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ABSTRACT

We consider the problem of minimizing the makespan when scheduling tasks on two uniform parallel
machines, where one machine is q times as efficient on each task as is the other. We compute the
maximum relative error of the LPT (largest processing time first) heuristic as a function of q. In the
special case that the two machines are identical (q = 1), our problem and heuristic are identical to the
problem and heuristic analyzed by Graham [1969].

* On leave from the department of Management Science, Ohio State University.
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INTRODUCTION

Using the common notation of scheduling theory, we consider the problem Q211CMAX. This is the

problem of scheduling each of n tasks on either of two uniform parallel machines, where the first machine
is q times as efficient as the second, so as to minimize the makespan. The processing time for task j is p(j)
on machine M1 and qp(j) on machine M2. This problem is well known to be NP-hard. As a consequence,
much attention has focused on heuristics for solving this problem. The most well known of these is the
Largest Processing Time first (LPT) heuristic. We describe it below.

LPT Heuristic
BEGIN

order the tasks so that p(l) > p(2) > ..... > p(n);

T(1) := 0;

T(2) := 0;
FOR j=1TO n DO

BEGIN
IF T(1) + p(j) < q(T(2) + p(j)) THEN T(1) := T(1) + p(j)

ELSE T(2) := T(2) + p(j);

END

END

LPT sequentially assigns the tasks in such a way that task j is assigned to the machine on which it would
finish first.

An instance of our scheduling problem will be denoted by (P,q), where P is a vector of processing
times and q is the efficiency factor. The makespan returned by LPT for the instance (P,q) will be denoted
L(P,q) and it is equal to max{T(1), qT(2)}. Let OPT(P,q) denote the minimum possible makespan for

instance (P,q). Then, the relative error for LPT with respect to an instance (P,q) is:

REL(P,q) = [L(P,q) - OPT(P,q)]/OPT(P,q).

The worst case relative error for LPT is R(q) = sup{REL(P,q): P}. Thus R(q) is the supremum of all
relative errors for LPT for a fixed value of q. In this paper we show how to compute R(q).

RELATED RESULTS

In the last 20 years a number of papers have focused on guaranteed accuracy heuristics for machine
scheduling problems. For a survey of such papers see Lawler et. al. [1993]. The analysis in this paper
was motivated primarily by the classic paper by Graham [1969]. In that paper, Graham analyzed the
special case in which q = 1 as generalized to the m machine case. Dobson [1984] and Friesen [1987]
have studied the worst case relative error of LPT in the m machine case, where the machines have varying
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speeds. Their results do not subsume ours as they are concerned with the maximum relative error over all
task sizes and machine efficiencies. Put another way, for the case of two machines, they compute
sup{R(q): q > 0}.

THE APPROACH

To understand our approach to computing R(q), fix a value of q. The standard method, first used by
Graham (and everyone since then), is to start with a conjecture about the value of R(q). Usually, the
conjecture is arrived at by experimenting with small problem instances. To prove the conjecture assume it
is false. This implies the existence of an instance (P,q) that violates the conjecture. From among all such
counter-examples pick the one with the fewest number of tasks. Identify some properties that this
minimal counter-example must satisfy; such as the maximum number of tasks it can contain. On the basis
of these properties show that such a minimal counter-example cannot exist. If one succeeds in this last
venture, well and good; if not, back to the drawing board. Imagine now the difficulty involved in using
this approach to compute R(q) for all q > 0.

The novelty of our approach is to use Linear Programming (LP) as part of a systematic way of
generating (true) conjectures about the value of R(q) for each q > 0. We start by formulating an LP
whose optimal objective function value provides an upper bound on R(q). This bound is then used to
show that we can restrict the search for a minimal counter-example to instances involving no more than 5
jobs. We then use linear programming on these smaller instances to generate the instances that maximize
REL(P,q). Subsequently we prove the correctness of the conjectures about R(q) generated by this LP
approach.

Before proceeding, some words on the nature of R(q) are in order. First, it is not hard to see that as q
gets very large, R(q) tends to zero. Thus one might be tempted to conclude that R(q) will be
monotonically decreasing. Not so. It is not even unimodal. In fact its derivative changes sign in 7 places
for q > 1. Finally, since R(q) = R(l/q) for q > 0 we restrict our attention to cases where q > 1.

