
Beyond the Software Factory: A Comparison of
"Classic" and PC Software Developers

Stanley A. Smith and Michael A. Cusumano

Massachusetts Institute of Technology
Sloan School WP#3607-93\BPS

September 1, 1993

ABSTRA CT

This study compares the approach to software development at several leading
software producers in the United States and Japan. The basic objective is to
compare the approach of "classic" producers that have been associated with
best-practice software engineering and even a "factory-like" approach to
software development, with some newer companies in the industry from the
personal computer (PC) field. The companies chosen to represent the classic
producers are the world's two largest mainframe producers, IBM (International
Business Machines) and Fujitsu, who are also major producers of
minicomputers, as well as Hewlett-Packard (HP), a major producer of mini-
computers and engineering work stations. The two firms chosen to represent
PC software producers are the two leading firms in this segment, Microsoft
and Lotus. In a general sense, the PC software producers, as their systems
grow larger and more complex, are moving closer to the approaches used by
the classic producers. Nonetheless, the PC companies, especially Microsoft,
have introduced unique process changes that are better suited to manage rapid
product-development cycles and products with graphical user interfaces, which
cannot be designed without building prototypes.

1. INTRODUCTION

This study compares the approach to software development at several leading software producers in the
United States and Japan. The basic objective is to compare the approach of "classic" producers that have been
associated with best-practice software engineering for large-scale systems, and even a "factory-like" approach to
development, with some newer companies in the industry from the personal computer (PC) field. The classic
producers pioneered and refined the management of large-scale software systems development, emphasizing
concepts such as process analysis, definition, and control; common engineering standards and computer-aided
tools (automation); design and systematic reuse of reusable components; some divisions and de-skilling of labor;
and more integrated management aimed at economies of scale and scope across series of similar projects.' The
companies chosen to represent these producers for this study are the world's two largest mainframe producers,
IBM (International Business Machines) and Fujitsu, who are also major producers of minicomputers, as well as
Hewlett-Packard (HP), a leading maker of mini-computers and engineering work stations. The two firms chosen
to represent PC software producers are the two leading firms in this segment, Microsoft and Lotus. They have
become producers of large-scale software systems only during the past decade, after IBM and other firms as well
as researchers had already defined the classic "waterfall process" for software development and learned many
lessons about how to manage this process.

The idea of this comparison is to see if the personal-computer software producers are doing anything
different from other producers that might bring them beyond a classic factory-like approach, and whether they
have any better ideas to manage software development in general or with regard to their specific market
segments. We examine the approaches of these firms first by describing their life-cycle steps, especially how they
purport to manage phases such as requirements, design, implementation, and testing, as well as product releases.
Beyond this basic conceptualization of the development process, however, we attempt to describe more
fundamental process characteristics, such as approaches to process control, metrics, configuration management,
process ownership, and process improvement initiatives. These process characteristics, to a large extent, address
problems not solved within the conventional life-cycle steps.

Section 2 concentrates on the basic phases used in some variation for all software development, as well
as common problems faced by software developers. The "waterfall" process is considered to be the first well-
defined development process and is the base most follow-on processes have been formed on. We describe this
so that there is a base process to start from. The process is generally considered to have been first utilized on
a large-scale project by IBM while developing the System/360 operating system in the 1960's. It represents a
structured process and organization created for the purpose of developing software. But, even though these
processes have been defined and available for many years, there are still a significant set of problems that exist
either due to lack of process usage or due to deficiencies in the processes utilized.

After the overview of the processes and the problems of software development, the subsequent sections
consist of case studies of several leading software development organizations. The first group consists of relatively
old producers with long histories of large-scale software development, done initially to support their hardware
businesses. We chose two IBM organizations due to IBM's industry-wide recognition as a firm that both
pioneered structured software development and continued to do significant work to refine its methods and tools,
albeit with a mixed record of success in some areas. The first IBM site, described in Section 3, is the IBM Federal
Systems Company (FSC) in Houston, Texas. This company is responsible for development of software for
NASA space programs, and is recognized as having what may be the best controlled software development
process in the world, ranking as a Level 5 (on a scale of 5) in the Software Engineering Institute (SEI)
assessments. 2 The second IBM site, described in Section 4, is the IBM Applications Business Systems Group in
Rochester, Minnesota. This is responsible for development of the OS/400 Operating System and program
products for the IBM AS/400 computer. This group has done significant work to adapt the structured
development process to a rapidly changing commercial product development environment, and has been

2

recognized for outstanding quality, having won the Baldrige quality award in 1989.3

We chose Fujitsu as a third classic producer because of its position as the largest Japanese computer
manufacturer since the late 1960s and the world's largest producer of IBM-compatible mainframe computers.
Our description in Section 5 is based on Fujitsu's Numazu Works Software Division in Numazu, Japan, which
is responsible for development of operating systems, compilers, data base systems, and image systems for Fujitsu
computers. This site is also one of several Japanese "software factories" that have received considerable publicity
within and outside Japan, and have been considered to rank near or at the top of the SEI scale as well as among
the world's leading software producers in terms of productivity and quality.4

Section 6 describes Hewlett-Packard Commercial Systems Division and Open Systems Software Division,
which are responsible for the MPE/iX and HP-UX operating systems, respectively. We initially viewed Hewlett-
Packard as potentially more similar to the new producers than to IBM or Fujitsu. After examining its
development practices, however, it was clear that HP fits squarely within the classic tradition led by IBM and
the Japanese mainframe producers and embodied in the SEI process. We chose these divisions of Hewlett-Packard
for the study because of the success and quality reputation of their products in a wide set of commercial
computer markets, and the extensive work they have done on metrics and process improvement during the past
decade.

Section 7 examines Microsoft, which has produced MS-DOS, Microsoft Windows, Microsoft Excel,
Microsoft Word, and many other leading system and application software products for personal computers. We
chose this company because of its position as the leading producer of PC software, covering both systems and
applications programs. Section 8 deals with Lotus Development Corporation, which has produced leading PC
software products such as Lotus 1-2-3 and Lotus Notes. We chose this company because of their position as the
second largest PC software company.5

The conclusion of this article looks at whether there are any real differences in the processes employed
by the classic and personal-computer software producers included in this study. In a general sense, the personal
computer software producers, as their systems grow larger and more complex, are moving closer to the
approaches used by the classic producers. Nonetheless, the conclusion also highlights several development
approaches used at the personal-computer companies that do seem superior to those of IBM, Hewlett-Packard,
or the Japanese software factories in the sense that they are better suited to manage rapid product-development
cycles and products with graphical user interfaces which cannot be designed without building prototypes.

3

2: SOFTWARE DEVELOPMENT PROCESSES AND PROBLEMS

2.1 Product-Process Options

Before proceeding with the comparisons in this paper, a broader view of product-process options for
software development helps to put the cases into perspective. In Japan's Software Factories, Cusumano argued that
software firms, like producers in any industry, face a spectrum of product and process choices (Table 1). For
high-end customers, they may provide leading products, fully customized for each application, such as complex
anti-ballistic missile control systems built for the first time. Customer requirements drive these unique systems,
many of which may involve more research and invention than predictable engineering or production tasks.
Producers in this market probably need to rely on highly-skilled personnel theoretically capable of inventing new
products, as well as methods and tools, as needed by the application and as long as the customer is willing to pay
and wait for the result. This is a job-shop or craft approach, suited for unique jobs. It is adequate, however,
only if a small group can build the system, if budgets, schedules, and long-term service requirements are not too
stringent, and, of course, if there are adequate supplies of skilled personnel. Nor does a job-shop process
contribute to fostering organizational capabilities to make new types of products if each project proceeds
independently.

On the opposite side of the spectrum are low-end, fully-standardized program products or packages.
Customers trade off the greater features and tailoring of a customized product for the lower price and immediate
availability of a package. Designing a good package might be costly and difficult, but the potential sales are huge
for a best-seller, such as any one of several popular word-processing or spreadsheet programs for personal
computers. Specific applications corresponding to needs in the mass market, rather than of one customer, drive
this type of product development. While there is no mass production, in the conventional sense, there is
electronic mass-replication of the basic design. Yet this is a simple process and most of the real work is in the
design, construction, and testing of the product. Companies in the package segment of the software industry,
therefore, need to create product-oriented projects as well as cultivate personnel highly familiar with both an
application, like word processing, and the common requirements of users. Again, this approach works well as
long as a few people can build a product, skilled people are available, and development costs are relatively
unimportant compared to the potential sales of a popular product. Once more, however, this project-centered
approach may not contribute in any way to the organization's ability to manage a series of projects effectively.

In between these two extremes exists another option: Producers may choose not to tailor products and
processes fully for each customer or package application, nor hire only highly-skilled people. Rather, they might
seek efficiencies across multiple projects and offer products competing on the basis of a combination of price,
performance, delivery, service, and reliability, among other factors. Japanese software factories in particular
appeared to occupy this middle-ground position. It turns out that producers following this strategy also did not
claim to make leading-edge products, at least not through their factories. If customers wanted systems they had
never built before, Japanese factory managers created special projects or channeled this work to subsidiaries or
subcontractors. Software facilities operating like factories thus focused on familiar but large-scale programs, and
tried to offer high reliability, high productivity, and low prices. Most important, to support this strategy, they
attempted to cultivate the necessary organizational and technical capabilities.

Data from various firms indicate that most organizations build a series of similar software systems
(estimates of redundancies in system development in Japan and the United States range from 60% to 90%). If
so, then the middle of this spectrum might account for the majority of all systems built, as well as subsequent
versions of full-custom systems or low-end packages. For development organizations building multiple versions
or generations of similar systems, a development process emphasizing measurement, historical baselines, feedback
mechanisms for control and learning, or systematic reusability, make the most sense technically and
economically.

4

III

Table 1: Product-Process Strategies for Software Development

Product Type Process Strategy Organization Type

HIGH END:

Unique Designs
(Full Custom,
"Invention")

High-Priced
Premium
Products

Meet Customer Require-
ments & Functionality

Hire Skilled Workers
To Design, Build Needed
Tools & Methods

CRAFT-ORIENTED

JOB SHOP

Small To Medium-
Size Systems

No Organizational Skills
To Perform A Series Of
Similar Jobs Or Do Large
Jobs Systematically

MIDDLE:

Partly Unique
Designs
(Semi-Custom)

Balance Customer Needs
& Functionality With
Production Cost, Quality

Medium-Priced
Products

Skilled Workers Mainly
In Design, Standard
Development Process

SOFTWARE

FACTORY

Small To Large-
Sized Systems

Organizational Skills
Cultivated To Build Large
Systems And Reuse Parts,
Methods, Tools, And People
Systematically

LOW END:

Unique, Mass-
Replicated Designs
(Scale Economies)

Low-Priced Products
(Packages)

Small to Medium-
Sized Systems

Maximize Application
Functionality For
Average User Needs

Hire Highly-Skilled
Workers Knowledgeable
In Application

No Organizational Skills
To Develop Large Products
Or A Series Of Similar
Products Systematically

Source: Cusumano, Japan's Software Factories, p. 15.

5

APPLICATION-

ORIENTED

PROJECT

Another implication of this framework is that large systems cannot be built, or cannot be built very
well, in an ad hoc manner, because these require some division, coordination, and then integration of work.
Division of work, as well as coordination and integration, require some degree of standardization in interfaces
and probably in design methods, tools, management practices, and other areas. Thus even producers of high-end
custom systems or of large packages may find that they have to move toward a more standardized process simply
to survive, and this requires measurement and control; and the more continuity or redundancy there is in the
tasks they undertake, the more logic there is in pursuing a measured, controlled, and continually improved
process.

These different process options also exist within a single organization. For example, Hitachi, Fujitsu,
NEC, and Toshiba have "elite" in-house development organizations that build large and complex, but relatively
common-place systems, in a "factory-like" manner. This includes extensive subcontracting of detailed design,
coding, and unit-test work to subsidiaries and subcontractors for the more routine applications. They also use
special projects, laboratories, or specialized subsidiaries for unique or one-of-a-kind systems, and employ software
houses for standard work or small-scale projects that are not economical to do in-house.

With regard to the cases under study here, each company, in their invention stage, belonged-to the high-
end or low-end spectrum, with the possible exception of Fujitsu, which has generally allowed IBM to take the
lead in setting product standards. IBM Federal Systems has clearly concentrated on high-end customer work,
while IBM Rochester, Fujitsu, Hewlett-Packard, Microsoft, and Lotus have focused on the low-end package
market for operating systems and applications. In most cases, however, companies are on the "n-th" versions
of their systems (with some exceptions like Microsoft's Windows NT), where they are no longer primarily
inventing new functions. They are adding some new functions to existing systems, and trying to do this in a
predictable manner. Because they are no longer spending all of their time experimenting, these firms have been
able to introduce structure into their development processes, as will be described. To a large extent, the case
studies even suggest that companies like Microsoft are adopting some "factory-like" characteristics as projects try
to rely more on past experience, repeatable practices, reusable designs, and other elements.

At the same time, however, these firms must accommodate the reality that software and hardware
technology are still dynamic. A firm may have evolved from a loosely organized craft-like approach to a more
structured, repeatable process for developing many of its products, but then find that technical changes force
groups back to a partial craft-like or invention mode, at least in the sense that reusing existing designs is not
possible because products need to be reinvented, or using historical baseline data to control projects is no longer
helpful because project content and personnel have changed so much. Mainframe software producers like IBM
and Fujitsu have found themselves in this situation as their customers demand highly distributed client-server
systems. Even Microsoft and Lotus find themselves in this situation as they try to develop much larger and more
sophisticated versions of their applications and operating systems products.

6

2.2 The Life-Cycle and Waterfall Models 6

The basic life-cycle model consists of four sets of activities or phases that are usually necessary to develop
a software system: (1) requirements specification; (2) design (functions and structures); (3) implementation (module
design, coding, and debugging); and (4) testing (integration of parts and system-level test). The steps following
development include (5) product release and installation; and (6) maintenance (bug fixing and enhancements). A
firm may also incorporate a phase that deals with next-version planning, if their products have next versions.

Since the life-cycle model is rather abstract, it is possible for most software development projects to
follow this model at some level, whether or nots firms pursue a highly structured approach. But, while the
sequence of stages required to complete a software project may appear similar and sequential at most producers,
companies have a wide range of options within each stage, and many of the steps are iterative in nature.
Furthermore, each of the basic activities itself may be so large that projects cannot handle them in a single step
and must break them down into smaller steps.

Depending upon the complexity of the system, the time-to-market pressures, and other situational
factors, development processes will include reviews or inspections after each phase, or they may combine several
stages or even skip certain steps. For example, if a project needs to write simple program under a tight deadline,
it might be easier to start with low-level design and coding and skip the requirements specification. In
environments where system quality and accuracy are essential, a project may want to perform inspections and
testing at every stage, beginning with the requirements document. In companies where there is a shortage of
programmers, it might make sense to combine design and coding into a single process. Prototyping is another
response to rapidly changing requirements and the need to continuously demonstrate and validate products with
customers or designers. Evolutionary software prototype processes are coming into place that use various stages
of prototypes through the development stages of requirements, specifications, design, and finally coding. There
are other variations on the model that have proven effective in different environments.

A particularly important version of the life-cycle model for use in software development is generally
referred to as the "waterfall" model (Figure 1).7 This model, introduced by W.W. Royce in 1970, embodied a
systems-engineering approach to building large-scale systems that had already been in existence for some time.
The waterfall image is meant to signify a linear but overlapping flow from the beginning phase of the process
until the final destination of the operations phase. Similar to the simpler life-cycle model, companies have made
many modifications and changes to the waterfall model.

In an ideal situation, each of the life-cycle phases could be carried out individually to completion and
in sequence. When all the phases have been executed, the software product is delivered and works as intended
by the original user or client, in accordance with the initial need or user requirements for the system. In
practice, this rarely happens. What usually happens is that one or more phases are often repeated, after
deficiencies are found, until the system is correct or nearly so. It is better to "do it right the first time," since
it is often very expensive to accomplish major iteration, re-iteration, and interaction due to much recycling
through the life-cycle phases. Nonetheless, in recognition of reality, iteration and interaction are key activities
that projects must manage in order to produce a successful software product.

7

aII'

8

to

I-us-..:

M

I r. I il I $

d to-i

I 00I M
II ta I

,2 o
1111~~~~~~~~~~c Il)

0 rtt!
(D

.u 'j

L i ~ ~ ~ ~ ~ ~ ~ ~CIVc * , Qw

cO E 0)
M -Q
z: Q
.v (

(D(D
U
0~
M C

a,

iL

r

7
z

! a, c. M0cc

z

0

0-

-9

Fr

i'll,

The initial waterfall life-cycle model has undergone numerous refinements. Many versions of the
software development life-cycle models appear in the literature, and almost all define five to seven-phases for
systems engineering of the software development process. These later models have attempted to decrease the rigid
boundaries of the phases, increase overall flexibility to account for iteration, and introduce automated tools. Each
of the models is generally based on the phases introduced with the waterfall model.

In his initial waterfall model [See Figure 1], Royce defines the 6 phases as System Requirements,
Software Requirements, Preliminary Program Design, Program Design, Coding, Testing, Operations. In addition,
he includes an Analysis step between Preliminary Program Design and Program Design. What follows is a brief
description of each phase along with the documentation that is generated during the phase. Royce was very clear
in his position that documentation is absolutely critical.

System Requirements: In implementing this phase, it is assumed that the system user and the systems analyst
are sufficiently informed about what the new (or modified) system is intended to achieve. This knowledge is
used to develop the system-level requirements to an acceptable level such that they can be defined in sufficiently
complete detail for preliminary design to be initiated. All of this must be done before detailed design and coding
can be initiated.

Software Requirements: The development of the software requirements phase focuses on the outcomes of the
system requirements identification carried out in phase 1 of the waterfall model of the software development life-
cycle. It is concerned with the nature and style of the software to be developed, the data and information that
will be required and the associated structural framework, the required functionality, performance, and various
interfaces. Requirements for both the system and the software are reviewed for consistency and then reviewed
by the user to be certain that the software requirements faithfully interpret and produce the system requirements.
A Software Requirements Document is produced to document the results of this phase. It becomes a technology
and management guideline that is used throughout all subsequent development phases.

Preliminary Program Design: The software requirements are converted into a preliminary software product
design which is aimed primarily at the further interpretation of the software requirements in terms of software
system-level architecture. The product of this phase is an identification and micro-level definition of the data
structure, software architecture, and procedural activities that must be carried out in the next phase. Preliminary
software design involves representing the functions of each software system in a way that these may be readily
converted to a detailed design. The results provide insight as to how the system is intended to work at a
structural level and satisfy the technological system requirements. The design is documented in a Preliminary
Design Specification.

Program Design: This phase involves definition of the program modules and inter-modular interfaces that are
necessary in preparation for the writing of code. Specific reference is made to data formats, detailed description
of algorithms, and tracing of all inputs to and outputs from the detailed design modules. Two design
specifications are generated during this phase. The Interface Design Specification documents the user interfaces
and program interfaces for each program module. The Final Design Specification is the key output of this phase
and may undergo multiple reviews and revisions depending on the number of design steps in this phase. During
this phase, the testing group begins work on the Test Plan Specification.

Coding: During the coding phase, the detailed design is translated into machine-readable form. This is either
a manual activity by a programmer or can involve some machine-generated code based on the structure of the
detailed design. Initial testing by the developer happens during this stage and generally bugs are discovered.
Debugging and re-coding take place to validate the integrity of the overall coding operations of this phase.

Testing: The individual units or programs are integrated and tested as a complete system to ensure that the
requirements specifications are met. Testing procedures center on the logical function of the software. They
assure that all statements have been tested, and that all inputs and outputs operate properly. After system testing,

9

the software is frequently operated under controlled conditions to verify and validate the entire package in terms
of satisfying the identified system specifications and software specifications.

Operations: This phase is often the longest from the perspective of the entire useful life of the software product.
The system is installed at the user location, tested, and then used under actual operating conditions to the
maximum extent possible. Maintenance commences immediately upon detection of any errors that were not
found during the earlier phases. Maintenance is primarily the process of improving the system to accommodate
new or different requirements as defined by the user.

2.3 Process Implications and Problems

Across the phases, there are important consequences of the linear nature of activities. Certification
should be done at the end of each phase to mark the completion of one phase and beginning of the next.
Certification is accomplished through some form of verification and validation that ensures the output of the
phase is consistent with its input, and the output of the phase is consistent with the overall requirements of the
system.' The goal of each phase is to produce the output that can be certified. Reviews are necessary for certain
key phases (requirements, design, and coding). Reviews are formal meetings to uncover deficiencies in a product.

Documents or code are the normal outputs of a phase. Outputs from one phase become the inputs for
the next phase. The outputs that have been certified should not be changed or modified? In reality, however,
requirements changes will happen and must be addressed in the process. Due to the changes, configuration
control is needed to ensure changes are made in a controlled manner after evaluating the effect of each change
on the product and progress of the project.

The major advantages from using the classical waterfall model or one of its many modifications are those
of organizing and controlling the software development project. The single most important methodological need
associated with use of the waterfall model is that of effective identification of user requirements.'0 Most software
projects pay inadequate attention to fulfilling this need. Overall, however, life-cycle models provide a way to
conceptualize, manage, and control the processes and procedures needed to develop software systems.

Disadvantages associated with use of a life-cycle model include problems that occur if there is no iteration
and feedback among phases, beginning with the need to define the system requirements accurately. Unless there
is iteration and feedback, there may be no way to improve initial imperfections in one of the later phases.
Realistic life-cycle development processes are, therefore, iterative and interactive, and the software development
life-cycle is one that encourages management to recognize these facts of life in order to succeed."

But, despite refinements in process models, as well as in individual programming tools and techniques,
many firms continue to report problems in managing software development, especially large systems built for
the first time. A recent list of problems focuses on ten root causes of "runaway" and "missed objectives."
Runaway projects are characterized by significant overruns of schedule, resources, or funding, while missed
objectives consist of projects that do not meet customer expectations in some significant way. This list is similar
to lists compiled in the 1980s, 1970s, and 1960s.'2

1. Inadequate requirements statement.
2. Lack of specific and measurable goals.
3. Architecture design flaws and churn (changes).
4. Inadequate change control system.
5. Inadequate project status reviews and reporting.
6. Inadequate project metrics.
7. Lack of open project communications.
8. Lack of project milestones.
9. Optimistic viewpoint of project do-ability.

10

III

10. Various management difficulties. 3

2.4 Problems of the "Classic" and "PC" Producers

As seen in the case studies that follow, firms have introduced specific process steps to deal with many
of these problems. In most cases, managers put these steps in place due to some significant project mistake that
happened in the company's past.

For example, the IBM Federal Systems Company group responsible for developing the software for
NASA space systems faced the problem of creating software that peoples' lives directly depended on. With lives
hanging in the balance on each manned space mission, the key problem to overcome was code defects. Zero
defects, like those routinely achieved in advanced manufacturing or "factory" operations for various kinds of
hardware or conventional products, became the only acceptable criteria. To deal with this situation, the whole
development process is centered on eliminating situations where defects are injected into the code along with
removing any defects that may have come from previous stages. Dealing with the creative (and human) act of
developing new and leading-edge software functions while making sure it is perfect is the main problem faced
by this group.

The IBM Application Business Systems group is dealing with the problem of responding to widely varied
and quickly changing customer requirements while making sure it meets delivery commitments. In 1978, a
committed delivery date was missed and became a defining moment for Rochester. Since that time, processes
and metrics have been continually improving to be able to predict schedules and quality early in the product
development process. On top of that, the pace of customer requirements has rapidly increased to the point
where existing processes of translating customer requirements to development plans are seriously strained. Since
changing requirements ripple through the development process and are exceedingly expensive, the group is faced
with making improvements in this process step. Solving this problem is critical to the on-going need of reducing
customer delivered defects and reducing development costs.

The Fujitsu Computer Systems Group has been dealing with the need to put methods, processes, and
tools in place to create quality software using people with limited training in computer science. Their objective
was to break the development process into small repeatable steps, as in factories in other industries, that workers
could gain significant experience with and master. By mastering each of the steps, the overall process would
become more efficient and routine. Consistency and repeatability would also lead to quality improvements.
Automation has also been a strong area of investment with the desire to reduce human
interaction/unpredictability in the process.

