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Abstract:

This paper presents an algorithm for solving a linear program LP (to a given

tolerance) from a given prespecified starting point. The complexity of the algorithm

is sensitive to and is dependent on the quality of the starting point, as assessed by

suitable measures of the extent of infeasibility and the extent of nonoptimality of the

starting point. Two new measures of the extent of infeasibility and of nonoptimality

of a starting point are developed. We then present an algorithm for solving LP

whose complexity depends explicitly and only on how close the starting point is to

the set of LP feasible and optimal solutions (using these and other standard

measures), and also on n (the number of inequalities). The complexity results

using these measures of infeasibility and nonoptimality appear to be consistent with

the observed practical sensitivity of interior-point algorithms to certain types of

starting points. The starting point can be any pair of primal and dual vectors that

may or may not be primal and/or dual feasible, and that satisfies a simple condition

that typically arises in practice or is easy to coerce.

Key Words: Linear program, interior-point, barrier function, Newton method,

polynomial-time.

Running Header: Infeasible-Start Algorithm

"I1



1. Introduction:

Consider a linear program P and its dual D given by:

P: minimize cTx
x

s.t. Ax = b

x > 0,

whose dual is given by:

D: maximize bTy
yS

s.t. ATy +s = c

s > 0.

Instead of developing algorithms and analyzing the complexity of algorithms for

solving P that depend only on the data triplet ( A, b, c ), this paper includes a

starting pair of primal and dual points (x, 9, s ) as the data for the problem and

for an algorithm for solving P. The starting point (x', y, s ) can be any pair of

primal and dual vectors that may or may not be primal and/or dual feasible. This

paper considers the question of developing an algorithm for solving P that accepts

as input the array (A, b, c, x, y, s ) . The goal of the paper has been to

simultaneously develop measures of the quality of the starting point (, y, ) by

assessing the extent of infeasibility and nonoptimality of the starting (, Y, ) in

an appropriate way, and to develop an algorithm for solving P that is sensitive to

and is dependent on the quality of the starting point, as assessed by these appropriate
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measures of the extent of infeasibility and the extent of nonoptimality of the starting

point.

Intuitively, if the starting point (, , ) is closer to the sets of feasible and

optimal solutions of the primal and the dual in some appropriate measures, a well-

designed algorithm should be able to solve the given LP in fewer iterations. This

intuition is made precise with the introduction of two new measures of the extent of

infeasibility and of nonoptimality of a starting point. We then present an algorithm

for solving P whose complexity depends explicitly and only on how close the

starting point is to the set of feasible and optimal solutions of P, and also on n (the

number of inequalities). The complexity results using these measures of

infeasibility and nonoptimality appear to be consistent with the practical sensitivity

of interior-point algorithms to certain types of starting points.

This paper is part of the general research on interior-point methods for linear

programming stemming from Karmarkar's seminal work [10]. It also falls into the

category of combined Phase-I and Phase-II methods for solving a linear program, and

also is part of the general research on solving linear programming problems from

"warm" or "hot" starts.

The combined Phase-I and Phase-II methods for solving a linear program

have been motivated by a desire to remove the explicit use of a "big-M" scalar in the

formulation of the linear program, and to take advantage of the geometry and

mathematics of interior-point methods to simultaneously improve upon the

feasibility and optimality of algorithm iterates, see for example de Gellinck and Vial

[8], Anstreicher [1,2], Todd [24,25], and Todd and Wang [26]. However, these

algorithms were developed to be initiated at an arbitrary or "cold" start. More

recently, Anstreicher [31, Vial [28], and Ye et. al. [29] have developed other attractive

methods for solving the combined Phase-I and Phase-II problem, all analyzed from

vantage point of an arbitrary cold start.
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The use of "warm" or "hot" starting points into the design and analysis of

interior-point algorithms for linear programming is motivated by the desire to

explicitly take advantage of the quality of the starting point. Polyak [20], Gill et. al.

[91], and also [4,5,6,7] have used the tools of shifted barrier functions and other

parameterization methods to study the use of "warm" start algorithms for solving

linear programs, see also Mitchell [151.