A SIMPLE UPPER BOUND

In order to simplify the search for worst case instances of (P,q), we make some simplifying
assumptions. For a given instance of (P,q), let T(l,j) and T(2,j) denote the cumulative processing time of
tasks allocated to machines M1 and M2 by LPT after task j has been assigned. (Thus the total processing
time on M2 is qT(2,n)). These assumptions are as follows.

Al) p(l) > p(2) > ... > p(n)> 0.
A2) OPT(P,q) = 1.

A3) T(2,n-1) > p(n).
A4) T(ln-l) < q(T(2,n-1) + p(n)).
A5) qT(2,n-1) < T(l,n-l) + p(n).

3



llI

A6) T(l,n-l) + T(2,n-1) + p(n) < 1 + 1/q.

Al is merely a restatement that the processing times are ordered from largest to smallest by LPT. A2
follows from the fact that R(q) is scale independent, i.e., if all processing times are multiplied by the same
number, R(q) does not change. Notice that A2 implies that REL(P,q) = L(P,q) - 1. To see that A3 is
valid, assume not. Then T(2,n-1) = 0. Hence, LPT assigns all of the first n - 1 jobs to M1. A simple
interchange argument shows that L(P,q) = OPT(P,q) in this case. A4 and A5 follow from the fact that in
an LPT schedule generating the worst case relative error, task n must be the last task to be completed. If
not, we could delete task n without decreasing the relative error. Thus, any instance (P,q) that violates
A4 or A5 can be transformed into another instance with at least as much relative error by eliminating task
n.

To see A6, let OPT(i) denote the sum of the processing times of the tasks assigned to machine i in an
optimal schedule. From A2 and the definition of OPT(P,q) we see that OPT(1) < 1 and qOPT(2) 1.
Combining these two inequalities and using the fact that OPT(1) + OPT(2) = T(l,n-l) + T(2,n-1) + p(n),
we get A6.

In view of A - A6 it is not hard to see that the optimal objective function value of the following linear
program (LP1) provides an upper bound on R(q) for all q > 0.

Z(q) = max H-1 (1.1)

subject to
H < T(l,n-1) + p(n) (1.2)

H < q(T(2,n-1) + p(n)) (1.3)

T(l,n-1) + T(2,n-1) + p(n) < 1 + 1/q (1.4)

p(n) < T(2,n-1) (1.5)

(n - 1) p(n) < T(l,n-1) + T(2,n-1) (1.6)

Proposition 1: R(q) < 1/(2q + 1) for all q > 1.

Proof: If Z(q) < 1/(2q+1), then we are done. Add 2q times (1.2) to (1.3), then add (1.5) and add (2q +
2) times (1.4) to produce:

(2q + 1)H < (2q + 2)
=> H -1 < 1/(2q+1).

Since this is true for any feasible H, Z(q) < 1/(2q+1). A

It is interesting to note that this bound for Z(q) is tight for q > (n - 1)/2 as can be seen from the
following feasible solution to LP1:
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H = 1 + 1/(2q+1),

T(1,n-1) = (2q-1)(q+l)/[q(2q+1)],

T(2,n-1) = (q+l)/[q(2q+l)],

p(n) = (q+l)/[q(2q+l)].

For q < (n -1)/2, the following is the optimal solution to LP1:

H = 1+1/n,

T(1,n-1) = 1- 1/nq,

T(2,n-1) = lq- l/n,

p(n) = 1/n.

EVALUATING R(q)

In this section we show how to systematically generate conjectures about the value of R(q) for each q.

Our method is implicit enumeration based on the following two observations.

FACT 1: If we knew both the LPT and Optimal assignments, we could solve for the n-vector P by linear

programming.

FACT 2: The number of different combinations of LPT and optimal assignments for a schedule of n

tasks is less than 22n.

To illustrate a linear program as mentioned in FACT 1, suppose that n = 4. Suppose also that LPT

assigns tasks 1, 3 and 4 to M1 and task 2 to M2. Suppose further that the optimum schedule has tasks 2,

3 and 4 assigned to M1 and task 1 to M2.

Then we may find the worst case vector P as follows.

MAXIMIZE H- 1

SUBJECT TO

T(1, 1) = p(l)

T(1,2) = p(l)

T(1,3) = p(l) + p(3)

T(1,4) = p(l) + p(3) + p(4)

T(2,1) = 0

T(2,2) = p(2)

T(2,3) = p(2)

T(2,4) = p(2)

qT(2,2) < T(1,1) + p(2)

T(1,3) < qT(2,2) + qp(3)
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T(1,4)

p(2) + p(3) + p(4)

qp(l)

p(l)

p(2)

p(3 )

p(4)

qT(2,3) + qp(4 )

1

1

p(2)

p(3)

p(4)

0.

