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This paper develops a new model for studying requirements planning in
multi-stage production-inventory systems. We first characterize how most
industrial planning systems work, and then develop a mathematical model to
capture some of the key dynamics in the planning process. Our approach is to
use a model for a single production stage as a building block for modeling a
network of stages. We show how to analyze the single-stage model to determine
the production smoothness and stability for a production stage, and the
inventory requirements. We also show how to optimize the tradeoff between
production capacity and inventory for a single stage. We then can model the
multi-stage supply chain, using the single stage as a building block. We illustrate
the multi-stage model with an industrial application and conclude with some
thoughts on a research agenda.

1. Introduction

Most discrete-parts manufacturing firms plan their production with MRP

(materials requirements planning) systems, or at least, with logic based on the

underlying assumptions of MRP. A typical planning system starts with a multi-

period forecast of demand for each finished good or end item. The planning

system then develops a production plan (or master schedule) for each end item

to meet the demand forecast. These production plans for the end items, after

offsetting for lead times, then act as the requirement forecasts for the components

needed to produce the end items. The requirements forecast for each component

gets translated into production plans for the component, similar to how the

production plan for the end items was created. The planning system continues in
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this way developing requirement forecasts and production plans for each level of

the bill of materials.

Implicit in this planning process are assumptions about the production

and demand process. The production plan is developed assuming that the

forecast is accurate and will not change. Within the production process,

requirements are generated assuming that there are deterministic production

lead times and deterministic yields. Needless to say, these assumptions of a

benevolent world don't match reality. Inevitably, the forecast changes and

uncertainties in the production process arise that result in deviations from the

plan. To respond to these changes, most planning systems will completely revise

their plan after some time period, say a week or a month. Again, the planning

process starts with the (new) forecast and repeats the steps necessary to

regenerate a plan for each level in the products' bills of materials.

The intent of this paper is to present a model that captures the basic flavor

of this planning process, and does so in such a way that it can be used to look at

various tradeoffs within the production and planning systems. In particular, we

model the forecasts for the planning system as a stochastic process; in this way

we try to represent a dynamic input to the planning system, namely how

forecasts change and evolve over time. The forecast process is the key exogenous

input for the model. The other key is how the forecasts get converted into

production plans or master schedules. We model this process as a linear system,

with which we can represent the logic for MRP systems and from which we get

significant analytical tractability. Finally, the model is structured so that it can

describe multi-stage production-inventory systems.

We are not aware of very much work that is directly related to the

dynamic modeling of requirements planning. Baker (1993) provides a nice

survey and critique of the literature relevant to the general topic of requirements
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planning. However, most of the work deals with specific issues like lot sizing, or

determination of buffer levels. Karmarkar (1993) discusses tactical issues of lot

sizing, order release and lead times in the context of dynamic planning systems.

But neither of these papers reports on work that attempts to model a dynamic

forecast process. One exception is Graves, Meal et al. (1986) in which we

modeled a two-stage production-inventory system with a dynamic forecast

process. In contrast with the present paper, Graves, Meal et al. (1986) focused on

issues of how to disaggregate an aggregate plan in the two-stage context.

Although the present paper does not consider the disaggregation issue, it does

provide a more powerful model that is applicable to general multi-stage systems.

The model for converting the forecast into a production plan is related to

earlier work by the first co-author in that it uses linear systems for a production-

inventory context. See Graves 1986; 1988a, 1988b, 1988c, and Fine and Graves,

1989.

There are four more sections to this paper. In the next section we develop

the model for a single production-inventory stage. As part of the development,

we present our model for the forecast process, and develop the analyses to

generate three performance measures for the stage: production smoothness,

production stability, and inventory requirements. In the third section we

examine an optimization for the tradeoff between production capacity and

inventory for a single stage. Although the development is somewhat involved,

the final results are surprisingly simple and we believe, of interest. We report on

an application of the model to a supply-chain study in the fourth section. The

application demonstrates the value of a system-wide perspective for optimizing

the supply chain. In the final section we briefly summarize the paper and then

lay out a research agenda for enhancing this thrust, namely modeling dynamic

requirements planning.
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2. Single-Stage Model

In this section we present the model for a single production stage that

produces one (aggregate) product and that serves demand from a finished good

inventory. The single-stage model serves as a building block for creating models

of multi-stage, multi-item systems. We first describe the forecast process that

generates the demand requirements for the product. We then give a model for

determining the schedule for production outputs from the production stage and

show how to manipulate this model to obtain three measures of interest: the

production variance as a measure of production smoothing; the inventory

variance as a measure of safety stock; and the stability of the production

schedule as a measure for the forecast process passed on to any upstream stages.

Forecast Process

We assume that in each period t we have a requirements forecast, where

ft(t+i) is the forecast made at time t for the requirements in period t+i, i = 1, 2, ...

H, and H is the forecast horizon. At time t, we have no forecast of demand

beyond time t+H; in effect, for i > H we assume that ft(t+i) = , where u equals

the long-run average demand rate. We denote the demand observed in period t

by ft(t); that is, the forecast made in period t for requirements in period t is

synonomous with the realized demand.

We assume a forecast process in which we generate a new set of forecasts

ft(t+i) each period; we model the forecast process for requirements as a

martingale process. The updates of the forecasts from period to period are

generated by the forecast revision, Aft(t+i), defined by

(1) Aft(t+i) = ft(t+i) - ft_l(t+i) for i = 0, 1, ... H,
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where ftl(t+H) = / by assumption. We assume that for a fixed index i, Aft(t+i) is

an i.i.d. random variable over time t with zero mean.

Thus, in the current period we have a forecast for each time period (e. g.,

month or week) in our planning horizon. We assume that in the next period we

will completely revise the forecast. However, we expect the revision to have zero

mean and to be independent from period to period.

The vector for the revisions to the forecast process is given by Aft, where

Aft(t+i) is the i+l s t element, i = 0, 1, 2, ... H. By assumption, Aft is an i.i.d. random

vector with E[ Aft] = 0 and Var[Af t] = X, the covariance matrix. We note that if

we can observe the forecast process, then we can assess whether or not the

forecasts are unbiased (i.e., E[Aft] = 0) with independent revisions, and can

estimate the covariance matrix E.

