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Abstract

We consider the problem of finding a feasible flow in which each node i has a supply b(i), and each arc has a lower
bound of 0 on flow and an upper bound uij. It is well known that this feasibility problem can be transformed into a
maximum flow problem. It is also well known that there is no feasible flow if and only if there is a subset S of nodes
such that the sum of the supplies of the nodes of S exceeds the capacity of the arcs emanating from S. Such a set S is
called a ”witness to the infeasibility” of the network flow problem. In the case that there are many different witnesses
for an infeasible problem, a small cardinality witness may be preferable in practice because it is generally easier for the
user to assimilate, and may provide more guidance to the user on how to identify the cause of the infeasibility. Here
we show that the problem of finding a minimum cardinality witness is NP-hard. We also consider minimal witnesses,
that is, a witness S such that no proper subset of S is also a witness. The primary contribution of this paper is an algo-

rithm for determining minimal witnesses whose running time is comparable to solving a single maximum flow problem.
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1 Introduction

An important area in the analysis of linear programming problems is that of diagnosing infeasibil-
ities. In particular, given a set of linear inequalities, we would like to know whether this system is
feasible or not. Further, once it is known that the system is infeasible, we would like to isolate the
cause of the infeasibility even further: that is, we would like to find a small subsystem of equations
and inequalities, which forms an infeasible subsystem. In general, it is NP-hard to find a minimum
infeasible subsystem of equations for a linear programming problem; however it is possible to find
an irreducible subsystem of equations which forms an infeasible subsystem in itself.[9], [3], [13].
(Irreducibility of a subsystem means that no subset of it is infeasible.)

In this paper we shall consider this problem for the network flow problem, which is a particular
case of the linear programming problem. Diagnosing infeasibilities for network flow problems was
first studied by Greenberg.([9] and [10]). The advantage in considering this particular case is that
we can make use of the nice structure of the network flow problem in order to come up with fast
combinatorial methods for solving it. Here, we consider network flow problems defined on a network
G = (N, A) with n nodes in N and m arcs in A. The supply/demand of node i is b(3), where a
positive value indicates a supply, and a negative number indicates a demand. The capacity of each
arc (2, 7) is u;;, while the lower bounds on the arc flows is zero.! A witness of infeasibilityis a subset
S of nodes, which is such that the net supply of the set § is larger than the sum of the capacities
of the arcs directed from § to N — §.2 It is intuitively quite obvious that a network having such
a property would not be feasible because the supply on the set S of nodes has to “escape” from §
through the arcs directed from S to to N-S. In fact, Gale[6] proved that there is a feasible solution
to a network flow problem if and only if there is no witness. In other words, in case the network
flow problem has no solution, then this is a simple proof of infeasibility. Moreover, it is very easy to
find some witness by solving a related maximum flow problem. (For more details, see for example,
Ahuja et al[l].) While all witness are equally valid in proving that a network flow problem is
infeasible, not all of them provide an equal amount of guidance to the user of a modeling system.
This point is well articulated by Greenberg[10] who writes "I say that a [witness] offers a good
diagnosis [if] the information from the [witness] provides a useful starting point, where we need
only a modest amount of additional analysis to form a complete diagnosis that correctly identifies
the cause.”

One of the features of a witness that is particularly relevant to its use in a diagnosis is the
cardinality of a witness. In general, the smaller the witness, the more easily a user can analyze it.
The larger the witness, the more difficult it is for a user to comprehend its cause. In this paper, we
shall focus on the criterion provided by Greenberg, the size of the witness. We say that a witness
§ is minimal if there is no subset S’ of S which is also a witness. We say that a witness § is
minimum, if there is no witness whose cardinality is less than that of §. In the next section, we
shall show that it is NP-hard to determine a minimum cardinality witness. More properly, we shall
show that it is NP-complete to determine whether there is a witness with at most k nodes.

The paper is organized as follows. In section 3, we give a simple algorithm for finding a min-

! As we shall see later, this is actually without loss of generality, because a network flow problem with nonzero
lower bounds on arc flows can be easily converted to one whose lower bounds are all zero.
>This is actually a combinatorial characterization of an infeasible subsystem of equations.



imal witness as a sequence of n maximum flow problems. In Section 5, we shall show how to speed
up the algorithm for finding a minimal witness , so that the running time is roughly equal to that of
a single maximum flow problem; in this case the running time reduces to O(nm-log(n%/m)) , which
also happens to be the time it takes to solve a maximum flow problem using the Goldberg-Tarjan
preflow push algorithm. We also use concepts and ideas contained in Hao and Orlin’s minimum
cut algorithm [11] in order to reduce the running time by a factor of n. This similarity in the time
bound is not incidental; our algorithm heavily relies on the concepts derived from the Goldberg-
Tarjan preflow push algorithm. Hence we make a brief presentation of this algorithm in Section 4.
The correctness and the proof of the time bound is proved in Section 6, while a brief Conclusion
and Summary is presented in Section 7.