The variables and constraints of this linear program may be simplified; we list the entire set because it is
the system we derive mechanically for use in a matrix generator.

Actually, we want to solve the above linear program for all values of q > 1. Thus, we want to solve a
parametric linear program in which the constraint matrix varies linearly with q. In general, there is no
simple approach to solving such parametric linear programs; however for the parametric linear programs
that arise in this analysis, it is usually true that very simple methods can calculate the breakpoints;
moreover, it is rare that there are more than four different optimal bases.

Our algorithm may now be described as follows.

BEGIN

for all possible LPT schedule assignments x

for all possible optimal schedule assignments y DQ

BEGIN

find the worst case processing times P as a function of x, y, q

by solving a parametric linear program for all q > 1.

END
END

Of course, the above search is overly exhaustive. In practice we can cut down on the computation
time considerably. For example (as shown in the next section) we prove that it is sufficient to consider
only the cases 3 < n < 5. Further manipulations allow one to reduce even more the set of assignments to
be considered.

The results of our search are included in Figure 1, the value of R(q) for q > 1. In the next section we

prove the correctness of this curve. This curve is defined by the function f(q) where:
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= q/3(q+l)

= q-1

= (2-q)/2q

= 1/(2q + 2)

= (q-l)/(q+2)

= (3-q)/3q

= 1/(2q+2)

= (2q2-4q+1)/(4q-1)

= 1/(2q+l)

1 <q<( + 37)/6

(1 + 434)/6 < q < (1 + F147)/4

(1 + 477)/4< q < 2

4 2 < q < (1 + 3-)/4

(1 + 3)/4 <q<(1 + F7)/2

(1 + 7)/2 q < 2

2<q<ql

ql <q<q2

q2 q.

Here q1 is the largest real root of 4x3 - 8x2 - 10x + 1 = 0 and q2 is the unique real root of 2x3 - 3x 2 - 3x

+ 1 = 0. In the next section we prove that R(q) = f(q) for all q > 1.

THE PROOF

The following simple lemma will prove quite useful.

Lemma 2: L(P,q) - OPT(P,q) < qp(n)/(q+l).

Proof: In LP1 add q/(q+l) times (1.2) to 1/(q+l)times (1.3) and add the sum to (1.4). This results in
the following inequality:

H- 1 < qp(n)/(q+1).

Using A2 and the fact that L(P,q) < H we obtain the result. A

Proposition 3: If n > 6, then R(q) < f(q).

Proof: If n > 6, then the optimal schedule assigns at least 3 tasks to M2 or 4 tasks to M1. In the first
case, 1 = OPT(P,q) > 3qp(n). This implies, by Lemma 2, that REL(P,q) < 1/(3q+3) < f(q) for all q 1.
In the second case, OPT(P,q) > max{4p(n), 2qp(n)} and so, REL(P,q) < min{q/(4q+4), 1/(2q+2)} <
f(q) for all q > 1. A

Notice that the first part of the proof to Proposition 3 can be generalized to read:

Proposition 4: If an optimal schedule assigns at least 3 tasks to M2, then R(q) < f(q).
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Proof: Obvious. A

Proposition 5: R(q) <f(q) for n < 2.

Proof: For n = 1, 2, L(P,q) = OPT(p,q). A

Propositions 3, 4 and 5 allow us to restrict our attention to instances involving between 3 and 5 tasks
where the optimal schedule assigns at most two tasks to M2. In what follows, recall that we can assume
that p(n) is the last task to complete in an LPT schedule and T(2,n-1) > 0. Hence, if T(1,n-1) + p(n) <
q(T(2,n-1) + p(n)), then, L(P,q) = T(1,n-1) + p(n); otherwise, L(P,q) = q(T(2,n-1) + p(n)).

Proposition 6: For n = 3, R(q) < f(q).

Proof: If the LPT schedule assigns tasks 1 and 2 to M1, then, L(P,q) = OPT(P,q). Hence, we may
assume that task 2 is assigned to M2 in an LPT schedule. If task 3 is assigned by LPT to M1, then,
L(P,q) = p(l) + p(3) < q(p(2) + p(3)). If task 3 is assigned by LPT to M2, then, L(P,q) = q(p(2) + p(3))
< p(l) + p(3). In all cases L(P,q) = min{p(1) + p(3), q(p(2) + p(3))).