Hewlett-Packard has faced the problem of trying to make software development into a very analytical
and explicitly "engineering" process, with extremely high quality but with an atmosphere of freedom to
encourage invention. The freedom given to software engineers made it very difficult to implement highly
structured processes. The most significant turning point came when Hewlett-Packard's Commercial Systems
Division did an analysis of the causes of software defects reported by customers. The results indicated that a
significant number of errors were being injected during the coding phase and were not being removed with
testing. The solution determined by the technical community was to introduce code reviews along with more
rigor during the requirements and design stages in order to eliminate defect injection. The results have been
improvements in quality and cycle time during product development. Nonetheless, Hewlett-Packard (and other
companies) continue to face the problem of how to maintain sufficient structure or discipline in the development
process to hold defects low while still allowing its engineers to be highly creative.

Microsoft was faced with the need to become more predictable in product schedules as their products
grew to 1 million or more lines of code and could no longer be built by a very small group of people using ad
hoc practices. Even by the mid-1980s, the company had become unable to reliably predict and manage
development schedules. Product delays and high numbers of destructive bugs in delivered systems were common,

11

and as its customer base continued to expand, these became unacceptable to top management. In addition, both
retail customers and original equipment suppliers that ship computers with Microsoft operating systems and
applications packages began to express concern that Microsoft was not utilizing quality processes to create its
products, which had often become "mission-critical" for individuals and organizations. Similar to the dilemma
expressed at Hewlett-Packard, the challenge within Microsoft has been to implement more structured
development processes while maintaining the creative technical edge that has characterized not only this company
but the entire PC software industry.

Lotus has been faced with a similar challenge of how to balance process structure and efficiency with
creativity and flexibility. As at Microsoft, Lotus managers have been especially concerned with coordination and
control issues (to insure on-time delivery and high product quality) when projects grow beyond the small-team
level. Historically, however, Lotus has been slow to put mechanisms in place to manage development in large
groups. At one point, management dictated a development process that failed, due to the variations needed by
individual products and due to programmers not wanting a high level of structure. The result has been somewhat
of a compromise process, in some respects similar to what exists at Microsoft, although not quite as effectively
implemented.

12

3: IBM FEDERAL SYSTEMS COMPANY (HOUSTON)

3.1 The Company

The beginnings of IBM date back to 1914, when Thomas J. Watson, Sr. became the General Manager
of Computing-Tabulating-Recording Company (CTR). This company had 1200 employees and manufactured
and sold measuring scales, time clocks, and tabulating machines. Watson focused the company on tabulating
machines and refining these to become what eventually came to be known as electronic computers. He believed
early on that clerks and accountants were growing faster than American industry, and that information could
be made of interchangeable parts that could be encoded and then be made available, re-classifiable, and printable
by a machine. In 1924, when Watson became CEO of the company, he renamed it International Business
Machines. After World War II, IBM was only one of several companies that sold computers for business
applications, although the introduction of the IBM System/360 mainframe computer in 1964 was a key event
in modern computer industry history and allowed IBM to dominate the computer industry for decades thereafter.
IBM remains the largest computer manufacturer in the world, despite major declines in its overall market share
in recent years.

Corporate headquarters are in Armonk, New York. Total employment by IBM and wholly owned
subsidiaries was approximately 300,000 in mid-1993, with operations in most countries throughout the world.
Research and development is concentrated in the United States, with additional development locations in Canada,
Europe and Japan. Manufacturing is done in the United States, Mexico, Europe, and Japan, with each business
unit controlling their own manufacturing operations.

IBM's business spans nearly all segments of the computer industry. The company develops and sells
hardware that includes mainframes, minicomputers, personal computers, work stations, network servers, disk
drives, microprocessors, memory chips, computer terminals, printers, and other peripheral devices. The company
is also the leading total software producer in the world, with products and services that include operating
systems, compilers and data bases, communications systems, contracted software, and applications software
packages.

3.2 IBM Organization

Historically, IBM has been highly centralized. With a gradual reorganization in recent years, however,
IBM is now organized as a federation of companies that continue to work through the process of decentralizing
and becoming more independent. IBM's primary operating units include geographic units that provide marketing,
services, and support to their customers, and manufacturing and development businesses that have worldwide
responsibility for product development, manufacturing, and delivery to geographic marketing units and to other
equipment manufacturers. The geographic marketing and services units include IBM Asia Pacific, IBM
Europe/Middle East/Africa, IBM Latin America, and IBM North America. The business units are: Application
Business Systems, Application Solutions, Enterprise Systems, Networking Systems, Pennant Systems Company,
Personal Systems, Programming Systems, ADSTAR, and Technology Products. Two additional parts of the
company are the Research Division, and IBM Credit Corporation.

The Federal Systems Company (FSC) was formed in 1992, combining Federal Systems Marketing and
Federal Systems groups from within IBM. The organization is in the forefront of the move to turn IBM into
a network of more competitive businesses. In the 1992 IBM Annual Report, the results of this group were
highlighted in its own section. Federal Systems markets specialized products and services to the defense, space,
and other federal agencies of the United States and several governments beyond the United States, and had 1992
revenues of nearly $2.2 billion. Approximately 10,800 employees worked for the company in 1992.

FSC has an IBM Vice President and CEO that reports to the General Manager of IBM North America.

13

III

The development group responsible for all space systems software development is located in Houston, Texas.
Approximately 300 programmers, analysts, engineers and subcontractors generate the on-board and ground
systems software, and assist in testing the product. The Space Shuttle Software organization is divided into three
groups: Avionics Software Systems Engineering which contains the group of requirements analysts, Avionics
Software Development which contains the programmers, and Avionics Software Verification which contains an
independent group responsible for testing.

3.3 Culture

Various books and articles have been written describing the culture of IBM. Many of these have
characterized IBM as either being a marketing company, a company based on key principles laid out by Thomas
J. Watson, Sr., a company with vast technology capabilities, or a company that has been working hard to protect
the markets it captured in past years. Each group within IBM shares aspects of a corporate culture, however
described, although each group also has a strong local culture that may actually be most important in terms of
influencing software-development practices.

The culture of the shuttle software group in FSC is concentrated around the drive to zero defects and
usage of a team approach to achieve this goal. In their technical environment, teams form freely to work on
specific problems or refine methods and procedures. The group has a strong sense of camaraderie and a feeling
that what they are doing is important. They realize that working together is the only way to make sure the IBM
software is defect-free. The quality improvement process used is mature, in comparison to other firms and even
to other parts of IBM, and focuses primarily on how to improve particular processes instead of just trying to
raise general quality awareness.

Satisfying their customer is another feature of the culture. Development is based on three objectives that
all center around delivering exactly what the customer desires: (1) develop software which adheres to the letter
of the customer's requirements (both explicit and implicit), (2) ensure that the software performs in accordance
with the customer's operational expectations for both nominal and off-nominal conditions, and (3) provide
software which is error-free.

Structured development is the final feature of the culture. Development is based on a reliability and
quality assurance plan that has two key aspects: One is a process that emphasizes the development of error-free
software and the early detection of any errors that do occur. Second is a series of tests, audits, and inspections
to ensure that the software developed conforms to the requirements of the customer.

The group is very proud of their quality record and was chosen as a recipient of the first, and recently
a second, NASA Excellence Award for Quality and Productivity for its success in producing very complex
software for NASA's Johnson Space Center. The on-board flight software has never had an in-flight error that
affected the safety of crew or vehicle, or prevented the successful completion of mission objectives. They have
been successful in reaching the goal of zero product errors in the last 3 major releases of on-board flight software
systems which have spanned more than 15 flights. Recognition and success reinforces the culture of the
organization.

3.4 Product Description

IBM has been doing software development under contract to NASA for the space system for decades.
With the completion of the Approach and Landing Tests in the late 1970's, focus shifted at IBM Houston to
development of the remaining mission critical software. The software that remained was the "fly by wire"
control for the space shuttle to support all phases of flight, from pre-launch to roll-out. To accomplish this, the
organization was divided into the present groups of analysts, programmers, and independent verification. The
development was segmented into three major divisions: system software that contains the operating system;
Guidance, Navigation, and Control programs which fly the spacecraft in automatic mode; and Vehicle Cargo

14

System which handles all shuttle operations in orbit apart from the flying of the spacecraft.

Specific functions provided by the software are: operating system to control the full hardware and
software system, automatic guidance function, navigation and flight control functions, systems maintenance
functions, payload interface functions, vehicle utility and check-out functions, servicing for the various hardware
sensors and effectors that control vehicle operations, comprehensive set of overall system health and crew input
commands, and system health monitors and alarms.

Since the software is "man rated," which means software errors could result in loss of life, every possible
effort is expended to keep its error rate as low as possible with a goal of zero defects. Considering the size to
the product delivered, this goal is very significant. The organization has delivered a significant amount of
computer code to NASA over the years: total shuttle related software of 9,780,000 source lines of code, and total
software across all space programs of 30,000,000 source lines of code.

3.5 Release Structure and Strategy

Software is delivered in Operational Increments (OIs) to the base software that is in-place and currently
operational. This results in an incremental development and release process. The approach is used due to the
size, complexity, and evolutionary nature of the orbiter system requirements. OIs occur on roughly 12-month
schedules.

Contents of the OI are determined by NASA with IBM's review and concurrence based on resource
availability. A very extensive requirements process, which will be described in detail, is utilized to create the
contents. Each OI is used for several flights and serves as the foundation upon which the next OI is developed.

3.6 Development Process Overview

The software development techniques employed include process definition, state-of-the-art software
engineering principles, rigorous inspection of work products across the process, independent software verification,
sophisticated defect cause analysis, and use of a set of specialized tools to assist development and testing. The
overall software life cycle consists of four basic phases: requirements definition; software design, development,
and integration; independent verification; and customer support. Within these basic phases are multiple sub-
processes that come together to create a very extensive and well-defined software development process.

Programming standards are documented and must be followed. Any deviation from baseline
requirements requires approval by an IBM control board. Adherence to standards is audited by inspection and
review of work products from each development phase. Another aspect of the overall process is the emphasis
on early error detection. It is stated that errors detected early in the process are cheaper to fix and are not
delivered with the product. Each phase has steps in place to minimize "defect escapes."

3.7 Requirements Definition Phase

Requirements Definition is the area of the development process that most significantly differs between
what IBM Houston does and what nearly all other software development groups likely do. Requirements
definition and agreement receives significant attention and the results are very clear requirements. The single
customer makes this both feasible and a very good practice. Key points that characterize the approach to
requirements definition are: management commitment; educated personnel; a well-defined process; the belief that
special focus on requirements is essential; the belief that errors found here are cheapest to fix and that error
insertion can be reduced; the belief that formalization of requirements benefits all processes; and the belief that
baseline control and release planning are necessary to protect against a chaotic development environment.

15

NASA controls the requirements which are driven by project goals, required flight changes, and available
resources. The IBM Requirements Analysis group is made up of programmers and engineers very familiar with
the avionics system. They are responsible for assessing the feasibility of implementing the requirements into the
hardware and software systems. An IBM Control Board utilizes the Change Requests (CRs) to get costing
information from each development group and to determine a recommendation for each. Recommendations
from the group include a schedule of when the CR could be delivered, cost in man-power, and cost in system
CPU and memory requirements. The delivery schedule is based on how much is currently in the OI and
whether the CR would fit also.

Three stages are involved in the requirements definition and are key to determining and achieving the
delivery schedule described:

System Requirements define the system level interfaces and requirements to a level of detail to allow top-
down software design. NASA originates the candidate list of CRs to be implemented during a scheduled
OI. Direct meetings are held with NASA (the customer) and the IBM developers to determine whether
the capability changes they want will work and how it would be best to implement them in software.
Several formal and informal meetings are utilized to get the necessary level of definition.

Functional Requirements start from the system level view and break it down to the functions for each
program module. Applications software requirements are specified during this stage. What results is
a map of how the function will be spread between a set of system modules.

Detailed Requirements are created for each module. The requirements cover the formulation of the
module, logic, mission data used, and the display format of the data. Requirements are documented in
the Functional Subsystem Software Requirements Document.

Formal reviews are held during the three stages. Review participants include the requirements analyst,
development programmer, verification analyst (tester), moderator, NASA system software development
representative, and the CR author if possible.

3.8 Design Phase

Design of the software is done in two sub-phases. The requirements are quite detailed, which makes the
design phase flow reasonably smoothly. The two stages are:

Functional Design concentrates on describing integration of this function with existing software,
identification of all affected modules, sequencing of modules, dependencies and interfaces between major
areas of the software, structural design at the system and program levels, and program structure in terms
of function, storage, timing, and operational sequences. The requirements are documented in Program
Design Specifications. Formal design reviews by an internal team of peers are held for significant system
software capability updates and for all functional changes.

Detail Design produces the detailed "build to" design for each program. The design describes the
functional organization of each module through the module structure, database and I/O processing
description, and logic flow. Detailed Design Specifications are created to document the design and to
also serve as documentation of the final product. A formal design review is held by an internal team
for all design work products. Specific objectives are defined and concentrated on during the inspection.

3.9 Coding

Coding is a manual process that concentrates on structured programming methods. The operating
system software is programmed in assembler language due to the strict performance and space requirements.

16

Applications utilize a high-level engineering language, HAL/S, provided by NASA to IBM and developed
specifically for the space program software development. Coding is performed to meet the defined programming
standards and utilizes the Detailed Design Specifications which define the module in very extensive detail.
Formal code inspections are held for each code unit. Reviews are done with the same peer group that did the
detailed design inspection. The aim is to discover errors in coding, interfaces, and requirements implementation.

Development testing is considered to be part of the coding phase. Two levels of testing are done, unit
and functional. Unit testing is done by the developer and consists of validating code unit logic, data handling,
and testing of design limits. Functional testing is also done by the developer and consists of validating module
interfaces, functional capability, and overall exercising of code units in combination with each other.

Successful testing and review of the results allow the code to be integrated and moved to Independent
Verification Testing. The review of the results is through a very formal process called the First Article
Configuration Inspection (FACI).

3.10 Independent Verification

Software verification is an area independent of the area directly responsible for developing the software.
The group maintains an adversarial relationship with the development organization. A basic assumption the
group uses to guide their work is that the software has been untested when it arrives. This ensures an extensive
test of the function.

Verification Analysts develop an independent, detailed understanding of the requirements specifications.
They review the specifications, contact the customer independently, and participate in formal inspections during
the requirements, design, and code stages. Test-case development follows a formal development process that
involves creation of test-procedure documents written to describe individual test sequences in detail. Reviews,
consistent with what are done in development, are held with the customer community on the overall plans and
the specific test cases.

Testing is done in two sub-phases, Detail Verification Phase and Performance Verification Phase: IBM
uses the Detail Verification Phase to verify that the software system meets all specified requirements. The testing
is further broken into three different aspects: Detail tests that involve explicit testing of all functional
requirements, logic paths, algorithms, decision blocks, and execution rates; Functional tests which involve
explicit testing of all data interfaces, data I/O, proper sequencing of events, and the order of module execution;
and Implicit tests which involves execution of all detail tests while the entire flight software system is running
and also involves simulation of hardware failures to ensure proper execution in failure scenarios.

Performance Verification validates that the software system as a whole performs in non-stress and stress
environments. Each new function is tested to ensure it performs as specified. Cases are constructed to selectively
stress various elements of the flight software with different focuses used for the system software versus the
functional software of the guidance and vehicle systems. In addition, Configuration Inspection is a formal
technical review to assure that all end-item requirements have been included in the specs and that the end-item
documentation agrees with the delivered product. This is done after detailed verification has been completed.

3.11 Validation

After the software has been accepted by NASA at CI, it enters into the validation testing phase. This
validation testing and integration is performed in a separate facility (called "labs" in IBM). NASA does testing
to validate all subsystems interface correctly and that the system functions properly when the changed subsystems
are integrated together. Successful validation allows the software to be moved into operation. Operations support

17

is provided by IBM for user training, software installation, routine maintenance, aid in development of user
procedures and test support, and aid in formal flight support.

3.12 Maintenance

Problems found are formally documented by NASA in DRs (Discrepancy Reports). Failures outside
the software system that can be fixed via software along with changes to requirements are documented in CRs
(Change Requests). DRs and CRs are reviewed and must be approved before the software changes are allowed.

Software changes are required to follow a very formal process to keep defect injection low.
Requirements are that: the design, implementation, and verification processes are used; documentation updates
are made and incorporated; configuration control procedures are used throughout the process; and quality
assurance and programming standards are enforced.

3.13 Process Usage and Compliance

Process usage is consistent throughout the organization with all development utilizing this formal
process. Compliance is ensured through internal peer reviews, strict change control, and in-process metrics that
gauge the results of each development stage. The culture is the other factor that ensures the process is used as
defined.

3.14 Release Management

Program Managers are in-place for each OI. They are responsible for ensuring the software being
designed and developed meets the requirements and objectives defined by NASA. The Program Manager ensures
adherence to processes, procedures, and configuration management. Development of the application support
systems used in the preparation of flight systems is also managed by this person. Finally, the Program Manager
is responsible for certification of all flight systems.

The Program Managers put a project-wide team in place to effectively do this broad job. The "control
board" team has the responsibility to: define, negotiate, and baseline project-wide development, build, test, and
delivery schedules; control flight software changes (DRs and CRs); and coordinate inter-project technical issues.

3.15 Change Management/Configuration Management

Configuration management spans the full software development cycle. It begins at requirements
definition when the Change Requests are generated, it is required during each phase of design and coding, and
it extends to schedules, supporting tools, testing, and documentation. Baselines, which are technical control
milestones that are officially agreed to, are also controlled. The baselines define software content, schedules,
release formats, deliverable items, verification plans, and support software.

A configuration management database is the crucial part of the system. It allows mapping of
requirements to code, holds extensive information about requirements and errors that drive changes, documents
schedules and software content, drives the actual software system builds, and is used to generate reports used for
development management.

Change Requests (CRs) and Discrepancy Reports (DRs) are used to control all changes. Multiple
"control boards" are in-place between NASA and IBM to review and determine whether changes are approved.
Approved changes are documented and become part of the formal baseline. The configuration management
database is updated to provide tracks regarding the change. Different control boards are used for the different
types of change requests. An overall control board is in-place to monitor the amount of churn in the system.

18

3.16 Metrics

Quality measurements are the key metrics utilized. Quality is more than just "bugs," and covers
conformance to requirements as well as performance of a task correctly on the first attempt. Three
measurements were chosen in early 1980, with a fourth added in the mid-1980's, that have been used since that
time to monitor the quality of software. Separate measurements are tracked for each OI of the flight software.

Total Inserted Error Rate is defined in terms of major inspection errors found, an in-process measurement,
plus all valid errors that resulted in documented Discrepancy Reports. This is measured per KSLOC [1000 source
lines of code]. The measurement is the fourth that was added and is designed to understand the total rate of
software defects throughout the development life of the product.

Software Product Error Rate is defined in errors per KSLOC (excluding comments) and is measured for
each release of software. Software errors have declined from 2 errors per KSLOC in 1982 to a rate of .11 per
KSLOC in 1985 and has continuously decreased since that time.

Process Error Rate is an in-process measurement of the efficiency of error detection early in the software
development process. Process errors are computed prior to software delivery and are measured in errors per
KSLOC. This measurement fell from more than 10 errors per KSLOC in 1983 to less than 3 in 1985 and has
continuously decreased since that time.

Early Detection Percentages of Software Errors is another in-process measurement that measures the ratio
of errors found in inspections of the code to the total number of errors that are known to exist in the code. The
total number of errors is estimated based on past history and the quality goals for the release. Major inspection
errors are any error found in a design or code inspection which would have resulted in a valid DR if the error
had been incorporated into the software. Each phase of the process is measured with models existing for each.
The measurement has decreased from 10 errors per KSLOC in 1983 to about 4 in 1992.

Defects found during development are categorized. Analysis utilizing this data is used as another method
to drive to higher quality. It has been used to study the process to determine the defect cause and to aid in
process improvement actions.

Measurement techniques have been used to increase the quality focus. Product measures have been
extended down into the organization including subcontractors, employee participation has been encouraged
through tool availability, measurements have been focused on key areas, and data retention has been used to build
history that can be referred back to.

3.17 Process Improvement

It is heavily communicated and well accepted that process improvement is critical in the drive to zero
defects. A formal process of Causal Analysis and Defect Prevention Process is used throughout the organization.
Attention is constantly placed on the removal of defect causes. The two processes have reinforced a philosophy
of: build quality in versus test errors out, usage of early milestones to identify and measure quality, usage of
error data to drive process changes, and for every error found asking how the process can be changed to prevent
it next time.

As work products are inspected through the development phases, all defects are recorded and categorized.
Analysis is used to study defect trends such as error escapes through the phases. Measurement of the process and
the product allow the effect of process changes to be measured to determine impacts on quality.

3.18 Tools

19

The Software Development Facility (SDF) is the major tool that is key to the development process used
for space shuttle software. SDF is an IBM developed simulation test bed that simulates the flight computer bus
interface devices, provides dynamic access and control of the flight computer memory, and supports digital
simulation of the hardware and software environments. SDF requirements were defined early by NASA and all
new capabilities require NASA approval. Enhancements are developed and tested by a dedicated development
and maintenance group that follows the formal process described for the shuttle software development.

SDF also provides program management support to control program data, support to do builds to create
a deliverable system, a build facility to map software into the format needed for the system's mass memory units,
a simulator, and a documentation and statistical analysis system.

IBM Houston has also begun to use expert systems to analyze test cases to support verification tests.
Coverage can be assessed through this mechanism. Extensive automation support is used for test case generation
and execution.

3.19 Process Education

Documentation on the process is extensive and is available to everyone on-line via their terminals or
through printed copy. Mentoring by experienced developers is another effective mechanism for orienting new
people to the process. With the level of formality associated with the process, education is quickly gained.
Numerous presentations and education packages are available and are given upon request.

3.20 Summary and Analysis

Results have been excellent for IBM Houston in three key areas. The first is the operation at a zero
defects level. Three major releases that have spanned more than 15 missions have been at this level, and NASA
(the customer) has recognized the group for their outstanding quality in meeting system requirements and having
zero defects. The second is through the quality of the overall process used to develop software. In an
independent evaluation conducted by NASA headquarters, the IBM Houston group's software development
process was given the highest possible rating of "5" on the SEI standard evaluation of process maturity (at a time
when most development organizations were at the "1" level). The third area of success has been in productivity
improvement. As quality has improved, the group has also seen productivity rise in important areas such as
software maintenance.

There are, however, limitations that exist within the process when it comes to applying it to other
development groups. The FSC process at House is very costly in terms of effort expended and cycle time to
develop software. The process is an excellent fit for the environment: a dedicated customer, a limited problem
domain, and a situation where cost is important but less of a consideration than zero defects. For the wide range
of commercial software developers that do not operate in this type of environment, the applicability of the
complete FSC Houston process is not feasible, although variations of the process are clearly possible and used
at other IBM sites and other companies, including those discussed in this study. Drawing upon this success in
process improvement and quality software delivery, the IBM Federal Systems Company has also created a team
that now goes out and consults on the software development process.

20

4: IBM APPLICATION BUSINESS SYSTEMS 14

4.1 IBM Organization

IBM Application Business Systems is headquartered in Somers, New York, with software development
located in Rochester, Minnesota. Manufacturing operations are in Rochester, Minnesota; Guadalajara, Mexico;
and Santa Palomba, Italy. In 1992, revenues were $4.5 billion for the unit's hardware and software, and the sales
of ABS systems accounted for approximately $14 billion of total IBM product and service revenue. Employment
in 1992 was approximately 5,500 people.

ABS is managed by a Senior Vice President that reports to the Corporation CEO. The business unit
is organized into four separate groups: the development laboratory that is responsible for all hardware and
software development; the product marketing group that is responsible for working through direct and indirect
sales channels for sales of business unit products; the manufacturing group responsible for manufacture of all
computer hardware sold by the business unit; and the finance and planning group responsible for overall financial
management of the unit. Within the development laboratory, there are groups responsible for all hardware
development, software development, strategy and planning, and support operations (testing, tools, software builds,
software distribution, and national language translation).

4.2 Culture

The culture that surrounds the ABS development community in Rochester, Minnesota, is characterized
by a very cohesive and productive development group that has been high within IBM in terms of productivity
and quality achievement. The site began operation in 1955 and eventually moved into the position of being a
single location responsible for developing a family of mid-range computers. Most IBM systems are developed
in multiple locations, but Rochester has generally operated on its own. This single location situation has lead
to a very strong sense of ownership by the development community for the products created and sold.

While "out in the corn fields" has been a label put on Rochester, its physical position has helped ABS
Rochester move forward on its own without significant intervention from other groups in the company. The
System/38 and System/36 were mid-range systems that have fueled much of its success. They served as the base
for development of the AS/400 computer, which has been recognized as a very significant technical and market
success.