2 NP-hardness of the minimum witness problem

In this section, we shall prove the NP-hardness of the minimum witness problem. More precisely,
we shall show that it is NP-complete to determine whether a witness with k nodes exists. In order
to prove this, we shall use the standard notion of reduction, as introduced by Cook in [4]. Further
the problem from which we shall make the reduction is a special case of the k-clique problem,
which is also known to be NP-complete. (See, for example, Cook [4]) We shall first prove the
NP-completeness of this version of the clique problem, and then use it to prove that the k-witness
problem is NP-hard as well. The revised problem is as follows:

The Clique Problem on Graphs of fixed degree:

Input: An undirected graph G = (N, A) such that each node of N is incident to exactly d
undirected arcs, and an integer k.

Question: Is there a clique in G with k nodes?

Lemma 1 The clique problem on graphs of fized degree is NP-complete.

Proof: We shall prove this by reducing from the k-clique problem without restriction on the de-
grees of nodes, which is already known to be NP-complete. Suppose that we have an arbitrary
graph G = (N, A) and we wish to find whether a clique of size k exists. We shall transform this
to an instance of the restricted degree clique problem. Let d(z) be the number of arcs incident to
node ¢ in G, and let d* = maz{d(z) : i € N}. We shall create a graph G’ which is such that each
node in it has degree d* + 2, and any clique with k > 3 nodes is contained in G' if and only if it is
contained in G.

Let K = n(d* + 2) — 2m. Let G’ be obtained from G by first appending a subset N’ of K nodes
forming a bipartite graph, in which each node has degree d* + 1. (Observe that nd* > 2m, and so
K > 2n, and hence it is easy to ensure that each node in N’ has degree d* + 1. ) Then, for each
node i in G, create d* — d(%) + 2 arcs from ¢ to different nodes of N'. The number of arcs created in
this way is K, since the sum of the node degrees is 2m. The K additional arcs should be created
in such a way that each node in N’ has one additional incident arc. Subsequently, each node in the
resulting graph G’ has degree d* + 2. Further since the subgraph formed on G’ is bipartite, and
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each arc from N to N’ is directed to a distinct node in N', it is not difficult to see that a clique of
size k > 3 exists in G if and only if it exists in G'. O

We shall now proceed to use this lemma in order to prove the NP-completeness of the k-witness
problem. The k-witness problem may be formally stated as follows:

The k-witness problem:
Input: An undirected graph G = (N, 4), an integer k, a vector b(.) of supplies, and a vector u(.)
of arc capacities.

Question: Is there a subset § of k nodes of N such that b(S) > u(S,N — §) where b(S) is
the total supply value of the node set S, and u(S, N — §) is the capacity of the cutset (S, N — §)?

Theorem 1 The k-witness problem on undirected graphs is NP-complete.

Proof: This problem is evidently in the class NP, because given a set of nodes we can easily check
in polynomial time whether or not they form a witness set. Let d denote the fixed degree of a graph
G = (N, A) and suppose that we want to find out whether a clique of size k. We shall transform
this to a k'-witness problem on an undirected network G’ = (N', A’) with k' = k 4+ 1. Let us now
define the parameters of this problem instance more precisely:

1. Let N' = N U {s,t}.

2. Let A’ = AU {(s,%) : i € N}. The node t will have no incident arcs; that is, it is an isolated
node.

3. The capacity of each arc in A is one unit.
4. The capacity of each arc (s,%) is d units.
5. b(s)=—b(t)=nd—k(k—1)+1;b(:) =0 Vie N — {s,t}.

The above network flow problem is obviously an infeasible one, because the sink node ¢ is isolated
and b(t) < 0. Note also that any witness of G’ must contain the source node s, since it is the only
node with a positive supply value. We now claim that G' has a witness of cardinality k' = k + 1 if
and only if G has a clique of size k.

Suppose that G has a clique of size k, and let S be the set of nodes in the clique. Let §' = S U {s}.
Then, b(S') = nd — k(k — 1) + 1. The number of arcs in the clique is k(k — 1)/2, and thus the
number of arcs incident to a node in S as well as to a node in N — § is kd — k(k — 1). (Each node
of § is incident to d arcs, and each arc of the clique is incident to two nodes in §.) Each of these
arcs has a capacity of 1. The number of arcs incident to s and a node in N — § is n — k, and
the capacity of each of these arcs is d. It follows that the capacity of the cutset (§’, N’ — §') is
kd — k(k — 1)+ (n — k)d = nd — k(k — 1), and thus §’ is a witness of cardinality k.

Conversely, suppose that G’ has a witness $’ of cardinality ' = k + 1. As already stated
above, s € §' and t ¢ §'. Let § = §' — {s}, and let K be the number of arcs with both end points



in §. Then the capacity of the cutset is nd — 2K. Because S’ is a witness this capacity is strictly
less than nd — k(k — 1) + 1; i.e. nd — 2K < nd — k(k — 1) + 1. From this relationship, we can
deduce that K > k(k —1)/2—(1/2) . Thus, K > k(k — 1)/2. But, the number of nodes with both
end points in Scan be at most k(k —1)/2. Hence the number of arcs with both end points in S is
exactly equal to k(k — 1)/2, and hence § must be a clique in G. O

3 Overview of the Minimal Witness Algorithm

In the previous section we showed that it is NP-hard to find a witness of minimum cardinality.
However, it is possible to find a compromise solution; that is, a minimal witness. Before we begin
a detailed discussion of the algorithm, it is necessary to develop some additional concepts and
notations.