Motivated by the success of the OB1 code in solving NETLIB problems by a

method that combines Phase-I and Phase-II [12,141, many researchers have studied

convergence and theoretically efficient variants of the OB1 interior-point

methodological strategy, see for example Kojima et. al. [11], Mizuno [16], and Mizuno

et. al. [171, Potra [21,22], and Zhang [30,31]. The algorithm developed in this paper is

motivated by the results of many of these last papers, but most particularly Mizuno

[16].

The mathematical development in the paper begins in Section 2, which

presents measures of closeness of the starting point (, y, ) to the feasible

regions of P and D , and to the optimal regions of P and D. The analysis assumes

that the starting point can be any pair of primal and dual vectors (, y, ) that

may or may not be primal and/or dual feasible, and that satisfies a simple condition

that typically arises in practice or is easy to coerce. In addition to typical measures of

infeasibility such as b - A x|| and I|c - ATy - s | and nonoptimality such as

x s , we also present one new measure of infeasibility referred to as 1 , and one

new measure of nonoptimality referred to as 2 . Elementary properties of these

measures and limiting properties of these measures as (, y, s^ ) approach a

feasible and/or optimal point are analyzed as well.

In Section 3, we introduce a parameterized infeasible-start barrier problem for

P, that is a variation of a standard parameterized infeasible-start barrier problem

abut instead uses two parameters e and g , as shown below:
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BP(,): minimize (c + e [AT + c]) T - In
X ZIn (x )

j=1

s.t. Ax = b+[Ax-b]

x > 0.

This two-parameter parameterization bears a close resemblance in particular with

the recent analysis in Mizuno et. al. [181, but the choice of the parameters is slightly

different and allows for a monotone change in the parameters e and g as the

underlying problem is solved.

In Section 4, we present an algorithm for solving P by tracing the path of

(approximate) solutions of BP ( e, g ) as the parameter e is decreased and as the

parameter gL is increased, in such a way that the value of £ goes to zero and the

value of and e g goes to zero, and that bounds the maximum value that the

parameter can achieve. The complexity of the algorithm is analyzed in Section 5.

In Theorems 5.1, 5.2, and 5.3, respectively, we present bounds on the maximum

number of iterations needed to find an -approximate feasible solution of P, an

e-approximate feasible solution of D, and an -approximate optimal solution of

Pand D, that depend only on e ,ib - A xi , |c - ATy - -,T ,

82 , and on n (the number of inequalities). These complexity results specialize to a

complexity of O(nL) iterations when the starting point is infeasible in the primal

and/or the dual and the measures of closeness 81 and 62 are bounded by a

constant independent of n, and specialize to a complexity of O(L) iterations in the

case when the starting point is feasible in the primal and in the dual.

Sections 6 and 7 contain proofs of the necessary mathematical properties of

the algorithm of Section 4. In Section 8, we discuss two aspects of the results. One

has to do with "cold" start versus "hot" start strategies in the algorithm and in the
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complexity results. It is argued that the complexity results appear to be consistent

with the observed practical sensitivity of interior-point algorithms to certain types of

"cold" and "hot" starting points. Finally, we remark on the use of the algorithm for

detecting infeasibility in the primal and/or the dual problem.

Acknowledgment: I am very grateful to Shinji Mizuno and to Masakazu Kojima for

stimulating discussions that have provided the background of the results contained

herein.

Notation: Rn denotes real n-dimensional space. e = ( 1, 1, ..., 1 )T is the vector

of ones of appropriate dimension. II · II denotes the Euclidean norm and II · II.

denotes the infinity-norm, i.e., 11 v I1.. = max (Ivj i . Also, let II · ill, denote

n
the L 1 norm, i.e., I v 111 = Ij . If x and s are n-vectors, then X and S

j=1

denote the diagonal matrices whose components correspond to the components of x

and s , respectively. We will adopt the following conventions for the use of the

symbol o : In (o) = a ,and In (O) = -0.
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2 The Infeasible-Start Problem and Measures of Closeness to the Feasible and
Optimal Regions

The central purpose of this paper is the development of an algorithm for

linear programming whose efficiency (as measured in worst-case analysis) is

sensitive to the distance from the initial starting point to the optimal solution of the

linear program (measured in some suitable form). We will measure this distance in

a number of different ways, as explained and discussed in this section.

