by Equation 10

= fi (x) by Equation 5a

< (1 +e)fi() .

In summary, then, an FAS can be constructed from a VPP algorithm for any optimization problem for which

the class of objective functions is quasi-closed under both scaling and box constraints. This result highlights

the key aspects of the sufficiency condition presented in [PS82]. The next section shows that this result is

stronger than the result in [PS82] when problems with general integer variables are considered.

4.4 Non-Binary Domains

This section highlights the case of non-binary domains, that is, problems in which the variables can take

values other than zero or one. Much of the literature on approximation schemes only considers binary

domains, that is, 0-1 problems[HS74, Bab75, GL78, GL79a]. The exceptions, however, generally treat non-

binary problems by reduction to the binary case[IK75, Law79, KK84].

The idea behind the typical reduction from a general integer problem to a related binary problem is to

consider the binary representation of the general integer variables. A separate binary variable is used to

represent each bit of the general integer variables. This technique is demonstrated in Example 11. It

only works, however, for separable linear objective functions, not for the more general objective functions

considered in this paper. The same technique can be applied to the unary expansion of each general integer

variable, but this approach generally yields a pseudo-polynomial time algorithm, not a VPP algorithm.

The algorithm in the sufficiency condition of [PS82], rather than being VPP, runs in time O ([L (I) .pma]kl),

for some kl E Z+ . For binary domains, this is essentially the same as a VPP algorithm. For general integer

domains, however, Theorem 2 is stronger; it guarantees the existence of an FAS even if the optimization

algorithm uses as much as time as 0 ([L () Pma Uma ]k2) for some k2 E Z+ . This stronger result derives

from having identified the sufficient conditions for the existence of an FAS more precisely than has been done

before.

Example 11 (Reducing integer variables to binary variables) A typical reduction from general inte-

ger variables to binary variables is illustrated using a variant of the Max Binary Knapsack problem defined in

Section 2.2. In this version of the problem the variables can take general non-negative integer values.
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Max Integer Knapsack

Instance: (n,p, V, v, u). The number of items n; the profits pj, j = 1,..., n; the knapsack volume V; the item

volumes vj, j = 1,..., n; and the item quantity upper bounds uj, j = 1,..., n; are non-negative

integers such that v < V, j = 1,, n.

Question: Find x to solve
max E pj j

j=l
n

s.t. E vjzj < V
j=l

xj E {O,...,uj),j=l,...,n

Given an instance I = (n, V,p, v, u) of this problem, let Ij = 1 + log (uj)J be the number of bits in the

binary expansion of uj, j = 1,..., n. An instance of the Max Binary Knapsack problem which contains a

variable corresponding to each such bit will be constructed.

The variables of the Max Binary Knapsack instance are Yjk, j = 1,..., n, k = 1,..., lj. The variable Yjk

represents the kth low-order bit of the binary expansion of xj. A solution of this instance with Yjk = Yjk

will correspond to a solution of the Max Integer Knapsack instance with xj = kJl 2k-1-k. To accomplish

this, set
n

= =
j=l

P k = 2k-pj, j=1,...,n, k= ,...,j,

V = 2kl vj, j=l,...,n, k=l,..., lj

Now construct and solve the instance I' = (n', V,p', v') of Max Binary Knapsack. The instances I' and I

have the same optimal value, and setting

lj

xj = 2 k Yjk, j = 1...,n,
i=1

yields a solution to I with the same value as the solution found for I'. 

Other reductions of problems with general integer variables to problems with binary variables typically use

a scheme similar to the one presented in this example.

5 VPP Reductions

Using Theorem 2 to prove the existence of an FAS for each problem of interest would be rather tedious.

An alternative is to use reduction, a general technique for proving theorems about the ease or difficulty of

solving particular problems[GJ79, HU79].
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A new kind of reduction that is appropriate for use in proofs about the existence of VPP algorithms is

introduced in Section 5.1. Several lemmas that can be used to prove the existence of an FAS are then proved

in Section 5.2. Section 5.3 shows how to use reduction to prove that problems are hard.