One term that we need to define for this paper is a generalization of the concept of s — ¢ cut.
Suppose that § and T are mutually disjoint sets of nodes. The minimum § — T cut problem is the
following: '

minimize {u(S*,N — §*): §C §*,TC N - §*}

In other words, we want a minimum cut subject to the additional restriction that the source side
of the cut contains 5, and the sink side of the cut contains T'. Thus, we can view an § — T cut in
the network G as an s — ¢ cut in the network G', where G’ is obtained from G by contracting all
nodes in § to a single node s, and all nodes in T to a single node ¢.

Our algorithm draws concepts from the paper on the unrestricted minimum cut problem by Hao
and Orlin[11]. We shall solve the minimal witness problem after imposing the following additional
restriction: :

Assumption 1 The network G = (N, A), in which the minimal witness has to be found, has
ezactly one supply node s and one demand node t. Any other node i has b(i) = 0.

We shall now proceed to show that the above assumption is actually without loss of generality
because it is always possible to transform an arbitrary network flow problem into one, which has
exactly one supply node and one demand node.

Lemma 2 A minimal witness problem in a network G = (N, A) can be solved by solving a minimal
witness problem in a corresponding network G' that contains ezactly one source node and ezactly
one supply node.

Proof: Let G = (N, A) be the network in which the minimal witness problem is to be solved.
Construct the network G' = (N U {s,t}, AU 4o) where Ao = {(s,7) : b(3) > 0} U {(3,¢) : b(3) < 0}.
Further the supply value of the source node s and the demand value of the sink node ¢ is identically
equal t0 3 ;¢ N p(i)>0 8(¢) while all other nodes have zero supply/demand values. For each node %
with b(z) > 0, the capacity of the arc (s,%) in G’ is b(3). Similarily, for each arc (i,t) on G’, the
capacity is equal to —b(%). Then, it is easy to show that § is a witness set in G if and only if SU{s}
is a witness set in G’ because the difference between the supply value of the corresponding set of



Algorithm Find-Minimal- Witness(s,t);
begin
S := {s}; T := {t}; TestNode := ¢;
while (SUT) # N do
begin
determine a minimum § — (T U {TestNode}) cut [R, R);
if R is a witness
then
add TestNode as well as all sink side nodes to T’;
else
add TestNode to §;
Select a new node in N — 5 — T to be the new TestN ode;
end;
end;

Figure 1: A skeletal structure of the minimal witness algorithm

nodes and the total capacities of the arcs emanating from it is the same in both the cases. O

Our algorithm basically proceeds as follows: It maintains two disjoint node sets § and 7', where
S is a set of nodes which will be a subset of the final minimal witness 5* , while T is a set of
nodes which will always be a subset of the complement of the witness set $*. Initially § = {s} and
T = {t}. Assuming that the problem is indeed infeasible, the algorithm finds a minimum § — T cut,
[Ro, Ro), (hence Ry is a witness set) selects an arbitrary node ¢ € Rg and determines whether some
subset of Ry — {4} is also a witness, by finding a minimum § — [Ro U {i}] cut and checking whether
the node set thus obtained is a witness or not. If it is indeed a witness, it means that a witness
which a subset of Ry — {7} exists, and hence we can add it to T'; otherwise, we add this node to
the set 5. In the former case, we add all sink side nodes to T as well. We continue this procedure
until S UT = N. Thus, a total of O(n) iterations are required. since the size of either S or T
increases in each iteration. Further, since each iteration requires the application of one maximum
flow algorithm, the time complexity of this method is equal to that of the running time of O(n)
maximum flow problems. However, as we shall see later, these O(n) maximum flow problems are
closely related to one another, and , as a result we can reduce the running time of these problems
to that of a single application of the Goldberg-Tarjan preflow push algorithm. Thus, the minimal
witness problem, when presented in its simplest form is as illustrated in Figure 1. We shall now
prove that, at termination of the algorithm, the set § is a minimal witness set.

Theorem 2 The algorithm Find-Minimal- Witness determines a minimal witness set.

Proof: This property may easily be proved by observing that the algorithm maintains the invariant
on the sets § and T', that N -- T contains some witness, and § is a subset of each witness contained
in N — T. Hence, at termination when S UT = N, no proper subset of § can be a witness.

In order to prove that the algorithm indeed maintains the invariant stated by us above, we shall



note that we add TestNode to S if and only if N — T — {T'estNode} contains no witness. On the
other hand, if a TestNode (and possibly other sink side nodes) are added to 7' when a witness
(R, N — R) is found, then subsequently 7' becomes N — R and N — T = R is a witness. Moreover,
any witness which is a subset of R must also contain §, since this invariant was true at the previous
iteration. O

The minimal witness algorithm solves the minimal witness problem as a sequence of O(n) closely
related minimum cut problems, and we exploit the closeness in order to reduce the total running
time. that we can reduce the time complexity to that of a single maximum flow problem, if we are
careful about the order in which we select our TestNodes. Since our method draws concepts from
the Goldberg-Tarjan preflow push algorithm[8], we shall review this algorithm briefly in the next
section. In subsequent sections, we shall show how to modify it so as to solve the minimal witness
problem.