Consider the linear programming problem:

P: minimize cTx

s.t. Ax = b

x > 0,

whose dual is given by:

D: maximize bTy
y, 

s.t. ATy + s = c

s > 0.

The data for P (and D) is the triplet (A, b, c), where A is an mxn matrix, and b

and c are m- and n-vectors, respectively. We make the following assumption

regarding (A, b c), which is elementary to verify and involves no loss of generality:

(A.1): A has rank m.

We make no assumption regarding the existence of feasible solutions or the

boundedness of the set of optimal solutions.
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If x is a feasible solution of P, x is defined to be a nondegenerate solution

if Ad has rank m, where = j xj > 0) and Ay isthesubmatrixof A

whose columns are formed by choosing columns of A whose indices are in the set

y . Analogously for the dual, if (, ) is a feasible solution to D, (, ) is defined

tobe a nondegenerate solution if Aa has rank a I , where a = ( j I Sj = 0 .

We will say the triplet (, y, ) is nondegenerate if is a nondegenerate

solution of P and (, ) is a nondegenerate solution of D.

The Initial Point

We suppose that we are given an initial starting point for P and D, i.e., a triplet

(x, , s ) where is a starting point for P and (y, s ) is a starting point for D.

We make no assumption regarding the extent to which and (, ) satisfy the

equations of P and D. That is, there is no assumption regarding the quantities

A x - b and ATy^ + s - c . However, we do assume the following properties of

(P.1) > 0

(P.2) > 0

(P.3) XSe = e for some scalar O

Properties (P.1) and (P.2) state that ^x and s are strictly positive vectors, and (P.3)

states that and s are "centered" vis-a-vis one another, i.e., xi si = j ̂ S for all

i, j = 1,..., n , and is equal to the common value of ^xj S j

Properties (P.1) and (P.2) assume the positivity of the slack vectors for the

primal and for the dual. From the standpoint of interior-point methodology, there

needs to be something that is positive about the initial point, and this positivity is
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guaranteed by (P.1) and (P.2). Property (P.3) is a centering condition, that aligns the

primal and dual slacks with one another.

Although these properties may seem restrictive (particularly property (P.3)),

we now argue that there are a number of ways that these three properties can arise in

practice, either naturally or with only a little bit of coercion. Suppose, for example,

that the starting point (x, y, s ) is the output from an interior-point algorithm

solution (within a small tolerance) of a previous version of the linear program.

Then (P.1) and (P.2) will be satisfied, and (P.3) will be satisfied to a small tolerance if

the algorithm had produced a solution on the central trajectory, and can easily by

"smoothed" to satisfy (P.3) exactly. Suppose instead that (, y, ) is the output

from the simplex method as applied to a previous version of the linear program.

Given a desired value of the scalar 0 (e.g., 0 = .001 ), if the solution (x, y, s )

is strictly complementary (i.e., x + s > 0 ) one can replace all zero slacks in the

primal by 0/sj and all zero slacks in the dual by 0/x j , and in this way (P.1), (P.2),

and (P.3) will be satisfied. If the solution ( , y, s) is not strictly complementary,

then in all indices for which Xj and sj are zero, one can replace Xj and Sj by

the value , and (P.1), (P.2), and (P.3) will be satisfied. These arguments are

intended to show the reasonableness of the assumption that (, y, s ) satisfies the

three properties (P.1), (P.2), and (P.3).

Since the purpose of this study is the development of an algorithm for linear

programming whose behavior is sensitive to the how close the starting point is to

the feasible region and to the optimal solution, we need to explore how this

closeness is measured. We begin by looking at how to measure closeness to

feasibility.
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Measuring Closeness to Feasibility

Let the feasible regions of P and D be denoted as

X = {xeRn Ax = b, x > 0)

and

S = (se Rns > O and ATy + s = c forsome y Rm) ,

where note that, technically, S is the projection of the feasible values of ( y, s )

onto the space of s-variables. We denote the optimal regions of P and D by

X = (xeX I x solves P , and

S* = se S (y, s) solves D forsome yRm) 

From the duality theory of linear programming, X * 0 if any only if S .