If task 1 is assigned to Ml in an optimal schedule, then, OPT(P,q) > p(l) + p(3) or OPT(P,q) >
q(p(2) + p(3)). Thus, in either case, OPT(P,q) > L(P,q). Hence we may assume that task 1 is assigned
to M2 and tasks 2 and 3 are assigned to M1 in an optimal schedule, i.e., OPT(P,q) = max{qp(l), p(2) +

p(3 )}. So,

L(P,q) - OPT(P,q) < q(p(2) + p(3)) - (p(2) + p(3))

= (q-1)(p(2) + p(3))

=> REL(P,q) < q- 1.

Also,

L(P,q) - OPT(P,q) < p(l) + p(3) - [qp(1) + p(2) + p(3)]/2

< (1 - q/2)p(1)

=> REL(P,q) < (2-q)/2q.

Therefore, REL(P,q) < min{q - 1, (2 - q)/2q) < f(q) for all q 1 and q < 2. When q > 2,
OPT(P,q) = max(qp(l), p(2) + p(3)) > 2p(l) > p(l) + p(3) > min{p(l) + p(3), qp(2) + p(3)) = L(P,q),

a contradiction. A

Proposition 7: Let n = 4. If both LPT and the optimal schedule assign exactly two tasks to each

machine, then, R(q) < f(q).
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Proof: If LPT assigns task 4 to M1, then, L(P,q) = p(l) + p(4) < OPT(P,q), and the LPT schedule is
optimal. If LPT assigns both tasks 3 and 4 to M2, then, LPT(P,q) = q(p(3) + p(4)) < OPT(P,q), and the
LPT schedule is optimal. We conclude that LPT assigns tasks 2 and 4 to M2, and L(P,q) = q(p(2) +

p(4 )).
Since the optimal schedule assigns two tasks to M2, it must assign tasks 3 and 4, otherwise the LPT

schedule is optimal. Hence, OPT(P,q) = max{p(1) + p(2), q(p(3) + p(4)). Then,
L(P,q) - OPT(P,q) < q(p(2) + p(4)) - (p(2) + p(4))

< (q- 1)OPT(P,q).

Thus, REL(P,q) < q - 1. By Lemma 2, L(P,q) - OPT(P,q) < qp(4)/(q+l). Since, OPT(P,q) > 2p(4), it

follows that REL(P,q) < 1/(2q+2). Thus, REL(P,q) < min{q - 1, 1/(2q+2)} < f(q) for all q > 1.
A

Proposition 8: Let n = 4. If the optimal schedule assigns exactly two tasks to each machine and LPT
assigns three tasks to one machine, then, R(q) < f(q).

Proof: We divide the proof into two cases.
Case 1 Task 4 is assigned to M1 by LPT.
We observe first that task 2 is assigned to M2 in an LPT schedule. Otherwise, T(2,3) < p(3) and so
L(P,q) < q(p(3) + p(4)) < OPT(P,q). Hence, L(P,q) = p(l) + p(3) + p(4). If the optimal schedule
assigns at least one of tasks 1 or 2 to M2, then, OPT(P,q) > q(p(2) + p(4)) > L(P,q) by definition of
LPT. Thus, in an optimal schedule tasks 1 and 2 are assigned to M1. We will show that REL(P,q) 
min{q-1, 1/(2q+2)}.

Notice that L(P,q) = p(l) + p(3) + p(4) < q(p(2) + p(4)) by LPT. Also, OPT(P,q) > p(l) + p(2) >

p(2) + p(4). Hence, REL(P,q) < q - 1. To get the second bound we note that OPT(P,q) > 2qp(4) and so

by Lemma 2, REL(P,q) < 1/(2q+2).

Case 2 Task 4 is assigned to M2 by LPT
If tasks 1, 2 and 3 are assigned by LPT to M1, then the LPT schedule is optimal.

If LPT assigns task 1 to M1 and tasks 2, 3, and 4 to M2, then,

L(P,q) = q(T(2, 3) + p(4))

< T(1, 3) + p(4)

= p(l)+p(4)

< OPT(P,q)

because in an optimal schedule two tasks are assigned to each machine. A

Proposition 9: Let n = 4. If the optimal schedule assigns three tasks to one machine and LPT assigns
two tasks to each machine, then, R(q) < f(q).