The i-period forecast error is the difference between the actual demand in

period t and the forecast of this demand made i periods earlier:

ft(t) - ft-i(t) = Aft(t) + Aft-l(t) + -"' + Aft-i+l(t)

Since Afs(t) for s = t-i+l, ... t, are independent random variables, each with zero

mean, the i-period forecast, fti(t), is unbiased and the forecast of a particular

requirement will improve (in terms of a smaller variance of the forecast error)

over time. That is, the variance of the i-period forecast error, ft(t) - ft i(t), is

smaller than the variance of the (i+l)-period forecast error, ft(t) - fti_(t). We note

that the variance of the H-period forecast error is the trace of the covariance

matrix S.

Schedule for Production Outputs

Given the forecast vector for period t, we need to convert it into a schedule

or plan for production. This is often termed the master schedule. We focus on
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production outputs from the production stage; later we will discuss how to

translate a plan for production outputs into production starts. Production starts

will be of interest since they serve as the requirements forecast for the next

upstream production stage.

Let Ft(t+i) equal the planned production outputs for period t+i as of period t,

where Ft(t) is the actual production completed in period t. We assume that the

production plan extends out only for the next H periods, and that beyond this

horizon, the plan is just to produce the average demand, that is, Ft(t+i) = u for i >

H.

Each period, after we obtain the new forecast, we update or revise the

plan for production outputs. We define AFt(t+i) as the plan revision:

AFt(t+i) = Ft(t+i) - Ftl(t+i).

From this definition and the fact that Ft(t+i) = / for i > H, we see that

(2) Ft(t+i) = + AFt+iH(t+i) + ... + AFt(t+i) for i = 0, 1, ... H.

Thus, to model the production plan, we need to model the plan revision

AFt(t+i). To do this, we first define the inventory process. For I t being the

inventory at time t, the inventory balance equation is

(3) It = It_1 + Ft(t)- ft(t).

The planned inventory at time t+i is the expected level of inventory in a future

period given the current forecast and the current production plan as of time t:

(4) It(t+i) = It + Ft(t+l) + -- + Ft(t+i) - ft(t+l) - ft(t+i).

We assume that for each time t, we set the production plan Ft(t+i), i = 0, 1,

... H, so that the planned inventory at the end of the planning horizon, It(t+H), is
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a given constant. That is, we will set the production plan and maintain it from

period to period so that the end-of-horizon inventory neither grows nor

decreases, but remains constant. We term the level to which the inventory is

targeted as the safety stock. In a later section we will discuss how to set this level;

for now, all we need to know is that this level remains constant.

From (3) and (4), we obtain by equating It,(t-1+H) and It(t+H) that

(5) AFt(t) +AFt(t+l) + ..- + AFt(t+H) = Aft(t) + Aft(t+1) + ..- + Aft(t+H).

That is, to assure that the end-of-horizon inventory remains constant, we require

that the cumulative revision to the production plan should equal the cumulative

forecast revision in each period.

Each period we revise the production schedule to ensure (5). To do this,

we model the schedule update as a linear system:

H
(6) AFt(t+i) = wij Aft(t+j) for i = 0, 1, ... H.

j=o

where wij denotes how the forecast revision affects the schedule. In particular,

wij is the proportion of the forecast revision for period t+j that is added to the

schedule of production outputs for period t+i.

We expect that 0 < wij < 1; to ensure that (5) is true, we require that for

each j:
H

wij = 1.
i=O

We will refer to wij as a weight or proportion. In general, these weights are

smoothing parameters. To smooth production we will see that we set the

weights wij for a fixed j to be as nearly constant as possible (e.g., wij = 1/(H+1) for

i = 0, 1, ... H); to minimize inventory, we set the weights so that the production
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plan tracks the forecast as closely as possible (e.g., for fixed j, wij = 1 for i = j and

wij = 0 otherwise). The specification of the weights permits one to balance the

tradeoff between production smoothing and inventory requirements, as will be

seen.

We can use (6) to model how most implementations of MRP systems

translate forecast revisions into schedule revisions. For instance, in the simplest

case at time t the schedule is frozen for periods t+j, j = 0, 1, 2 ... k for some value

of k < H, and is totally free to change for periods t+j, j = k+1, ... H. Then any

revision to the forecast within the frozen zone results in a schedule revision for

the first period beyond the frozen zone; that is, for 0 < j < k, wij = 0 for i • k+1

and wij = 1 for i = k+1. Any revision to the forecast beyond the frozen zone

results in a one-for-one schedule revision in the same period: for k+1 < j < H,

wij = 1 for i = j and wij = 0 otherwise. Occasionally there is an intermediate zone,

between the frozen and free zones, in which changes to the schedule are

permitted but are restricted in size, e.g., no more than 10% increase or decrease in

the scheduled amount. The model given by (6) cannot exactly capture this

policy, but can approximate its behavior by using fractional weights.

In matrix notation, we can rewrite (6) as

(7) AFt =W Aft

where W = { wij } is an (H + 1) x (H + 1) matrix, and AFt and Aft are column

vectors with elements AFt(t+i) and Aft(t+i), for i = 0, 1, ... H. From this, we

observe that AFt is an independent random vector, has zero mean, and has a

covariance matrix W l W'. (This observation is important since from AFt we

obtain directly the forecast revision for the upstream production stage.)

We can express the production plan in matrix notation by

(8) Ft = B t_ + UH+ 1 + AF t
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where Ft(t+i) is the i+l s t element of the vector F t for i = 0, 1,... H, UH+1 is a unit

vector with u i = 0 for i = 1,... H and uH+l = 1, and B is a matrix with elements bij

= 1 for j = i+1 and bij = 0 else. Premultiplying a column vector by B replaces the

ith element in the vector with the i+l s t element and replaces the last element with

a zero.

From (7) and (8) and repeated substitution, we obtain

(9) Ft =BFt. + UH+1 + WAft
H

=BH+lFt-H-1 + A + B WAfti,
i=O

where / is the vector with each element equal to #u. We can simplify (9) by noting

that premultiplying an (H + 1) x 1 vector by BH+ 1 gives the null vector:

H
(10) Ft = + E B i WAft i .

i=O

Production Starts

We have described a model for setting production outputs for a single

stage based on a dynamic forecast process of the requirements for that stage. We

need to relate this to the production inputs or starts for the production stage.

Production starts are critical for planning in a multi-stage system in that the

production starts for one stage will determine the demand or requirements for

other (upstream) stages that supply the raw inputs.