We will use two types of measures to indicate how close (respectively, )

is to the feasible region X (respectively S ). Given the triplet (, , )

satisfying (P.1), (P.2), and (P.3), then > 0 and > 0 , and so is feasible for

P if Ax = b , (and (, ) isfeasiblefor D if AT^ + s = c ). Thus one way

to measure how close x is to the feasible region X is to compute the norm

I b - A x|| . Similarly for the dual, one way to measure how close (, ) is to the

dual feasible region S is to compute the norm I c - AT, - | . Thus, our first

measures of closeness to the feasible regions X and S are the norms b - A x|i

and IIc - ATY-s l
We develop a second measure of closeness as follows. Considering the

primal feasible region X as an example, one can measure the Euclidean distance

from x to X by considering the program
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minimize I| x - x|

s.t. Ax = b

x > 0.

However, we can relax (and save considerable effort) by ignoring the inequality

constraints and (noting that > 0 from (P.1)), we can instead measure closeness

to X by considering the program

minimize
x lix - xll

s.t. Ax = b.

This program measures how close the positive vector x is to the affine manifold of

solutions to the system Ax = b. Since the Euclidean norm is somewhat arbitrary,

and scaling will be important in our algorithm, we will consider a version of the

above program scaled by the components (j)- 1 , = 1, ... , n:

minimize
x IIXl(x - x) II

Ax = b.

Arguing in a parallel manner for the dual, we define the following measures of

closeness to the feasible region. Define

P = min II (- )I,

s.t. Ax = b

a71 = min IIS- (s- )II
s.t. Ay + s = c

s.t. ATy + s = c

10
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and

= arg min Jj|- (x- ^)[I, (y,s) = arg min -I, (s- s)j (2.1b)

s.t. Ax = b s.t. ATy + s = c

and

1 = max ({pl, al (21c)

Note that because A has full row rank, all the quantities above are well-defined and

easily computed. The quantity Pi measures the weighted (by X ) Euclidean

distance from the positive point x to the affine space of x that satisfy Ax = b,

and is a positive number. One might ask why is the Euclidean norm used in (2.1a, b,

c)? As it turns, better bounds in the analysis are obtained if the infinity norm is used

throughout, but this norm does not lend itself to easy computation if used in (2.1a),

whereas the Euclidean norm does. In fact, because (2.1) uses the Euclidean norm, we

can obtain the following closed form solutions for (2.1):

P1 = (b-AA (b-Ax) (2.2a)

and 1 = V(c- ATy-s)T S -1 p - (c- ATy- ) (22b)

where P =[I- AT (AS-2 A S (2.2c)

and

= x + X 2AT ( A x2 AT ) b - A x) (2.3a)

(y', ') = ((AS -AT) AS-2 (c - s), s + SPS-1 (c- AT- (2.3b)
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Note that P1 = 0 if x is feasible for the primal, and is positive otherwise.

Similarly, 1 = 0 if (, s ) is feasible for the dual, and is positive otherwise. The

overall measure of infeasibility is 8 1 , which is the maximum of P1 and 1 

The following proposition demonstrates some limiting properties the measure 1 

Proposition 2.1. Suppose (k, y k, k) is a sequence of starting points and

(x ,k (, , s) ask- o , where e X and se S . Let k

denote the value of 81 for the triplet (k, ksk) . Then

(i) lim sup{ lk)
k -- oo

(ii) If and (, )

< ,and

are nondegenerate solutions, then lim (6 k ) = 0
k - co

Proof: We first prove (i). For each k, consider the computation pk 

plk = min II(Xk) (x - xk)I

s.t. Ax = b

As k oo ,xj/

Therefore, lim
k -0oo

lim sup { 8}
k -+ oo

i V min e (- .)II

s.t. Ax b

< If11 (-k)-lll

k 1 if xj > ,and xj/ ̂ k _ O if xj = .