5.1 Definitions

VPP reductions are defined in this section. Informally, a problem II VPP reduces to a problem II' if II

can be solved efficiently by calling a subroutine that solves II' efficiently. More precisely, a problem II VPP

reduces to a problem IH', written II oc v,, II', if there is an algorithm A for II that uses as a subroutine a

(possibly hypothetical) algorithm A' for II', such that if A' is a VPP algorithm then A is a VPP algorithm.

Algorithm A is called a VPP reduction of II to I'. If both II ocv IIH' and II' o vp n, then H and II' are

VPP equivalent, which is written HII _=vp'.

As an alternative, VPP reducibility could be defined using an oracle for A'. Note that the definition is of a

reduction, not a transformation; that is, A' can be called several times during the execution of A, not just

once at the very end. Transformations are commonly used in reasoning about the difficulty of recognition

problems, and the "yes" or "no" answer generated by the single call to A' is the answer returned by A. The

more general concept of reduction is needed in the present setting, however, since a set of points must be

generated, rather than just a single "yes" or "no".

5.2 Using VPP Reductions

This section shows how to use VPP reductions to clarify the difficulty of solving specific problems. They are

used in [S094] to simplify proofs that certain problems have FAS's, and they can also be used to show that

problems are difficult. The first three lemmas and the corollary are about the relationship between problems

with similar representations. The last lemma is more general, and is used often in [S094].

The following lemma formalizes the fact that restricting the family of functions cannot lead to a problem

that is substantially more difficult to solve.

Lemma 1 Let TI' be a family of feasible sets and w E Qr . Suppose that F and TF' are families of r-criteria

functions such that Y C F'. Then (,, w, Feas) oc P (, .F', , Feas).

Proof. Let A' be an algorithm for (, YT',w, Feas). If I E (,F, w, Feas), then I E ( W, ',, Feas) also,

since Y C F'. So a VPP reduction consists of calling A' to solve I; the solution is the output from A'. 

The next lemma shows that achieving a target value exactly is at least as difficult as finding a value between

the target and the efficient frontier.
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Lemma 2 Let 'I be a family of feasible sets, Y a family of r-criteria functions that is quasi-closed under

box constraints, and w E Qr. Then (, .F, w, Feas) c ,,v (, , r=, Feas).

Proof. Given I = (S, f, w, M) E (, Y, w, Feas), let g E be a box constraint neighbor of f w.r.t. M. So

for all x E S, g(x) < nM.

Define H = { M' E Zr+ : M' < nM }. If I has a solution x E S, then g(x) E H. Since IHI = (n IIMII + 1)r,

a VPP reduction consists of solving the instance (S, g, wr,=, M') for each M' E H until a solution x is found

that also solves I. ·

A feasibility problem is often easier to work with than an optimization problem, as the former can be solved

by finding a single point. Proofs about optimization problems can often be simplified by using the following

lemma, which shows that an optimization problem is not much more difficult to solve than the corresponding

feasibility problem.

Lemma 3 Let it! be a family of feasible sets, F a family of r-criteria functions that is quasi-closed under

box constraints, and w E Qr. Then (, 1F, w, Feas) _ v,, (, , w, Opt).

Proof. Let F = (,T, , F,Feas) and IIo = (,Y, w, Opt).

IEF c vpp Ho: Let IF = (S, f,w,M) E F and g E F be a box constraint neighbor of f w.r.t. M; so

Io = (S, g, w) E Ho. A solution set Co for Io contains at most (n IMII + 1)r points. At least one of these

points solves IF, if IF has a solution. So a VPP reduction consists of solving o and examining members of

Co until a solution to IF is found.

io cvp, IIF : Let Io = (S, f, w) E no, and define the set of target vectors

H = { M E Zr+: IIMII < Mv(Io)};

so HI = (M (Io) + 1)'. For each target vector M E H, let CF (M) be the solution to (S, f, w, M) E 11F,

and define CF = UMEH CF (M). The solution to Io is a subset of CF. A VPP reduction consists of solving

(S, f, w, M) for each M E H and eliminating unneeded elements from CF. 