Suppose the production stage has a fixed and known lead time:

production started in period t completes production and is available to meet

demand in period t + L, where L is the lead time. We assume for now that there

is no yield variability, so that production outputs equal production starts. For a

fixed lead time L, we expect AFt(t+i) to equal zero for i < L, since the quantity
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Ft(t+i) was started at time t+i-L and we presume that it cannot be stopped or

altered once it is in the production stage. This implies that, for a fixed lead time

of L, wij = 0 for i < L for all j.

We define Gt(t+i) to be the planned production starts in period t+i, as of

period t. If we assume a fixed lead time L, the output in period t+L+i is the input

or production starts in period t+i, namely Gt(t+i) = Ft(t + L + i). Hence, the

description and characterization of Ft(t+i) provides a complete description and

characterization for Gt(t+i), once we offset the output plan to reflect the lead

time.

From the prior analysis, we see that the revision of the plan for the

production starts, AGt(t+i) = Gt(t+i) - Gt_ (t+i), is an i.i.d. random variable. This

is important since G t = {Gt(t+i)} is the forecast of requirements for upstream

stages over some horizon (suitably scaled to reflect "goes into" relationships and

expected yield factors). The fact that AG t is an i.i.d. random vector implies that the

previous analysis, which assumed a dynamic forecast process ft with i.i.d. revisions, can

be applied directly to the upstream stages which see derived demand. Thus, the model of

a single stage will give a building block to analyze a system of interrelated production

stages.

Although the case of fixed lead times seems most natural, the model can

also be adapted to other cases. To preserve the above highlighted property, we

just need to be able to model the relationship between the plan for the production

starts and the output plan as a linear system; that is, for some matrix A, we can

write G t = A Ft. If we can relate the starts to the outputs in this way, then AGt

remains an i.i.d. random vector and the prior analysis can be reapplied using G t

as the forecast process for the upstream stages.

For instance, we might use the matrix A to model yield factors within the

production stage (need to start 1.2 units to get output 1.0), or to model the fact
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that production starts occur on a different time scale (biweekly rather than

weekly) from the production outputs. Also, we might want to model other

policies for setting production starts. For example, we can set A to model a

constant work-in-process policy where production starts for the period exactly

equal production outputs. Indeed, in this way, for general multi-stage systems,

we can use this general approach to compare push policies, where starts equal

planned output L periods from now, with pull policies, where starts "replace" the

outputs produced in the current period.

Measures of Interest

There are three categories of measures for the single-stage model: the

smoothness of the production outputs, the safety stock for the end-item inventory,

and the stability of the production plan.

The smoothness of the production outputs is of interest because more

variable (less smooth) production is expected to require more production

resources or capacity. Furthermore, we can influence the smoothness of

production via our inventory and control policies.

An output of the model is the variability of the inventory process, which

will dictate how much safety stock is needed to ensure an acceptable service level;

if the inventory process is more variable, more safety stock will be needed.

The stability of the production plan, particularly the production starts, is of

interest since the plan for production starts acts as the forecast for upstream

stages. We will, in effect, equate the stability of the production plan to the

accuracy of the forecast process for the upstream stages. More stablility means a

more accurate forecast process. This measure is critical as we try to understand

the workings of a multi-stage system since the inventory requirements and the
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variability of the production outputs for a stage will depend heavily on the

accuracy of the forecast process.

We first develop the measures for production smoothing and for the

stability of the production plan. We will need a more extensive development to

obtain the variability of the inventory process in order to set the safety stock.

Production Smoothing

A common measure of production smoothing is the variance of the

production output, Var[ Ft(t) . From (10) we see immediately that the random

vector F t has mean , and has a covariance matrix given by

H
(11) Var(Ft) = BBiWZ W'B 'i .

i=O

We can use the covariance matrix to obtain the first measure of the production

smoothing, Var[ Ft(t) ]. Indeed, one can show that

(12) Var [ Ft(t) ] = tr (W W')

where tr(A) is the trace of matrix A.

A second measure of production smoothing is given by Ft(t) - Ft l(t-1), the

change in-production outputs from one period to the next. In matrix notation we

see from (9) that

F t - Ft-1= UH+1 + W Af - [I - Bt

where I is the identity matrix. Since Aft and Ftl are independent of each other,

we find that the covariance matrix for Ft - Ft_1 is given by

H
(13) Var(Ft - Ft.1) = W1W + [I - B] Bi WZ B 'i [I - B]'

i=o
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= (I - B) Var(Et) + Var(Ft) (I - B)'

From this covariance matrix, we can determine the second measure of

production smoothing, namely Var[ Ft(t) - Ftl(t-1) ].

Production Stability

For the stability of the production plan, we use AFt: the random vector

for the one-period revision to the production plan, which is the basis for the

revision to the forecast of requirements for upstream stages. (The production

starts, as described earlier, would generate the actual forecast seen by the

upstream stages; but since the starts are usually just the production plan offset

by the lead time, we can use the revision to the production plan for defining

stability.) From (7) we obtain its expectation and covariance matrix:

E(AFt ) =Q

(14) Var(F t ) = W W'.

We propose the covariance matrix W I W' as a measure of the stability of the

production plan. A more stable production plan will have a smaller covariance

matrix, and will yield more accurate forecasts for the upstream stages. When

analyzing the upstream stages, the dynamics of the requirements depend upon

this covariance matrix; in this sense, for the upstream stages, the covariance

matrix in (14) is analogous to ; for the downstream stage, namely it is the

covariance matrix for the relevant requirements forecast process.

One measure of the size of a covariance matrix is its trace. We note that

with this interpretation the tr(W X W') signifies not only the stability of the

production plan but also the variance of the requirements forecast for the

upstream stages over the planning horizon. Furthermore, we see that, according

to the proposed measures (12) and (14), smoothing production is essentially

13



equivalent to stabilizing the production plan and requirements forecast for the

upstream stages.