On the other hand, working outside the IBM core during the early years, which was mainframes, created
a consistent feeling of being "under-recognized and under-funded" for new product development. In particular,
the feeling of being under-funded created a culture of the site pulling together as a team to overcome the odds.
The site also benefits from what is often referred to as a "midwest work ethic" that drives people to dedicate
themselves to completing the work that needs to get done. In addition, attrition and transfers of personnel are
minimal, which has helped the site cultivate a large team of people that know each other and view success as a
group activity.

A significant problem in 1978 helped define the specific culture in Rochester. The organization missed
the committed shipment date for the System/38 computer by nearly a year. Various factors lead to this situation,
but one result was establishment of process steps and metrics to make software development more predictable
and to understand project status throughout the development cycle.

Quality and customer involvement are the two final important elements of the local culture. Market
Driven Quality was a specific movement started in 1990. Prior to that, the group had a good record of product
quality but the pace of improvement increased with the MDQ movement. Process improvement became a lab-
wide drive, and the overall site pursued process improvements and assessments that led to the Malcolm Baldrige

21

National Quality Award as well as ISO 9000 certification. Close customer relationships have been stressed since
the days of the System/36 and System/38, and customer involvement has been incorporated into development
process phases like requirements, testing, and support. Knowledge of post-ship quality is also carried throughout
the development group..

4.3 Product Description

Products developed in ABS at Rochester have centered around mid-range systems commonly referred
to as mini-computers. Significant product families are the System/3, System/34, System/36, System/38, and
AS/400. IBM introduced the AS/400 in 1988, and this remains the core product now delivered from Rochester.
All hardware and software development is managed by the development laboratory, with nearly development
work done in Rochester.

The system hardware spans a low-end set of models appropriate for as few as 2 users and extends up to
systems that will attach up to 2,400 terminals. All models of the AS/400 family provide a consistent hardware
and software architecture. A user can start with a single processor with 4 or 5 terminals, then expand the system
into a powerful network, all using the same operating system and applications software. The operating system
is proprietary to IBM, but with support for a wide-range of industry standards. An integrated relational database
is part of the system. Other significant parts of the operating system and system products are extensive
communications standards such as OSI, TCP/IP, and SNA; a suite of languages such as C and COBOL; co-
operative client/server processing with personal computers; and built-in functions like security.

4.4 Release Structure and Strategy

New releases of the OS/400 operating system and program products occur on approximately a yearly
basis. The yearly base has become standard due to customer preferences and development lab efficiency.
Installing a new release of the software is something most customers prefer only doing on a yearly basis. The
grouping of functions on a yearly cycle is also efficient from the standpoints of development management,
customer support, and marketing support. For development, the yearly cycle allows concentration of most
resources and management attention on one cycle at a time, even though the early stages of the upcoming release
are beginning during the later stages of the existing release. Support organizations such as testing, software builds,
and software distribution manage a single release more efficiently than multiple releases. Finally, the product
marketing group is able to concentrate attention more effectively when they can feature one release at a time.

Each release has some critical functions that drive the final date for making the release available. The
dates have tended to vary slightly in either direction from the yearly time-frame. Since support for new
hardware, such as processors or I/O (input-output devices), is in the software, hardware can have an affect on
the dates of a release. Enhancements are periodically made available on schedules separate from the base releases.
These enhancements are managed by themselves and tend to be provided to specific requesters of the function
versus a broader distribution.

4.5 Quality Plan

At the beginning of each release cycle, a system quality plan is established. The plan defines committed
quality goals and improvement actions to achieve the goals. In order to create an effective plan, Rochester uses
a bottoms-up commitment process to derive the plan. After distributing an initial draft of the goals and plans,
the Development Quality group holds brainstorming sessions with groups of developers to refine the goals and
actions. Each development and support organization then commits to quality goals and actions, and makes
projections for achieving these goals throughout the development process by using in-process metrics.

The system quality plan only represents the overall system approach to quality improvement.
Development teams and product managers still own overall quality and are responsible for planning,

22

implementation, and outcomes of quality actions. The system development plan, which defines what items the
lab will work on, includes development items for the release targeted towards quality improvement.

4.6 Development Process Overview

The development process is well-known among Rochester software personnel. Documents exist on-line
and in printed form that define the stages, entry and exit checklists, and tips and techniques. These are
periodically used for reference, but most adherence to the process comes from the experience of development
team leaders and team members. The process is well-accepted and people believe in the steps as important to
delivering quality products on schedule. Refinements to the process continue, but the base life-cycle has not
changed in many years. Due to some level of iteration in early stages, most people look at the process as a
"modified waterfall" or "incremental development" process.

4.7 Requirements Phase

Requirements are formally coordinated by a group of individuals called the "System Strategy" team.
Multiple sources input requirements and the flow is continuous versus concentrated on any one period. Sources
of requirements include:

Direct input from groups of customers such as the Customer Advisory Council, which meets with the
laboratory on regular intervals.
Direct input from IBM Marketing and Service groups worldwide.
New hardware needs.
Technical development input on important or strategic technical items.
Executive commitments.
Business Partners developing and selling applications for the system.
Customer satisfaction calls on software problems.
Market research done by system planners.
Competitive analysis information.

Requirements are written down and put into a database of Plan Content Records (PCRs) that can be
accessed by anyone with access to the computer system. Multiple groups can submit PCRs, but the adoption
process is tightly controlled by the System Strategy team. A plan commitment process is then used to distill this
huge list of requirements down to a set that can be developed with the resources available in the lab. The initial
wave of distilling actions occurs with a team of people from System Strategy, the hardware plan management
team, the software plan management team, the financial plan management team, and the support organization.
It is this team's job to create a prioritized plan content document that can be submitted to development and the
system plan management team.

From the Prioritized Plan Content document, an iterative process of comparing requirement priorities,
development costs, revenue potential, skill requirements, and current staffing options takes place. The team of
upper level management responsible for development resources, along with the product marketing management,
determine the base of committed projects that development is approved to work on. Formal release plans are
generated that contain committed content for each of the planned upcoming releases.

4.8 System Level Design

For a select set of development projects, Rochester uses an early design stage. The System Level Design
is scheduled early in the plan cycle. Its purpose is to ensure proper integration of new AS/400 functions into
the overall system, consistency of new products with existing products, new functions effectively use existing
system support where possible, and modified products continue to be structurally sound.

23

Functions that are candidates for this type of review are new AS/400 Licensed Program Products (LPPs),
which are functions packaged separately from the base operating system and sold as a separate product. Other
candidates are functions that have the potential of becoming LPPs, major enhancements to existing LPPs, and
major functional enhancements to the base operating system. Enough design work is required at this stage to
describe the product externals, show inter-product dependencies, and show enough of the product design to
exhibit design completeness or correctness in areas like user interfaces, interfaces within the product,
performance, and compatibility.

4.9 Design Phase -- High Level Design

The design phase in IBM was previously characterized by formal detailed specification documents that
were tightly controlled within the company. Design Change Requests (DCRs) have replaced specs and are
available for on-line access by the full development community. DCRs hold relevant information for the product
being developed such'as a requirements statement, design specifications, schedules for all development and test
phases, tracking information for completed and planned activities, and a small amount of high-level design
information.

For the high level design phase, the objective is to define the externals and internals of a function from
a component perspective. System components are previously defined areas of system function. External
functions, user interfaces, inter-component interfaces, and inter-component data structures are some of the key
portions designed during this stage.

Development organizations that will do the ongoing design and coding steps are also responsible for the
high level design. The development group works with the system planning organization, a group of system
designers called the design control group, and groups responsible for performance, usability, and user
information. After the design is completed, any changes for late requirements that are agreed to will require the
high level design review to be held again.

Schedules and work efforts are reviewed again at this stage, with changes needing approval. Entry and
exit criteria exist for this stage and must be met before progressing to the next phase. Prototype and simulation
work are utilized in some cases that involve changes to the user interface. This allows for early feedback and
usability testing before the design is completed.

A formal inspection is held and must be satisfied before design work can move to the next phase.
Nearly 100% of the groups making functional changes to the system hold high level design reviews. A high level
design inspection is expected to be held unless the developer can define the evidence and rationale to support not
holding the review. This is considered uncommon and only occurs when developers make very small changes.

4.10 Design Phase -- Low Level Design

The objective of this phase is to specify the functional breakout of the component into parts, such as
individual modules, macros, and includes (macros and includes are common data structures and general code used
across multiple modules). The internal design of each new or changed part required for the function is defined
during this stage. This level of design work is frequently done by the individual that did the high level design
and will do the coding of the module. Schedule and work estimates are reviewed again and changes must be
communicated and approved. Groups that participate in work activities outside of development include
performance, national language support, user information, usability, and system test.

A formal design review is required before moving from this phase to the next design phase. The review
is done by a small team of peers. Low level design reviews are held for over 75% of system changes. General
criteria exist that help to define the types of changes that reviews should be held for. Reviews are encouraged
but optional for changes that fall outside criteria. Flexibility exists in the review process with low level design

24

reviews sometimes combined with code reviews which gets review coverage of low-level designs above 90%.

Tools exist to assist the design process. They allow a developer to write the design in a language that
will allow it to be contained in the actual code. This allows the design to be extracted at any time from the code.
Developers are not required to use any specific tools for creating the design. Flexibility is afforded the developer
to pick what works best for the module being developed.

4.11 Code Phase

This is the formal stage of taking the detailed design and turning it into code. The primary objectives
of the stage are to complete documentation in the modules, write code for the modules, and develop the
messages, commands, and screens. A majority of the coding is manual, with only a small amount of code
generated by machine from formal design languages.

A formal code inspection is held to remove defects from the code. Alternatives are used in sequencing
code inspections and unit testing of code by developers. The code inspection can be held before, in conjunction
with, or after the unit testing. Reviews of all code are expected and run very near 100% coverage. Small teams
of peers conduct the inspection of the code. Since it has been shown that small changes are especially prone to
errors and benefit greatly from code inspections, reviews have become an accepted part of small code changes,
and this has driven the coverage rate to near 100%. Formal entry and exit criteria also exist for this stage. If
changed or late requirements occur, any approved changes cause reviews to be held again for at least the high
level design.

A portion of the code validation is done through unit testing executed by the code developer. It is the
first test of executable code and precedes integration of the code into the system. The purpose of the test is to
validate the detailed code against the design and ensures that limits, internal interfaces, and data paths are verified.
Developers are expected to have some level of test plan, and track status and coverage based on the plan. Criteria
exist for completion of unit test, which, upon satisfaction, will allow the module to be integrated and become
part of the base system code.

4.12 Component Test

This test is run on the integrated system. The integrated system consists of the base system from the
prior release along with new code that has been integrated for this release. It will not be a complete system
ready for system test until all code from the release has been integrated. Component test phase comes after the
developer has tested the module in unit test and integrated it into the system. The purpose of the test is to verify
that the portion of the new functions executed by this component work as defined in the requirements. This
is the first opportunity to put the new function together with other new functions in the system.

A component test plan is created for the test. The developer may be the only person using the plan,
but the more common situation is that others affected by the function will review the plan. Formal reviews of
the test plans are recommended and frequently held for more extensive functions. Component test status is
tracked for the system, with the major comparison being test case attempts versus successful tests. Criteria are
in place that must be met before the test phase can be exited.

4.13 System Test

System test is the final in-house validation test for the new release of software. There has been a
significant evolution of this phase over the last years. Previously, System Test was done totally in-house and had
a reasonably large staff of people to do the testing. By moving a more extensive piece of testing to select sets
of customers earlier in the development cycle, both the schedule and amount of in-house resource were
dramatically reduced without compromising product quality.

25

III

During the 1991-1993, more validation responsibility has moved to the development groups versus the
system test organization. The rationale and approach has been to ensure development process and quality
responsibilities were clearer, and to reinforce quality steps being taken while development was in-process versus

at the end of the cycle. More comprehensive regression testing and validation of a wider range of function

through component testing were two things moved to development. Stricter criteria and enforcement of the

number of defects that can be open before the formal start of system test was also put in-place. All actions were

designed to move quality work to earlier development process phases, and to solidify the system sooner so that

the test cycle time could be reduced.

The system test organization reports through the same management chain as development. All

independent quality assurance activities have been eliminated. The system test group has reported to the same

management as development for a long period of time, but the elimination of the systems assurance function is

new. As the systems assurance group moved from doing a combination of independent test validation along with
analysis of development progress to only doing the analysis, they lost much of their ability to add value to the

development of products. During the same time that the move to only analyzing data was happening,

development was improving the amount of data analysis being done on quality such that the two efforts became
redundant. When the duplication became abundantly clear, Rochester eliminated the independent systems
assurance group.

System Test is called the RAISE test, which addresses the main areas of focus during the test: Reliability,
Availability, Installability, Serviceability, and customer-like Environments. The test strategy is to utilize a range

of customer-like environments as a base and then vary the physical operating characteristics to stress
environments and simulate obscure but complex situations. Emphasis is on stressful, concurrent product

interaction to drive each part of the system toward their limits. Artistic tests (versus automated tests) are utilized

to stress problem-prone areas or functions that can not be-effectively tested through automated tests. Use of
automated tests is extensive for providing background work for stress, background work for concurrent product
testing, previous release functions for regression testing, and repeatable execution of new functions.

The group uses test planning and two different review stages. The test teams make all test schedule and
resource estimates for each of the significant functions in a release. They do the estimates during the
requirements and design stages, and include these in the DCR along with development estimates. An aggregate
view of the release content is used to define test coverage priorities and to recommend any staffing changes that
may be required. The overall RAISE Test Plan defines test coverage plans for each major function in the release,
customer-like environments that will be utilized, and network requirements. Development reviews the test plan
to gain agreement on the adequacy of the test coverage defined. Detailed Test Plans are created that give detailed
descriptions of functions tested, test procedures, and validation activities. The detailed plans are reviewed by peer
testers and in many cases by the developers as well.

The RAISE test execution phase continues until the exit criteria have been met. The activity has a very
clear end-date scheduled, but completion is not controlled by the planned end date but instead by meeting
criteria. Status is reported on a weekly basis to upper level development management. Metrics and critical
problems are concentrated on during the meetings.

4.14 Beta Test and other Early Programs

Multiple programs are in-place due to the increased significance customer based testing has taken on
through the last years. Different types of programs are utilized versus a single formal Beta Test. While the
RAISE test is in progress and before the system is released for the formal Beta Test, a set of users are brought
in with the intent to break the system in as many ways as possible. The goal is to find defects while the
developers are still heavily involved with the new code.

26

The initial Beta group is a set of heavy system users that have a set of long-term relationship with IBM
Rochester. They get early versions of code and test execution in their normal environment while also doing
whatever they can think of to break the code. Problems found during the test are fixed prior to Manufacturing
Release and shipment to the full customer base. The next Beta Test phase is used to get a tested version of the
system out to a group of customers that have been selected for different purposes. Some selections are due to
utilization of a new function, stressing of an area of the system that has been updated in some way, and early
exposure to a set of customers for marketing reasons.

All programs are managed carefully to achieve specific objectives. Customer selection is done by a group
that looks at the specific customers to understand their work environment and how they use the systems. The
initial set of Beta test customers are a well-known group with large, complex configurations or a history of
finding a significant number of defects after they have received new releases. Beta Test customers are selected
based on requests for new function along with plans that will utilize it early, or due to marketing reasons
communicated to the selection group. After selection, the group monitors the tests closely to ensure feedback
is received and used. Tight management is critical if the benefits are going to be received from the tests.

4.15 Maintenance

Software maintenance is done by the same development groups responsible for developing the next
releases of the system. This also includes a support organization that is responsible for handling the phone calls
and on-going definition of the problems the customer is encountering. A majority of problems are resolved by
the support organization either through answering a question or providing a fix that is available for the problem
the customer is facing. Beyond specific individual fixes, fixes are provided on a periodic basis to customers that
wish to receive periodic updates that have accumulated.

When problems are unable to be resolved by the support organization, development gets involved.
Work goes on between the customer, support organization, and developer to understand the problem in detail.
Developers will then work to solve the problem and get a fix to the customer. This whole process is supported
by an extensive tracking system that ensures problems are not forgotten, and that code fixes are kept track of
when doing future development work.

4.16 Process Usage and Compliance

Process compliance is driven through what is considered accepted practice and through the use of
metrics. The process is well-defined and communicated to all developers. In addition, it has been in-place for
many years and the senior developers have grown up with it as the way to do development. Quality statistics
and research are also made available which give quantitative proof of the value different process steps provide.
One key part that is important to process usage and compliance is upper management support. The upper
managers are advocates of the process and expect developers to use it unless they can provide good rationale for
variations.

Metrics are an important guide to how the process is being used. Design review coverage statistics are
kept which show whether the reviews are being held and how effective they are. Testing can be measured by
test coverage statistics. Defect removal can also be tracked across the phases to determine if additional efforts
need to be spent in any of the stages. All of this provides an environment where process usage can be
determined and evaluated.

4.17 Release Management

An individual is assigned to a specific position called Release Manager for each release of the system that
is developed. The Release Manager is a matrix management position that spans development, test, and other
support organizations. Release Manager's overall responsibilities are to coordinate, analyze, initiate action,

27

provide alternatives, and assist the development and support organizations in whatever ways necessary to deliver
the release. The final objective is to release a high quality, well performing product on the best schedule possible.

More specific actions taken by the Release Manager are setting major checkpoints during the release,
tracking problems that are not getting resolved in a timely manner, continually analyzing progress towards
completion of development, taking positions on plan changes to the release, and maintaining release status.
Release status is handled through constant interaction with development and support groups along with analysis
of metrics. Scheduled briefings to the management team and the business unit executives are responsibilities of
the Release Manager.

The Release Manager works with a team of functional representatives from each development and
support organization. This team will bring problems forward themselves or act on problems discovered through
independent investigation by the Release Manager. The Release Manager will use personal experience/judgement
and team input to find an owner for the problem while often providing recommendations to the owner on
solutions to the problem. Keeping schedules accurate and achievable is another key responsibility. Through
usage of thorough reviews at Major Checkpoints determined by the Release Manager, analysis of each major
function is done. From this review, an assessment of the overall release is made along with recommendations
on actions that should be taken for individual functions.

4.18 Change Management/Configuration Management

The focus in Rochester is better defined as "change control" versus just "change management." With
releases that regularly reach about two million lines of new and changed code, changes can get out of control
without careful management. Tools and documents are both used to control the change. DCRs (Design Change
Requests) are used as an important documentation tool to control change. They contain design information,
schedules, tracking of completed and planned activities, and also go through formal phases that involve specified
actions that must be completed and reviewed before a project can proceed to the next development phase.

Release content, release schedules, requirements, design, and code are all managed though processes that
are designed for proper review and communication of changes. DCRs and documents that track release content
are used to communicate changes that are approved. Release content, overall release schedules, and requirements
are controlled by the Release Manager and a team of managers from the development, product marketing, and
support functions. Design changes are reviewed and approved by a team of technical experts that meets on a
weekly basis.

Changes to code are carefully managed by tools that run on the development system. Integrations of
new or changed code must be tied to a specific new function or fixes of problems that are formally reported and
tracked. Testing must be done before the integrations, with the set of tests determined by the developer. Code
Freeze is a formal point at the end of the development process where no further changes can be made to the code
without approval. The Release Manager, or a designated person from a development organization, must approve
all changes to the system. This process allows for fixes to critical problems but cuts down on code "churn" from
widespread code changes.

4.19 Metrics

Metrics are a key part of managing the overall development process. Documented metrics are used at
each phase of the development process and are part of both entry and exit criteria for the phases. Usage of
metrics and process are for the purpose of identifying how near completion development is, and what the
expected quality level will be. The base set of metrics that span the processes are: entry and exit criteria for each
phase, requirement/design/code changes, in-process bugs or defects, post ship defects, reliability, and performance.

In-process measurements provide the ability to understand progress versus the plan and to implement

28

real-time quality management. The in-process measurements are based on a few key metrics that can be used
versus a large set of metrics that are only there for measurement purposes. Metrics are compared to a historical
baseline and with the prior release.

Key metrics used during the design stage are time spent in reviews, defects removed by stage, and defect
escapes by stage. These three measurements can be used to determine the effectiveness of each stage and whether
additional inspection or testing should be done on functions being developed.

Defect tracking during development and test is the other important in-process set of metrics. Metrics
used are: backlog, open versus closed defects, closed versus the backlog during a phase, severity mix of defects,
and some analysis of clusters of defects. Once the product has shipped, defects continue to be measured. Some
metrics tracked are: number opened during a period, backlog, mix of severities, defective fixes, concentration
of defects in areas of the system, and releases where the defects were injected. Monthly reviews are held on the
post-ship defects to keep management informed of overall status and of critical problems still open.

4.20 Process Improvement

As Rochester improved its ability to manage schedules, it shifted its process improvement activities to
quality improvement, such as the Causal Analysis and Defect Prevention Processes introduced around 1991
throughout the development and support organizations. The goal is to determine the sources of defect injection
and remove them rather than the results - defects. Groups hold meetings to analyze problems and then
individuals go off to determine defect origins and how to eliminate them. Phase kick-offs are an additional step
used to start each development process phase. This allows for process learning from previous experience.

Management also recently put into place a Process and Quality Improvement Department to serve the
entire laboratory. The group acts as partners and consultants to development, with the purpose of bringing in
and spreading new process ideas. By being in the development organization, the group is considered part of
development and effective team members. The group has a significant role in tracking metrics and interpreting
results, and have introduced process changes based on their data analysis. For example, after seeing significantly
high defect rates associated with module interfaces, the group suggested a modification of the high-level design
and review process in order to resolve interface issues earlier. This department also initiated the movement of
quality and metric tools to the developer level to allow wide spread usage, and has been an aid for the
improvement of on-going attention to quality.

4.21 Tools

The ABS tool set has evolved through the years. Development continues to be done on mainframe
computers and many analysis databases exist on the mainframe. The development language is standard and has
been enhanced through the years with functions that minimize the machine instructions required for operations.
Compilers and linkage tools are standardized across the system. This has all been done to minimize the
integration and linkage time required to pull the full system together. In recent years, personal computers and
work stations have been integrated into the development environment.

Metric tools exist on the mainframes, in most cases, with some also running on the AS/400 and on
personal computers. Databases of information are available to all users with a set of analysis tools accessible to
them. Moving this access to the teams involved with development has improved the accuracy of the data and
the usage of tools during the development phases.

4.22 Process Education

Education of new developers is accomplished through a variety of mechanisms. Significant process
documentation exists and is accessible from every person's terminal on their desk or in printed form.

29

II

Development team leaders are responsible for ensuring that the process is understood and followed by their team
members. Education is often handled working together with experienced people. "On demand" education is
also available. This has been created and is delivered by process experts and is often scheduled for large groups
of developers. The attempt is to time education to when it will be used during the development process.

4.23 Phase Review Process

A System Manager is responsible for managing timely delivery of competitive, high quality product
offerings that encompass both hardware and software. It is a matrix management role with the functional areas.
The common mechanism for carrying out this role is to utilize a team of representatives from each functional
area, including the marketing and support organizations. A System Checkpoint Process is utilized for each
release of the product. Executives and organizations outside the direct development organization focus on four
key business checkpoints:

Initial Business Proposal (IBP): IBP provides an initial analysis of the business case (cost versus incremental sales)
and preliminary product definition. A Business Fact Sheet, which highlights a summary of the release, may be
provided out of this stage. Exiting the IBP indicates that all functional areas agree to proceed to the Commit
Checkpoint, which is next in the process.

Commit Checkpoint: This is the point where plans are examined to determine if announcement and general
availability (GA) can be met. The product definition and business cases are completed during this phase prior
to the checkpoint. A comprehensive plan is developed that defines the work items and schedule to meet the
General Availability date. Exiting the Commit Checkpoint indicates that all functional areas agree to achieve
the announcement and general availability dates. The Business Fact Sheet is generated or updated during this
phase also.

Announce Readiness Review: This step assesses the program after most of the development activities in the plan
have been scheduled. It occurs before the main effort begins to prepare marketing deliverables for
announcement. Exiting the Announce Readiness Review indicates that work plans are defined, responsibilities
assigned, and schedules agreed upon.

Announce Checkpoint: Obtain final commitment to announce the product.
Exiting the Announce Checkpoint indicates that all requirements are or will be met to support the General
Availability.

4.24 Summary and Analysis

Products developed in Rochester have enjoyed a history of high quality recognition and business success.
The team is very productive and has successfully adapted its product to the changing market. Quality
recognition has come via the Malcolm Baldrige National Quality Award and ISO 9000 certification. Change
management and metrics have been incorporated into the development process and are now integral aspects.