9



Proof: Clearly, the optimal schedule will assign the three tasks to M1.

Case 1 Task 4 is assigned to M1 by LPT

In this case L(P,q) = p(l) + p(4). If task 1 is assigned to M1 in an optimal schedule, OPT(P,q) >

L(P,q), a contradiction. Hence, task 1 is assigned to M2 in an optimal schedule. Thus, p(l) <

OPT(P,q)/q and p(4) < OPT(P,q)/3. Hence,

L(P,q) - OPT(P,q) < OPT(P,q)/q + OPT(P,q)/3 - OPT(P,q)

< (1/q - 2/3)OPT(P,q)

=> REL(P,q) < (1/q- 2/3).

By, Lemma 2, REL(P,q) < q/(3q+3). Therefore, REL(P,q) < min{q/(3q+3), (1/q - 2/3)} < f(q) for q >

1.5. When 1 < q < 1.5, REL(P,q) < q/(3q+3) < f(q).

Case 2 Task 4 is assigned to M2 by LPT

Suppose first that task 3 is assigned to M1 by LPT. Then, L(P,q) = q(p(2) + p(4)) < p(l) + p(3) +

p(4). If task 1 is assigned to M1 in an optimal schedule, then, OPT(P,q) > L(P,q). Hence, OPT(P,q) =

max{qp(1), p(2) + p(3) + p(4)}. Thus,

L(P,q) - OPT(P,q) < p(l) + p(3) + p(4) - OPT(P,q)

< OPT(P,q)/q + 2OPT(P,q)/3 - OPT(P,q)

= (3-q)OPT(P,q)/3q

=> REL(P,q) < (3 - q)/3q.

Lemma 2 implies that REL(P,q) < q/(3q+3). Hence, REL(P,q) < min{q/(3q+3), (3-q)/3q) < f(q) for 3 >

q 2 1. If q > 3, OPT(P,q) 2 3p(l) > p(l) + p(3) + p(4) > L(P,q), a contradiction.

Now suppose that task 2 is assigned to M1 by LPT. Then, L(P,q) = q(p(3) + p(4)). Since task 2 was

assigned to M1, it follows that qp(2) > p(l) + p(2) => q > 2. We consider two subcases.

Subcase 1 Task 1 is assigned to M1 in an optimal schedule.

If task 2 is also assigned to M1 in an optimal schedule, then, L(P,q) < OPT(P,q). Hence, OPT(P,q) =

max{qp(2), p(l) + p(3) + p(4)}. If p(l) > OPT(P,q)/q, then

L(P,q) = q(p(3) + p(4))

< q(OPT(P,q) - p(l))

< (q- 1)OPT(P,q)

=> REL(P,q) < q - 2 < f(q) for 2 < q < q2.

If p(l) < OPT(P,q)/q, p(2) < OPT(P,q)/q as well. Hence, OPT(P,q) = p(l) + p(3) + p(4). Since task

4 was assigned to M2 by LPT,

10
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q(p(3) + p(4)) < p(1) + p(2)+ p(4 )

< 2p(l)+ p(4).

Now, p(l) = OPT(P,q) - p(3) - p(4) =>

q(p(3) + p(4))
=> (q+2)p(3) + (q+l)p(4)

< 2(OPT(P,q) - p(3) - p(4 )) + p(4)

< 2PT(P,q).

Also, p(3) 2 p(4) =>

(q+l)p(3) + (q+2)p(4) < 20PT(P,q).

Adding these last two inequalities we obtain:

(2q+3)(p(3) + p(4))

> L(P,q)
> REL(P,q)

< 40PT(P,q)

< 4qOPT(P,q)/(2q+3)
< (2q-3)/(2q+3) < 1/(2q+2) < f(q) for 2 q < ql.

To obtain the bound in the region ql < q

assigned by LPT to M1. Hence:

q(p(3) + p(4))

=> 2qp(3) + (2q-1)p(4)

< q2, we observe that qp(2) < p(l) + p(2), since task 2 was

< p(l) + p(2) + p(4)

< qp(1)+ p(4)

< q(OPT(P,q) - p(3) - p(4)) + p(4)

< qOPT(P,q).

As p(3) > p(4), we also get:

(2q-1)p(3) + 2qp(4) < qOPT(P,q).