Inventory

We focus on the end-item inventory for the single stage. We assume that

the requirements for the single stage are to be met from the end-item inventory

and that typical service expectations apply, e.g., the inventory should stock out in

no more than 2% of the periods or that the inventory should provide a 97% fill

rate. In (3) we have defined the end-item inventory as It . The measure of

inventory is the expectation of I t, which we will show to be equal to the end-of-

horizon inventory level; we term this level to be the safety stock. To determine

this measure, we first need to evaluate Var(It), since this quantity will determine

the safety stock required to achieve a prespecified service level. For instance, if

the forecast errors are normally distributed, then we can show that I t has a

normal distribution with expectation E(It) and variance Var(It). To achieve a

desired service level expressed as the stockout probability, we need to set the

safety stock level so that

(15) E(I t) > k o(It)

where k is such to ensure the service level and o() denotes the standard

deviation.

Recall that in (4), we defined It(t+i) to be the planned inventory level in

period t+i as of time t; that is, It(t+i) is the expected inventory in period t+i

where the expectation is as of period t. For notational convenience, It(t) denotes

the actual inventory in period t, i.e., It(t) is the same as It . As stated in the earlier

development of (5), we assume that the end-of-horizon inventory It(t+H) is

targeted to equal some constant, which we call the safety stock and denote by ss.
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The inventory flow equation for the planned inventory is

(16) It(t+i) = It(t) + Ft(t+l) + --. + Ft(t+i) - ft(t+l)- .... - ft(t+i).

Define AIt(t+i) = (t+i) - It_ (t+i). From (3) and (16), we find that

AIt(t+i) = AFt(t) + ... + AFt(t+i) - Aft(t) - - Aft(t+i)

for i = 0, 1, ... H-1. By assumption, since we keep the inventory constant at ss

beyond the horizon, we have

AIt(t+H) = It(t+H) - It_l(t+H) = ss - ss = 0.

In matrix notation, let I t be an (H+1) x 1 column vector with It(t+i) as its

i+ls t element. Then

AIt = T[ AFt - Aft]

where T is a matrix with element tij = 1 for i >= j and tij = 0 else.

write the inventory random vector as

(17) I t = T[AFt

We can now

- Af t ] + B It 1 + SSUH+1

where we use the fact that Itl(t+H) = ss. We can simplify (17) by repeated

substitution, by substitution of (7) and by noting that premultiplication of an (H

+ 1) x 1 vector by BH+1 gives the null vector:

H

(18) It = B T [W - I] Aft- i + ss
i=O

where ss denotes the column vector with each element equal to ss. From (18) we

see that the random vector I t has mean equal to the , and has a covariance

matrix given by
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H
(19) Var(It) = , Bi T [W- I] [W- I]' T' B'i .

i=O

We can use (19) to find Var[ It(t)], which is necessary to determine how to

set the safety stock level ss. From (19), we can show with some effort that

H k k
(20) Var[ It(t)] = tr(T [ W - I ] [ W- I 'T') = aij

k=O i=O j=O
where

A = {aij} = [W-I ] [W- I ]'.

Now from (15) we set the safety stock by ss = k a[ It(t)], where o[It(t)] is obtained

from (20) and k is such to provide the desired service level from the inventory.

Summary

We have developed in this section a single-stage model of requirements

planning. The primary input to the model is the specification of the forecast

process. The model determines how to satisfy the demand requirements by

production and inventory planning. The model permits some control via the

setting of the weight matrix W, which indicates how the production plan is

revised to accomodate revisions to the forecast. Three types of measures for the

model have been identified and characterized. We obtain the smoothness of

production from (12), the stability of the production plan from (14) and a

measure of the end-item inventory requirements from (20).

The model has been developed to extend directly to a general acyclic

network of multiple stages. If the stage under study is a downstream stage that

passes component requirements to one or more upstream stages, then the

upstream stage(s) will have a forecast process with covariance matrix given by
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(14). With this observation, the analysis presented here can be replicated directly

to the upstream stage(s) and so on. For this extension to multiple stages, we need

to assume that an upstream stage never starves a downstream stage, i. e., there is

always adequate (raw material) inventory for a stage to make its production

starts. This is an approximation which is likely to be reasonable if each stage

operates with an inventory policy in which stockouts are rare.
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3. Optimal Weights For Single-Stage Model

For a single stage it is natural to wonder how to choose the weights in (6)

that determine how a forecast revision is converted into a revision of the

production plan. To gain some insight into this question, we pose and solve an

optimization problem for choosing the weights. The tradeoff between

production smoothing in the stage and the end-item inventory requirements

should govern the choice of weights. This tradeoff is the basis for stating the

optimization problem:

(21) MIN [ Ft(t) ]

subject to

c [It(t)] <K

H

wij 1 Vj.
i=O

The optimization problem minimizes production smoothing, as given by

the standard deviation of the production output, subject to a constraint on the

standard deviation of the inventory and the requirement that the weights sum to

one. We can interpret the objective as minimizing production capacity; we can

view the nominal capacity required at the stage as being the expected production

requirements plus some number of standard deviations (see Graves (1988a) for

further discussion of this viewpoint). The constraint on the standard deviation of

the inventory is effectively a constraint on the amount of safety stock required;

the safety stock is likely to be some multiple of a [ It(t) , depending on the

service expectations. An alternative formulation would be to minimize the

standard deviation of the inventory, equivalently minimize the safety stock,

subject to a constraint on the standard deviation of the production output.
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There are no restrictions in the optimization on the weights, other than the

convexity constraint. We have not imposed any non-negativity constraints nor

any restrictions on the weights due to a fixed production lead time. That is, in

the optimization we ignore the requirement that for a fixed lead time of L, wij = 0

for i < L for all j. Rather, we allow the weights to be totally free; in this sense, the

optimization will produce a lower bound for the case with fixed lead times.

To develop some insights on the optimal weights, we will transform the

original optimization problem (21) into an equivalent form by restating it in

terms of the variances of the production and inventory variables:

(21a) MIN Var [ Ft(t) ]

subject to

Var [ It(t) < K2

H
wij = 1 Vj.

i=O

To analyze this equivalent problem, we consider the Lagrangian relaxation:

(21b) L) = MIN Var [ Ft(t) ] + Var [ It(t)] - XK2

subject to

H

Ewij = 1 j.
i=O

By solving this problem over a range of positive values for the Lagrange

multiplier X, we can find the tradeoff surface between production smoothing and

inventory requirements for a single stage. We will also obtain some intuition for

the form of the optimal weighting function.
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In the remainder of this section, we will focus on solving (21b). To solve

(21a), and equivalently (21), we would need to search over X until the solution to

(21b) satisfies the relaxed constraint.