The utility of Lemma 3 can be seen by applying it to Lemmas 1 and 2 to obtain the following corollary.

Corollary 1 Let be a family of feasible sets, . and a' families of r-criteria functions that are quasi-

closed under box constraints and satisfy .F C F', and w E Qr. Then (, F,w, Opt) ocvp (, ',w, Opt) and

(, -,w, Opt) C VPP (, , Wr,= , Opt).

The following lemma is used repeatedly in later sections. Note that parts of it are true with weaker assump-

tions about the family ' of objective functions.
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Lemma 4 Let I be a family of feasible sets, F a family of r-criteria functions that is quasi-closed under

scaling and under box constraints, and w E Q. Let II' be a feasibility or optimization problem that has a VPP

algorithm or an optimization problem that has an FAS. If (f, , w, Feas) oc v II' or (f, Y, w, Opt) cc II',

then ('F, ,w, Opt) has an FAS.

Proof. If II' is an optimization problem that has an FAS, then by Theorem 1 it also has a VPP algorithm.

So in all cases, II' has a VPP algorithm.

If (, , w, Feas) cx v II', then by Lemma 3, (, , w, Opt) cc vr II' as well; so under either reduction

assumption, (, .F, w, Opt) has a VPP algorithm. Theorem 2, then, implies that (, F, w, Opt) has an FAS.

5.3 Proving that Problems are Hard

This section shows one way of using VPP reductions to prove that problems are hard. The discussion begins

with a general setting; then a specific parameter choice is made in order to prove that certain problems

cannot have VPP algorithms.

The method used in this paper to specify instances and problems is not the only possible approach. An

alternative formulation might describe an instance I E II as a string of characters from some finite set, say

{0, 1}. In this alternative formulation, the instance length L (I) would naturally be defined as the number of

characters in this string. The largest value Mv (I), however, would be harder to identify in general; it would

depend more specifically on the problem. Defining the largest value would require imposing a structure on

the string, so that the "values," each of which is defined by some subset of characters, can be recognized

within the context of the entire string. This issue arises, for example, when defining the largest integer in

an instance in discussions of strong AP-hardness[GJ79, Section 4.2.1].

In general, let P be the set of integers of interest for instances of a problem II. In a discussion about strong

A7-hardness, for example, the set of integers that appear in the problem statement is important, and this

set would be P. In a discussion of ordinary A/P-hardness, however, particular integers are not identified, so

/ = 0. In the present setting, an appropriate choice for P will be seen to be V, the set of possible objective

function values.

Definition 7 Let p(-) be a single-variable polynomial. The problem IIp,p is the restriction of the problem

II to those instances in which the integers in are bounded by the function p(.) of the instance length, that

is,

p, ={I E H:VbE , b<p(L(I))}.

Definition 8 A problem II is P-strongly NP-hard if, for some polynomial p(.), the problem HII,p is NP-hard.

U
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This definition generalizes a variety of previous work. If f3 is the set of all the integers that appear in the

instance, for example, then P-strong NP-hardness is the same as strong NP-hardness. On the other hand,

if /3 = 0, then P-strong NP-hardness is the same as ordinary N(P-hardness.

Recall that, if P .A/NP, then no NP-hard problem has a polynomial time algorithm, and no strongly

A/P-hard problem has a pseudo-polynomial time algorithm[GJ78]. In the same vein, the following theorem

shows that the appropriate choice for the present context is, as asserted above, 3 = V.

Theorem 3 If a problem II is V-strongly NP-hard, then II has no VPP algorithm unless P = NAP.

Proof. Since is V-strongly NP-hard, there is a polynomial p(-) such that IIv,p is AP-hard. Suppose

that II can be solved by a VPP algorithm A; then A solves instances I E IIV,p in polynomial time, since

Mv (I) E ([L (I)]k), for some k E Z+ . But Hv,p is NP-hard, so such an algorithm A can exist only if

P = AP. 