4 The Preflow Push Algorithm

In this section, we shall briefly describe the preflow push algorithm for finding the minimum § — T
cut, where § and T are mutually disjoint subsets of nodes. The algorithm is a modification of
Goldberg and Tarjan’s [8] preflow push algorithm for the maximum flow problem, and is also
somewhat similar to the version of the preflow push algorithm described by Hao and Orlin in
[11].We shall assume that the reader is already familiar with the Goldberg-Tarjan algorithm, and
we shall focus on modifications of this approach.

The algorithm proceeds by maintaining an optimal preflow during each feasible step. A preflow is
a flow in which the mass balance constraints are not necessarily satisfied, but the nodes may have
nonnegative ezcesses because of the imbalances in the incoming and outgoing flow values. For each
node i € N — § — T, the excess is denoted by () and is defined as follows:

e(?) = Lii(iirear % — Liitieay®is ViEN - §-T

The excesses are not defined for any of the nodes in the source set S or the sink set 7. We say that
z is a preflow if 0 < 2;; < u;; for each arc (¢,5) and e(¢) > 0, for each node : € N — § — T. where
u;; is the capacity of the arc (%,7). Given a flow/preflow z, we define the residual capacity of the
node pair [4, 5], as r;; = (u;; — i;) + 2;i. The flow u;; — z;; is the maximum additional increase
on the arc (3, j), while the flow z;; is the maximum amount by which the flow on the arc (j,) can
be decreased.® The residual network G(z) with respect to the flow z, is defined to be the network
(N, A(z)), where A(z) is the set of all arcs with positive residual capacities.

The preflow push algorithm proceeds by partitioning the nodes into two parts, W and D , denoting
the set of nodes which are awake and the set of nodes which are dormant respectively. At every
stage of the algorithm, the property that § C D and T C W is maintained. A node 7 is said to be
active if i € W — T and e(i) > 0. An arc (4,5) in G(z) is said to be admissible if i € W, j € W,
and d(i) = d(j) + 1. In general, the algorithm will send flow from active nodes and push it along
admissible arcs.

3We are assuming here, for the purpose of abstraction, that whenever the arc (1,7) exists, so does the arc (j,1).
This assumption is without loss of generality, because we can always add the arc (5, 1) with zero flow and zero capacity.




The idea of identifying dormant and awake nodes was first presented as a heuristic for speeding up
the Goldberg-Tarjan preflow push algorithm by Derigs and Meier [5]. At every stage, the algorithm
maintains the property that there is no arc in the residual network from any node in D to any
node in W. This property which the algorithm maintains throughout its execution is defined to be
the dormancy property. In the initialization step, the algorithmsets D = § and W = N — §, and
saturates all the arcs emerging from the nodes in S, so that no arc exists in the residual network
from any node in D to any node in W.

The algorithm performs pushes in a similar manner to the Goldberg-Tarjan preflow push
algorithm, except that we never perform pushes either from or towards a dormant node. Similarily,
the relabels performed are also similar to those of the Goldberg-Tarjan preflow push algorithm,
except in two cases. In the first case a gap cut is found, that is, if a node 7 is to be relabeled, and
there is no other node in W with distance label d(¢). In this case, the algorithm lets R = {j €
W : d(j) > d(i)} and transfers the nodes of R from D to W. As we shall subsequently prove, the
modified set D will continue to satisfy the property that no arc is directed from W to D. In the
second case, when i is to be relabeled and no arc in G(z) is directed from ¢ to some node in W,
we can add ¢ to D and delete it from W. It is easy to see that no arc in the residual network will
be directed from a node in D U {i} to a node in W — {i}. In addition, the algorithm maintains
the W-validity property as well, according to which, for each pair of nodes ¢,j € W if r;; > 0 then
d(i) < d(j) + 1. Hence, there can be no path in the residual network from a dormant node i to
any node in W, and hence also to any node in 7 C W. In transferring nodes from W to D we do
not modify them with distance labels. This subtle distinction between our algorithm and that of
Goldberg and Tarjan is needed to improve the running time. The basic steps of the preflow push
algorithm are illustrated in Figures 2, 3 and 4.

We shall now prove a result which is a variation of a lemma given in Goldberg and Tarjan [8], and
is easily proved via induction.

Lemma 3 Suppose that the set d(.) of distance labels is W-valid, and the set D = N — W satisfies
the dormancy property. Then, for each node i, d(i) is a lower bound on the number of arcs in any
path in G(2) from node i to the node t.

Proof: Omitted. See Goldberg and Tarjan. [8]. O

5 The Minimal Witness Algorithm

The minimal witness algorithm presented in this section uses the preflow push algorithm of the pre-
vious section (with some minor differences) as a subroutine. The primary difference lies in the rela-
bel procedure which partitions the dormant set into subsets called DormantSet(0), DormantSet(1),
..+, DormantSet(D,q,) which satisfy the following eztended dormancy property:

No arc exists from a Dormant set to the awake set W. Further, no arc exists from a lower in-
dexed subset of D to a higher indexed subset; i.e. if ¢ < j then an arc (u,v) cannot exist, such that

u € DormantSet(i) and v € DormantSet(j).