We consider the case when the covariance matrix for the forecast revision

process is diagonal. That is, we assume that the forecast revisions are

uncorrelated, and Var[Af t] = Z = (ai2}, where oi2 = Var[Aft(t+i)] is the i+ls t

element on the diagonal, i = 0, ... H.

For this case, we can simplify (12) and (20) to be

H H 2
(12*) Var[Ft(t)] = E (wij j)2

i=0 j=O
and

(20*) Var[It(t)] = E E (bij j)2
i=o j=o

where

(22) bij = Wlj + -- + wij for i < j

= Wlj + . + ij - 1 for i > j.

By substituting (12*) and (20*) into (21b), we observe that the

minimization problem separates into H+1 subproblems, one for each period j:

H
(21c) L(),) = E Lj(,) - K2

j=0

where

(23) Lj(,X) = MIN Z (wij j) + AE (bij j)2

i=O i=O
subject to

H

ij 1.
i=O
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We now characterize the solution to Lj(X) with a series of propositions.

P1 2Pi The optimal weights in (23) are independent of j2.

Each term in the objective function of Lj(X) in (23) is proportional to cj2 ,

which can then be factored out. Thus, we can determine the optimal weights in the

Lagrangian (21b) without knowing the covariance matrix for the forecast revision. We

only need to know that the covariance matrix is diagonal. However, to solve the

original problem, (21) or (21a), does require knowledge of the covariances to

ensure satisfaction of the inventory constraint. Nevertheless, the determination

of the optimal weights for the Lagrangian provides general insight into the

character of the optimal solution to (21).

In the subsequent development we will focus on a single subproblem Lj(X)

for some index j.

The Kuhn-Tucker conditions for (23) consist of the convexity constraint

over the weights, plus the following set of equations:

H

(24) wij + A,(wOj + - + Wkj - ukj) = Y fori=0,... H
k=i

where Ukj =1 if k >= j , kj = 0 if k < j, and y is the (scaled) dual variable for the

single convexity constraint in (23). Since (23) is a convex program, the Kuhn-

Tucker conditions are both sufficient and necessary, and identify a unique

solution.

To find the solution, we equate (24) for i-i and i to obtain

(25) Wij = Wi + oj + + Wi-l,j - U i-,i) for i = 1, ... H.

We can construct a solution to (24) by selecting a value for w0j and repeatedly

applying (25). To satisfy the convexity constraint, we could search over values
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for w0j. Alternatively, we describe in the next two propositions how to find wj

analytically.

P2 For a given value of X, the solution to (25) for wij is a linear function of w0j
given by

(26a) wij = Pi(k) w0j

(26b) wij = Pi( w0j - Rij(X)

for i = 0, 2 ... j,

for i = j+1, 2 ... H,

where Pi(X) is a polynomial in X of degree i, and Rij(0) is a polynomial in X of

degree i-j. In particular, we can show by induction that for n = 0, 1, ... H

P (n (n + i)! Ai
P= (2i)! (n-i)!

and that for n = 1, 2, ... H-j

n (n+i-1)! i
P3 The optimal (2 i (ngiven bi)

P3 The optimal choice for w0j that solves (23) is given by

woj =

H
1 + Ri-j(X)

i=j+l
H

i=O

- PH-j(A)

EPi(A)
i=O

which simplifies to

(H-j+i)!H-j

Woj = i=O

i=O

(2i)!(H- j- i)!

(H+i- 1)! Xi
(2i + 1)!(H - i)!
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Proof of P3: From proposition P2, we can rewrite the convexity constraint as

follows:

H H H
1 I ij = Pi( ' ) w 0 j - Ri-j().

i=O i=O i=j+l

We can now use this to express w0j in terms of Pi(x) and Ri(X), as given in the

proposition. We simplify the expression for w0j by substituting the following for

Ri(X):

E Ri() = (2i)! (n-i)!- ,
i=l

which is found by an induction argument. Similarly, we can simplify (27) by

noting that

i ) = E (2i+1)! (n-i)! 

Having found the optimal choice of w0j, we obtain the remaining weights

by iteratively solving (25). We see immediately from P3 that for positive X, Woj is

positive; we can similarly show that wHj is positive. From these facts, we can

obtain the following proposition by examining the first differences for the

optimal weights.

P4 The optimal weights wij are positive, increasing and strictly convex over

the range i = 0, 1, ... j. The optimal weights wij are positive, decreasing and

strictly convex over the range i = j, j+l, ... H. For the optimal set of weights, the

largest weight is Wjj.

23



P5 The matrix of optimal weights is symmetric about the off-diagonal. That

is, Wij = WH.j, H-i-

Proof of P5: This can be shown by substitution of (27) into (26).

P6 The optimal weights are such that wij = WH.i, H-j.

Proof of P6: Since the optimal weights satisfy the convexity constraint, we can

substitute the convexity constraint into (25) and rewrite, after some

rearrangement, as

(28) wi=,j =wij +(wij+ + +Hj-(1-u i-l )) for i = 1,...

From (28), by a similar development as used to find (26), we

weights as linear functions of WHj:

(29a) wij = PH-i() WHj

(29b) wij = PH-i() WHj- Rji()

H.

can express the

for i = j, ... H,

for i= 0, 1, ... j-1.

In order for the weights to sum to one, we then find that

(30)
Pj(;L)

WHj = H

XPi(A)
i=O

From (29) and (30), we establish the result.

P7 The matrix of optimal weights is symmetric about the diagonal. That is,

Wij = Wji.
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Proof of P7: This follows immediately from P5 and P6.

Figure 1 shows the form of the optimal weights for various values of j for

X = 1 and H=12. Table 1 gives the actual values for the optimal weights. From

the table we observe that the matrix of optimal weights is symmetric about both

diagonals, as stated in the propositions above. Furthermore, for a fixed index j,

the weights increase geometrically to a maximum at wjj, and then decay

geometrically over the rest of the column.

Figures 2 and 3 show the form of the optimal weights for X = 4 and X =

0.25 at H = 12. Intuitively, we would expect that as X increases to oo, Wjj goes to 1

and Wij goes to 0 for i j (no production smoothing), and as X decreases to 0, wij

goes to 1/(H+l) (maximum production smoothing). At X = 4 and X = 0.25 we

already begin to observe this behavior.