sup p 1k < f . A similar argument holds for o lk , and so1 1

To prove (ii), let = ( j I lj > 0 } , a = j I j = 0) . For each k,

consider the computation of p k 

12
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k' mm lI(-kY ( - ^k)m II(Y ( k)IIpk- x x ) min {X - x)

s.t. Ax = b s.t. Ax = b
^k

Xa- = Xa

k ~ ~ ~ ~ = -m n(X) (c-cls.t. ABP b - A x a

= (b - Axk) TAB(XB] A (b - Ax k )

As k b- ~ b-Ax k -- b- A = ,and A (X,)A A A

which is invertible. Thus p k - 0 as k - oo . A similar argument holds for

C1, andso lim 8k) = 0 
k - oo

Note in the proof of the Proposition that if the infinity norm were used to define 81

in (2.1), then the lim sup in (i) would be 1 instead of i .

Measuring Closeness to Optimality

We now turn our attention to two measures of the closeness of (, y, ) to

the set of optimal solutions of P and D. One way to measure how close x and

(y, ) are to the set of optimal solutions is by measuring the complementarity

slack of ^x and (F, s ) by computing

AT^x s = no

If 11x - x*I < and Iis - s* < £,where x E X and s S ,then

n = xTs ne 2 + ne Ix{ + s·* , which goes to zeroas goes to zero.
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We develop a second measure as follows. Let

P2 inf -1 X 0. 2 = inf I -1 ll (2.4a)
X~e ' (2.4a)X S

and

2 = max (P2, a 2 , 1) ,(24b)

and 82 = In (2) = max ( In (P2), In (a 2 ), 0) (24c)

Note that 82 O0 ,andif x > x and > s forsome x X ,

s' e S * , then 82 = 0 . It is elementary to prove the following proposition

demonstrating some of the limiting properties of the measure 2.

Proposition 2.2 Suppose (x , ky k) is a sequence of starting points and

x , y ,s,) -+ (, y, s ) as k - oo , where x e X and s S

Let X. and 68 denote the values of 2 and 62 for the triplet (k, yk,sk)

Then lim kX = 1 and lim 68 = .*
k - oo k - oo

In (2.4), note that it is possible to have P 2 = + oo, 2 = + o, and

X 2 = 62 = + . If any one of these four quantities is finite, all four are finite and

all limits are attained. We close this section with the following:

Proposition 2.3 If > 0 and > 0, then
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Proof: The quantity 1 satisfies

61 Ž (j) (j - j) for j = 1,..., n,

see (2.1c), and therefore

II (- )II

and IX(s- s)||

Si 11s"I

< 81 II1s 11

= II"1s ll

= II'II

Combining these last two statements gives the desired result.

Remark 2.3: Not that if the infinity norm were used to define 1 , then Proposition

2.3 would still be valid.
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3. The Infeasible Start Barrier Problem

Given the data (A, b, c) for P and D, and the starting solution

we create the following parametric family of linear programs:

minimize
x

s.t.

[C+ e (ATy + S C)]X
- -

Ax = b + [Ax - b]

x O,

and its dual:

maximize
y, s (b + [Ax - b])T y

s.t. ATy +s = c + [ATy + - C]

s > O.

Note that x and (y, s) are feasible solutions of P () and D (), respectively, at

E = 1 , and we would like to find an optimal solution to P (e) and D (e) at

= 0 , since P(O) is P and D(0) is D. In order to accomplish this, we create

the following logarithmic barrier problem:

BP(e, g): minimize

s.t.

(3.2)(c+[ATy+s -c])T X - E In (xj)
j=1

Ax b + [A' - b]

x > 0.

16
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Note that appears in three places in BP (e, g) : in the RHS of the constraints, in

the linear part of the objective function, and in the multiplier in front of the

logarithmic barrier term. Note that Ix appears only in the multiplier of the

logarithmic barrier term. The optimality conditions for BP (e, g) state that x is a

solution to BP (, ) together with dual variables ( y, s ) if and only if the

following Karush-Kuhn-Tucker conditions are satisfied:

Ax = b + e [A% - b] (3.3a)

x > 0 (3.3b)

AT y + s = c + [ATy + -c] (3.3c)

s > 0 (3.3d)

(L )XSe - e = 0. (3.4)

Note that (3.3a, b) indicates that x is feasible for P (e) and (3.3c, d) indicates that

(y, s) is feasible for D (e).