The dormant subsets are usually constructed by creating a new dormant subset Dormant$ et(Dpmaz+

8



Algorithm PreflowPush(S,T);
begin
Initialize;
while the network contains an active node do
begin
Select an active node 7
if the network contains an admissible arc (7, j) then
push & := min{e(z), r;;} units of flow from node 7 to node j;
else
relabel (i );
end;
end;

Figure 2: The Preflow Push Algorithm

Procedure Initialize;
begin
For each arc (i,j) withi € § and j € N — §, send r;; units of
flow on the arc (%, 5);
D :=8§;
W:=N-§;
Let d(t) := 0 for each node t € T
for each node j € N — T do d(j) := 1;
end;

Figure 3: The procedure Initialize



Procedure relabel(i);

begin
if 7 is the only node in W with distance label d(i) then
begin
R:={j € W :d(j) > d(i)};
D:=DUR;
W:=W — R;
end
else if there is no arc (¢,7) in G(x) with j € W,
then
D:=DU{j}and W:=W - {j};
else
d(i) := min{d(j)+ 1: (4,7) € A(%),j € W and r;; > 0};
end;

Figure 4: The Relabel Procedure

1) whenever nodes are transferred from W to D. At the same time, we also increment D,,,, by
one.
As described in a previous section, the algorithm finds an § — T cut in each iteration. In the
subsequent iteration, it finds an § — (T U TestNode) cut. Then it transfers TestNode to either
set S or set T, depending on certain conditions which we shall describe later. In the case that
TestNode is transferred to T, all other awake nodes are transferred to T as well. It may be noted
that since all the awake nodes are also transferred to T in one case, the algorithm will empirically
turn out to be very efficient. Unlike the minimum cut algorithm of Hao and Orlin, the inner loop
will (in practice) be repeated fewer than n times. The algorithm selects TestNode by choosing the
node in W-T with the minimum distance label. (In the case that W — T is empty, the algorithm
transfers DormantSet(Dmas) to W and decrements D,,, by one.) A detailed description of the
algorithm is given in Figures 5, 6, 7 and 8.

As we have already claimed before, the transfer of a set of nodes R from W to T during the
execution of the procedure relabel does not affect the dormancy property. We formally state the
result as follows:

Lemma 4 Suppose that the set d(.) of distance labels is W-valid, the set D=N-W satisfies the
dormancy property, i € W — T has no admissible arcs emanating from it, and there is no other
node in W-T with distance label d(i). Let R:={j € W — T : d(j) > d(i)}. Then there is no arc in
the residual network which is directed from a node in R to a node in W-R. In addition, D’ satisfies
the extended dormancy property.

Proof: By assumption and by the definition of the set R, there is no arc directed from node i to a
node in W — R. Let j be any node in R and k be any node in W — R. By definition of the set R,
d(j) > d(3) > d(k); that is, d(j) > d(i) + 1 > d(k) + 2. Therefore, d() > d(k) + 2. It follows from
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Procedure Minimal Witness;
begin
Initialize
while SUT # N do
begin
while W — T — {TestNode} contains an active node do
begin
Select an active node 7;
if the network contains an admissible arc (%, 5)

then
push § = min{e(i), r;;} units of flow from node ¢ to j.
else
Relabel(t));
end;
Test-Another-Node;
end;
Minimal — Witness — Set := §;
end;

Figure 5: The Minimal Witness Algorithm

Procedure Initialize;
begin
for each arc (s, j) send r,; units of flow in (s, j);
S := {s}iT := {t}; TestNode := ¢;
DormantSet0 := {s};
Dopor = 0;
W := N — {s};
d(t) := 0;
for each node j € N — {t} do d(j) := 1;
end;

| Figure 6: The procedure Initialize
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Procedure relabel(i);
begin
if 7 is the only node in W with distance label d(i) then
begin
R:={j e W:d(j) 2 d(5)};
Doz := Doz + 1;
DormantSet(Dpqz) 1= R;
W:=W — R;
end;
else if there is no arc (7,7) in G(z) with j € W,
then
D:=DuU{j}and W:=W - {j};
else
if there is no arc (¢,7) in G(z) with j e W
then begin
D —maz := Dy + 1;
DormantSet(Dmes) := {t};
W =W — {i};
end
else
d(i) := min{d(j) + 1: (4,5) € A(?),j € W and r;; > 0};
end;

Figure 7: The Relabel Procedure
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Procedure Test-Another-Node;
begin
/* TestNode is the node which is currently being tested */
if u[D,N — D] > b(s)
then
add TestNode to S and DormantSet(0)
/*Note that § is always maintained to be the same as DormantSet(0)*/
else
T:=TUW;
if SUT = N then quit else continue;
if T'estNode has been added to S then
saturate each arc from TestNode to a node in N — §;
if W—-T = ¢ then
begin
W := DormantSet(Dpq,) U T;
Doz := Dmaz — 15
end;
select j € W — T such that d(j) is minimum;
Let j be the new TestNode;
Set distance label of every node in T equal to that of TestN ode;
end;

Figure 8: Procedure Test-Another-Node
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W-validity conditions that the arc (j, k) cannot exist. Hence there is no arc directed from a node
in R to anode in W — R, and consequently no arc is directed from a node in D U R to a node in
W-R. O

6 Correctness of Algorithm, TimeBounds and Implementation
Issues

The proof of correctness of the algorithm and analysis of time bounds is slightly long and consider-
ably involved. It requires us a prove quite a few intermediate lemmas before we can prove the entire
result. Hence, we shall first state all the intermediate lemmas in one place, so that the reader may
get an overview of the flow of logic before getting to a final conclusion. The various intermediate
results that we shall prove are the following:

(1) Suppose that S and T denote the source and the sink nodes respectively. If there are no
active nodes in the current preflow 2%, then [D, N — D] is a minimum capacity § — T cut.
(This result, in conjunction with Theorem 2 guarantees correctness.)