P8 The optimal objective value for the Lagrangian function in (23) is given by:

Lj(X) = wjj j2 for j = 0, 1, ... H.

Our proof of P8 involves quite a bit of unattractive and non-intuitive

algebra; see Kletter (1994) for the details. The basic structure of the proof is as

follows: we rewrite the righthand side of (23) strictly in terms of w 0o and X for a

given j by repeatedly applying (26) and factoring out aj2. We then show that this

expression equals wjj, where wjj is also expressed in terms of W0j and X. This is

achieved by replacing w 0j with the expression given in (27), expressing all terms

as polynomials in X and then manipulating the binomial coefficients until they

are shown to be equal.

The value of P8 is that it provides a relatively quick way to evaluate the

objective function of the Lagrangians, namely (21b) and (23). Also, we show next
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how to get a good approximation of wjj, which will then yield an analytic

expression for the objective function of the Lagrangian.

Suppose we define the first difference Awij = wij -Wil,j; we can use (25) to

express Awij by:

Awi = Awi-lj + .wi-lj for i = 1, 2, ... H and i j+1

Awj+1 j = Awjj + wjjii - .

To get an approximate solution to these first difference equations, suppose

we look at a limiting case where we allow both H and j to grow. In effect, we let

the range be i = ... -2, -1, 0, 1, 2, ... , except for i = j + 1. Then in the limit, the

solution to these difference equations is

(31) Wj+k,j=wjk,j = [ (1 /(l + a) ]k fork=0, 1,2,...

where a = I / (A + 4).

Furthermore, this solution satisfies the convexity constraint over the

weights. From (31) we see that in the limit,

* the optimal weights are symmetric about wjj;

* the optimal weights decline geometrically on either side of wjj;

· the value of the maximum weight wjj is independent of j; and

* the maximum weight wjj is a simple monotonic function of X, that

approaches 1 as ) increases.

We can see from Figure 1 and Table 1 that for X = 1, the optimal weights already

begin to approach the limit at H = 12. In particular, we observe that except at the

end points j = O and j = H, wjj- c = A /( + 4) = T - 0.4472 and Wj+l j = wj

1 = a [ ( - a) / (1 + a) 0.1708.
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The limit provides a simple approximation to the objective function of the

Lagrangian relaxation. Using PS and (31), we find that for large values of H we

can approximate (21b) by

L(X) = MIN Var [ Ft(t) + ,Var [ It(t) ] - XK2

tr( ) / (+ 4) - K 2 .

This simplification is helpful for finding the value of X that maximizes the

Lagrangian, and thus solves the original optimization problem (21). It can also

be helpful in exploring how to set the weights in a multi-stage system.

We end this section with an interesting and perhaps useful result.

P9 The optimal weight matrix is the inverse of a tridiagonal matrix A, with

a00 = aHH = ( + 1)/X, a 01 = a 10 = aH,Hl = aHl,H = -1/k, and with (ai, i- 1, aii,

ai,i+l) given by ( -1/A, ( + 2)/A, -1/X ) for i = 1, 2, ... H-1.

P9 can be proved by construction through a series of careful matrix

operations; see Kletter (1994) for details. Our proof simply shows that inverting

the matrix A gives W, as specified in (29). This is accomplished by first factoring

A into LDL', where L is bidiagonal since A is symmetric and tridiagonal, and

then inverting to obtain (LDL'Y)' = (L')-1 D -1 L-1 . Since the diagonal matrix D and

the bidiagonal matrix L are both easily inverted, we then compute the product

and simplify to show that aj = wij for all i and j.

One significance of P9 is that it makes the computation of the optimal weight

matrix even easier.
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Table 1. Optimal weights for X = 1, H = 12
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i

6
0
1
2
3
4
5
6
7
8
9

10
11
12

0.6180 0.2361 0.0902 0.0344 0.0132 0.0050 0.0019
0.2361 0.4721 0.1803 0.0689 0.0263 0.0101 0.0038
0.0902 0.1803 0.4508 0.1722 0.0658 0.0251 0.0096
0.0344 0.0689 0.1722 0.4477 0.1710 0.0653 0.0250
0.0132 0.0263 0.0658 0.1710 0.4473 0.1709 0.0653
0.0050 0.0101 0.0251 0.0653 0.1709 0.4472 0.1708
0.0019 0.0038 0.0096 0.0250 0.0653 0.1708 0.4472
0.0007 0.0015 0.0037 0.0095 0.0249 0.0653 0.1708
0.0003 0.0006 0.0014 0.0036 0.0095 0.0249 0.0653

l.1E-04 0.0002 0.0005 0.0014 0.0036 0.0095 0.0250
4.1E-05 8.2E-05 0.0002 0.0005 0.0014 0.0037 0.0096
1.6E-05 3.3E-05 8.2E-05 0.0002 0.0006 0.0015 0.0038
8.2E-06 1.6E-05 4.1E-05 1.lE-04 0.0003 0.0007 0.0019

0

0
1
2
3
4
5
6
7
8
9

10
11
12

12

i

0.0007 0.0003 l.lE-04 4.1E-05 1.6E-05 8.2E-06
0.0015 0.0006 0.0002 8.2E-05 3.3E-05 1.6E-05
0.0037 0.0014 0.0005 0.0002 8.2E-05 4.1E-05
0.0095 0.0036 0.0014 0.0005 0.0002 1.1E-04
0.0249 0.0095 0.0036 0.0014 0.0006 0.0003
0.0653 0.0249 0.0095 0.0037 0.0015 0.0007
0.1708 0.0653 0.0250 0.0096 0.0038 0.0019
0.4472 0.1709 0.0653 0.0251 0.0101 0.0050
0.1709 0.4473 0.1710 0.0658 0.0263 0.0132
0.0653 0.1710 0.4477 0.1722 0.0689 0.0344
0.0251 0.0658 0.1722 0.4508 0.1803 0.0902
0.0101 0.0263 0.0689 0.1803 0.4721 0.2361
0.0050 0.0132 0.0344 0.0902 0.2361 0.6180



4. Case Study

In this section we describe an industrial application of the Dynamic

Requirements Planning (DRP) model from a thesis internship performed by one

coauthor (Hetzel) at the Eastman Kodak Company. The internship was

conducted as part of MIT's Leaders for Manufacturing Program and ran from

June 1992 to December 1992. See Hetzel (1993) for more details on the

application.