The challenge that continues to exist centers around how to balance individual creativity and process
compliance. Individuals are recognized as the basic elements that dictate success, but it is sometimes difficult for
them to feel the freedom to attack an opportunity with the creative approach necessary to solve it the best way
possible. Developers recognize the positive aspects of having a set process, but also feel the limits imposed.
Managers continue to struggle with the need to follow the process to improve delivery and quality predictableness
while realizing that individual creativity is needed to solve problems that continually become more technically
complex.

30

5: FUJITSU' 5

5.1 The Company

Fujitsu was established in 1935 when Fuji Electric incorporated its telephone equipment division as a
separate company. The company commercialized Japan's first digital calculator, expanded into switching systems
and other electric and electro-mechanical equipment, before introducing a primitive non-programmable computer
in 1954. Fujitsu gradually expanded product development and marketing for a range of communications and
office equipment, computers and computer peripherals, and data processing services. Corporate headquarters are
in Tokyo, Japan with major wholly owned subsidiaries operating in the United States and Europe.

Fujitsu is the number one ranked information technology vendor in Japan and the Far East, and is now
the second largest in the world, after IBM. For the year ending March 1992, Fujitsu employed 145,000 employees
worldwide. Revenues were $21 billion and profits $94 million. These revenues are concentrated in data-
processing related sales, communications systems, and semiconductors. Fujitsu's stated goal is to become a "fully
integrated computer and telecommunications product company." Data-processing services are concentrated in
two general areas: computer systems hardware and basic systems software, and large-scale custom applications
and applications packages. Computers developed and sold are mainframes, minicomputers, work stations, and
personal computers.

5.2 Fujitsu Organization

Fujitsu is organized into approximately a dozen operating groups. A subset of the key groups focused
on hardware include: Information Equipment (disk drives, printers, FAX machines, other peripherals),
Transmission Systems, Switching Systems, Telecommunications Systems, and Semiconductors. The groups
responsible for sales are: Systems Sales, Office Automation Sales, and NTT Sales. Groups involved with data-
processing services are: Computer Systems, Printer-Circuit Board Products, Systems Engineering, and Field
Service Engineering.

Systems Engineering and Computer Systems handle most of Fujitsu's software development. Systems
Engineering is responsible for the development of large-scale custom applications and applications packages sold
to multiple users. Computer Systems is responsible for the development of mainframe and minicomputer
hardware and software, with additional responsibility for factory automation software.

Numazu, the subject of this case study, is the main site for the Computer Group. It is responsible for
hardware and basic systems software development for mainframes and minicomputers. Approximately 3000
software personnel work at Numazu. The general organization groups are Software Engineering, Development,
Inspection (Quality Assurance), and the Field Support Center. The Quality Assurance Department historically
has played the leading role in defining the software development processes used in this facility. The results have
been significant progress in development process standardization, quality, and testing effectiveness.

5.3 Culture

Fujitsu Numazu has a culture that closely resembles that of the other major hardware and software
producers in Japan, namely Hitachi, NEC, and Toshiba. Their approaches to software development have
frequently been described as "factory-like," with common elements such as the centralization of most
programming operations in particular domains at a single facility, and rigorous standards and controls that cover
project management and product inspection.

Fujitsu is distinguished from its Japanese competitors by the breadth and depth of its competence in
computer hardware and software development. The company has relied on talented in-house engineers and a

31

III

careful study of U.S. technology to gain this competence. This strategy of deliberate, independent development
has helped Fujitsu become Japan's largest vendor of computer products for small, medium, and large systems.

Heavy and continuous in-house training is an additional feature of the Fujitsu culture. New employees
generally have little or no computer engineering or software training. Fujitsu invests heavily in training
programmers and system engineers in how to use methods, procedures, and tools that are standards in the
division. Education is coordinated with career paths, which makes it a central consideration for employees. All
of this comes together to create a very tight and controlled bond between the employees and the company, both
technically and personally.

5.4 Product Description

The core of Fujitsu's computer business is the M-Series of mainframe computers. The M-Series has a
range of processors targeted at medium- and large-sized organizations in both the commercial and government
sectors. Banking and finance are its primary markets. Fujitsu's mainframe product strategy has been to
manufacture and market IBM-like mainframes offering enhanced price-performance and system capacity compared
to IBM and other rival vendors. Fujitsu has sold its large systems directly in Japan or to Japanese-owned
companies overseas. Fujitsu has not focused on sales in the United States, leaving this market primarily to
Amdahl Corporation, in which Fujitsu is the largest shareholder. Over the last few years, however, Fujitsu has
expanded its direct mainframe presence in Europe, purchasing ICL in the United Kingdom and selling machines
through Siemens-Nixdorf. For mainframes sold in Japan, Numazu's Basic Software group develops a full set of
system software, including close (but not fully compatible) equivalents to IBM's MVS, VM, and AIX operating
systems; a relational database system called RDB II; and communications support such as OSI, SNA, and
TCP/IP.

The Fujitsu K-Series is a product line of small- to medium-sized minicomputers intended to compete with
IBM's AS/400 Series. Fujitsu recently introduced the K-600 Series, designed to replace older K-Series systems,
which feature more innovative and faster hardware along with a new operating system, CSP/FX, which is totally
compatible with the operating system used on the older K-Series systems. The Basic Software group is also
responsible for development of the system software for the K-Series, including the CSP/FX operating system;
FX/RDB relational database management system; communications support for X.25, OSI, TCP/IP, and ISDN;
a range of programming languages including C and COBOL; and support for attachment of personal computers.

5.5 Release Structure and Strategy

Release schedules are very consistent with the timing of IBM software releases. Mainframe software
releases come on 12 to 18 month intervals and are frequently tied to hardware upgrades. Schedules are most
often driven by the availability of the hardware. For the K-Series minicomputer software, releases have tended
to come on 12-month intervals. These releases will often be in support of hardware enhancements but will more
frequently involve only software function. Competition differences in the mainframe versus the minicomputer
markets are the drivers of the differences in software release cycles. Due to the strategy of providing IBM-
equivalent function, the Fujitsu functions tend to come out later than the IBM functions but on schedules that
are predictable to their customers.

Achievement of schedules has significantly improved through the years. In the early 1970's, nearly all
projects came in late, which meant that the Quality Assurance Department received the product after the
scheduled time. The percentage of projects late improved to 40% in the late 1970's and to 15% or so by the
1980's. The improvement came through utilization of product handling and project control measures to improve
scheduling accuracy. Remaining delays are mainly from late transitions between functional design and coding
that result from skill variations or changes to product specifications and designs.

32

5.6 Development Process Overview

The development process utilized by Fujitsu follows a conventional life-cycle model: basic design,
functional and structural design, detailed design and coding, unit and combined test, component and system test,
product inspection, delivery and maintenance. Control in the past was solely due to the usage of detailed
documentation on the system and module designs; programming reports which included detailed information
on the design documentation, review reports, and the test specifications and results; and testing reports which
detailed the test specifications and results.

Control shifted beyond these structured documents to making quality assurance a part of the formal
organizational and job structure. In each of the development stages, actions to remove defects and to eliminate
insertion of new defects became the main objective to drive quality. The description of the phases of the process
will highlight the usage of both documentation and inspection steps throughout each phase.

5.7 Requirements Phase

Requirements for Basic Software are dominated by the strategy of offering IBM-equivalent function. For
mainframe software, Fujitsu closely watches the IBM functions and follows the IBM releases with their own set
of equivalent functions. Since Fujitsu primarily designs and sells its systems to Japanese customers, it adds some
unique functions for this set of customers that differ from standard IBM products. Fujitsu is known for a very
strong marketing organization that has very close on-going relationships with its customers and the ability to
channel customer requirements effectively to the development organization. Software releases are clearly defined
by this set of IBM functions that will be matched along with a set of functions specific to their Japanese customer
set, although available development resources determine the extensiveness of the additional functions that become
part of the release.

For minicomputer software, Fujitsu has three major sources of requirements. First is the function being
offered in the IBM AS/400 system that Fujitsu generally targets for functional equivalence. Second is the unique
needs of the Japanese customer set that the system is primarily designed for. Third is the increasingly important
set of industry standards. Fujitsu has recognized the benefits (and needs) of watching the emerging standards that
customers are becoming more aware of and for which ISVs (Independent Software Vendors) are developing
applications software. Development managers decide as a team what the contents of the software releases will
be.

5.8 Basic Design

Fujitsu calls its first design stage "basic design." The objective is to take a new function and determine
how to handle it within the system. The design does not go down to the module level but instead concentrates
on "what" the function is, "how" the major products that make up the system will be affected by the function,
and "what" the end-user interaction should be.

5.9 Functional and Structural Design

In this phase, the function is broken down into the module structure within the system. Prior to this
level of breakdown, the function is defined by the functions that will be handled by each system component.
Upon defining the module structure, the interfaces between the modules are defined. Since interface errors are
critical and the most difficult to resolve, they are addressed early in the design of the new function. A testing
plan is also required as part of this phase.

Fujitsu holds formal design reviews for each design, conducted by small peer teams. A "phase
completion reporting system" was put in-place to capture the results from reviews. Information includes
productivity information regarding the number of defects, who reviewed it, and how much time was spent.

33

III

Functional Design Documents are created that provide the overall module road map.

5.10 Detailed Design

Fujitsu introduces tool support in this stage to support the structured methods used for design and
programming. Yet Another Control Chart (YACII) is the standard design tool used in systems and applications
software. This combines aspects of conventional flow charts and pseudo code. Structured conversational
Japanese to define the design is input on work stations or terminals. The YACII system contains an editor,
compiler, debugger, and documentation generator.

YACII has a special program that translates the design language inputs into machine readable YACII
charts that are the input for the coding stage. With the editing features and the common format, the YACII tool,
combined with a code generation feature within the YPS (YACII Programming System) tool set has significantly
increased the amount of automated code generation, as well as design and code reuse at the design-specification
level. Reuse at the design specification level has allowed the reuse to spread across different languages and
architectures. Poorly structured programs have been virtually eliminated by these tools that support top-down,
structured design through graphical and text representation.

The documentation generator produces detailed specifications from the YACII design charts. Design-
sheet reviews are held during this stage and prior to code generation. These reviews remove a large percentage
of defects and gradually have become the major method of bug elimination. Results from the reviews are input
to the productivity and quality tracking tools to do quantitative analysis.

5.11 Coding

YPS (YACII Programming System) allows the user of the tool to edit YACII diagrams generated from
the design stage. After completing any editing required, YPS takes the design language outputs and automatically
generates "bug free" code from the machine-readable YACII charts. Executable code is generated in several
languages, including C, FORTRAN, COBOL, and LDL (Logical Design Language), a C-based language developed
by Fujitsu for use with YACH charts.

Extensive use of these basic tools has helped Fujitsu achieve a number of important development goals.
Coding errors are virtually eliminated through use of YPS. The volume of new code that programmers have
to write is minimized through what is termed "common development": (1) writing program design in a
computer language or in flow-chart form (YACII in this case) that can be compiled into different languages and
stored in a reusable library; and (2) designing basic programs (and even components such as compilers) for use
in more than one of Fujitsu's operating systems. Software reuse is strongly emphasized and has been even more
prevalent in applications than in systems software (between two and three times more). Limits exist with regard
to code reuse, however, and Fujitsu has found that clear productivity improvement exists as long as personnel
reuse 70% to 80% of a particular module or program part without significant changes.

Fujitsu holds formal code reviews in the coding stage. The source code is reviewed by a small team of
peers that include representatives from the Quality Assurance Department. Before the addition of the design-
sheet reviews, code reviews were a more significant source of bug removal, but this has lessened as design reviews
have become more effective. Review results are input into the productivity and quality system.

YPS has an additional feature that aids developers. Reverse generators are part of the tools and allow
design-charts to be produced from the source code. Developers can edit the design charts more easily than source
code and can store the charts in a data base for later retrieval.

5.12 Testing

34

III

Fujitsu's objectives in testing are to detect 65% of the bugs in a new program by the end of the coding
phase and 95% by the end of system test. They want to remove as many of the remainder as possible by the
end of the inspection process following system test. As the complexity of products increased, the combinations
of factors and conditions became so large that they were impossible to test completely using old methods of test-
case generation. To overcome this problem, Numazu adopted two approaches. The first was to develop tools
that automated as much of the testing as possible. The second was to create a data base on test-factor analysis
methods and conditions to help create test cases for new functions.

Testing is carried out in the development organization and the independent Quality Assurance
Department. Approximately 10% of a project's total manpower resources are accounted for by QA Department
personnel, most of which is devoted to independent system testing. Automatically generated test cases are used
by both groups. The total testing phase is described in the sections that follow.

5.13 Unit and Combined Test

Code developers are responsible for execution of unit and combined test during the coding stage. The
YPS tool has very extensive testing support used for this and subsequent stages. YPS includes executors, test
coverage evaluators, and debuggers that can be used on the YACII charts. Through usage of these tools,
developers are able to determine the comprehensiveness of the test cases, collect and analyze data, and debug the
code.

Tests cover a very high percentage of the code paths and validate the logic, limits, and boundaries of
individual modules. The modules are combined into groupings of new functions and tests are run on these
groupings. During both these phases, the main concentration is validation of the design and code, not a
validation that the requirements were met. Analysis of results is done to determine code path coverage, which
is one of the criteria for test completion.

5.14 Component Test

Before the code is integrated into the base set of code used for system test, component test is executed.
This test utilizes large combinations of the new functions integrated together. A set of new test cases is run to
validate the new functions are executing properly. The other key part of the test is validation of the existing
function through a set of regression tests. Once this set of new and regression tests have been successfully
executed, the code can be integrated into the base set of code used for system testing.

5.15 System Test

System Test is the phase where validation that the software satisfies the functional requirements occurs.
Documentation from the design (YPS generated), along with the requirements statements, are used as a guide for
this testing. A set of the automatically generated test cases, a set of automated test cases stressing functions from
prior releases, and new tests created by the individual validation people are run in combination. Customer-like
environments are simulated to provide a representative set of stress situations for testing.

Performance testing and reliability certification are also part of the test. Specs exist for performance in
stress and non-stress environments. Reliability is measured in mean-time between failures (MTBF) and is
measured as the test progresses. Bugs are closely tracked. Getting the bug level per module to an acceptable
range is one of the criteria for exiting system test.

The Quality Assurance Department maintains a powerful and independent voice in deciding on whether
the product is ready to ship. Their monitoring of development progress begins during the design phase and
continues through system test. Sufficient defect removal is critical to the ship decision and can be analyzed using
a combination of the in-process measurements and historical data gathered from prior projects. When quality

35

is considered sufficient (meeting specs that were established at the start of development) and when requirements
have been validated, the ship decision is made by the QA Department for all major products.

5.16 Product Inspection

Product Inspection is a formal step in the process added in 1971. Fujitsu requires completed software
and manuals to pass a formal inspection process before release to the customer. Product-handling procedures
require that the source code, manuals, and other documentation must be brought to the Quality Assurance
Department together and that they be consistent with the information contained in them. No product can
receive a registration number, which is necessary for release to customers, without meeting these requirements
and gaining the formal approval of the Quality Assurance Department.

5.17 Delivery and Maintenance

The YPS tool significantly facilitates product maintenance. By minimizing coding errors, Fujitsu reduced
its amount of maintenance by one-third between 1977-79 and one-third more between 1979-82. By 1985, the bug
levels for outstanding code were nearly zero. When maintenance is required, the development group is
responsible for analyzing the problems and making the changes. The capability within YPS to present the
module design versus just the code allows new people to understand problems relatively easily and also allows
experienced people to be quickly updated on the module design and function (instead of having to study a large
amount of code to understand the overall design). Through the use of reverse generators, the source code can
be used to produce design charts that can be edited instead of the code. Updating of documentation after
maintenance changes are made is required. Specific tools exist to help this get done. Fujitsu also has systems are
in-place to report defects in its basic software products and to track their resolution. Customers can report
problems directly through the ITS product or can report them through Fujitsu marketing and services people.

5.18 Process Usage and Compliance

The development process described is standard throughout the Basic Software group that is responsible
for all Fujitsu systems software. Variations within a sub-group are rare and do not happen on major projects.
Much work is done to keep the process, and tools to support it, close to the "state-of-the-art." Usage of a design
language also locks people into a structured approach to coding and testing.

Compliance comes through culture and a strong Quality Assurance Department. Culture is a factor
because people do not usually question the process.. Quality Assurance is a factor because this department
monitors progress through the development phases and is very active in making sure steps are not skipped or
improperly done. Having control over the final ship decision also gives the Quality Assurance Department
considerable authority.

5.19 Project Management

Improved project management was one of the areas Fujitsu invested heavily in to reduce the number
of projects coming in late. The central tool for this has been the Basic Software Project Management Support
System (BSMS). The tool enforces structured procedures for project initiation, execution, and completion.
Support in the tool covers project management, development procedures, schedule estimation, monitoring of the
development process, and testing and inspection aid.

Projects begin with an application for a product number, which requirements approval by superiors in
the organization. A project must submit a budget as well as create development and planning documents that
include information such as a market survey, functional design specs, performance design specs, reliability
objectives, manpower estimates, and machine-time estimates. This information together provides a relatively clear
picture of what the project is and how much the product will cost to build. Management then uses the

36

development and planning documents to track progress against the plan. Items tracked against the initial
estimates include actual work hours, actual computer time, and phase completions.

A tool called the Generalized Program Editing and Management Facilities (GEM) provides additional
project management support. GEM supports direct measurement of subsets of the project that can be at a group
or even individual level. Automatic generation of graphic reports can be done for groups and individuals.
Productivity (lines of code developed), progress status (by month and week), and quality (defects per module)
are reported through system usage.

5.20 Change Management/Configuration Management

Change management is enforced throughout the development process stages. Starting with the designs
in YACII, library management functions via the GEM tool manage versions of projects under development and
existing projects. When the code is generated, the history of the module within GEM control continues to be
updated. For system test (and previous) driver builds, the GEM database is used to pull in the integrated modules
that make-up the base set of code.

Bugs are closely tracked during development and testing. Tracking ensures that changes made to the
system are due to reported defects, and also ensures that all reported defects are resolved. The change
management extends to maintenance changes. Modules contain a track of all maintenance changes made. This
track is enforced and supported by the GEM tool.

5.21 Metrics

Metrics have been a constant part of the process changes introduced by Fujitsu. The Quantified
Management System was created as a tool to capture the usage of metrics by management throughout the
development process. The company quantified basic measures of performance and then introduced standardized
procedures and tools. The goal was to help developers build in quality at each phase rather than rely on
inspection at the end of the process.

One feature of Fujitsu's use of metrics has been to quantify and then analyze information on project
progress and product quality. Instead of just comparing completed work to initial estimates, Numazu used a two-
step process: measure quality of work-items by the number of points reviewers gave them in a structured set
of review steps, and measure how well the results compared to the estimates. This approach allowed managers
to define tasks in small realistic segments, and minimize estimation errors.

Another feature has been to utilize methods to predict error occurrence in the programming phase.
Fujitsu also introduced a management by objectives process to ensure error correction was completed. In
addition, Fujitsu determined test items through the use of statistical Design of Experiment (Taguchi) techniques.
Using educated guesses of where problems were likely to occur, tests could by generated to cover quality risk
areas.

Fujitsu has also tried to quantify the concept of user friendliness. Manual reviews and inspections, along
with surveys to validate the accuracy, are done for new functions. The functions are evaluated on basic product
characteristics (performance, reliability, quality of information, price, etc), design quality and consistency (degree
to which software products and specs met user needs), and sufficiency and attractiveness (extent to which
products are acceptable to users).

In terms of design defect and test defect tracking, during the test process, defects are recorded and tools
are available to analyze things such as total backlog, open versus closed ratio, arrival rates, and additional
statistical measures used to determine the overall quality and the stability of the code. Fujitsu had relied on these
testing steps to remove 85% of the defects in the past, but emphasis has been on removal of the defects before

37

III

the test phase is entered. The test process has remained as rigorous as in the past, but has to deal with a smaller
number of potential problems.

5.22 Process Improvement

The evolution of the Quality Assurance department work at Fujitsu has been a story in process
improvement. Quality Assurance has been a significant driver of controls for product, process, and quality. A
Total Quality Control program was instituted in Fujitsu and also extended out to all subsidiaries and
subcontractors. There are three key elements of the program, with two additional items also being very
important.

Quality Assurance Through Organization: Fujitsu emphasized quality control as part of the formal organizational
and job structure for every employee, and especially those in design and planning. This function is not relegated
to the Quality Assurance Department to be done through testing at the end of the process. The Development
Planning and Report System is used to monitor quality.

Diffusion of Inspection Ideas Through Horizontal Development: This stresses the utilization of regular meetings
between different departments and aims at sharing data on defects and other quality information. The objective
is to spread good thinking and practices regarding quality control.

Advancement of Quality Concepts: This involves lectures, workshops, and measures dealing with interpretations
of product quality that extend beyond zero defects to characteristics such as product design, function,
performance, ease of use, and maintainability.

Quality Groups: Fujitsu uses small groups that meet once or more a month to discuss a range of issues related
to productivity and quality as well as work conditions. The small groups also supplement formal training
required of new company employees.

Tools: Throughout Fujitsu's development evolution, tools have been an effective way of assisting changes to
improve quality. Extensive investments have been made in using tools to help the process versus defining the
process around the tools used.

5.23 Tools

As is evident in the descriptions of the development process, Fujitsu has made a significant investment
in tools to support the development process. For example, they invested heavily in tools to facilitate the
transformation of designs into executable code, and, secondarily, the reuse of designs and code. They invested
in tools to support project and library management, product maintenance, and testing. Throughout the process
of tool creation, Fujitsu's philosophy has been to use tools to help the process versus defining the process around
the tools that were available.

5.24 Process Education

Historically, new employees have had little or no computer engineering or software training, although
this has been changing in recent years as Japanese universities have added courses on information technology.
Fujitsu has thus invested heavily in training and teaches programmers and systems engineers how to use methods,
procedures, and tools that are the division's standards. To emphasize the importance the company, and as a
result the employees, place on its education program, career paths are coordinated with education. In the basic
software area, much of the first year is spent in classroom or on-the-job training, and this continues at a rate of
about 8 days of education a year in workshops, with self-study materials and quality-circle activities occurring
in addition to the 8 days.

38

Fujitsu has geared its education to the process steps that individuals are responsible for. Initial education
centers on coding and development testing. Subsequent training tracks the employees progress towards module
and structural design, with progression to project management requiring training on estimating and quality
assurance.

5.25 Summary and Results

In Fujitsu's basic software development operations, process standardization, along with various quality
initiatives, have led to apparent rises in quality, productivity, and schedule control. The percentage of late
products dropped from near 100% to 15% by the mid-1980s For all code in the field, bugs reported by users
dropped one-third from 1977-1979, and another one-third from 1979-1982. Improvement since 1981 has leveled
off and remains at about .1 per KLOC, which is very low by international standards. Productivity, which is
difficult to measure and compare between groups, showed continual improvement during this period.

Japanese customers have also viewed Fujitsu's results to be very good, as evidenced by Nikkei Computer
survey results that placed Fujitsu at the top in Japanese-language software. The company provides an excellent
study of what can be accomplished with rigorous procedures and tools to support them. Depending on the
quality of the requirements stage (ensuring they are producing the correct things), the company can be
competitive in what they deliver.

The label "software factory" has been applied to these large software organizations in Japan. Although
the term has fallen out of favor in recent years among young Japanese college graduates, and the Basic Software
group at Fujitsu has never directly applied this label to their organization, Numazu's operations clearly utilized
a set of concepts that have been described elsewhere as factory-like:'6

centralized programming operations at a single facility
adoption of rigorous standards
adoption of rigorous controls
quantification of management variables
some de-skilling of testing
standardization of methods and tools
reusability of designs and code
automation of many development and management processes.

39

III

6: HEWLETT-PACKARD '7

6.1 The Company

Hewlett-Packard, founded in 1939 and incorporated in 1947, manufactures and sells computer products
ranging from PC-compatible desk-top systems and lap-tops to super-minicomputers. Corporate headquarters are
located in Palo Alto, California. Development and manufacturing locations are both inside and outside the
United States, and marketing organizations exist in 103 countries worldwide.

Since its founding, the company has had a strong technical orientation, both in its internal structure and
vertical market emphasis. Its reputation for quality and service has earned it a rating of "most respected
company" in national polls in the United States. HP is also a founding member of the Open Software
Foundation (OSF), and offers its Open Software Environment Service to help users move from proprietary to
open systems. This draws on HP's proven strength in providing technical support.