(2) At each stage of the algorithm, no arcs exist from W — T to T.
(3) W-validity is maintained throughout the execution of the algorithm.

(4) The distance label of each node ¢ is nondecreasing throughout the execution of the algorithm,
as long as it does not enter T'.

(5) There is no arc of the residual network directed from a node in D to a node in W. (Dormancy
Property). Further, for any pair of indices 7, j such that 0 < i < j < D, there is no arc of
the residual network directed from DormantSet(i) to DormantSet(j).

(6) d(W-T) is a set of consecutive integers. Suppose that R = DormantSet(j) for some j. Then
d(R) is a set of consecutive integers.

(7) Each node label is increased at most (n — 1) times before it enters T. In fact, d(j) < (n — 1)
for all the nodes at all iterations.

(8) Each arc is saturated at most (n — 1) times. Hence there are a total of at most O(nm)
saturating pushes.
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(9) The number of times that some set of nodes is transferred from D to W is at most n. The
number of times that a set can be transferred from W to D is at most 2n.

(10) The algorithm Minimal- Witness requires a time of O(nm + number of nonsaturating pushes).
(11) The algorithm Minimal- Witness with highest level pushing runs in time O(n? - m®%).

(12) The algorithm Minimal- Witness with FIFO pushing runs in time O(n3).

(13) The dynamic trees implementation as described in Goldberg and Tarjan [8] requires O(nm -
log(n?/m)) steps.

We shall now get down to proving each of these individual items sequentially.

Lemma 5 Suppose that S and T denote the source and the sink nodes respectively. If there are no
active nodes in the current preflow z°, then [D, N — D] is a minimum capacity S — T cut.

Proof: Any preflow z° can be converted into a flow = without affecting the total flow into the sink
node T'. (See, for example, Goldberg and Tarjan [8].) Further, since no node in N — D — T has any
excess, the total flow due to 2° across the cut (D, N — D) is equal to its capacity, and the amount
of flow that z° brings into T is equal to the value of the flow z. Thus the flow z is maximum
and the cut (D, N — D) is minimum. This follows directly from the duality of maximum flow and
minimum cut, since we have found a feasible flow ¢ and a feasible cut [D, N — D], such that their
objective function values are equal. O

Lemma 6 At each stage of the algorithm, no arcs exist from nodes in W — T to nodes in T.

Proof: Instead of proving the above result, we shall prove the much stronger property that at
each stage of the algorithm, there are no arcs directed from nodes in N — T to nodes in 7. The
property is trivially true at the beginning of the algorithm because the algorithm starts with 7 = ¢.
Further, the only time when the set of arcs between T and N — T could change is when the set T
is changed. (The set T is changed during all those steps of the algorithm when we add the current
TestNode to T.) However, whenever we add TestNode to T, we also add all the nodes which lie
on the sink side of the minimum cut to 7. By definition of the minimum cut, the residual network
cannot contain an arc directed from the sink side of the cut to the source side. As a result, the
above property is maintained. O

Lemma 7 W-validity is maintained throughout ezecution of the algorithm.

Proof: The initialization step starts off with W-valid distance labels. It is easy to prove further
that distance labels remain W-valid following a push or a relabel. (See, for example, Goldberg and
Tarjan [8]). It remains to prove that the resetting of distance labels of nodes in 7T in the last line
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of the execution of the procedure Test-Another-Node does not affect W-validity. Since we already
know from the previous lemma that no arcs exist from nodes in W — T to nodes T, such a resetting
could only affect the W-validity of an arc from T to W — T, if at all. However, the distance label
of each node in T is set to a value which is no larger than the distance label of any node in W — T.
(Actually, the distance label of each node in T is set to be equal to the minimum distance label
in W — T, since TestNode was selected to be the node with minimum distance label in W — T'.)
Hence, any arc which is directed from W — T to T will remain W-valid even after the resetting of
distance labels in T. O

Lemma 8 The distance label of each node i is nondecreasing throughout the ezecution of the algo-
rithm as long as it does not enter T.

Proof: It follows from W-validity conditions that there is never any arc with d(z) > d(j) +1. Thus,
there is never any need to reduce the distance label of a node. (The only step at which the distance
label of a node might be decreased is in the execution of the procedure Test-Another-Node when
the distance labels of all the nodes in 7' are reset.) O

Lemma 9 There is no arc of the residual network directed from a node in D to a node in W..
(Dormancy Property). Further, for any pair of indices 4,j such that 0 < i < § < Dynqs there is no
arc of the residual network directed from DormantSet(i) to DormantSet(j). (Eztended Dormancy
Property).