The general charge for the thesis was to investigate cycle time reduction

within the context of the film manufacturing processes at Kodak. As part of the

internship Hetzel joined an internal supply chain optimization team that was

investigating opportunities for better coordination over a specific supply chain,

including issues of cycle time and inventory reduction. One open issue facing

the team was that of strategic inventory placement: how much inventory was

needed, and where should it be placed across a multi-stage supply chain. Hetzel

identified this as an opportunity to apply the DRP model, and the team agreed

that it was an appropriate tool for their task of strategic inventory placement.

The goal of the supply chain analysis was to determine the optimal safety

stock levels between each stage in the film making supply chain. The underlying

concept is that looking at one stage of the supply chain in isolation is inherently

sub-optimal. The production speed and quantity of each stage impacts upstream

suppliers and downstream customers. All the stages in the supply chain are

interconnected by information flows. In short, the inventory and production

policies that are best for one stage may not be optimal for the supply chain as a

whole.

In the case study, the team was able to address this situation by using the

DRP model to consider all stages in the supply chain. Their recommendations
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challenged the conventional targets and performance measures for individual

divisions (stages). For example, an upstream stage, Roll Coating, faced a

corporate-wide mandate to lower inventories. However, the DRP model

recommended actually raising some Roll Coating inventories in order to

minimize the overall inventory cost of the supply chain. When Roll Coating

holds more inventory, downstream stages can hold less, resulting in a net

savings for the corporation. Overall, the analysis determined that inventories for

the products of the case study could be reduced by 20%. This example highlights

the importance of considering the entire supply chain when setting inventory

and production policies.

The rest of this section will describe the supply chain for the case study,

provide the results from the DRP model, and comment on implementation

issues.

Supply Chain for Case Study

In Figure 4 we give a simplified version of the process for film making.

Roll Coating transforms raw chemicals into a roll of film base. Sensitizing coats

the film base with a silver halide emulsion. Then Finishing cuts and packages the

sensitized rolls into finished products. The structure of this supply chain has

three interesting characteristics. First, the number of items grows dramatically

from stage to stage; one film base might result in 5 to 10 different sensitized rolls,

which might lead to a hundred or more finished goods. Second, there is a rapid

growth in the value of the product due to added material (e. g., silver) and nature

of the processes. And third, there is a gradual decrease in the lead times across

the supply chain.

30



Sensitizing 

Figure 4. Simplified Version of Film Manufacturing Supply Chain

For the case study, the supply chain optimization team focused on a single

film base (called a support). That single base becomes three different sensitized

film codes because it can be coated with three different emulsions. Those three

film codes can be finished (slit, chopped, and packaged) into 24 different finished

good items. Figure 5 illustrates the supply chain for the case study. This

particular product "tree" was chosen because it is high volume, it has relatively

few end items (24 total), and it represents a "typical product" which the team felt

would make a useful pilot program.

It is important to note that the case study does establish arbitrary bounds

on the supply chain. The case study starts with the creation of a film base in Roll

Coating and excludes the upstream raw material stages such as chemical, gelatin,

and polymer production. The case study ends with the Finishing process and

arrival at the Central Distribution Center, and ignores the rest of the distribution

system. Besides being bounded at both ends, the case study's supply chain is

also simplified. In reality, the Sensitizing and Finishing stages have materials

flowing into them such as emulsion and packaging components. Even though

these materials require inventory management, they are assumed to be available

with 100% service and were not explicitly incorporated into the model.
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Figure 5: Supply Chain Analysis Case Study
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Data Collection

To parameterize the DRP model required an extensive data-collection

effort. For each item in the chain, the team gathered data on the item's lead time,

unit cost, inventory holding cost, manufacturing frequency, and desired service
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level. For each end item, they needed the planning horizon, the average demand

level, and a time history of forecast process. From this time history, they

developed estimates of the covariance matrix () for the forecast process, as

required by the DRP model. Associated with each "branch" linking different

stages they calculated a historical "goes into factor" that captures any yield loss or

conversion factors.

A side benefit of applying the DRP model was that the data collection

effort identified some potential issues along the supply chain. For example, in

the course of reviewing the forecast data, the team discovered that the forecasts

varied in a systematic way that led to a reevaluation of the forecasting process.

In addition, collecting data enhanced supply chain communication and allowed

the team to resolve a discrepancy in the annual planned volumes between two of

the stages.

Results

The team used the DRP model to develop a base case recommendation on

inventory placements. The twenty-four finished items were grouped into nine

product aggregates, where the product aggregates shared common production

processes and had similar demand histories. Service levels were set at 95% for

each stage. The weight matrices were not optimized and were set to reflect each

stage's lead time and manufacturing frequency. In order to reflect Kodak's

current scheduling systems, there was no production smoothing across weeks.

The DRP model showed the potential to lower inventory across the case

study product "tree" by 20%, as shown in Figure 6. Note that in general,

inventories can be pushed upstream where they are in a strategic position

because: (i) the inventory is common to the greatest number of finished end

items desired by the customer; and (ii) the inventory is at its lowest value added
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and thus at its lowest carrying cost. In fact, the inventory levels of Roll Coating's

"Support 1" actually need to increase to provide savings for the supply chain as a

whole.

Figure 6: Results from the Supply Chain Analysis - Strategic Inventory

Placement
Changes in $ Inventory Values

Roll Coating Sensitizing

&

ft
M Film Code 1

IT
Support 1

'11-37%
Film Code 3 

+31% Item 1

-58% Items2-12

-16% Item 13

-20% Item 14

+2% I tems 15-17

+5% Item 18

i+71% Items 19-21

-24% | Item 22

, 43% Items 23-24

Note: Excludes emulsion and chemicals inventories. Excludes regional distribution center (RDC) inventories.
Includes all WIP, cycle, and in-transit stocks. Finished goods inventories are gross CDC averages.
Service levels are at 95% for all stages. There is no production smoothing.

The definition of "inventory" as it is used in this results section is

important. The inventory changes and comparisons in Figure 6 represent average

inventories. Average inventory for each item includes the safety stock calculated
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by the DRP model, plus the cycle stock due to production batching, plus the

pipeline stock from transport needs.