Once a problem has been shown to be V-strongly NP-hard, VPP reductions can be used to prove that other

problems have this property, as will be shown by Theorem 4. The following lemma, which shows that the

magnitudes of the values that occur in constructed instances are not too large, will be useful.

Lemma 5 Let H and I' be problems such that II oc v. I', and let A be a reduction algorithm that calls

an algorithm A' for II'. Suppose that while A is solving some I E , it calls A' to solve some I' C II'.

Then the largest value of I' is polynomial in both the length and largest value of I, that is, Mv(I') E

O ([L (I) Mv (I)]k), for some k E Z +.

Proof. Suppose that this inequality does not hold, but that A' is a VPP algorithm for II'. If Mv (I')

appears in a tight time bound for A' with a positive coefficient, then the time for a single call to A', and

hence the time for A, will be super-polynomial in L (I), Mv (I), or both. Therefore A will not be a VPP

algorithm for II, contradicting the assumption that II ocp II'. 

Now to the point. The following theorem parallels the NP-hardness results mentioned earlier and can be

used in the same ways as those theorems to show that problems are difficult.

Theorem 4 Let H and H' be problems. If H is V-strongly NP-hard and n oc P, ', then H' is also V-strongly

NP-hard.

Proof. Let A be a VPP reduction algorithm for solving H that calls an algorithm A' for H'. Since is

V-strongly NP-hard, there is a polynomial pl() such that IIv,pl is AP-hard. Let I E Iv,,, and suppose

that, while A is solving I, it calls A' to solve some I' E '. Then there are polynomials P2() and p3() such

that
Mv (I') < P2(L(I) Mv (I)) by Lemma 5

< P2 (L (I) P1 (L (I))) because I E Hv,

< p3 (L(I))
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Assume for the moment that L(I) E O ([L (I)]k), for some k E Z +. Then for some polynomial p4(),

Mv (I') < p4 (L (I')). This holds for all I' for which A' is called, so IIv,pl cvpp V,p4 .

Since Mv (I) < pl (L (I)), however, the algorithm A runs in time polynomial in L (I); it is therefore also

the case that HIV,p OCT HlVp4 where OCT denotes polynomial time Turing reducibility[GJ79, section 5.1]. But

IIV,p, is NP-hard, so H 4 is also gXAP-hard, and hence ' is V-strongly NP-hard.

This proof depends on the assumption that L(I) E O ([L(II)]k), for some k E Z+; this means that the

length of the constructed instance I' is not much shorter than the length of the original instance I. The

description of I' can be padded with enough blanks so that this condition is true, so the assumption can be

made without loss of generality. ·

Padding instance descriptions with blanks violates the convention that instances should be described con-

cisely. Allowing such descriptions, that is, including more instances in a problem, does not make the problems

under consideration any easier. It also does not make them much harder, and so does not have a major effect

on relevant complexity results. In addition, reductions used in practice rarely, if ever, need such padding.

6 Summary

This paper has introduced a new framework in which to consider the optimization of multi-criteria combi-

natorial optimization problems. Finding the entire efficient frontier can be quite difficult, so the approach

taken here has been to approximate it; this is in contrast to previous work in which parts of exact solutions

were found.

Necessary and sufficient conditions for the existence of a fast approximation scheme for a problem were mo-

tivated and proved. Besides extending previously known results from the single-criterion setting to problems

with multiple criteria, these conditions, when restricted to the single criterion case, are more specific than

are the previously known results.

These results necessitated the specification of the regularity conditions of closure under scaling and closure

under box constraints. Besides being technically necessary for the proofs, the former condition is a real

concern in practice and the latter does not sacrifice any substantive generality. These conditions were

generalized to the quasi-closure form so that additively separable objective functions can be handled.

A companion paper applies these results to a variety of network flow and other combinatorial optimization

problems.
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