Adding these last two inequalities produces:

(4q-l)(p(3) + p(4))

=> L(P,q)
=> REL(P,q)

< 2qOPT(P,q)

< 2q2OPT(P,q)/(4q-1)
< (2q2-4q+1)/(4q-1).

Subcase 2 Task 1 is assigned to M2 in an optimal schedule.
If so, qp(1) < OPT(P,q) and the previous argument applies.

11
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Proposition 10: Let n = 4. If the optimal and LPT schedule each assign three tasks to a single
machine, then, R(q) S f(q).

Proof: By proposition 4 and the hypothesis of the proposition, in an optimal schedule, M2 is never
assigned more than one task.

Case 1 T(1, 3) < qT(2, 3)

Thus L(P,q) = T(1, 3) + p(4). By A6, OPT(P,q) > q(T(1, 3) + T(2, 3) + p(4))/(q+l). Hence,

L(P,q) - OPT(p,q) < (T(1, 3) + p(4))/(q+1) - qT(2, 3)/(q+1)

< p(4)/(q+l).

Since, OPT(P,q) > 3p(4), it follows that REL(P,q) < 1/(3q+3) < f(q) for all q 1.

Case 2 T(1, 3) > qT(2, 3)
We further divide this case into a number of subcases.

Subcase 1 T(1, 3) + p(4) < q(T(2, 3) + p(4))
In this case, LPT assigns task 4 to M1. Suppose first that LPT assigns task 3 to M1 and task 2 to M2, i.e.,
L(P,q) = p(l) + p(3) + p(4). If task 1 is assigned to M1 in an optimal schedule then, OPT(P,q) > p(l) +
p(3) + p(4) = L(P,q). So, we may assume that OPT(P,q) = max{qp(1), p(2) + p(3) + p(4)}. We will now

show that R(q) < min{q-1, 2(q-1)/q2} which is < f(q) for q > 1.

Observe first that L(P,q) - OPT(P,q) < p(l) - p(2). Since task 2 was assigned to M2 and task 3 to M1
by LPT, p(l) + p(3) < q(p(2) + p(3)). Hence,

p(l) - p(2)

REL(P,q)

= p(l) + p(3) - p(2) - p(3 )

< (q-1)(p(2) + p(3 ))

< (q-1).

Secondly, as task 4 was assigned by LPT to M1,

q(p(2) + p(4)) > p(l) + p(3) + p(4)

=> p(2) > (p(1) + p(3))/q + (1/q -1)p(4).

L(P,q) - OPT(P,q) < p(l) - p(2)

< (1 - 1/q)(p(1) + p(4)) - p(3)/q
< 2(1 - 1/q)p(1).

12
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Hence, REL(P,q) < 2(1 - 1/q)/q2.

Suppose now that LPT assigns task 2 to M1 and task 3 to M2. Then, L(P,q) = p(l) + p(2) + p(4). If
task 1 is assigned to M2 in an optimal schedule, then, by an argument similar to the one above we deduce
that R(q) < min{q-1, 2(q-1)/q 2}. If task 1 and task 2 are assigned to M1, then OPT(P,q) > L(P,q).
Hence, OPT(P,q) = max{qp(2), p(l) + p(3) + p(4)}. Then, L(P,q) - OPT(P,q) < p(2) - p(3).

Since task 3 was assigned to M2 by LPT, qT(2, 3) = qp(3) > T(1, 3) + p(4) = p(l) + p(2) + p(3) >

p(2). Hence, p(2) - p(3) < (q-1)p(3), i.e, REL(P,q) < q - 1. As task 4 was assigned to M1 by LPT,

q(p(3) + p(4)) > p(l) + p(2) + p(4)
=> p(3) > (p(1) + p(2))/q + (1/q- l)p(4).

Hence, L(P,q) - OPT(P,q) < p(2) - p(3) < 2(1 - 1/q)p(2) => REL(P,q) < 2(1-1/q)/q 2 .

Subcase 2 T(1, 3) + p(4) > q(T(2, 3) + p(4))

In this case task 4 will be assigned to M2 by LPT. If task 4 is the only task on M2, L(P,q) = OPT(P,q).

Hence, LPT must assign three tasks to M2, i.e., L(P,q) = q(p(2) + p(3) + p(4)). Since LPT assigns

task's 2 and 3 to M2,

qp(2) S p(l) + p(2),
q(p(3) + p(2)) < p(l) + p(3).

