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ABSTRACT 

The purpose of this research is to evaluate the potential of using landsat ETM+ data for soil mapping. The 

study area is located in center of Iran and covers about 1300 ha. The database of studied area was created by 

introducing topographic map (1:25,000), soil map (1:20,000) and reports and satellite data. After pre-possessing 

stage, selection of the best informative bands was carried out using optimum index factor (OIF) calculation and 

principle component analysis (PCA). Results showed that bands TM1, TM4 and TM6-2 contain the highest 

information and the lowest redundancy. Besides the mentioned bands, TM5 and TM7 were considered for digital 

image classification. The images were classified using maximum likelihood classifier into seven mapping units. 

Separability of  mapping units examined at 95% confidence level. Comparison of the prepared soil map from 

satellite data and ground truth showed a relatively high accuracy of 80%. Also, comparison of prepared soil map 

from satellite data and detailed soil maps prepared using conventional methods showed imagery data could 

increase the classification and interpretative purity percentage up to 50% and 85%, respectively. The results 

indicated high potential of imagery data for inventory and increasing the precision of existing soil maps. 

Therefore, incorporation of high-resolution satellite data for soil survey especially in arid and semi-arid regions 

is highly recommended. 
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INTRODUCTION  

The objective of soil survey is to study about actual and potential land use management 

strategies (Rossiter, D.G., 2000). For employment a better strategy for land use management, the soil 

maps that are prepared through the soil survey should following characteristics (Patrick A. Agbu et al. 

1990): (i) Variation in terms of significant soil properties within mapping units should be minimum 

whereas the variation among mapping units should be maximum. (ii) Effectively characterize the 

mapping units in terms of significant soil properties. (iii) Grouping the soils that are similar, and then 

to express accurately the properties of each grouping. According to Western (1978) and Bregt et al. 

(1992), the quality of a map is a function of reliability, relevance and presentation of the information 
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Perhaps, the most serious limitation of traditional soil survey process is the assignment of properties 

derived form typical soil profiles to the entire map unit regardless of the inherited spatial and temporal 

variability of field soils (Beckett and Webster, 1971; Baker 1978; Bouma et al. 1980; Breeuwsma et 

al. 1986). Salehi et al. (2003) expressed that although criteria for purity of mapping units have been 

improved; however, traditional soil mapping approaches are not able to reasonably show the 

variability of pedons and top soil properties even in a detailed soil map named at series level.  

It seems that the capability of imagery data can compensate drawbacks of traditional soil maps. 

Many researchers applied Landsat TM data for predicting soil properties (Rayan et al., 2000, 

Campling et al., 2002) or soil classes based on a soil classification system (Lee et al., 1988; Thomas et 

al., 1999). Dobos et al. (2000) defined digital soil mapping as computer assisted production of a digital 

map of soil type and soil properties. We believe that the progresses in computer software and satellite 

data can help to soil surveyors to denote soil surface changes and increase the precision of soil maps. 

The objective of our research is to study the possibility of soil mapping with integration of ETM+ 

satellite data, field works, and thematic maps like digital topographic maps and its derivates in Central 

Iran.  

MATERIALS and METHODS 

 Study Area and Data Collection   

The study site locates between 32° 17´ to 32° 20´ N and 51° 3´ to 51° 5´ 3˝ E in the 

Chaharmahal and Bakhtiari province, Iran and encompasses an area of 1300 ha. Mean annual rainfall 

is 220 mm and mean altitude of study area is 2100m above the sea level. Main landforms are alluvial 

plain, outwash and hills. According to U.S. Soil Taxonomy (soil survey staff, 2006) the soil moisture 

and temperature regimes of the area are Xeric and Mesic, respectively.  

Database of the study area was constructed by collecting digital topographic maps (1:25,000), 

existing detailed soil map (1:20,000) and reports (the information of 85 soil profiles; Salehi et al. 

2003), aerial photographs (1:20,000) and Landsat (ETM+) digital imagery data. The satellite data 

obtained on 2 July 2001, including reflectance TM bands (TM1-TM5 and TM7), thermal bands (TM6-

1 and TM6-2) and panchromatic band (TM8). Image processing was performed using ILWIS 3.3 

(Integrated Land and Water Information System, developed by ITC, 2007). 

 Preparing of Digital Soil Map 

Preparing of digital soil map was carried out in three stages. At first, the satellite data were 

georeferenced using topographic map (1:20,000) and GPS (Garmin 12XL) during preliminary field 

work with minimum possible error. In the second stage, the best informative bands were selected by 

considering statistical characteristics of them and calculating of optimum index factor (OIF) and 

principle component analysis (PCA).  
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Considering of different soil forming factors showed the topography have a major impact on soil 

variability. Thus, the study area was divided based on major landforms into three units, including  hill 

(H), alluvial plain (P) and outwash (O), by using topographic map and digital elevation model (DEM). 