Sales results continue to be positive for the two systems made in the organizations that are part of this
case study. Overall demand for RISC-based multi-user systems and work stations was strong in 1991 and 1992.
The HP 3000 product line, which runs the proprietary MPE operating system, experienced a 5 percent increase
in sales revenues for 1991. The HP 9000 Series 800, which runs the HP UNIX version operating system, HP-
UX, had a 51 percent increase in sales revenues for 1991.'8

6.2 Hewlett-Packard Organization

The HP 3000 and HP 9000 systems divisions are both part of the Computer Systems Organization. The
HP 3000 is managed by the Commercial Systems Division and the HP 9000 is managed by the General Systems
Division. These groups have full profit and loss responsibility. Product marketing functions are also part of
these organizations and have overall responsibility for keeping 5-year product plans in place and for managing
the product roll-out to the worldwide sales units.

Development is managed slightly differently for these systems. Core Technology Organizations have
responsibility in HP for developing I/O hardware, I/O software, processors, network software, and the UNIX
operating system that can be used on multiple platforms. The organizations contain the developers and designers
of the hardware and software. The HP 3000 (CSY) and HP 9000 (GSY) use matrix management with these
organizations to develop the support needed for their systems. Since the MPE/iX operating system and the
database support are both proprietary for the HP 3000 system, the management of their development is not part
of the Core Technology Organizations and instead report directly to CSY management.

6.3 Culture

The Hewlett-Packard culture centers around a very strong technical orientation. The base of the
company is engineering and the software developers are considered to be "software engineers" rather than
"programmers." The individuals take a very analytical approach to the work they do. This analytical approach
is a critical part of how they manage development projects in the company. As discussed in more detail in the
metrics section, development projects are run by metrics, and it is no surprise why one frequently hears the
statement that "the company is run by metrics." HP uses metrics as a guide for the actions that project members
must take in order to deliver products on schedule with an acceptable level of quality.

One might also say that the company cultivates a "perfectionist" attitude among its employees, as
everyone is encouraged to do everything "the right way." This attention to perfection has helped HP projects
become more structured in software development. Projects have used quality data to show the improvement in
software defect rates that is possible by utilizing more rigor in the design stages and by doing formal code

40

inspections during the coding stage. Because of strong individual commitments to perfection (defined as software
quality in this case), a bottoms-up implementation of the formal reviews happened within the development
community. It appears that any attempt by management to dictate these changes and force individuals to
"comply" with the processes would have resulted in failure. A phrase quoted often at the company that summed
up this attitude was, "Commitment is in at HP, compliance is out."

On top of the "analytical approach" and "perfectionist attitude," HP also exhibits a strong emphasis on
individual creativity. Developers are allowed and encouraged to come up with ideas on how to improve their
products and to make changes (making sure they obtain "buy-in" from the release management team). People
are also encouraged to dispense with useless formalities. This culture was expressed by one person at the company
as follows: "HP people have an analytical approach and a perfectionist attitude, but they work hard to appear
informal."

6.4 Product Description

The HP 3000 family, Hewlett-Packard's well-established mid-range computer series, consists of the Micro
3000 line of products designed for desk-top or small work group computing, the 5x/7x line of proprietary-CPU
systems, and the Series 900 products that are based on HP's new Precision Architecture (PA-RISC). The 3000
series features a tightly integrated hardware/software design and is upwardly compatible at the software level
from the entry-level systems through the top-of-the-line systems. Two different versions of the operating system
actually run on the Micro 3000 and 5x/7x lines (MPE V/E) and the Series 900 line (MPE/iX), but they remain
compatible with applications software developed for the earlier systems and use the same interfaces and peripheral
devices. The company has stated that further updates to this product family will be on the PA-RISC platform.
The HP 3000 family is typically used in general business applications such as office automation, education, and
financial management.

HP 9000 products are UNIX based computers that run Hewlett-Packard's HP-UX version of the UNIX
operating system. The series consists of the Series 300 products, the Series 700 and 800 products, and the Apollo
9000 Series 400 systems. These UNIX-based systems are what HP is attempting to expand its user base with.
HP-UX offers a variety of programming languages, including C, Pascal, Fortran, and COBOL along with support
for functions like sort/merge and file management. As is common with many UNIX-based systems, extensive
CASE support for software development is offered via mainly third-party vendors.

6.5 Release Structure and Strategy

HP's development goals are to provide 2 operating system releases per year. The releases are either
required or optional product releases. Required releases come out about 18 months apart and must be installed
by all users. The optional releases come out every 6 months between required ones, and customers can choose
whether to install them or not. To meet the goal of simultaneous development of 2 releases, HP has gone to
parallel development of the releases using the same code base. An extensive revision control system has been
developed and installed which allows any developer to change code from the formal code base. This parallel
processing of the code for the releases has gone through some refinement and has been the major focus of the
tools group over the last years.

The releases are date-driven versus content-driven. The company uses a concept of a "release train."
Function that is ready and can meet the delivery date of the release can get on the train, while functions that
cannot make the schedule must get off the train. The train runs on a specific schedule which puts the releases
under more of a delivery date base than a functional base (i.e. wait until a specific set of functions are complete
before shipping the release). Groups are expected to commit to a schedule and make it. Dependencies between
functions are generally the key to pull different functions together on the same schedule for a release. There are
some independent functions that just come in whenever the release with the appropriate schedule comes by.

41

6.6 Development Process Overview

Each division within Hewlett-Packard owns its development life cycles for the products they develop.
They are free to choose different process variations for each of the products. Even with this choice, all processes
look remarkably similar across the divisions and products, even if everyone does not recognize it as a "standard
process." If not considered a "standard process," it can at least be considered a "consistent process."

A formal Life Cycle Document is used across Hewlett-Packard with each division having their own
individually created document. The "life cycle" is a key concept in HP and is used by the divisions to manage
their businesses. The basic model for the life cycle is the IEEE model of the standard software process. The
division's document defines phases and checkpoints. In general, each phase has a description of the work
products for the phase, entry and exit criteria, and the outputs of the phase. The overall development process
is recognized as basically a waterfall approach to software development with HP making "go/no go" decisions
at defined checkpoints.

Key requirements for a release are determined along with a schedule for when the release should come
out. The key requirements are determined by an entrepreneurial and contracting process involving functional,
strategic, resource, and schedule negotiations. The central point for this work is the Phase Review Process that
will be described later. For purposes of this discussion, the Phase Review participants are the executives from
the HP divisions. During this top-down view of projects, key software and hardware functions are brought
together on an agreed to schedule. Preparing for the Phase Review includes a bottom-up process of estimating
resource and schedule requirements for the functions. Through the use of this information, the executives can
make the initial set of top-down release content decisions. Agreements are then reached among the development
groups, documented in the Quality Plan, and from that step on the process is driven by metrics. Each of these
key steps will be described in detail in the following sections.

6.7 Quality Plan

The Quality Plan is the critical development starting point in HP. The plan is created for all major
development efforts (each release is considered a major development effort along with some significant cross-
systems functions such as POSIX support). Each of the development groups involved with delivering function
for the development effort participate in writing the plan. Plan creation is overseen by the systems division and
owned by the development manager responsible for the overall product. The manager is generally at the systems
level, CSY for the HP 3000 and GSY for the HP 9000. Participants in the writing include marketing, laboratory
(development), test, and quality assurance.

Corporate standards define what must be in the plan. Measurable objectives for the product are
contained within the plan. It defines the expected results of the process steps, checkpoints, and criteria. More
specifically, some requirements at the development phases that would be part of the plan are: what must be
reviewed in design and code phases, percentage coverage for design inspections, entry and exit criteria for each
development phase, MTBF (mean time between failures) quality commitment, path coverage for testing, the
amount of automated test coverage, how items that can not be handled by automated testing will be covered,
and specific check-off items for the phase exit. Metrics are an additional part of the plan with a description of
how each metric will be reported and who it will be reported to. Metric owners are expected to manage the
commitment made for the specific metric.

The final milestone defined in the Quality Plan for development is Manufacturing Release. The criteria
for Manufacturing Release must be met before the product is allowed to go out for customer usage.

The usage and content of the plan have been heavily influenced by QFD (Quality Function Deployment)
principles. The clear definition of what will be done in each phase, along with defined and measurable entry/exit
criteria, are central both to QFD and the HP Quality Plan.

42

6.8 Requirements Phase

The requirement phase for a specific system release occurs during an 18 - 24 month period prior to the
release date. Planning is mainly a question of what marketing and the chief development groups wish to see in
the system 24 months from the point in time they are at. The main objective of the planning is to determine
the functionality for the major release. Much of the front-end planning involves stabilizing the development
plans of the core components: networking, operating system, languages, and data base. Each of these separate
groups requires plans that satisfy cross dependencies.

Requirements come from two different sources. The first source is the product marketing departments.
These departments are focused on different industry segments in the market. They utilize a combination of
direct customer input and marketing organization directions to determine the key requirements needed in releases
over the next 5 years with particular emphasis on the next 18 - 24 months. The marketing departments involved
with this work are part of the development organizations and work with the direct sales force of HP. The
second source of requirements is internal directions determined by the technical groups in the company and by
executive commitments. Internal directions include things like POSIX compliance, OSI communications support,
and RISC-based processors. These relate to strategic directions that are felt to be important to the system along
with product deficiencies recognized by the technical groups.

All requirements must be formalized before being brought forward. Requirement formalization is done
as low in the organization as possible, with determination of the specifics of the requirement generally done by
engineers. The desire is to get the engineers more focused on what the customer really wants. The market need
is determined and defined, costs to develop the function are estimated, and revenue is estimated. Requirement
formalization is required to at least be completed by the Commit Checkpoint which is the point where functions
are formally included as part of the release.

The requirements that will be part of a release are decided at a high level in the company. The General
Managers of the systems divisions (CSY for HP 3000 and GSY for HP 9000) are the final decision makers. The
computer division General Managers are responsible for each of the platforms and approve the content decisions
to drive profit and loss goals. Release content is controlled via the negotiation process for resources. The
division General Managers provide funding to both the internal division development and the core technology
divisions based on release content. Adding content will generally warrant additional development resources.

6.9 Design and Architecture Phase

Design and architecture work is done by the people that do the actual software development. HP likes
to keep ownership with people all the way through the development of the product to keep knowledge and
commitment high. There are some "system designers" who are seniorlevel experienced people in HP that assist
in the design phase. Assistance usually is provided for complex cross-system functions, such as POSIX
compliance throughout the system.

These HP groups do not use any formal design methodologies. Few specifics are required regarding steps
that must be done during the design. Prototyping is used some but was not extensively. The main mechanism
utilized is formal design inspections which are required at the end of the design phase. Formal design reviews
cover external specifications and internal specifications. The external specs detail the user view of the function
(user interfaces and application programming interfaces). Internal specs detail some of the major system items
such as the system functions used, dependencies, and performance.

One major difficulty HP recognizes during design is ensuring that all the "right" groups and people see
the design. The most difficult part that comes up during the design phase is dependency management across the
functions that are part of the release. Cross scheduling of function delivery must be done to allow testing and
integration to progress.

43

III

6.10 Coding Phase

Coding for operating systems projects at HP is manual, with methods somewhat open to developer
discretion. Code generators are not utilized in these development divisions. Standard compilers and linkers are
used which enforces a level of consistency within the development groups. A consistent set of development tools
is also utilized, which has assisted the standardization of code development.

The most significant change to coding in HP has been the implementation of a formalized inspection
process. The impetus for this change was a causal analysis of the problems that were being discovered in the
code that went to customers. It was found that coding was a significant problem area due to an abnormally high
level of defect injection. Overall usage of design and code reviews has come about over the last 3 years, with
these becoming required in the last year. Formal code inspections are now held with a moderator and 3-7
reviewers.

Implementation of the inspection process has been viewed as a success. The effort for reviews is high,
but good results appear to have made the investment worthwhile. Customer defects have gone down, the
number of dependency problems between code modules has been reduced significantly, testing time has been
reduced, and the number of integrations required to pull the system together at the end of the process has been
significantly lowered from the 50 to 60 previously required. The net result has been a reduction in the amount
of rework required during the back-end of the process.

6.11 Development Test

The development test phase involves two types of testing and is executed by groups within the product
development organization. The first type of testing is a functional test that is very deterministic and focuses on
boundaries and limit testing of specific code sections. The developers test their own pieces of code and make
it work within the system. There is some combining of new pieces during this phase, but this is limited and
arranged between developers. For wide-scope functions, developers combine the new code early according to
test plans that exist for testing these combined pieces.

The second type of development testing is performed by a separate group within the development
organization. This group runs a stress test of the new function. All the new functions are combined together,
and old (regression) and new tests are run against the system. Workload-generating applications are run to load
up the system so that the functions are tested on a system under stress versus a clean system running only the
one set of functions. Development test is run before the system moves on to the system tests run by the
independent verification group.

6.12 Independent Verification Testing

Independent verification testing is the back end of the overall development process. It amounts to a 4
to 6-month process that brings all pieces of the system together. The test cycles utilized are: system integration
test, system test, Alpha test, and Beta test. Independent verification testing is done by a group that has been
separate from the development organization for many years and evolved to that role after initially being part of
the development organization. The group continues to be impartial and maintains the power to stop a release
if standards are not met. Development organizations respect the group due to the hands-on testing they are
responsible for plus their level of analysis of the overall system.

6.13 System Integration and Test

System integration is the step where all new code is integrated in with the unchanged base code. The
integration includes the new code from the operating system, networking, languages, and data base development
groups, along with code from peripheral products like office.

44

System test consists of two portions that are mainly distinct time frames in the test: Test Cycle 1 (TC1),
and Test Cycle 2 (CC2). Defect and reliability objectives are defined for TC1 and TC2 in the Quality Plan. The
group runs a variety of new tests and regression tests. Formal Test Plans are created early in the development
cycle that define the tests that will be run against new function, the amount of automated testing that will be
done, and how functions not covered by automated testing will be verified. The test plan also defines the
regression testing that will be executed.

TC1 is concentrated on stabilizing and validating the core parts of the system such as the operating
system itself, networking, languages, and data base. A thorough verification of the new functions along with
regression testing of existing function is run until criteria are met for test completion. Criteria are what causes
the test to be complete, but there is a clear schedule target for the end of this Test Cycle.

TC2 is concentrated on bringing peripheral functions together with the core parts of the system.
Functions like office are introduced into the testing at this point. As with TC1, the test is executed until criteria
for test exit are achieved. Criteria also determine when the system can be moved on to Beta Test.

The group is impartial and will stop a release from going to customers if the test standards have not been
met. Testing skill along with this power to stop a release causes the Independent Verification group to be well
respected in HP.

6.14 Alpha Test

For these HP systems groups, Alpha testing is done via internal "self- hosting" tests. HP uses their own
systems for development of their system code. When a function completes development and early testing,
clusters of users will agree to take the new level of code. This allows the function to be used early in the
development process when fixes can be made much easier. Alpha Test starts at the tail end of TC1 but before
TC2 begins.

6.15 Beta Test

Customer Beta Tests have been run by HP for 15 years and are a regular and important step in the
development process. HP uses a very conservative approach in selecting customers and in the level of code given
to them. The HP Product Support area picks the customers that will be a part of the test. Support works with
the Release Team to determine the major functions in the release and then find customers that are interested in
that functionality. The customers are signed up on a "case by case" basis dependent on the match.

The code given to customers is at Manufacturing Release-level quality. After 4 to 6 weeks of Alpha Test,
the system is frozen and Beta Test starts. The code is kept in Beta Test for a specified time period (the period
is defined in the Quality Plan), and then it is moved to mass customer release if Beta Test results are positive.

6.16 Maintenance

Maintenance of existing code is done by the development group. Customers can purchase various levels
of system maintenance that goes all the way to 7 day/24 hour support. HP does this 7 day/24 hour support by
"following the sun," where responsibility for handling calls goes to the area of the world that is in their normal
workday. An on-line system gets reported defect information to the necessary development team. The routing
of these problems in development is initially handled by a "first line team" for the hottest calls. The team
responsibility is to ensure the problem is fixed expediently.

6.17 Process Usage and Compliance

Compliance with the process is determined by the metrics during the actual development. The Quality

45

11

Plan defines in-process metrics for the different development phases. Each metric is owned by an individual
identified in the Quality Plan. This owner is responsible for managing the metric results. As they track a
metric, deviations are determined and the groups responsible for the deviations are expected to put plans in place
themselves or within follow-on groups to bring the metric back within criteria. The metric owner is responsible
for making sure this happens.

There are differences between the process used for MPE/iX and HP-UX, which have evolved through
time. HP-UX started with the MPE/iX process as a base and then determined process areas that needed
improvements and focused on change in those areas. These have not been significant for HP-UX. Each
organization has a group looking for quality improvements that also comes up with ideas that change the process
incrementally over time.

6.18 Release Management

Hewlett-Packard utilizes a designated individual as a Release Manager along with a group called a Release
Management Team. A Release Manager is used for each software release and is the person that development and
other groups utilize to ensure a decision is made in a timely manner. It is a form of matrix management since
the person does not directly manage any of the development organizations but makes decisions that affect each
of these groups. The release manager concept started on a smaller basis for subsets of the system (networking,
languages, etc), but during the last 2 years has been expanded to overall responsibility for the release. Due to
the constant pressure of "fighting fires," the job involves an extremely high level of stress.

Much of the release manager's work is done in conjunction with the release management team. The
team is assembled from across the system with one individual from the operating system, networks, languages,
and data base development groups. This team is responsible for making some of the overall content, schedule,
and coordination decisions across the total system. The group coordinates between the releases under
development by ensuring code changes go forward to keep the parallel development across the releases
coordinated. This role of making sure code changes go forward is a major effort and responsibility, which is
done as parts of the system are determined to be stable enough to roll forward to the next release. Trouble
shooting from a system perspective is also occasionally part of the team's work.

6.19 Change Management/Configuration Management

HP has a configuration management process in place for the full development process. The formality
of the process is dependent on the centrality of the system component, the type of change requested, and the
timing of the change. The release management team described in the previous section has a central role in
configuration management. Group involvement starts early during the planning phase to influence the planning
across the multiple releases being considered. After being involved in the planning stage, the group maintains
on-going responsibility for changes throughout the entire release. Requests for changes throughout the process
follow the same format. The group wishing to make a change documents it via an electronic memo to the
release management team and then the team indicates approval or rejection through the minutes distributed from
their meetings. The approval or rejection decision is gained by the team members polling all development groups
impacted by a change. Tools are not used to enforce the configuration management, but the process is well-
established and changes are not made until agreed upon.

Requirements changes, including requests for new function, must be approved by this group, with the
development manager responsible for the overall release becoming involved in these more global changes. Design
and code changes are also managed, with code modules not allowed to integrate into the system until they have
been formally approved. As mentioned, the formality changes due to timing during the release. In the late stages
of development, the system goes under "formal change control." Formal control means the level of management
signature required to make a change increases.

46

III

Two stages of the process where the more formal process takes place is in "code freeze" and "problem
review." Code freeze is used to make people think about the real importance of a code change before going
forward for approval. There are blackout phases before component level and system level test where absolutely
no changes can be made due to stability requirements for the code. Outside of that, it is controlled by the level
of management signature. The other stage of the process where control is very formal is after the entry into
system level test. A problem review team looks at all problems and determines which things should be fixed.
This process is very formal with only approved changes allowed into the system.

Though tools are not in-place to enforce configuration management of individual changes to code, there
is a level of coordination done via the tools. Revision control is handled by the tools through a check-out
procedure from the source library. A single version of the code is kept at the source and ensures that developers
access the latest level of system code available. The code is "fanned out" to the developers' systems periodically
to ensure any testing done on their systems has recent code. This revision control system is not designed to and
does not prevent multiple people making changes to the same code module for a release.

6.20 Metrics

Metrics are a critical part of the development process at HP and prompt statements such as, "once we
have the content defined and agreed to, we let the metrics manage development of the release." In the Quality
Plan, each metric is assigned to an owner in the organization who is responsible for meeting expectations set for
it. Metrics are compared to standard expectations that have been derived from historical data and are also
compared to the results of the previous release. When metrics go outside of the guidelines set, actions must be
taken to recover. HP has historically taken those actions.

The common groups of metrics center on defects of various types, code turmoil, and coverage
percentages during different development phases. In-process metrics are a clear part of development and post-
release metrics are also utilized to determine the quality of code developed. Representative metrics are:

Design inspection coverage (% of code)
Code inspection coverage (% of code)
Test coverage (% of code)
Automated test coverage (% of code)
Test plan coverage
Defects during review stages
Defect backlog, incoming, and resolved during test
Defects by level (3 general groupings of Critical, Serious, and Low)
Code turmoil (how much has been touched during a given period)
Post-release defects

6.21 Process Improvement

Process improvement is driven by the individual developers. HP has worked to support continuous
process improvement activities as part of the development process. This has fostered internalization of the
discovery process for new process steps versus "doing what the Quality and Process group requires." This
approach was necessary from two standpoints: quality improvement is more effective when done from within,
and the HP culture is adverse to compliance as a method of doing things.

Postmortem analysis is used extensively within the company. Releases are tracked and analyzed to find
the root causes of problems that occurred. The results of the postmortem analysis are used to drive changes and
are also reported through management. Other quality reports are generated by corporate and group staff
organizations and serve as another reporting mechanism that can generate process actions. The final input on
quality comes from the Product Support Organization which tracks and reports the results for existing releases.

47

The development lab does not dispute the results reported by the support organization and instead analyzes the
results to determine the appropriate actions to take. Results might indicate pervasive problems in an area of the
system that will generate plan items for an upcoming release.

The other sources of process improvement ideas are the CSO (Computer Systems Organization) and
Corporate Quality and Technology Groups. Ideas are brokered by the CSO group which introduces them to
development groups who might implement them. The CSO group acts as a support organization to these
development groups. After seeing the results, the development group and the CSO group will spread
information to make other development groups aware of the results. Sources of ideas for the CSO and
Corporate organizations are from outside the company as well as other divisions of the company. Assessments
are also used to determine change areas or to support suggested changes. Some assessments that have been done
recently are SEI Capability Maturity Models, TQC, and internal ISO 9000 assessments.

A final method of bringing process changes to HP is via major projects. In these projects, there is up-
front planning of new process variations that will be brought in and used throughout the development
organization. These changes are agreed to by the individual development groups and are documented in the
Quality Plan. Improved quality goals, shortened cycle time, or improved engineer productivity are the normal
drivers causing process changes. This method gives HP a level of planned innovation.

6.22 Tools

Software development is done on the systems the software is being developed for. Common compilers
and linkers are used on the different platforms. There are no design languages used that lead to automatic
generation of code; all coding is done manually by the developers. The HP 9000 and HP 3000 developers all
have work stations at their desks. HP utilizes a check-out system where the base level of code is kept in a single
location, and individual modules must be checked out by developers wanting to work on them. To keep
individual development systems at current levels of code, a fan out mechanism is used to send periodic code
updates to the systems.

Through the last few years, the HP 3000 tools group has done significant work on a revision control
system to allow parallel development of 2 releases. An item they are looking to include in the support is a way
of collecting decision criteria to understand why certain code changes were made, which is becoming more critical
due to parallel development. Software Configuration Management standards are being used as a guide for
improving the revision control system.

6.23 Process Education

HP does not require formal process training. There are a range of classes available that include
inspection training and other key topics.

Over the last couple years, the HP-UX originated the usage of development templates, an idea that has
spread to other groups within HP. The templates are available for the overall development process and each of
the individual steps. Information on the templates includes advice for the step, checklists of recommended
activities, and descriptions of pitfalls to watch for. The templates have become extremely popular as an effective
device for sharing experiences and suggestions.

6.24 Business Life Cycle at the Division Level

As described in the Requirements Stage of the development process, the Hewlett-Packard business is
managed at the Division level. The HP 3000 and HP 9000 both have a management team responsible for
managing a portfolio of business costs and choosing between many good ideas presented in the product
requirements. The division manager and staff make the final decisions on what big ticket items should be

48

pursued.

Multiple development labs are part of each division and will be affected by the decisions on what projects
to pursue. Projects are collections of functions in a release and the management of projects is done at the
development management level in the divisions. Multiple investigations must be coordinated to determine how
to get the multiple projects out on time for the release.

Stages of the Business Life Cycle represent checkpoints at the project level. The stages of the Life Cycle
are:

Proposal Sign-off: Occurs after the development proposal is generated. The development proposal is based on
customer demands/needs and is written in terms of how the customer demand will be met. The results from
this stage is approval to commit resources for Investigation.