In order to implement the DRP model recommendations, the team needed

to develop confidence in the results. Therefore, multiple scenarios were run to

test the sensitivity to various parameters, including the service levels; the lead

times; and the size (variance) of the forecast errors. See Hetzel (1993) for details.

Besides the required safety stocks, the DRP model also provided

information on the variance of the production requirements at each stage of the

supply chain. The supply chain optimization team used this variance to

determine the "surge" production capability needed for any stage. For instance,

they might set the surge capability to be the production level that would cover

the production requirements 95% (1.645 standard deviations above the mean,

assuming normal forecast errors) of the time.

No model is perfect, and no description of a model is complete without a

list of shortcomings. The supply chain optimization team identified three

weaknesses: (i) the DRP model does not account for lead time variability; (ii) it

assumes stationary average demand over time; and (iii) it cannot accommodate a

large product explosion. Whereas the first two are inherent assumptions for the

model, the latter concern was due to a limitation in the software that could be

easily overcome. However, we expect that in most practical situations a team

should probably not be working at any greater level of detail than the case study,

say, less than 25 items. Keeping the model at an aggregate level both reinforces

the fundamental guiding principles and also makes implementation simpler.

Implementation

Once all of the supply chain analysis requirements were complete, the

supply chain optimization team added local intelligence about specific customers
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and manufacturing issues for each item that could not be captured by the model.

After reaching an understanding about how all of the model's proposed changes

would impact the supply chain, the team decided to implement a pilot program,

with the intention of moving to the more aggressive "basecase" if there were no

service problems.

The pilot program only involved the inventories of three items. The plan

raised the one Roll Coating item's inventory by 20%, and it lowered two

Sensitizing items' inventories, each by 60%. The plan was implemented in early

1993. The savings were captured in the 1993 Annual Operating Plan for the case

study's line of business. As of the end of April, 1993, not a single end customer

order had been missed on the pilot product due to stockouts or inventory

shortages. The team then implemented the remaining recommendations over the

course of 1993.

The main barrier that the team had to overcome in reaching the

implementation stage was understanding how the DRP model works. This was

accomplished by explaining how the model works; by exercising the model for

different scenarios, especially conservative ones; by displaying all the input data

and its sources for validation; by comparing the model results versus current

inventory levels; and by acknowledging the model's shortcomings. Finally, a

key success factor was that the model was implemented on a personal computer,

provided a graphical interface for representing and visualizing the supply chain,

and provided an almost instantaneous response. In addition to the analytic

model, we implemented a simulation that could be used, albeit with a longer run

time, to confirm the accuracy of the model results.
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5. Conclusions

This paper presents a new model of the requirements planning process.

We first describe in detail how to model a single production-inventory stage as a

linear system and provide the analysis for determining performance measures on

production smoothness, production stability and inventory requirements. We

then show how to optimize the tradeoff between production smoothness and

inventory for a single stage.

To model a multi-stage system, we can use the single-stage model as a

building block. The structure of the single-stage model makes it very easy to link

single-stage models together to represent the multi-stage system. In particular,

each single-stage model takes as input a forecast of demand requirements and

coverts this forecast into a production plan. In the context of a network of

production stages, the production plan from a downstream stage acts as the

demand forecast for an upstream stage. In this way we can cascade the single-

stage models to model a multi-stage system.

We also report on an application of the model within the context of a

supply chain study. The DRP model was used as a tool to help determine

inventory placement across a multi-stage supply chain. This illustration

provides some evidence of the value of taking a corporate-wide view by

optimizing the supply chain rather than sub-optimizing each of the pieces.

One outgrowth from the case study was a better understanding of

industry needs, and where the DRP model was weak. Based on this experience,

as well as observations from industry, we identify the following research topics.

Non-stationary demand: A stationary demand process is not an accurate

model for the demand experienced by many products. Common non-stationary

effects include seasonal effects, end-of-quarter or end-of-year effects (the 'hockey
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stick'), and short-product life cycles. Some of these non-stationarities get masked

when products are aggregated into families or product groups. Nevertheless, an

important enhancement to the model would be to capture, in some way, non-

stationary demand processes.

* Service-Level Assumptions: In extending the single-stage model to a

multi-stage setting, we assume that there will be sufficient inventory to decouple

the stages. In effect, we assume that the service levels will be set to assure a high

level of service and in the model analysis, we ignore the downstream

consequences of an upstream stockout, i. e., starvation of inputs. These

assumptions raise two questions. One is what are the consequences of ignoring

the internal stockouts and the second is what should the internal service levels

be. Graves (1988a) provides some justification for these assumptions in a related

setting. And simulation tests that we have done confirm that ignoring the

internal stockouts in the analysis, when service levels are high, does not distort

the results of the model. But the issue remains as to how to set the service levels;

the literature on multi-echelon distribution systems (e.g., Jackson, 1988; Schwarz,

1989; Graves 1993) suggests that from a system perspective it often may be better

to have low levels of internal service.

· Guidelines for Consolidating Stages: On a related note, we conjecture that

in some instances the best policy may be to remove the inventory between an

upstream and downstream stage and, thus, consolidate these stages for planning

purposes (Simpson 1958). Rather than have two stages separated by an

inventory buffer, we would have one (combined) stage, albeit with a longer lead

time. Within a multi-stage system, depending on the lead times and holding

costs, it may be optimal to consolidate some of the stages. We expect it would be

helpful to have guidelines for determining what stages are good candidates for

consolidation.
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* Multi-stage Optimization: The paper describes the optimization of the

tradeoff between capacity and inventory in a single stage for a diagonal

covariance matrix; it would be interesting to explore how this development

extends to non-diagonal covariance matrices, as well as to a multi-stage system.

In particular, we would like to develop guidelines for setting the weight matrix

W for each stage. Furthermore, one could explore how to choose amongst

alternative production release policies, such as pull versus push, in a multi-stage

setting.

* Production Assumptions: The model has a highly-simplified model of the

production process. The model sets the production outputs, and these outputs

are translated into production starts (e. g., by a lead time offset). With this

model, we can represent fixed lead times, yield loss factors, batch setup

frequencies, as well as uncertainty that can be modeled as an additive factor.

Nevertheless, there are issues as to the validity or appropriateness of this

representation, and the sensitivity of the model results to these assumptions. It

would certainly be useful to have a richer model of the production process. For

instance, it would be useful to capture the non-linear congestion effects due to

multiple items competing for a shared resource.
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