Suppose that task 2 is the unique task assigned to M2 in an optimal schedule. Then we can reduce the
makespan of the optimal schedule by moving task 4 to M2, because,

q(p(2) + p(4)) < q(p(2) + p(3))

5 p(l)+ p(3).

The same argument applies if task 3 or 4 is the only task on M2 in an optimal schedule. Hence, we may

assume that OPT(P,q) = max{qp(1), p(2) + p(3) + p(4)}. Thus, L(P,q) - OPT(P,q) < (q-1). Notice

also, that, L(P,q) i p(l) + p(4) S 2 p(l). So, L(P,q) - OPT(P,q) < (2-q)p(1). Thus, R(q) < min{q-1, (2-
q)/q) < f(q) for 2 2 q > 1. For q > 2, OPT(P,q) > qp(1) > 2p(1) > p(l) + p(4) > L(P,q), contradiction.
A

Proposition 11: If n = 5, then, R(q) 5 f(q).

Proof: By proposition 4 M1 has at least three tasks assigned to it in an optimal schedule. So, OPT(P,q)

> 3p(5). Hence, by Lemma 2, R(q) < q/(3q+3). Notice also, that in an optimal schedule, either two

tasks are assigned to M2 or four tasks to MI. If two tasks are assigned to M2, OPT(P,q) > 2qp(5). By
lemma 2, R(q) 5 1/(2q+2). So, for this case, R(q) < min{q/(3q+3), 1/(2q+2)} < f(q) for q > 1. Thus,
we restrict our attention to the case where an optimal schedule assigns four tasks to M1. In this case
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OPT(P,q) > 4p(5), i.e, R(q) < min{q/(4q+l), 1/(2q+l)} < f(q) for 1 < q < 2. Hence, we need only
consider the case when 2 < q < q2. We will assume that the processing times are normalized so that

OPT(P,q) = 1.

Since there are four tasks assigned to M1 in an optimal schedule, 1 > p(2) + 3p( 5) => p(5) < [1 -
p(2)]/3. If p(2) > 1 - 3/2q, then, p(5) < 1/2q. So, by Lemma 2, REL(P,q) < 1/(2q+2). Therefore we

may assume that p(2) < 1 - 3/2q.

Of the first four tasks, at most one will be assigned to M2 by LPT. Therefore, L(P,q) < q(p(2) +
p(5)) and so

L(P,q) - 1 < q(1 - 3/2q + 1/4)- 1

= (5q- 10)/4
< f(q) for2<q<q2. A

To complete the proof it sufficient to exhibit an instance (P,q) for each q, such that REL(P,q) = f(q). This

we now do; note that these examples are not scaled so that OPT(P,q) = 1.

1 qa < (1 + _7/6

p(l) = (2q+l)/(q+1)

p(2) = (3 + 2q - 2q2)/q(q+l)

p(3) = p(4) = p(5) = 1

p(l) = 2/q

p(2) = p(3) = 1

p(1) = (2q2 + q - 2)/(q+1)

p(2) = (q+2)(q+l)

p(3) = p(4) = 1

p(1) = (q+2)/(q2-1)

p(2) = (2+2q-q2)/(q2 -1)

p(3) = p(4)

p(l) = 3/q

p(2) = p(3) = p(4) = 1
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2a< gl

p(l) = (2q2+q-2)/(q+l)

p(2) = (q+2)(q+1)

p(3 ) = p(4 )= 1

p(l)= p(2)= (2q-1)/(2q+3)

p(3) = p(4) = 2/(2q+3)

2_ < (3 + 4i)/4
p(l) = (2q+l)/(q+l)

p(2) = (2q2-q-2Y(q+l)

p(3) = p(4) = 1

p(l) = (2q2-q-2)/(q+l)

p(2) = (2q+l)/(q+l)

p(3 ) = p(4 ) = 1

0.30

0.28
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0.24

0.22

0.20

0.18

0.16
1.00 1.25 1.50 1.75 2.00 2.25 2.50

Figure 1. A graph of f(q).

EXTENSIONS

This methodology can be extended to find worst case examples for other parametric and non-

parametric scheduling problems, especially those satisfying the following conditions:

1) The worst case examples are small, preferably with fewer than 7 tasks.

15
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2) For each possible heuristic assignment x and for each parameter selection q, the set of processing
times P giving the heuristic assignment is polyhedral.

3) The relative error for a fixed schedule is piecewise linear in P.
Some examples would include LPT heuristics for: Q311Cmax, Q21prec.lCma x, Q211YTj, and many

more.
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