Investigation Sign-off: During the Investigation Stage, the details of the customer demand and the product
response to satisfy it are fleshed out. Elements that are critical in this stage are the time dependency and
feasibility assessments that come from the investigation. Costs and schedules are estimated roughly during
investigation. The result of approval in this stage is moving to the Design Stage.

Commit to Development Sign-off: During this stage, the design of the technical solution is completed. The
internals of the solution are laid out. Items completed during this stage include formal cost estimates,
determination and agreement to meet dependencies, and the development schedule. The result of approval in
this stage is moving to coding and testing.

MR (Manufacturing Readiness) Sign-off: At this point, coding, unit testing, and system testing have completed and
the development group is ready to release the product. Sign-off indicates that quality goals have been met and
that customers can take the product at this point. It then moves to mass production.

Post Review Sign-offi This occurs 6 months after the product has been released to customers. The review is held
to determine if the product has met commitments for quality. Any unique problems are also analyzed during
this review including performance problems, any major customer concerns. Sign-off indicates that the product
has met commitments.

6.25 Phase Review Process

The Phase Review Process is used at the executive level within HP. Specific executive reviews are held
to review the status of phase review check-off criteria. The criteria are pre-defined and meeting criteria is
required before development can proceed to the next phase. The reviews help keep executives aware of progress
on major programs and gives them the ability to provide input on big ticket items.

Outcomes beyond proceeding to the next stage can include adjusting priorities of the computer divisions
through funding, Funding decisions between divisions may be escalated to the executives through phase reviews,
or the executives may use it as an opportunity to adjust funding for multi-year big ticket projects. Programs
considered major or "big ticket" are programs over $5-10 million in development costs (which covers most major
hardware items and most software releases), significant strategic items (most major hardware also falls into this
category), and key long-term technologies (RISC architecture).

The phases in the process are:

Phase 0 -- Requirements / Plan: The objective is to ensure that requirements are consistent with worldwide
strategic, annual, and systems business plans. Business and technology with strong leverage potential are
identified. The result of approval from this stage is organization resources identified and committed to a plan

49

III

for studying alternatives for the requirements agreed to.

Phase 1 -- Study/Define: The objective is to select competitive alternatives that meet worldwide contribution
objectives for the systems. Measurable system objectives, release criteria, and verification/validation processes
are defined. The result of approval from this stage is organization resources identified and committed to design.

Phase 2 - Specify/Design: The objective is to complete the cross-functional plans for implementation and delivery
of the specified functions. Organizational resources are identified and committed for system development, release,
and support. The result of approval is movement to the development and testing stage.

Phase 3 -- Develop / Test: During this phase, the development and testing of the functions are completed. Actions
taken due to completion of this phase are authorization to publicly announce price, performance, and availability
of the product. Qualified customer shipment or access may also be approved.

Phase 4 -- User Test/Ramp Up: Test results are reviewed during this phase. Approval is given for unrestricted
shipment to customers. This denotes Manufacturing Readiness.

Phase 5 -- Enhance/Support: Product and process strengths are analyzed during this phase to improve results in
subsequent systems. Determine enhancements that should be made to the product. Another activity that occurs
during this phase is development of a discontinuance plan for the point when the product will no longer be
supported.

Phase 6 - Maturity: Specialized support options are implemented during this phase, and the system is removed
from the corporate price list.

6.26 Summary and Results

HP has demonstrated consistently high-quality results through multiple releases of its products. During
these releases, many process steps have changed based on causal analysis and process improvement
recommendations. Process improvement activities fit very well with HP's culture of being very analytical and
striving for perfection. As the company attempts to balance process structure with individual creativity, process
steps like requiring formal code reviews have been added relatively late but seem to have been enthusiastically
deployed by engineers.

50

7: MICROSOFT1 9

7.1 The Company

Microsoft was founded by Bill Gates and Paul Allen in 1975 and went public in 1986. Microsoft
develops, markets, and supports a wide range of microcomputer software for business, professional, and home
use. The software includes operating systems, languages, communications, and application programs. Microsoft
also develops and markets microcomputer-oriented books, hardware, and CD-ROM products.

Corporate headquarters are in Redmond, Washington. Total employment is 12,000 people in 27
countries. Research and development is based in the Redmond complex with additional centers in Tokyo, Japan,
and Vancouver, Canada. The new Vancouver R&D center, opened in April 1987, is a work group responsible
for developing software for the international market. Manufacturing is done in three different locations:
Washington, Ireland, and Puerto Rico. Direct and indirect marketing operations are located in 30 different
countries worldwide.

Microsoft is the leading PC software vendor based on revenue. In 1992, revenue was $2.76 billion and
net income was $708 million. These represented increases of 50% for revenue and 53% for net income, which
came on top of gains of nearly 56% and 66% respectively in 1991. The company's revenues were positively
affected by sales of upgrades, growth in worldwide personal computer sales, the success of the Windows operating
system, the rapid release of new products and major new versions of existing products, and expansion of
international operations to new areas.

7.2 Microsoft Organization

Microsoft is organized around three areas of strategic focus. Worldwide Product Development is
responsible for all software (and hardware) product development. There are approximately 3200 people in this
organization, with 1600 in development, 750 in testing, and the rest in market support, program management,
and user education. Worldwide Sales and Support is responsible for sales and support (handling calls on
problems and questions) of all products. There are approximately 4500 people in this organization, with 2000
in support that includes 1100 people answering phone calls from customers. Worldwide Operations is
responsible for manufacturing, information systems support, finance, and human resources. The Executive Vice
Presidents of the groups report directly to CEO Bill Gates.

Worldwide Product Development is structured into several divisions as well as separate business units
for each major product. The Systems Division has Windows, MS-DOS, OS/2, and Lan Manager along with
Windows NT. Desktop Applications is responsible for Excel, Word, Project, and Powerpoint applications for
the IBM PC and the Macintosh. Database and Development Tools owns Fox, Access, all languages, and internal
tools used in the company. The Consumer Division is responsible for products such as Works, Publisher,
Money, Flight Simulator, Profit and multimedia solutions that go to homes and small businesses. The
Workgroup Division is responsible for eMail and other group work products.

Each product organization within the Worldwide Product Development group is managed by a Business
Unit General Manager. Each Business Unit General Manager is responsible for profit and loss management for
the product. These tend to be marketing-oriented individuals (some of which have development backgrounds)
that take an overall view of the product and manage future planning, budgets, and head count. Within the
Product Organization, there are five major functions that can each have an individual manager for the larger
products or can be combined for smaller products. The five functions are: development, testing, marketing,
program management, and user education. Processes are owned by the functional groups, who continually inject
new ideas and improvements.

51

Program Management is responsible for compiling product specifications of the features of the product
(in coordination with development) and for managing the product through all stages of development. Program
managers also act as the liaison to support and all other dependent groups, and manage ISV (Independent
Software Vendor) relationships for applications that are bundled with the Microsoft product they manage.

Development is responsible for product design and coding. For each product, the group is organized
into feature teams that work with one or more program managers. Recalc, charting, printing, and macros are
examples of the eight feature teams on Excel. Each feature team has a team leader along with multiple team
members (usually 5 or so) that tend to be on the product for multiple releases. The testing group is also
organized by feature teams that match up with the development feature teams and individual developers. The
group is responsible for testing that starts early in product development and continues all the way through final
test.

User education has responsibility for developing material for the product. They write help information
on the system, manuals for users, and determine what user training is needed along with creating the materials
that will be used. Marketing is responsible for product marketing as well as input into new product development.
Marketing includes driving the product roll-outs with the sales organizations, competitive analysis, and acting
as the main interface to the sales organization. The group uses focus studies and other mechanisms to get
product input that is combined with input from the sales organization during creation of the product
requirements.

Beyond the formal organization and reporting structure, however, Microsoft also has an informal
organization structure that consists of the "brain-trust." This is composed of 30 or so key senior people spread
throughout the organization, who are called upon by Bill Gates and other people informally for advice or to take
charge of particular projects and research efforts. Names like Charles Simonyi and Nathan Myhrvold are part
of this group and they help keep the company on the edge of leading technologies.

Microsoft's Sales and Support organization also has some unique aspects that are worth noting. Some
1100 people handling phone calls is a substantial number that puts them on nearly a 1:1 ratio with developers.
Bill Gates has stated that his number one goal this year is to get the support side of the business under control
since it is now the fastest growing area in Microsoft. The support people have a very good knowledge of the
products. There is one team in place for each product, and a person on the team maintains direct contact with
the developers, working with them on a consistent basis. The team understands the product specifications and
begins involvement during Beta Test to prepare for support of the product.

7.3 Culture

Microsoft's culture is evident in their two most important goals: hire the best people possible, and give
them the best tools possible to do their jobs. Hiring the best people has been the focus within the company
throughout its history. Microsoft hires graduates from a variety of universities with backgrounds in computer
science and other technical fields, as well as experienced PC software developers, and brings them onto product
teams, with which they stay with for a long period of time. This is true for program management, development,
testing, marketing, and the other functional groups. Staying with the product gives people a long-term
investment in the product, ensures their familiarity with it, and helps them understand process liabilities and
benefits from prior development cycles. The work atmosphere is one of flexible hours, flexible dress, and open,
honest relationships. Frank discussions are the norm.

Bill Gates' personality continues to be a significant cultural influence in Microsoft. Many observers
believe that the key Microsoft difference is Gates. He represents a technical visionary who is also the leader of
the company. His involvement extends to reviews and input on each of the products' specifications and long-
term development plans. The chairman and the people he has hired over the years are fiercely competitive, driven
to technical excellence, driven to make and meet aggressive commitments, and willing to do whatever it takes

52

to ship products. Due to the hard drive that is the norm, significant stress is part of the developers' lives.
Burnout occurs within the company among both developers and non-developers.

Changes in development methods provide some evidence of cultural changes through the years. The
early development culture was one of extreme individualism, with most products involving only three or four
developers. The developers had ultimate control of the way they developed the product. A story which shows
the extreme nature of that period is that of a developer who sat down and wrote the code for a new product,
didn't like the way the product worked, so he started from scratch and completely rewrote it. He still did not
like the product, so he sat down and started from scratch one more time20 . The process involved his own vision
of how the product should work and how the internals were designed and coded.

When the company moved from doing OEM work to developing products for the retail market, the
culture changed with the addition of specs, testing, marketing, and support groups. Testing was significantly
influenced by IBM through the joint development work for the IBM PC. Microsoft also changed its product
quality evaluation systems, project planning, security conditions, and other business processes. As quality and
schedule mistakes began to mount in the company with the growing size and complexity of its products,
developers changed the culture by adopting practices such as code reviews and more formal design and planning
methods. The final significant influence has been the evolution of PC software to become "mission critical"
applications for many companies and other organizations. Purchasers now demand that PC software suppliers
have high quality, repeatable processes in place to develop and support their products. As more systematization
has become necessary in Microsoft, the company has increasingly faced the challenge of how to combine more
structure in processes with the individual creativity needed to create leading edge products.

7.4 Product Description

Microsoft's major products can be grouped into systems and applications software. The company sells
some hardware products, such as the Microsoft Mouse and BallPoint pointing devices, but these are a small part
of the business.

Systems products generated $1.1 billion of revenue in 1992. The Windows operating system is the major
product offered by this group. This is a graphical user interface and operating system shell written for Intel-based
PCs that works on top of the MS-DOS operating system. Windows is easy-to-use, allows convenient data
sharing, provides support for organizing and managing files created by the applications, and allows switching
between different application programs. It also allows programmers to write larger applications than with DOS.
Included is a set of general applications and accessories. Estimates are that over 10 million users have adopted
Windows since its introduction in 1983, with a majority coming since the 1990 introduction of version 3.0. MS-
DOS was the base operating system for the first IBM PC and has continued to be a standard. The initial MS-
DOS version came out in 1981 and updates have continued through MS-DOS 6.0 in 1993. This still brings in
a significant amount of revenue. Windows NT is the advanced product in the systems group, introduced
commercially in late July 1993. This is a 32-bit operating system that forms the foundation of Microsoft's new
line of operating systems intended to replace both MS-DOS and Windows 3.1. NT runs on a wide-range of
hardware platforms in both desktop and server environments.

Applications products generated $1.36 billion of revenue in 1992, which made it the most significant
revenue producing group. Applications include an extensive range of products for Intel-based PCs and Apple
Macintosh computers. Microsoft Excel, the company's spreadsheet application, competes with Lotus 1-2-3 for
leadership in this category on Intel-based PCs and is the clear leader for the Macintosh. New versions were
introduced in 1992 that have kept the application leading edge in function and performance. Microsoft Word,
the company's word processing application, competes with WordPerfect for leadership in this category on Intel-
based PCs and is the clear leader for the Macintosh. New versions of this product were introduced in 1992.
Microsoft also offers PowerPoint for business graphics, Project for support of project management, and Mail for
electronic mail networks. The company competes in most product markets with strong applications that

53

integrate well with the Windows environment.

7.5 Review and Planning Cycle

When looking at development within Microsoft, the review and planning cycle is a logical starting point.
The cycle is split into two portions occurring in October and April. The result of the cycle is executive
agreement on product roll-outs and funding for the divisions.

The October review is centered on presentation of 3-year product focus plans. Each product defines the
number of releases, why they are doing a release, and interdependencies they have with other products. Bill
Gates sits in on each separate division's dedicated review and on the final review in which all divisions present
at once to give everyone a common understanding of the product plans. Each product receives direction from
Bill during this phase.

After the October review is completed, the marketing organizations take the output and do sales
forecasts based on the product plans. Budget planning is then done based on product sales forecasts. The sales
versus budget mix is looked at to determine how it compares with the profit model for the company. Based on
this analysis, head-count is determined for the fiscal year that begins in June. Up to this point in time, the
company has never hit a point where needs are limited due to head-count restrictions. Open head-count has been
available in all cases and they have hired to fill it.

7.6 Release Structure and Strategy

Releases for the individual products are determined by the product's business manager and approved
during the October Review. Previously, releases were more function-driven, based on the key features desired
in the next version, but that has changed through the years to where the delivery date is now most important.
Tradeoffs of function are made to reach the agreed upon delivery date. Developers and the full product team
determine the delivery date and commit to it, which raises their drive to make it. The transition from function-
driven to date-driven releases happened in the 1986-1988 time-frame and was due to a long history of missing
dates, a practice no longer considered acceptable by customers or Microsoft managers.

Changed code is considerable for each release. Estimates are that 50% of the existing product code in
a release is changed. On top of that, another 30% of new code is added for the functions introduced in the
release. The results are code with an average half-life of only 1.5 years. For this reason, extensive automated
regression tests are critical to development at Microsoft. Without them, the product could never be tested in
time to make reasonable update schedules.

7.7 Development Process Overview

A consistent high-level methodology is now followed throughout the major product groups in Microsoft
for software development. Some groups are further along in areas such as usage of metrics and adherence to
review steps, but nearly all follow a similar process. This process was first described in a 1989 "Scheduling and
Methodology Document" of about 40 pages, drawn up in the old Office Business Unit. This document is not
widely circulated in the company, in part because of a general dislike within Microsoft to document processes
in much detail because this may prevent change and improvement. Each group is also free to define the details
of their process, although variations among major product groups are relatively minor.

In general, Microsoft's development process has two main characteristics that differ from firms such as
IBM, Fujitsu, or Hewlett-Packard: First, is the division of the development cycle into three or four milestones,
with each milestone containing its own specification, implementation, testing, and stabilization phases. The
milestones are determined by groupings of features. Projects try to do the most difficult and important features

54

first, in case they run out of time later on. This milestone process contrasts with conventional life-cycle
development, where projects try to write up as complete a specification as possible, then break up the work into
parallel teams, followed by one large integration, system test, and stabilization phase after development.
Microsoft and many other firms have found it difficult to put pieces together in big systems. As a result, they
put pieces of a system together three or four times during the development cycle. In addition, groups do daily
or frequent builds, to make sure they have a "shippable" product on a daily basis.

The second distinguishing characteristic is that Microsoft projects assume specifications will change
during development, so they do not try to write a complete specification up front. They write a "vision
statement" to guide developers but produce detailed specs only for well-understood features.

To carry out development, Microsoft utilizes empowered teams that are responsible for all stages and
the decisions required to get their product out. The groups attempt to keep the teams small or arrange larger
teams by function to keep the small team atmosphere. A full team from the five functional areas is in place for
all products. As was mentioned earlier, team members are involved with multiple releases of the product.

From a high-level viewpoint, the development teams are responsible for the following things: (a)
Producing a quality vision for the product which states what quality means for this product (bugs, performance,
reliability, function). (b) Producing specifications, designs, code, tests, and validations of the final packaged
product. (c) Product improvement with input from marketing, program management, Bill Gates, and anyone else
with an opinion. (d) Process improvement through usage of post-mortem reviews along with in-stream changes
needed to get products back on track. (e) Customer awareness via ties to the product support organization,
monthly flash reports on problems, call logs on problems, and competitive analysis done by the product
marketing groups.

Microsoft does not have an extensive set of formal development checkpoints. At a minimum, three
checkpoints are used in the product cycle: Schedule Complete (specification is complete and approved), Code
Complete, and Release to Manufacturing. The development team commits to the set of features or functions that
will be delivered during the release along with a schedule for the three checkpoints. Internally, they determine
what is necessary to meet these three checkpoints. This may involve different combinations of design stages and
reviews, along with different approaches to the actual code development. Internal checkpoints and
interdependency plans will also be worked through. Microsoft people do not see themselves doing significantly
unique process concepts, but instead feel they utilize some new ways of putting them together.

Investments within Microsoft for development have tended to follow the following model: People,
Specifications, Tools, Design-Test Plans, and Code-Test Cases. When problems hit during development, they
go through these investments in reverse order attempting to fix it. Actions are taken starting from the bottom,
with people changes only being made as a last resort. They have found that people changes are the most
destructive in the long run and should be avoided if at all possible. The recognition of this as a decision model
is very effective for negotiation and efficient problem solving in the company.

7.8 Requirements Phase

The product marketing team creates a Vision Statement for the product that defines its general direction.
The statement describes the overall focus of the product, how it will be marketed, the purpose of the next
release, and the basic areas that will be addressed by the next release. Statements like "Fix the top 20 problems
reported to the product support organization and add function XX and YY" characterize statements of the basic
areas to address for a release. This type of input, fleshed out with some specification information, is what goes
forward as a part of the April Review input. Schedules are approved during that review and the general direction
is blessed or changed as a result of the review.

7.9 Specification Phase

55

The program manager owns and drives the specification for each release of a product. This person is
responsible for soliciting inputs from all groups considered important for the product, especially the developers,
who best know the code and what is feasible technically. Inputs are utilized to create a final list of what will
be included in the product release.

Specifications are written in a user centric viewpoint. They show menus, commands, and dialogues users
will see, as well as error messages that can come up. They do not specify "how" to solve the requirement, which
will be done during the design stage. Even though they are incomplete during the specification stage, specs
evolve during development and can be quite lengthy due to the amount of graphical presentation in them. For
Excel, the spec is 300-500 pages. A team from program management, marketing, development, testing, and user
education do continuous reviews of the spec before the final review is held. No formal process is used during
this stage, but a complete set of specification reviews is expected from the development group.

Development and testing groups are responsible for refining the spec. Development fleshes out details
surrounding the functions, estimates the amount of work in person months, and estimates the schedule for the
project. Testing provides early input on whether features are testable or not, estimates the amount of work in
person months as well as their part of the schedule for the project, and defines what is needed from development
to allow the support group to test the product.

Bill Gates also has a role in the specification process. Program managers are responsible for figuring out
how to get Bill's input for their product. They need to complete this during the spec stage and have to come
out with Bill's buy-in to the spec. Each product will have at least one formal review with him and key products
may have multiple meetings. During the meetings, Bill will set some key goals for the product that may be on
quality, cost, or function. Before a product can move on to the implementation stage, it must have formal
approval from Gates, which constitutes the Schedule Complete checkpoint. In the past, he personally reviewed
every spec in detail but has since hired a full-time assistant to help him review the specs and assist him on inputs.

An aspect of the spec stage that is important is the usage of prototyping, done mainly using a Microsoft
tool, Visual Basic. Prototypes are always built during the spec stage. Menus, commands, and dialogues will be
included in the prototype and serve as inputs to the spec. In some cases, the prototype may become the spec
and be used for the final meeting to get approval to go on to implementation.

7.10 Development Phase

Microsoft groups may use only one formal checkpoint for the Implementation Phase. Code Complete
is the final step that indicates design and coding work is finished and the product is ready for final testing.
Individual developers and groups determine the process and checkpoints necessary to meet the function and
schedule commitments.

Design: Development will do sufficient design during the specification stage to allow for a solid estimate of the
amount of effort required and the schedule it can be completed on. Development recognizes the estimate as their
commitment, which drives them to do a reliable job on the estimates and the early design work.

A formal set of design stages does not exist. It is up to the development team to determine what must
be detailed during this step. Much of this determination is done based on process learning from prior releases.
Module structure, dependencies on other functions, input/output details and other normal design stage
considerations are dealt with during this period. Development does hold a complete design review for their
work. This practice has evolved because of the success developers have seen from past usage. Specification
languages and code generators are not used.

Coding: PC and Macintosh products utilize a significant amount of common code. About 10 to 15% of the code

56

is unique for the platforms, with the rest being common. The system is broken into features that consist of 8
to 10 functions.

Reused code between products amounts to only about 5 to 10% of the product code. Most of this is
for the user interfaces which have many standard elements. Microsoft has not usually developed code with reuse
as the objective. Most reuse has happened through the general developer approach of "stealing what I can." As
more Microsoft products contain common features, like graphing and spreadsheet functions in Word, Excel, and
other products, Microsoft has been moving to designing these features as large "objects" that are written once
and then linked and embedded in numerous products. Microsoft calls this technology "OLE" (object linking and
embedding). Object-oriented (00) programming languages like C+ + are not widely used yet for major
products. New projects, however, including an 00 version of Windows2 ', are experimenting with this, and
parts of newly released products, such as some of the communications and network portions of Windows NT,
are written in C + +.

There is great allowance for individual coding styles, although most groups use a naming convention
called "Hungarian," invented by Microsoft developer Charles Simonyi. This helps people read each other's code.
At least one group, Windows NT, does have a coding manual, which serves as a rough style guideline.

Another important feature of development in Microsoft that corresponds to the idea of building
prototypes and testing work under development is the utilization of internal "usability labs." These are used by
developers, and by some program managers, to test how easy to use a particular feature or presentation of a
feature is. Microsoft internally has several rooms set aside as usability labs. A test consists of 10 people brought
in from "off the street" to try a feature under development. The lab staff videotapes the session and tracks the
number of people that get the feature right on the first try. Most developers make very extensive use of lab to
test their features.

Formal code reviews have become part of the standard process at Microsoft. The reviews were tried by
groups and proved to be so beneficial that all development teams decided to use them. But, unlike at most
companies that hold formal code reviews in relatively large meetings, Microsoft code reviews are done with no
more than two reviewers per inspection. Reviewers go through the code independently, and strong competition
exists between them to do the best job. Defects and design mistakes are both found during this stage. Sections
of 2 - 5 KLOC of code are reviewed at a time.

The coding phase focuses on one key checkpoint, Code Complete. This date is estimated by the
developers and all activities center around achieving it, even though it is not usually clear that a project has
reached Code Complete until a month or more after this point, when it becomes clear that the code (and
features) are indeed stable. The Development Manager polls each developer to determine whether they consider
themselves finished. When all are ready, Code Complete is declared and testing can begin. After Code Complete
has been declared and affirmed, the only changes allowed are approved bug fixes.

Before the Code Complete checkpoint, four other milestones are part of the coding stage. (1) Private
Releases go to testing or development groups with dependencies on the function. These are agreed to one-on-one
between the developers and the individuals needing the code. (2) Visual Freeze is utilized for all products to allow
screen shots to be taken for user documentation. The user education department drives these and negotiates the
date with development. Typically, 20 to 30% change occurs after the freeze. (3) Functional Freeze is utilized to
lock the text information used for documentation. This checkpoint is used by many products but not all. The
user education department drives this and negotiates the date with development. Typically, 20 to 30% change
occurs after the freeze. (4) Beta Test Release is a statement of confidence in the code versus a testing efficiency
statement.

During the coding stage, development continually tells testing what sections of code are complete and
which are incomplete. The communication allows targeted functional testing to begin as soon as possible. As
a final step in development of the new code, a mandatory suite of development tests are run as internal checks

57

used by the testing group for assertion testing of the code (assumptions made about conditions that will occur
at specific steps which do not need code to directly check for them), and the usage of check routines available
through debug menus.