Proof: At the end of the initialization step, the dormancy/extended dormancy conditions hold.
It remains to prove that these conditions are maintained during the execution of various steps
of the algorithm. Transfer of nodes from D to W does not cause dormancy/extended dormancy
conditions to be violated, if these conditions were satisfied before the transfer. Pushes do not affect
the dormancy property because pushes take place only on arcs whose both head as well as tail
nodes lie in W. In the case when the relabel procedure is called and no nodes are transferred
to D, the conditions will not be violated. In the event that some nodes are transferred to D,
it follows directly from the discussion in Lemma 4, that dormancy conditions will continue to be
satisfied. Extended dormancy conditions will also be satisfied because dormancy as well as extended
dormancy conditions were satisfied just before the transfer. [

Lemma 10 d(W-T) is a set of consecutive integers. Suppose that R=DormantSet(j) for some j.
Then d(R) is a set of consecutive integers.

Proof: It is easy to see that d-consecutiveness properties hold at the end of each initialization
step. It remains to prove that this property will not be affected by the execution of the various
steps of the algorithm. A push certainly does not affect d-consecutiveness, because pushes do not
change distance labels. The relabel operation does not affect d-consecutiveness, because we do
not change the distance label of a node if it is the only node having that label. In the case that
we require to transfer nodes during an execution of the Relabel procedure, consecutiveness of the
labels is maintained, because a new dormant set is created out of some of the nodes in W in such
a way that the d-consecutiveness of both the new dormant set and the remaining nodes in W is
maintained. It remains to prove that the execution of the procedure Test-Another-Node does not

16



affect d-consecutiveness. This is not difficult to see because the only case in which the execution of
the procedure could be suspected to violate d-consecutiveness is when nodes are transferred from
D to W. However, in this case when DormantSet( Dy, ) is transferred to W, d-consecutiveness of
the set W — T is maintained because W — T = ¢ before the transfer and R is also d-consecutive.
0

Lemma 11 Each node label is increased at most (n — 1) times before it enters T. In fact, d(j) <
(n — 1) for all the nodes at all iterations.

Proof: Define din(R) = min{d(z) : i € R} and dpqz(R) = maz{d(s) : : € R}. We claim for each
dormant set R that dmin(R) < n— |R| and dmin(W — T) < n— |W — T|. Since d(R) and d(W — T)
satisfy the d-consecutiveness property, it implies that dpmee(R) < dmin(R) + |R| — 1. Similarily,
Amae(W = T) < dppin(W — T)+ |W — T| + 1 < n — 1. Thus the distance label of each node is no
larger than (n — 1) units. Since the distance labels are nondecreasing as long as they do not enter
T, it follows that each node label is increased at most (n — 1) times before entering T'.

These claims are easily seen to be valid after the initialization step, when |W —T'| < n and d(t) = 0
for the sink node ¢{. It now remains to prove that the upper bound on the distance labels is not
violated because of the various operations of the algorithm. A push or a modification of a distance
label in W — T does not change dpin(W — T'). Further, transferring the nodes from W to D in
a relabel operation decreases |W| but does not affect din(W), and so, the property dpin(W) <
n—|W| remains true subsequent to the operation. In the case when the only one node i is transferred
from W to D in a relabel operation, DormantSet(Dypq,) will contain a single node whose distance
label is at most (n-1). On the other hand, in the case when R = {j € W : d(j) > d(4)}, Dmaz is
incremented and DormantSet(Dumaz) is set equal to R. In this case, dyin(R) = d(i). But since
d(W — R) is consecutive, it follows that d(¢) < dpmin(W)+ |W — R| < n+|W — R| - |W|=n—|R|.
Hence the property holds for the new dormant set DormantSet(d,.) after the transfer. O

Lemma 12 FEach arc is saturated at most (n — 1) times. Hence there is a total of at most O(nm)
saturating pushes.

Proof: For each arc (, ) there is at most one saturating push between consecutive relabels of a
node <. Since a push can take place only from a node in W — T, and the number of distance label
updates (as long as it does not enter T') is less than n, it follows that the number of times any
arc (4,j) can be saturated is less than n. (This is because each pair of successive saturations in
opposite directions on an arc increase the distance labels by two units for each of the endpoints.)
Hence the number of arc saturations in total can be at most O(nm). O

Lemma 13 The number of times that some set of nodes can be transferred from D to W is at most
n. The number of times that some set can be transferred from W to D is at most 2n.