In third stage, A supervised image classification approach and maximum likelihood algorithm 

was performed by introducing the pixels related to 46 sites covering the major physiographic units as 

training area. The training sites were determined by considering physiographic units, DEM, depth of A 

horizon and its properties like percent of sand, silt and clay, organic matter content, CaCO3 equivalent 

and soil surface gravel percentage (data not shown) and were addressed to the false color composite 

(obtained from best informative bands) of the area. Feature spaces were considered during 

introduction of training sites. Because of different spectral behavior of training sites in three main 

units (H, O and P), each units were divided into several subunits (spectral classes). By considering 

mean and standard deviation of each subunits, separability of different spectral classes were examined 

at 95% confidence intervals and the importance of informative TM bands for separation and 

distinguishing of different spectral classes were determined. The supervised classified image divides 

the study area into several spectral units, which were considered as soilscape/soil map units. The 

resulted map was smoothed by post classification filtering. Thus individual pixels and the resulted 

units which cover areas less than 1.6 ha (minimum legible area (MLA) according Soil Survey Manual, 

1993) were merged into main units.  

At post classification stage, A confusion matrix was elaborated by crossing known samples as 

ground truth (major taxons at soil series level in each spectral unit) and the classified image, to 

evaluate accuracy of classification performance. In this study, besides saved information of soil 

profiles and observation points in database, 12 profiles were excavated and described in unsampled 

areas and were used as ground truth.  

Comparison of Digital and Traditional Soil Map 

The new soil map (NSM) was assessed by calculating taxonomic and interpretation purities and 

compared with the traditional soil map (TSM). The taxonomic purity of the dominant soil in each map 

unit at family and series levels was determined and compared with the traditional soil map. To find 

interpretive purity, percentages of the dominant taxon and soils similar to dominant taxon in each map 

unit were combined. In this study, similar soils were marginally outside the limits of the particle size 

and/or mineralogy classes defined in soil control section at family level for dominant taxon.  

RESULTS and DISCUSSION  

Band Selection 

Table 1, shows the results of OIF calculation. The table indicates that the thermal bands have 

important role in soil inventories. According to Alavi Panah et al. (2001), thermal bands have a key 

role for studying different soils in arid and semiarid zones; therefore application of these bands 
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improves the accuracy of classification in such regions. According to Table 1, optimum index factor 

(OIF) calculations indicate the most informative bands are TM1, TM4 and TM6-2. Besides bands 

TM1, TM4 and TM6-2, we applied bands TM5 and TM7, which are emerged in the second and third 

ranks. Therefore, TM1, TM4, TM5 and TM6-2, and TM7 were selected for image classification.  

 

Table1. OIF values of TM bands combinations. 

Bands composition OIF value  

TM6-2, TM1, TM4 42.5 

TM6-2, TM4, TM7 36.43 

TM6-2, TM1, TM5 35.99 

TM6-2, TM1, TM7 33.89 

TM6-1, TM1, TM 32.37 

TM6-2, TM3, TM4 32.37 

 

Based on suggestions of Masul et al. (1990), results from principle component analysis (PCA) 

can be used for image classification. They suggested four bands that have maximum eigenvectors in 

the first principle component, are useful. Therefore, beside of OIF calculation principle component 

analysis (PCA) was applied for band selection. The results of principle component analysis indicate 

that TM1, TM3, TM6-2 and TM7 have maximum eigenvectors in the first principle component, 

respectively (Table 2). Therefore the results of PCA highly confirm OIF results. The results 

correspond to the findings of other workers in arid and semi-arid zones. Al-Bakri (2000) and Ziadat et 

al. (2003) recommended TM1, TM5 and TM7 combination for mapping soils in arid and semi-arid 

zones. 
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Table 2.The eigen values for nine principle components 

 

 

Separability of Training Sites 

 Considering of feature spaces (data not shown) indicated that the studied area can be divided 

into several subunits or spectral classes including H1, H2, P1, P2, P3, Agri., O1 and O2.  Agir. was a 

cultivated area and merged into the appropriated unit by considering its attributed profile description. 

Figure 1 shows separability of different spectral classes at 95% confidence intervals. According to 

Figure 1, bands TM5 and TM6-2 could be able to separate classes H1 and H2. Band TM5 could 

differentiate class H2 from other spectral classes. Spectral class O1 could be separated from classes 

O2, P1, P2 and P3 using TM1. Classes O1 and O2, which are varied in gravel content (Table 3) could 

be differentiated using visible and infrared bands (Figure 1). Class P1 with the lowest surface gravel 

(Table 3) expresses higher radiation in the thermal band. Overlaying of single standard deviations of 

units P2 and P3 indicates hardly discrimination of these features by single bands.  