Integration Testing: All modules of code are kept in a Master Library on a central server. The Master Library
contains the master version of the code that the product is built from. A library management tool exists on the
server that allows developers to "check out" a master version of a module to work on it at their work station.
When the developer completes making changes, they run a set of unit regression tests to validate the new
function they have added. In addition, they must run a suite of preliminary integration tests that validate base
functions are not affected by the changed code. These tests are called Quick Tests, Synch Tests, or Smoke Tests,
depending on the group. If all tests are successful, a "check in" can be done to put the new version into the
Master Library.

Nightly builds are done on the master code for all products. Build tests are then run to ensure the
product will operate. Problems found must be immediately resolved and everyone stops work until the problem
is fixed. Since builds are done nightly, tracing back to find the change that caused the problem is reasonably easy
to do. Nightly builds ensure that the product will function at all times and controls the amount of churn in the
system, which helps stability.

7.11 Testing Phase

Like most organizations, Microsoft's testing strategy is to find defects as early as possible. The company
is different in some of the steps they have taken to make this happen. Automated suites of tests available for
developers to run prior to integrating their code are extensive and expected to be run. Test tools for developers
to develop tests of new function are also available and very functional.

Each of these items is helpful, but the most significant difference is in the relationship between the
testing and development groups. Testing is done by a group within the product development organization. No
independent quality assurance organization is used in Microsoft, although testing reports to the business unit
general manager, not to the development manager. Testers have a very close relationship with developers. Like
the developers, they are involved with the product over multiple releases. Most work on a 1-1 or 1-2 ratio with
developers, organized in feature teams with program managers. Involvement starts at the spec stage and continues
through the rest of the cycle.

Private releases are utilized between the developer and the tester. Developers may pass a private release
of code to a tester that contains a new feature that is not fully developed and checked in. The tester will use
it to improve and certify test cases while the developer can get bugs discovered early and re-code as necessary.
This coordination assists the developer during development test and assists the tester for their final test.

Testing phases are very well planned. Testing does their own estimates of resources and schedules during
the spec stage and are committed to meet the plan. Formal test plans are created and test case reviews are held.
Reviews are held for all test cases and development participates in 70 to 80% of them. Automated tests from
prior releases are added to the plan so that total test coverage can be understood.

Final Test is the main verification step run by the testing organization. Products are tested through
customer-like usage and results are tracked closely against the test plan. Testing includes documentation,
tutorials, set-up, hardware configurations, primary functions, and supporting utilities. Automated test cases are
key to validation of existing function and are extensively used. Performance is also measured against the
performance goals set for the product. Results from Final Test are the most critical input to the ship decision.

Most groups use three types of Beta Tests to get awareness and excitement for a new product or function

58

III

(marketing reasons), and to get feedback and remove bugs (technical reasons). The three types of tests are:
narrow tests with a select set of customers that will utilize a new function or check compliance against specific
goals; wide tests that attempt to catch rare cases not found on typical configurations; and internal distribution
of the product to employees to get results similar to wide tests. Beta tests tend to get a very low response rate
of 5 to 6% of users giving feedback to development.

Development has a set of scheduled checkpoints during the test phase where they attempt to get the
number of outstanding bugs down to zero. "Zero Bug Releases" are used as one set of the checkpoints where
development consciously attempts to drive down to the target of zero known bugs. The organization tends to
set multiple checkpoints like this during a test phase. "Release Candidates" are an additional set of checkpoints
and involve an attempt to build the final product. While being intended as a verification that the code will fit
on the specified number of diskettes and that the build procedures work, this is also an attempt to freeze the code
and test on a solid product.

Ship decisions are made after Final Test. Program Management organizes a "committee of four" along
with the Business Unit Manager for the product. The "committee of four" consists of the development manager
(lead), the test manager, the product marketing manager, and a representative from the support organization.
The lead Program Manager is ultimately responsible for the ship decision.

7.12 Product Support

Separate product support teams exist for each product. These teams are part of the Sales and Support
organization and not part of development. Their main responsibilities are to handle customer calls for the
product and channel information from customer calls into the business units to guide decisions on features or
fixes for subsequent releases. When problems come in, the support organization logs them and creates problem
reports that come to the development group. Current development staff handles all product maintenance and
all or part of the team will be directed toward fixing problems when they come in.

Product Support needs have grown rapidly in Microsoft. It is the fastest growing group in the company.
One of the key goals of 1993 is to get the support "under control."

7.13 Process Usage and Compliance

Each product group is responsible for choosing the development process they will use. Experience tends
to dictate the process they choose. The process described in this case study originated primarily within the Excel
group during the past several years, although aspects of it were used in other groups early on as well. This
process has gradually spread throughout the company's development groups, as people have moved and as
managers such as Dave Moore, Director of Development, have encouraged all groups to adopt "best practices"
that have been proven to work.

As a result, over the last years, Microsoft has rapidly progressed in usage of a more definable and
repeatable process. Developers have recognized that these practices have become necessary as project sizes and
products have grown enormously in size and complexity (Excel and Word each have from 35 to 50 developers
and the products are both a million or so lines of executable C code; Windows NT had a team of 400 developers
and testers and is over 4 million lines of code). Customer requirements are also a key factor in accelerating
adoption of more solid and verifiable processes. As PC applications have become more central to organizations,
customers are looking for in-process metrics and other indicators of quality before new versions are installed.

Microsoft does not handle process compliance via formal mechanisms. Developer commitment to quality
is the main driver of compliance. The other mechanism is internal audits done by Dave Moore, who is
frequently asked by senior management to work with different groups by analyzing major problems and their
current status for projects, and making recommendations for improvement. A formal "Audit" is used to directly

59

act with the purpose of changing things quickly. A "Review" is used to take a more gentle approach of analyzing
the development work (process or current status) and recommending actions to resolve the problems found.

7.14 Project Management

Program Managers are the key drivers of the product development. Business Unit Managers give them
the authority to make the decisions necessary to meet committed schedules. Beyond constant contact with the
groups creating the product, there are two other mechanisms that are critical to project management:

Schedules are determined by each of the functional groups. All estimating is done by the people doing
the actual work. By having this relationship between estimates and work, the individuals are very committed
to meeting schedules. These factors come together to be major factors in the management of projects. One
problem with this approach has been that developers are usually overly optimistic about how much time a job
will take them, leading to badly mis-scheduled projects or developer "burnout" as people try to catch up with
a schedule that was unrealistic to begin with. New personnel also do not have much experience to create
estimates. As projects accumulate historical data on past work, they are improving in their ability to make
realistic estimates. The development lead also gives assignments and schedules to new developers for the first
several months after they join a project. In addition, teams now debate each member's estimates informally to
improve accuracy.

Project reviews are utilized throughout the development process. Program managers schedule and run
these with the frequency varying (range of weekly to monthly). Everything associated with the project is
reviewed with each group reporting their status. Monthly status reports also come in from each functional area.
Major reviews of project status are held with Bill Gates. Timing of the Major Reviews vary depending on the
strategic importance of the product.

7.15 Change Management/Configuration Management

Network servers are in place to store source directories that are accessible by everyone in the company.
Password control is used to control access to some of the source directory servers. Network based Configuration
Control is used on everything associated with the products under development. Items in source directories
include: project documents such as specifications, all code, tools, releases (current and previous), plans, and
schedules. The parts can be "checked out," changed, and then "checked in" after changes are made. Forcing the
parts to be checked out and back in places a level of control on all project related information.

Changes to requirements, specifications, and frozen code are allowed during the development process.
After checkpoints such as Schedule Complete and Code Complete, the program managers take control of changes
to specifications and code respectively. By allowing approved changes, they let innovation continue to happen
during phases such as coding and testing. When decisions are required for necessary changes, a formal decision
model is used to determine the action necessary. The model, from highest priority to lowest, is: (1) schedule
and resources; (2) components, functions, or features of the product; (3) future extensibility and maintenance
(these are bad for the long run but may be necessary); (4) product performance; (5) product reliability and quality
(this is definitely only done when no other options exist. The changes may be "not fixing" something that was
previously planned).

Changes to code are managed by the tools on the system. Source code must go through the "check out"
and "check in" procedures. "Force outs" and "Force ins" allow developers to check out source code when
someone has previously done a standard "check out." The forces are managed through function in the network
control tool that compares changes to ensure the same lines have not been altered. Before developers are allowed
to check code back in, they are required to run Synch Tests which serve to validate the code does not degrade
the system. Nightly builds are done on the total product. Synch Tests are then run on the total product with
any problems discovered holding up all development until resolved by the developer making the faulty change.

60

Nightly builds allow the product to be usable everyday. In addition to the "check out" procedure, changes to
code after Code Complete must be approved by the Program Manager.

Defect management is accomplished through a set of bug tracking tools that run on the server. Bug
reports are entered into a database along with a description of how the problem can be recreated. Severity codes
running from 1 (critical) to 4 (new function request) are assigned by the discoverer of the bug. Development
continuously monitors the database so that they can assign the problems to someone on the team when they are
reported. The defects are tracked closely by testing, development, and program management.

At the end of the development process, the change control process takes on an additional level of
formality. A "committee of four" (one from development, testing, program management, and product support)
meets daily to review all problems and determine which to fix. Problems are generated by internal testing and
Beta Tests. Utilizing the committee review helps ensure decisions are made from data versus emotion. Approval
requirements, plus the tracking capability, provide a level of change management for bugs.

7.16 Metrics

Data is important in resolving conflicts and making decisions on actions to take. It was stated a couple
times that "Microsoft is data driven." Top management supports the usage of metrics since they have been
shown to help lead to a product being completed on schedule. The most watched and used metrics involve bugs.

Tools are in-place and made available to allow metrics to be generated. Some to the metrics used by
various groups are:

Bugs to date
Bug severity mix
Open versus Fixed bugs to date
Bugs found versus bugs fixed
Functional use profiles (not used much yet)
Cluster of defects (helpful to the testing organization)
Code churn
Code coverage of tests
Customer problem calls versus units sold

Bug metrics are described above. They are very important during the development process. Standardized queries
and reports for management are generated at defined intervals.

Some historical data is used by the product team. If internal data does not exist for the product,
applicable external data is used as a model. Data most frequently used are models on how many bugs are likely
to be in a product and how many should have been removed through each of the stages.

7.17 Process Improvement

New process ideas come largely from the teams themselves. Creativity and drive for excellence are
encouraged. The combination leads to teams finding solutions to process problems, trying them out, and talking
about them to other groups. Since 1989, it is clear that Dave Moore, in his role as Director of Development,
has individually been responsible for bringing in the concept of spreading "best practices" information throughout
the company. The "best practices" information has come from his search of worldwide sources and from his
involvement with development groups across the company's projects. Improvements are adopted in this manner
of trying new ideas and spreading information on the results, and are not handled through dictating usage.

Postmortem reviews are utilized by nearly all teams. Problems encountered during the last cycle (and

61

sometimes even during development after completion of a major milestone) are reviewed and analyzed for
improvement possibilities. Process changes are made and used in the next release. Since the teams tend to stay
together for several years, the post mortem analysis is very effective and helps with process learning by the team.
Program managers generally run the post mortem process.

7.18 Tools

Development environments consist of personal computers and work stations in offices connected to the
LAN server network. Developers pick the hardware systems they wish to use and many have multiple systems
in their offices. The LAN has product servers for each product developed and also has network servers which
allow access to data throughout Microsoft. A corporate MIS group is in-place to manage 600 servers in one
building along with the network that is spread throughout the world.

For testing, a good suite of specialized tools are available for automated testing. These tools have been
historically used and have now progressed to event recorders and playback tools that include event editors which
allow editing of flows versus re-recording whole sequences. Automated test tools are built to run in multiple
environments.

Automated tests are run "hundreds of times" during development. Testers are continually adding to this
set of tests. Quick Tests are used before all check-ins and after all nightly builds. Testers run them frequently
during Final Test phase. Development has also supplied a variety of tools to assist in simulation of memory, data
structure, system failure, and memory fill errors.

7.19 Process Education

Microsoft offers orientation classes that describe their development cycle but does not have detailed
formal process education classes. Most education is done within the team. Each product team has 2-4 page
documents that describe their product and a series of brief documents that serve as checklists of job
responsibilities for each of the major job types (development, testing, support, etc). Mentors are assigned to each
new hire on their team and help introduce the new hire to processes used in the company.

Two weeks of training is expected each year for all software engineers. A combination of in-house
training, university seminars, and corporate or conference seminars are used to meet the objective. In-house
training is available for corporate training on management skills, and product group training is available for
technical skills.

7.20 Summary and Results

Microsoft is an outstanding study of the transitions involved in moving away from an immature
development process. Early development was very individualistic, dependent on testing to verify quality, and
driven by function completion versus recognizing schedule needs. Through the last years, the company has
introduced a level of structure and thus repeatability into its development processes by focusing on a common
set of best practices, while still preserving much of the creativity of their developers. Developers either
introduced or strongly supported the formalization of the development process through breaking up a project
into three or four milestones, with each consisting of design, development, testing and stabilization phases, along
with daily builds, various reviews, metrics and data analysis, and specific configuration and change management
procedures Microsoft groups have also moved from a process of developing until a continuously growing set
of functions were complete to a process where they develop towards a scheduled end point and get as much
function in as possible while still meeting that date. Demands from a growing customer base, in terms of size
and sophistication, have also been key factors in Microsoft's process evolution.

With all the process improvements Microsoft has introduced, however, a key element that distinguishes

62

the company from its competitors is the domineering cultural and personal presence of Bill Gates as well as his
"brain-trust" of thirty or so senior people. In addition, while developers drive the organization, Gates has given
adequate emphasis to market needs through organizing by products and hiring product managers to oversee
marketing and program managers to oversee design. The result is that Microsoft has been able to cultivate the
technical skills necessary to build upon its good fortune with the DOS operating system. Management continues
to display a keen sense of what the market requires.

63

8: LOTUS2 2

8.1 The Company

Lotus was founded in 1982. The company and its subsidiaries are engaged in the development,
manufacturing, marketing and support of applications software and information services. The company sells its
products primarily through distributors and re-sellers. Personal systems and work-stations are the main systems
the applications are developed for with an additional set being developed for minicomputers and mainframe
computers.

Corporate headquarters are in Cambridge, Massachusetts. Total employment is approximately 2800.
Product development is concentrated around Cambridge, Massachusetts. Manufacturing and distribution is done
in four locations worldwide: Cambridge; Dublin, Ireland; Caguas, Puerto Rico; and Singapore. International
marketing operations exist in 33 countries with authorized distributors covering an additional 20 countries.

Lotus is the leading DOS spreadsheet vendor and has leading applications in other market sectors for
personal systems. In 1991, revenue was $829 million and net income was $43 million. This represented increases
of 20% for revenue and 85% for net income. The company's revenues were positively affected by continued
growth of the 1-2-3 spreadsheet products along with increases in the sales of the Ami Pro word processing
application, cc:Mail electronic mail product, and the Notes workgroup computing product. International
revenues grew 26%, which raised non-US sales to 51% of revenues.

8.2 Lotus Organization

Lotus is organized into five major groups: Development, Sales & Marketing, International Operations,
Manufacturing, and Finance. Within Development, a Vice President & General Manager is in place for each of
the product families. The major product families are Advanced Spreadsheet Products, Word Processing Products,
Notes, cc:Mail, and Graphics Products. The organization of each product family varies slightly depending on
the number of major products in the family. For many major product, there is a Director of Development and
a Product Planning Manager.

The Director of Development for the product "owns" development, but has joint responsibility with
Product Planning for content of enhancements to existing products or what will be part of any new product.
Once the content has been decided, the Director is responsible for getting the product developed and delivered
to the marketing organization. Each Director has a Development Manager responsible for the programmers
creating the product, a Quality Assurance Manager responsible for testing and validating the product, a
Documentation Manager responsible for on-line and printed documentation and on-line help information, and
a Program Manager that is responsible for managing the execution of the release development. Program Manager
responsibilities include tracking the schedule, owning and ensuring resolution of issues, working with all outside
and inside groups to ensure dependencies are met, working with the international product groups to get the
product available worldwide, and making sure the internal development groups are working with each other. The
organization responsible for DOS Spreadsheets consists of nearly 50 people handling programming, Quality
Assurance, documentation, and management. The Notes group has approximately 100 people handling the same
functions.

8.3 Culture

Lotus started out as a typical "Cambridge company," with people of diverse backgrounds who were
technically oriented and devoted to specific technical goals. Initially, there were 300 employees focused on 1-2-3
prior to a large set moving on to Symphony which was going to be "bigger than 1-2-3." Frustration became a
major problem when Symphony proved to be unsuccessful, and this started a long period during which Lotus

64

slowly recovered from the need for products "to be as successful as 1-2-3."

As the company grew after 1-2-3, it continued to hire very talented people. Because of this talent,
projects managed to ship products by figuring things out as they went along. Specs were non-existent and
everyone was forced to "figure it out on your own." Then problems with the Lotus 1-2-3 Release 3 (Godiva)
project initiated a major cultural shift in the company. Developers had taken on the task of completely rewriting
1-2-3 in C (a new language for the product), with the capability to run on multiple platforms, and completing
it in one year. Project dates and functional capabilities were not met.

Since Godiva, the culture has swung to an environment where people are beginning to work together,
code sharing is starting to happen, and groups are actually lending people to other projects (with the people
eventually returning to their old groups). The environment has begun to change so that the development process
has become more stable and consistent.

In contrast to Microsoft, where developers stay with a product over a long period of time, Lotus tends
to move developers to the next "hot" project. Product plans do not extend to multiple releases and developers
have grown up seeking out the most interesting projects to move to. The company builds new teams for each
project, and the new group figures out the existing product before going on to develop the product's next release.
"Project hopping" is thus an important part of Lotus' culture. The Notes group may be an exception, however,
since the same core development team has been in place since the product began nearly eight years ago.

Lotus's growth rate has also affected the company's culture. Of the five product divisions in the
company, three, and half of the fourth, were acquired. The acquired companies had very little structure, and
Lotus management did not rush in to impose any. As a result, Lotus new has limited structure within the
divisions of the company. Some processes are being introduced to increase controls, but they continue to be
limited.

8.4 Product Description

Lotus 1-2-3 for DOS is the most successful spreadsheet application in history. Measured in dollars,
Lotus' share in this market rose to 85% in fourth quarter 1991. Upgrade revenues doubled in 1991, driven by
new releases of Windows and DOS. The spreadsheet has a wide set of features that include a powerful relational
database, an interactive graphic environment, drawing and editing tools, business graphics, a range of output
options, macros that can be programmed, and the ability to access and handle data from competitive spreadsheet
products.

Lotus 1-2-3 was the first really successful spreadsheet on the PC market. It was oriented towards the
IBM PC with Macintosh versions only coming out recently, although 1-2-3 products are now available that
support OS/2, Windows, and proprietary versions of UNIX. In recent years, the product has also been extended
to run on many minicomputers and mainframes. Compatibility has been important throughout these changes,
with new versions supporting spreadsheets created with the older versions of the product.

Notes is a relatively new product from Lotus that is broadly classified as a workgroup computing
product. The product is client-server based with a database existing on the server that can be accessed across the
LAN by a set of client work stations. Notes can be considered a document-oriented database that allows users
to share any type of unstructured information regardless of the platform or network. Unstructured information
can be text, graphics, reports, spreadsheets, and word-processing documents. The server stores the data and
makes it accessible to users on the network, while mail capabilities exist in the product to send a note to inform
others of the data availability. Notes' simple graphical interface allows relatively untrained users to access a full
set of databases and also set-up their own databases. The mail features are extensive and make including
information from the databases very easy. Security and network administration functions are provided and easy
to use.

65

III

8.5 Review and Planning Cycle

In some of the case studies, a review and planning cycle was a distinct phase that warranted its own
section. Lotus has combined the intent of a review and planning process into its requirements phase for a
product. Resource needs are determined by the number of projects that have been approved and are under
development. It was not clear what the planning cycles were for resources.

Executives were part of monthly progress reviews for each major product. The reviews address status
of the product development along with the outstanding issues the VP should be aware of. The Project Manager
schedules and runs the reviews.

8.6 Release Structure and Strategy

DOS Spreadsheet products have relatively long release cycles. Historically, new releases have come out
in roughly 18-month cycles, but the group is moving to 6 to 12 month cycles. Customers do not desire more
frequent updates since an installation is required and many users do not upgrade frequently. Updates also cost
additional money. Many users are satisfied with functions they currently have and are not interested in
upgrading. The strategy and process Lotus follows is to come out with a new version that has enhancements
in it agreed to by the product director and the product marketing person. Release updates include fixes to
reported problems along with enough new functions to entice upgrades or land new customers. A combination
of function and schedule needs determine the contents of the new release.

Notes has also had a relatively long release cycle of 18 to 24 months. Lotus' goal is to bring this to 12
months, which seems necessary due to the rapid changes occurring in the PC software market. The release
structure is determined by a combination of date and function. Agreement is reached on a set of functions that
are key to the release and a set that are optional. Schedules are then worked out for the key functions and
compared with what is desired by the product marketing group. A process of negotiations and compromises
results in the actual combination of functions and schedule.

8.7 Development Process Overview

Lotus has published internally a company development process, but its usage is minimal. Development
groups determine the real process they will use for a particular project, with Directors of Development having
the formal responsibility for choosing the development process they will use for a product. Not surprisingly,
different groups have different development processes.

Two milestones drive development within the company and only one of them is constantly used: the
Ship Date. Within Lotus, this is the key date and is most obviously part of each project. Most groups also use,
and find useful, another date: Commit Checkpoint.

For DOS Spreadsheets, since the general model does not dictate specific process actions, the Directors
of Development bring the process they wish to use with them. The process has a level of structure and project
milestones in it, which have proven to be necessary in Lotus. It involves the following steps: (1) determination
of requirements; (2) planning through the Product, Documentation, Development, and QA plans; (3) design; (4)
Commitment Checkpoint; (5) implementation; (6) testing; and (7) maintenance.

The Notes group has some unique aspects in its development process because the programmers are in
a different location (in a separate company) than the Development Director, QA department, and all other
support functions. IRIS is the company responsible for product development. The flow through the stages for
a new function in Notes is: (1) generate requirements document, (2) break requirements into pieces, (3) begin
functional and design specing the pieces that are ready, (4) implement the product as soon as design is complete,
and (5) do Feature Testing of the pieces as each piece is ready. The net result is multiple independent projects

66

synching up for the release.

8.8 Requirements Phase

Lotus has a Product Marketing group for each product family. Individual Product Marketing people
may have responsibility for a single major product or multiple smaller products. The person is responsible for
gathering requirements for enhancements to existing products or for potential new products. The process of
gathering requirements and interacting with the development group varies across the products, as was the case
for DOS Spreadsheets and Notes.

For DOS Spreadsheets, the requirements process is initiated by the product marketing person coming
forward with an idea on the product features and a desired ship date. The feature ideas tend to come from visits
to existing and potential customers along with some analysis of competitive product features. The set of
requirements are defined in the Marketing Requirements Document. This includes a definition of the features,
the relative priority of each feature, and a desired schedule for shipping the product. The document is used as
a base for development to estimate the cost of the features. Negotiation begins at this point on features, staffing,
and the delivery date to determine what can be shifted. The Development Director then closes the process by
specifying what marketing can get in terms of function, cost, and schedule. Marketing then gives the go-ahead
to do the planning and development work necessary to reach Commitment Checkpoint.

Based on the agreed upon set of features and the schedule, planning begins. For DOS Spreadsheets, four
plans are created for the products: Product Plans describe the what, why, and how for the overall product. The
parts of the plan are: the description; functions that are part of the product; staffing estimates; more detailed
schedule; feature list for future marketing purposes; a subset of the development, documentation, and QA plans
with references to the full plans; and an ongoing list of issues. The level of detail varies with the scope of the
product. Development Plans provide more detail on the features. The parts of the plan include: where they will
"steal" functions from within the Lotus products, key changes to file formats, new technologies that will be
introduced such as SmartIcons, the network and tools that will be used for development, and an expanded
schedule. Documentation Plans provide more detail on the printed and on-line product documentation. The parts
of the plan include: a description of what the full set of documentation will be, cost of goods, page counts, tools
that will be used for on-line documentation and Help text, international issues for translation, and an expanded
schedule. Quality Assurance Plans describe the strategy that will be used for testing. The parts of the plan are:
a detailed schedule, description of risks that will be taken, reused tests from prior products, automated versus
manual test plans, testing matrix of configurations, and international testing considerations.