Let y beascalar, 0 < y < 1 . Wewillsay that (x, y, s, e, Ax) isa

y-approximate solution to BP (e, p) if ( x, y, s, , g1) satisfies (3.3a) - (3.3d), plus

II(l)XSe - e < y (3.3e)

Note that (3.3e) is just a relaxation of (3.4), and is in the class of approximation

measures used in Roos and Vial [23] and Tseng [27]. (In the algorithm of the next

section, we will use y = 1/4 typically.)

We have the following properties of a y-approximate solution to BP (e, p):
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Proposition 3.1

BP(e, g) and 0

Suppose that (x, y, s, e, pg) is a y-approximate solution to

< y < 1 . Then

(i) x is a feasible solution of P (e),

(ii) (y, s) is a feasible solution of D (e), and

(iii) thedualitygapis xTs < e gn(1 + y)

Proof: Assertions (i) and (ii) follow directly from (3.3a - d). Elementary algebra reveals

the duality gap is ( c + e [ ATy + - c] )Tx - (b + e [ A x - b])Ty = xTs

From(3.3e), xjsj < eg(1 + y) , andso xTs e n(1 + y) .

In view of Proposition 3.1, one strategy for solving P and D is to find a sequence of

y-approximate solutions to BP (e, g) for a sequence of values of e - 0 and

(epg) - 0 . We will describe an algorithm that will accomplish this.in the next

section. We close this section with the following starting point for such an

algorithm.

Let

(x , y , s)

0

Proposition 3.2 (x °, y , s

for any yye(O, 1) .

= 1

- 0 .

°, E, p ) isa -approximate solution of BP(E°, ° )

18
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Proof: Direct algebraic substitution demonstrates that

(x, y, S, , A) = ( y, s, e , ) satisfies(3.3a)-(3.3d). Also,

1 XS°e-e = XS e-e = O

(from P.3) and so (3.3e) is satisfied by any ye( 0, 1 ) .

19



4. The Path-Following Algorithm for the Barrier Problem

In this section we present a path-following algorithm for-solving for a

y-approximate solution of BP (e, g) for a sequence of values of and gi where

e -- 0 and e -- 0 , starting at the initial solution (x, y, s, e, ) =

(X , y , ', w) = ( X, , i, 1) , see (3.5) and Proposition 3.2.

In view of the system (3.3a - e) and Proposition 3.1, we would like to solve for

asequenceof y-approximate solutions (xk, yk, sk, Ek, gk) of BP(ek, k) ,

for a sequence of values of k where k _- 0 . Also, in light of Proposition 3.1(iii),

it would also be advantageous if g k is kept as small as possible, so as to enforce a

small duality gap. Ideally, it would be advantageous to shrink k by a fractional

quality ace(0, 1) at each, so that £k+l = axek , and to maintain

.k+l = k = = O throughout the algorithm. However, we are not quite able

to accomplish this. Instead, it may be necessary at some iterations to leave at its

current value k, and increase k by a scalar quantity B > 1 , and set

pgk+l = p k . Nevertheless, we will be able to compute an upper bound on the

number of iterations at which k is increased. We also will compute an upper

bound on the largest value of k produced in the algorithm. The algorithm is

given below, and an explanation and discussion of the steps of the algorithm

follows.

Algorithm (A b. c. x., . l

Step 0 (Initialize) Set (x, y, s) = (xy , ), E = 1 ,
,,^T /n. 0 = =x s n

Compute P , , using (2.1) - (2.3).

20



= 1+
Sp - 7

Step 1 (Test) (x, y, s, -, ) =

(y7- )

1

(xk, k, k, yk, k , k)

If II iII+IIiII
If 11 Si 11 + 11 II 1
if 11 S-xR 11 + 11 Xs 11

< n(1 + + )

> n(1 + y+ )

· go to Step 2.

· go to Step 3.

Step 2 ( Decrease I and take Newton Step).