TM Bands 

TM8 TM7 TM6-2 TM6-1 TM5 TM4 TM3 TM2 TM1  

0.213 0.512 0.740 0.329 0.203 0.152 0.506 0.300 0.510 PC1 

-

0.009 
-0.071 0.481 0.156 -0.096 0.021 -0.025 0.088 -0.112 PC2 

0.012 -0.294 0.015 0.021 -0.533 0.175 0.477 0.430 0.405 PC3 

0.458 -0.475 -0.008 -0.028 0.055 0.748 -0.077 0.100 0.039 PC4 

0.088 0.128 -0.067 -0.089 -0.327 0.176 0.574 -0.291 -0.641 PC5 

-

0.674 
-0.481 -0.002 -0.002 0.430 0.123 0.328 0.010 -0.084 PC6 

0.532 -0.436 -0.006 -0.001 0.359 0.575 0.168 0.140 -0.139 PC7 

-

0.011 
-0.010 -0.024 0.018 0.028 0.095 -0.211 0.776 -0.585 PC8 

0.00 0.870 -0.870 0.491 0.002 0.008 -0.001 0.019 0.032 PC9 
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Figure 1. separability of different spectral classes at 95% confidence intervals 

 

We hope using multispectral bands and maximum likelihood approach, which considers the 

probability of membership of pixels for each class aid to optimize differentiation of these features. 

Training areas of alluvial plains P1, P2 and P3 are varied in gravel and CaCO3 equivalent content 

(Table 3) and in the feature space plot of TM5-TM7 these units are separated efficiently.  
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Table 3. Some physical and chemical characteristics of A horizons of training areas 
. 

Soil surface characteristics in  spectral classes (soil mapping units) 

CaCO3 Gravel 
Organic 

matter 

 

 

Depth of 

A horizon 

Spectral 

class Land form  Texture 

(%)  (cm) 

P3  Alluvial plain Clay loam 10-20 14-28 0.4-0.7 20 

P2 Alluvial plain Loam- silty clay loam 19-43 21-57 0.7-0.9 20 

P1 Alluvial plain Clay loam- silty clay 10-25 2-11 0.7-0.9 20 

H1 Hill Clay loam 23-36 30-35 0.95-1.1 20 

H2 Hill Loam 37-51 25-35 0.7-0.8 20 

O1 Outwash Loam 19-30 45-65 0.6-0.9 15 

O2 Outwash Clay loam 15-30 25-45 0.95-1.12 15 

Evaluation of Image Classification Accuracy  

For classification assessment, a confusion matrix was formed and the classified image and the 

field verified samples of different classes not used for training were compared (data not shown). The 

results show maximum class accuracy is 91.2% and belongs to class O2 and minimum accuracy is for 

H1 (71.6%). The overall classification accuracy is 80%. 

Comparison of Some Mapping Precision Parameters in New and Traditional Soil Maps 

Comparison of taxonomic purities of new soil map and traditional soil map at soil family level 

shows that the purities of mapping units for the digital soil map varies between 40% and 59% while 

these values range from 27% to 60% for the traditional soil map. Taxonomic purities of dominant soils 

in the digital soil map at soil series level range from 40% to 50% whereas for the traditional soil map 

such purities range from 19% to 33.5%, respectively (Figure 2). This shows that results obtained by 

the digital soil map are closer to the expected criteria of American Soil Survey Manual (1993).  

 

Figure 2. Taxonomic purity in map units of NSM and the TSM at family and series levels. 
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Interpretative purity is considered as a reliability index of soil maps (Beckett and Webster, 

1971; Bie and Beckett, 1973; Marsman and De Gruijter, 1986). The results indicate that interpretive 

purities of mapping units for the new soil map vary between 60 and 85 percent while these values for 

the traditional soil map were range between 40% and 75% (Figure 3). Consequently, the definition of 

the mapping units according to interpretive purity instead of taxonomic purity can be used for 

increasing the reliability of soil maps. 

 

Figure 3. Interpretive purity in map units of the NSM and the TSM 

 

CONCLUSION 

The results indicate high potentials of Landsat ETM+ data for differentiation soil mapping 

units in arid or semi-arid soils with no or sparse vegetation. Possible inventory of new mapping units 

using satellite data promise improving the quality of traditional soil maps. By Integration of satellite 

imagery data, field works, digital elevation models and with employment of geographic information 

systems   may facilitate soil mapping in arid and semi-arid zones. 
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