Because Notes is a newer product, the requirements phase is slightly different. Two years ago, it was
a small product in a big company which allowed the group to operate on its own. As the product has grown
in the size of its customer base and resulting significance to the company, the planning and requirements process
has become more organized.

Finalizing the requirements list and laying out a product plan is a combined process. Planning tends
to be done by a small group of 2 to 4 people consisting of the top development managers along with the product
marketing manager. Previously, the group, which has significant customer contact, generated the functional
requirements and schedules. As the product has grown, more organization of requirements gathering has been
introduced. Product Marketing gathers input from existing customers, potential customers, other Lotus products
that interact with Notes, as well as from development, marketing, and executives. Requirements are then
categorized and prioritized based on goals defined by the small group that previously handled the full process.
Priorities for the features are finalized in a series of meetings and the top items that will be developed are agreed
on. The result of this process is the Marketing Requirements Document.

Requirements and specifications for Notes go through an iterative process. Early specifications are very
loose due to relatively long development cycles. Throughout the cycle, customer inputs continue and

67

III

competitive products continue to come out. These changes result in adjustments to the requirements and plans.

8.9 Design Phase

Design is not valued at Lotus. In the early days, founder Mitch Kapor's approach was to "see the
product" even in the earliest stages of development. Marketing continues to drive the company with no
development people in upper management. Once product features are agreed to, the pressure is on to make the
product visible. Functional design work almost has to be hidden since the expectation is that the coding is
underway after the requirements are finalized.

DOS Spreadsheets utilizes user interface and functional specifications. Since the look and feel of the
products are so important, it is necessary to get some definition early on. Prototypes are becoming prevalent
in showing the interfaces, using throw-away code initially and then replacing that with real code as it is
completed. The prototypes are used to get feedback from customers acting as "design partners," Lotus marketing
groups, and executives looking for updates on the product. Functional design is also used by this group. Past
projects have demonstrated the usefulness of laying out the product structure prior to moving to the coding
phase, and the Director of Development ensures these are done for all but very short projects. In cases where
the formal documents are not feasible or as a supplement to the documentation, the group has begun to use
videotapes to capture descriptions of the product, functions, and plans. This is an informal Functional
Specification and serves as a good training mechanism.

For the Notes group, informal specifications are generated for major features. The developers write the
specifications that provide detail on the general structure of a function and a high-level breakout of the function
across program modules. Specifications are available on-line through the Notes product itself and informal
reviews are held in some cases. Design work in the group is not significant, with much more focus on getting
to the coding.

Both products, along with the rest of Lotus, utilize the formal milestone "Commitment Checkpoint."
This checkpoint occurs by the end of the design phase. Plans and product definition are not at the point where
all the details are worked out, but enough information exists for major groups within the company to evaluate
the project. Each must state whether they can commit to the product responsibilities necessary to take it to
market. Major groups involved with the checkpoint are development, documentation, Quality Assurance,
marketing, manufacturing, product support, user education/training, international, and upper management. Key
issues are logged and the formal commitments are sought. After Commitment Checkpoint, everyone turns to
the implementation stage.

8.10 Coding Phase

The Director of Development and the development team determine the network, programming language,
compilers, linkers, and test tools that are appropriate for the product they are developing. For enhancements
to existing products, many of these choices are dictated by what was previously done, though variations are
made. Formal programming standards across the company do not exist, but employees are well-educated and
utilize structured programming approaches. Coding is a manual process since design languages are not used as
part of the design phase.

Code reviews are held with varying levels of coverage and formality. The DOS Spreadsheet group does
formal code reviews through a "buddy system" that involves one person going through another person's code
in detail. Reviews were initially seen as threatening by members of the team, but are now viewed positively due
to the results that have come out of the review process. For the Notes group, code reviews are informally done
at the discretion of the developer. Reviews are currently done by peers in development, and the desire is to find
a way to get the product marketing group involved in this step also.

68

Development testing is done by the code developers. These tests are at an individual module level or
may involve small combinations of new modules. Validation of code paths and limits in the code, along with
some validation of functions, is done at this stage. Development's objective is to get the code working to some
degree with at least some combined testing before the code is integrated.

Feature Freeze is another milestone used in Lotus that occurs prior to the start of the formal testing
phase. This milestone is where everything is in (has been integrated) and things are working to some degree.
The product is usually "buggy" at this point, but all pieces are together and problems can be identified with
interfaces and final function. Performance and size are also concentrated on at this point since there is still time
to make changes necessary to improve these critical areas.

8.11 Testing Phase

Quality Assurance groups exist in each product organization and are responsible for testing the overall
product and ensuring requirements have been met. In-house testing, Alpha testing, and multiple phases of Beta
testing are used by Lotus. In-house testing is generally referred to as Feature Test and is planned through the
Quality Assurance Plan that defines the test cases that will be reused from prior releases along with the new
automated and manual test cases that will be used. Customer environments are simulated during the testing with
non-stress functional verification and stress testing both used. Quality Assurance is involved throughout the
development process and has a good awareness of the product requirements. Test staffing is on roughly a one-to-
one ratio with development in Lotus (down from approximately two testers per developer several years ago).

Product usage by internal and external customers is an important part of testing. DOS Spreadsheets and
Notes use common phases of both Alpha and Beta tests. Alpha tests are done with internal customers and small
groups of external customers. The test is done before Feature Freeze so that some validation of the features can
be done in time for changes to be worked into the product. An initial Beta Test is done for quality reasons.
During this test, the group of customers is expanded and the emphasis is on identifying bugs and getting them
resolved before Code Freeze. Some Beta testing is done near the end of the development cycle, mainly for public
relations reasons. Early exposure to certain valued accounts, along with groups that write about the product,
is done through this Beta test phase.

At the end of the test phase comes the Code Freeze checkpoint. When Feature Testing is done and the
bug count is near zero, Code Freeze is declared. Code can no longer be touched proactively, with approved bug
fixes being the only changes allowed to the code. A team from Quality Assurance and development does the
review and approval of bugs that will be fixed. After Code Freeze occurs, the Quality Assurance group runs a
final regression test that verifies bug fixes and executes a subset of the feature test.

8.12 Delivery Phase

Three stages are used to get the product ready to ship to customers. The first is Release Candidate
Builds which are built, tested by QA via a subset of the regression test, and then sent to internal and external
customers for a one-week verification. This cycle continues until a build has zero bugs reported against it.
"Golds" is the next stage and involves another build of the product (generally, the final Release Candidate Build
is used). Minimal testing, that mainly involves a code compare, is done to ensure this version matches the final
source code. Once the "Golds" are completed, the product moves to manufacturing, which does a final build
and compare step before mass production begins.

8.13 Maintenance

Support is a separate organization in Lotus. Calls come in to this group which logs the problems and
attempts to resolve them over the phone. If support is unable to resolve the problem, it is routed to the
development team responsible for the product. Required changes mainly move to the next release of the product.

69

III

Immediate fixes are not handled cleanly since no formal process exists. Since immediate fixes generally require
a full re-build of the product, work-arounds are attempted first. If work-arounds are not feasible and a fix is
necessary, a maintenance release will be built for a specific customer, testing will be done in QA, and the release
will be shipped to the customer (and any others with similar problems). When a significant number of fixes are
available, products will do a "slip-stream" release so that all new shipments include the fixes. Customers with
a maintenance contract for Notes (and other products) will be notified of the "slip-stream" release, and will be
offered an update on request.

8.14 Process Usage and Compliance

A few years ago, senior management at Lotus led a process improvement effort that created a very
structured "Lotus bible," which dictated the development steps for groups to follow. Dictating the process did
not work, and Lotus has continued to allow groups to determine the process that fits for their products. Usage
and compliance are managed within the product groups, which are generally small enough for all people to be
aware of what is being followed as a process. No formal mechanisms exist to ensure compliance.

8.15 Project Management

Each group determines its own methods for project management. Milestones such as Commit
Checkpoint, Feature Freeze, and Code Freeze are used by most groups to keep the organization coordinated.
The remainder of this section describes some of the significant actions done individually by a group or commonly
across groups.

The DOS Spreadsheet group does an extensive planning phase for each functional group (development,
QA, documentation) as part of the requirements phase. From there, the groups move to Commitment
Checkpoint where they view all aspects of the project and make a formal commitment to meet the ship
requirements. During the implementation and testing stage, each of the functional groups continually reevaluates
its progress versus the committed schedule. The Director of Development has made it clear that if there is a
problem, she wants to take the slippage early. On-going milestones are also set, which involve taking portions
of the product to customers for design validation. These occur between the Commitment Checkpoint and Code
Freeze to give targets that the development groups can work towards.

An additional step used by the DOS Spreadsheet group to increase project ownership and improve the
level of project management is to give ownership of a portion of the function to teams. Teams can include
members of development, QA, and documentation. The group is responsible for resolving issues, answering
general questions, analyzing progress versus plans, and escalating any problems that require assistance to resolve.

A common element in project management used by these two groups, and the rest of Lotus, is the role
of the Program Manager. This person is a part of each product group and reports to the Director of
Development. Their responsibilities are dedicated to project management and include tracking overall project
schedules, working inside and outside the project group to coordinate dependencies, owning all issues and taking
responsibility for resolving them or ensuring another group resolves them, preparing and reporting overall project
status, and working with the international group and manufacturing to plan the product roll-out.

The Notes development group uses its own product for most project management work. Notes makes
database creation and cross-project communications easy. A record exists for each feature that includes
information on product or feature name, development plans, priority of features, ship date, Alpha and Beta Test
dates, a detailed product description, and status tables. This is available for everyone to access and text updates
can be made to the record. Staffing plans are also kept on the system, which allows the management team to
monitor resource allocations at all times. Constant communication through eMail and database updates is really
the key to project management for the Notes group. The group has had a normal record of success in meeting
ship dates, which has involved some slips along the way. The most common factor leading to the schedule slips

70

has been adding functionality during the development cycle.

8.16 Change Management/Configuration Management

Change management is another process step that is individually determined by each product group.
DOS Spreadsheets uses multiple stages of change management. The following describes some of the stages and
measures used:

- The Feature list is frozen at Commitment Checkpoint. A stretch list is created of things that would be nice
to add if resources or schedules allow it. The Director of Development must approve any feature changes after
the freeze.

-- A Functional Specification Freeze checkpoint is used early in the coding phase. This stops changes to the user
interface which is necessary to allow documentation to be finalized. Some additional freezes are defined to meet
the requirements of the international group that is translating the product are: Message Freeze and Help Freeze.

-- A Code Freeze checkpoint is used to stop the proactive changing of code. All bugs are reviewed and the only
changes to code allowed are those necessary to fix an approved bug. This occurs during the testing phase.

-- Version control/management is utilized for all source code, and developers use a "check-out" and "check-in"
procedure when updating code.

For the Notes group, some of the procedures vary. The following describes the general approaches used
across its development stages:

- Requirements and specifications are not under any form of change control. Developers communicate with
multiple groups and make decisions on what needs to be fixed. These changes are often not communicated to
the QA department or the project management group. A list of key features agreed to at the start of
development is maintained and changes from that are known.

-- Code is not under a form of version control or "check-in" and "check-out" control. Each developer gets a copy
of the source code after a build is done and is free to make changes. Communication occurs between the
developers but the group has grown so that this does not provide extensive coverage of project information.
Builds occur on a monthly basis. During the build stage, the release architect, who is a very senior member of
the team, brings together the source code versions one at a time and reviews each change before allowing it into
the master code. This process worked well when there were no more than 10 developers, but it is showing signs
of breaking down as the group expands.

-- Extensive tracking of defects occurs. Each user has access via Notes to the database of problems. Easy to
generate reports are available to look at status and the state of fixes.

-- Code changes that occur within a build are tracked. This information is automatically generated by the build
tools and lists what modules were changed between builds. The information has some use when doing problem
determination.

-- An item that will be discussed in more detail in the tools section is a very important step in change
management. The full product group for Notes is always running on the latest product build. After going
through some verification steps, the build is installed on the servers. This ensures the product is always
operational and eliminates most regression errors while providing early feedback on new functions.

8.17 Metrics

71

II

Lotus currently does not use metrics extensively as part of the development process. The company has
gone through phases where they were used more often. Formality of metric use depends somewhat on the size
of the product, but in most cases they are not used much. Bug/defect count tracking is done by nearly all
groups. Find versus fix rate, size of the backlog, and mix of severities are used as in-process metrics during
testing and they are also used to monitor post-ship quality. All groups also track "progress versus schedule" and
"performance."

8.18 Process Improvement

With the movement of individuals between projects and each project choosing its own process,
significant process improvement steps do not tend to occur. The combination of movement and no base process
is not something that leads to refinement of what has been done in the past. The Director of Development for
DOS Spreadsheets does utilize Post Mortem reviews to learn from past projects. Each individual group
(development, QA, documentation) holds individual meetings to understand what was good and what could be
improved on. These are not finger-pointing exercises and are designed to improve the next development project.

8.19 Tools

Notes uses its own product extensively. This provides eMail support, project tracking, problem
reporting, and collection of information in databases. The group always runs the latest version of the product
that was built, which exercises the code well before it goes out to any customers. Notes is therefore always
operational. This extensive use of a product throughout the development process occurs also at Microsoft but
is not common at older producers such as IBM. Lotus management believes that this practice helps refine the
product before it goes to customers.

8.20 Summary and Results

Lotus has continued to allow small groups to determine the process they feel is best to get their work
done. Requirements are allowed to change to adapt to customer requests. Developers have extensive freedom
until they reach the Code Freeze checkpoint. Developer freedom has led to significant product refinements but
has made Quality Assurance a very difficult job.

Both of Lotus's major products have been successful in their markets. Lotus holds the dominant
position in DOS Spreadsheets and continues to come out with competitive refinements. Notes has been very
positively received and has a growing customer-base in a market segment that is expected to grow rapidly.

72

9: CONCLUSION

In comparing a small sample of "classic" and "PC" software producers, an important difference is from
where the products have evolved and how quickly they continue to evolve. IBM Federal Systems Company,
IBM Application Business Systems, Fujitsu, and Hewlett-Packard all develop relatively stable operating systems
or tailored applications for mainframe and minicomputer systems that have multiple concurrent user groups on
a single system. Each development organization has been in place producing this type of software for many
years. In contrast, the PC software producers develop products for a dynamic and relatively new market. The
companies themselves are relatively new and need to accommodate markets and hardware platforms as they
change. As a result, the PC software market requires more flexibility and creativity than the mainframe or
minicomputer software markets, even though these markets are merging to some degree, and, as PC software
increases in size and complexity, PC software producers are introducing many of the same techniques and
controls as their classic predecessors.

In a general sense, then, it is not surprising that the development life cycles were similar across the
companies. Each utilized common phases of requirements, design, coding, testing, delivery, and maintenance.
Each company also spent significant effort on process support activities such as release management, change
management, metrics, and process improvement. In many respects, the development process was less formalized
at the PC software producers, although there were a few important differences in practices.

Microsoft was particularly interesting in what it did differently from the classic producers. Projects at
Microsoft, as well as at Lotus, do not try to write a complete specification before beginning coding. Instead, they
allow development to proceed around a set of "features" that evolve through a prototyping process so that
developers can view the graphical interfaces as they write them and solicit opinions from users during
development. Microsoft also breaks up the development process into three or four separate milestones, each of
which contains its own design, implementation, testing, and stabilization phases. If too many problems arise,
projects cut back features or postpone them to the next release. Microsoft also builds its products daily and uses
its products during development, ensuring that projects are always finding and correcting bugs, and have a
"shippable" product relatively early. These modifications in its process have carried at least Microsoft "beyond"
the classic approach to software development to a more flexible process that can experiment with designs as well
as adapt rapidly to changing market needs or features introduced by competitors.

To highlight some of the similarities and variations among the two groups of companies, Table 2
summarizes key characteristics of each group across the process activities. The first column lists the activity, the
second column addresses the older or "Classic Software" producers, and the third column addresses the newer
"PC Software" producers. Even though there are a number of differences between the classic and the PC
software companies, there are an even larger number of similarities. The two groups of companies are at
different stages of organizational evolution as well as in different markets, and the processes they use to develop
products reflect these differences.

73

11I

Table 2: Comparison of Classic and PC Software Producers

Claic Soiware Producers PC Softare Produ r

Structured to occur on regular
intervals with support of hardware
being a significant factor driving the
content and schedule of a release.

All organizations utilize formal
processes for well-defined
development phases that proceed
more or less sequentially, with a
large integration phase at the end.

Requirements and development
phases are driven by product
management groups with executives
having final approval of contents and
schedules. Organizations strive to
meet the needs of diverse customer
bases while expanding to new
markets. Projects try to write as
complete a specification as possible
before proceeding to detailed design
and coding.

Design and coding is manually done
with the exception of Fujitsu. There
is minimal usage of specification
languages, automatic code
generation, and Object Oriented
programming. Inspections are
formally used by each with very
positive results.

Releases were based on function for
initial and immediate follow-on
releases. They have moved to a
more predictable schedule-driven
approach as products have matured.

Development proceeds in broad, less
well-defined phases. Microsoft
divides development into 3 or 4
milestones, each with a full set of
development and testing phases.

Requirements and schedules are
determined by a very small group
that maintains control over the
product as it matures. Projects do
not try to write complete
specifications up front, because they
know these will change. Instead,
they allow requirements to evolve
through prototypes and continual
input from developers, program
managers, and users on what should
be included in products. Microsoft
also has a formal process to fix the
top customer complaint areas in each
release.

There is less formal structure
surrounding specific steps that must
be carried out during development.
These groups also have minimal
usage of specification languages,
automatic code generation, and
Object Oriented programming
(though 00 usage is rising). They
are adopting design and code reviews
due to positive early results.

In-house test groups are independent
from the developers for 3 of 4
organizations. The in-house groups
are strong for each company with
ratios ranging from 5-10 developers
per tester. Beta and other customer
tests are used by each for technical

In-house groups work more closely
with developers than in the classic
companies. There is a high ratio of
testers to developers (nearly a one-to-
one ratio). Beta tests are used for
technical and marketing reasons.
Both companies use their product's

74

Activity

R elease
Structure &
Strategy

P I ann ing
Process

Requ ire-
ments

Design &
Coding

Testing

and marketing reasons (though IBM
FSC has a single customer). The
HP-UX group uses the software
being developed in day-to-day
operations.

latest code levels on a continuous
basis to get additional testing of the
code.

Process usage is dominated by the
size of the products and the
integration needs. Processes need to
be used by all developers. The
process is needed for predictableness
of schedules and quality. A strong
use of metrics aids the checking of
compliance.

This is a significant activity in the
organization due to size of product
and number of people involved. HP
and IBM ABS have gone to an
individual focused on "fighting fires"
and ensuring decisions are made on
a timely basis. Cross-functional
groups are in-place to support the
individual.

This is done throughout the
development phases with increased
formality during coding and testing.
IBM FSC and IBM ABS have moved
it all the way up to the requirements
stage. Tools are in-place to support
change management.

There is more independence
surrounding process choices. Fewer
formal compliance measures are in
place. A standard process is being
introduced due to the need for
predictableness on schedules and
error control for the growing
systems.

A lead Program Manager is part of
each product development group.
Their focus is strictly on making
sure the release gets done. They
work closely with the Product
Manager, managers of the specific
development and testing groups, and
all outside groups (support,
manufacturing, subcontractors, etc).

Change management is done during
the coding and testing stages to
varying degrees. Loose controls are
used during requirements and design
stages. Change management appears
to increase as products mature.

Theses are used extensively to help
manage the very large projects.
Historical bases are in place to
compare progress results against.
Metrics are used to manage schedules
and quality. In-process metrics are
being used extensively for design,
coding, and testing stages.

Use of metrics is dependent on the
maturity of the product and the
historical base available. Microsoft is
now using different metrics
extensively for decision support on
requirements and on escalations of
decisions.

This is extensively pursued by all
four organizations. Causal Analysis
and Defect Prevention processes are
used to remove sources of error
injection.

This is used by the mature
organizations in the companies.
Post-mortems are now a common
and high-profile activity in
Microsoft. Group continuity
appears to be necessary for this to be
effective. They are working to get
more sharing and learning across
groups.

75

Process Usage
&
Compliance

Release
Management

Change
Management

Metrics

Process
Imp ro v e-
ment

III

The most extensive investment and
usage was at Fujitsu. Each company
has a well-established tool set to
support change management, coding,
and product builds. All make
investments in automated tools for
testing. HP uses their own product
during development work.

The culture of the company and the
formality of the development
processes are tightly linked.

Work station-based networks are
standard. Source code management
tools are utilized with a variety of
languages and linkers employed.
Each company attempts to use their
product while it is going through
development. Object Oriented
programming is gradually being
introduced for parts of major
projects.

The culture of the company and the
formality of the development
processes are tightly linked. Both
companies are finding the need to
add structure to their development
processes and have been continually
doing that.

76

Tools

General

Endnotes

1. For a description of factory-like approaches, see Michael A. Cusumano, Japan's Software Factories (New York:
Oxford University Press, Inc., 1991).

2. See Watts S. Humphrey, Managing the Software Process (Reading, MA: Addison-Wesley Publishing
Company, Inc., 1989), for a description of the SEI process.

3. For an account of IBM Rochester and the AS/400 development, see Roy Bauer, Emilio Collar, and Victor
Tang, The Silverlake Project: Transformation at IBM (New York: Oxford University Press, 1992).

4. See Cusumano, Japan's Software Factories.

5. We also approached Borland, Novell, and WordPerfect, but our contacts at these firms declined our
invitation to participate in the study.

6. Details in the up-front description of the Life Cycle Model are based on a section of Pankaj Jalote, An
Integrated Approach to Software Engineering (New York: Springer-Verlag New York Inc., 1991).

7. W.W. Royce, "Managing the Development of Large Software Systems: Concepts and Techniques,"
Proceedings of IEEE WESCON, pp. 1-9, 1970. The up-front description of the Waterfall Life Cycle is based
on a section of Andrew P. Sage and James D. Palmer, Software Systems Engineering (New York: John Wiley
& Sons, 1990).

8. Jalote, An Integrated Approach to Software Engineering.

9. Ibid.

10. Sage and Palmer, Software Systems Engineering.

11. Ibid.

12. See Peter Naur and Brian Randell, eds., Software Engineering: Report on a Conference Sponsored by the
NA TO Science Committee (Brussels, NATO Scientific Affairs Division, January 1969); Barry W. Boehm,
"Software Engineering," IEEE Transactions on Computers C-25, 12, December 1976; Richard Thayer,
"Modeling a Software Engineering Project Management System," Ph.D. dissertation, University of California
at Santa Barbara, 1979; C.V. Ramamoorthy et al., "Software Engineering: Problems and Perspectives,"
Computer, October 1984.

13. Richard A. Sulack, "Advanced Software Engineering Management Core Competencies," Presentation at
Spring 1993 COMMON Meeting.

14. This section is based on information obtained through interviews primarily with IBM Application
Business Systems employees Dick Hedger, Manager of Quality Technology, Dave Amundson, Manager of
Development Quality Process Technology, and Steve Kan, a member of Development Quality Process
Technology, on March 16, 1993; externally published articles; internal IBM documents; and the 1992 IBM
Annual Report.

15. This section is based on information from Cusumano, Japan's Software Factories, and on Datapro
information regarding Fujitsu's current products.

77

III

16. See Cusumano, Japan's Software Factories.

17. This section is based on information obtained through interviews with Hewlett-Packard employees Dave
Snow, Manager of Engineering Systems for the Commercial Systems Division; MaryAnn Betts, member of
Group Process and Technology for Computer Systems Organization; Doug Herda, Manager of MPE/iX
Process and Tools Project Team for the Commercial Systems Division; and Cathrin Callas, Manager of
Productivity and Quality for the Open Systems Software Division. The interviews were held January 24,
1993.

18. This data was compiled and published by Competitive Resource Center of the International Data
Corporation, Framingham, MA.

19. This section is based primarily on information obtained through an interview on March 15, 1993 with
David Moore, Director of Development, Testing, and Quality Assurance for Microsoft. Some information
was obtained through materials received and interviews done during April and August 1993.

20. Gill, Geoffrey K., "Microsoft Corporation: Office Business Unit", Harvard Business School, Case 9-691-
033, Boston, 1990.

21. "Soft Lego," Scientific American, January 1993, and "Object Oriented Technology; Where Microsoft meet
Berlitz," Information Week, March 1, 1993.

22. This section is based on information obtained through interviews with Beth Macy, Director of
Development for DOS Spreadsheets, on April 16, 1993, and Rich Diephuis, Director of Development for
Lotus Notes, on April 14 & 16, 1993.

78