Proof: Nodes are transferred from D to W only when W — T = ¢ and we are executing the
procedure Test-Another-Node. Since at most (n — 1) nodes are tested, the total number of transfers
is also bounded above by (n —1). As far as transfers of nodes from W to D are concerned, at most
(n —1) transfers take place due to additions of old TestNodes to S.Further, the number of transfers
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due to the creation of new dormant sets is at most (n — 1) as well because each of these dormant
sets will ultimately be transferred back to W in an execution of the Test-Another-Node procedure.
0O

So far, we have proved the various intermediate results necessary in order to obtain the

time complexity of the algorithm. It now remains to prove to put these results together, so that
we can find out the exact time complexity of the algorithm, which happens to be implementation
dependant. We will note that so far, we have not commented on the time complexity of the number
of nonsaturating pushes required, which is usually the bottleneck operation. The analysis required
for the remaining section is so similar to that presented elsewhere, that we shall review them briefly
here and give the references where a more detailed analysis may be found. In selecting admissible
arcs, over a which a push may take place, we use the ”current arc data structure” as described in
Goldberg and Tarjan.[8] In this data structure, we shall use a pointer call CurrentArc(i) which
points to one of the arcs in A(i). Whenever we search for an admissible arc, CurrentAre(i)
is incremented, until it eventually points to an admissible arc, or until it discovers that there
is no admissible arc emanating from that node. In the latter case, the procedure relabel(z) is
called. The amount of time spent in scanning the arcs emanating from the node i is equal to
A(i) - (Number of relabels of node 7) < n - |A(%)|. Hence the total time spent in scanning all the
nodes = O(n - ¥ ;cn A(7)) = O(nm).
As far as the data structures for the node selection operations are concerned, one of the alternatives
is to maintain a set of (n-1) lists Active(k) which represents the set of active nodes whose distance
label is k. These sets can easily be maintained at an additional cost of O(1) per push, relabel and
node-transfer. (This data structure is especially useful when we perform node selection in such
a way that we push from the node with the highest distance label.) Further, we maintain a list
called numb(k), which denotes the number of nodes whose distance label is k. This array is also
maintained at an additional cost of O(1) per operation. Thus the running time of the algorithm is
due to the following steps:

(1) The time for initialization: This requires O(m) time.

(2) Time for node selection: Each time we select an active node, we perform either a push
or a relabel. Hence the time required is at most equal to the O(n? + number of pushes) =
O(nm + number of nonsaturating pushes). This result assumes that each node selection can
be performed in O(1) time which is the case when we use the data structures discussed above.
(For more details, see Ahuja et. al.[1].

(3) Time spent for selecting admissible arcs: As we have already established, this requires
O(nm) time.

(4) Time spent for saturating pushes: As we have already established, this requires O(nm)
time.

(5) Time spent for non-saturating pushes: This is implementation dependant. In the case
we use the highest label implementation, (i.e. select a node whose distance label is as high
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as possible) the number of nonsaturating pushes is O(n? - m%%). In the case of the FIFO
implementation, we require a total of O(n®) nonsaturating pushes. We omit the details of
these proofs as they can be found in [1] and [2].

(6) Time spent for increasing the distance labels during the execution of relabel(i):
Since each node is relabeled at most n times, this requires at most O(n?) time.

(7) Time for creating new dormant sets or transferring back dormant sets to W: Since
at most O(n) such transfers can take place and each transfer requires O(n) time, the total
time required is O(n?).

(8) Time for selecting a new TestNode: Since a TestNode is selected at most O(n) times
and each selection takes at most O(n) time for any implementation, this operation can be
accomplished in time O(n?) (and, in fact, we can do much better in most cases.)

(9) Time spent for relabeling the nodes in T: The nodes in T can be relabeled only when a
new node is being tested. This is done at most O(n) times. Further, since each such operation
requires O(n) time, the total time required is O(n?).

By summing up the times for the various steps above, we obtain the following results:

Theorem 3 The procedure Minimal-Witness determines the minimal witness in time O(nm +
Number of nonsaturating pushes).

Theorem 4 The algorithm Minimal-Witness with highest level pushing runs in time O(n? - m%5).
Theorem 5 The algorithm Minimal- Witness with FIFO pushing runs in time O(n®).

Theorem 6 The dynamic trees implementation as described in Goldberg and Tarjan [8] requires
O(nm - log(n?/m)) steps.

Proof: Since the transfer of nodes between D and W is not the bottleneck operation (and this is
the only difference from the analysis presented by Goldberg and Tarjan [8]), the algorithm Minimal-
Witness runs in time O(nm - log(n?/m)). We refer the reader to refer to [8] for additional details.
O

7 Conclusion

We have shown that the problem of determining a minimum cardinality witness is NP-hard. In
addition, we have shown that the problem of determining a minimal witness can be solved as a
sequence of n maximum flow problems, and that the total running time of these n problems is
O(nm log n2/m), which is comparable to the time to solve a single maximum flow problem.
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The primary contribution of this paper has been theoretical, that is, the improved worst case
running time for finding a minimal witness. Nevertheless, we are optimistic that the algorithm
would perform well in practice. Perhaps the algorithm of this paper could be a core component of a
system that permitted users to explore different witnesses, with the user specifying certain subsets
to be included in or excluded from the witness.

The issue of identifying minimal witnesses also raises questions concerning the interpretation
of the witness in the context of the model and the correction of the infeasibilities. Here we only
raise the issue since it is well beyond the scope of this paper. Greenberg [1993], who uses the word
"isolation” rather than ”witness,” writes: ”An isolation is a portion of the linear program obtained
in some purposeful way to contain a probable cause. A diagnosis [of the infeasibility | additionally
requires an explanation of an isolation, which can require complex reasoning.” We refer the reader
to Greenberg [1993] for further discussion on the use of witnesses in diagnoses.
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