Set E = Cc, = 

Solve the Newton equations (4.3b, c) in the variables (d, y):

Ad = -E(1 - a)[ A ^x - b ]

-EX -2d + ATy = c+e[AT + S c] -- 1
- E4LX e

Set

= x+d

= XA-l(e - X-d)

Set (x k+l, yk+1 sk+l, ek+l

Set k +- k+l

Step 3 ( Increase i and take a Newton step )

Set g = 0PI, = .

21

+ + P)+ 
-

(4.1)

(4.2)

(4.3a)

(4.3b)

(4.3c)

x

S

(4.3d)

, k+l) = (x, y, s, , j)

. Go to Step 1.

(4.3e)

(4.4a)
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Solve the Newton equations (4.4b, c) in the variables (d, y):

Ad = 0 (4.4b)

-eX-2d + ATy = C+ [ATy + s- - X- e (4.4c)

Set

x = + d (4.4d)

s LX - ( e --X d) (4.4e)

Set (x k+l, yk+l, k+l k+1, .k+l) = (x, y, s, , )

Set k - k+l1 . GotoStepl.

We now review the steps of the algorithm. At Step 0, the algorithm is initialized

with values of (x , y , s , , o) . The distance measures P1 ,a , and 1 that

measure closeness to the feasible region are computed. The quantities 5 and a are

computed. As discussed, the quantity ( > 1 ) is used to increase pxk to

gk+ = 15 k at some iterations of the algorithm, and a (a < 1) is used to

decrease k to k+1 = aek at other iterations of the algorithm. At Step 1, a

simple norm test is used to branch to either Step 2 or Step 3. If the algorithm

branches to Step 2, is decreased by the fractional quantity a , and is kept at its

previous value (4.3a), and the Newton direction d is computed along with

multipliers y in the Newton equations (4.3b, c). The current value is updated by

adding the Newton increment (4.3d), and new dual slack values s are defined in

(4.3e). If the algorithm instead branches to Step 3, A/ is increased by the factor

> 1 , and e is kept at its previous value (4.4a), and the Newton direction d is

computed along with dual multipliers y in the Newton equations (4.4b, c). The

22



current value is updated by adding the Newton increment in (4.4d), and new dual

slack values s are defined in (4.4e).

We will prove the following two theorems regarding the behavior of this

algorithm:

Theorem 4.1 Suppose that ye( 0, 1 ) . Then each iterate value

(xk, yk, sk, k, k) , k = 1, ... , , isa y-approximate solution of

BP(ek, k)

Theorem 4.2 Suppose that ye( 0, 1 ), and let X2 be defined in (2.4). Then for all

iterations k,

gk .20 · (4.5)

While Theorem 4.1 states that each iteration is a solution to (3.3a - e), Theorem 4.2

states that the values of gk are bounded by A20 (an unknown quantity).

Theorem 4.1 is proved in Section 6, and Theorem 4.2 is proved in Section 7. One

consequence of Theorem 4.2 is the following:

Corollary 4.3 Suppose y = 1/4 . Let T3 be the number of iterations where the

algorithm visits Step3. Then T3 4 62 8

Proof of Corollary 4.3: Since g° = , after the algorithm visits Step 3 T 3 times,

gk = °[OpT 3 for some iteration k. From Theorem 4.2,

°opT3 2
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and since = , this implies that 2( i)T3 1 . Taking logarithms, we obtain

0 In 2+Tn3 (In ) ( in ½ +T 3.) (4.6)

where the last inequality follows from the concavity of the logarithm function.

Substituting y = 1 /4 in the definition of in (4.1), we obtainfrom (4.6):

T 3 (4vW - 1 ) In X2 4¶W In 2 < 4 = 42 ,

since 2 > 1 .

Corollary 4.3 places an upper bound on the number of iterations of the algorithm

that visit Step 3 and increase the value of , and this upper bound is given by

4 vf82 

Another consequence of Theorem 4.2 is a bound on the -I . ball

containing an optimal solution to P or D. Corollary 8.1 in Section 8 uses Theorem

4.2 to derive a bound on the size of any primal or dual solution and yields a

polynomial time test for infeasibility in P or D. See Section 8 for details.

It should be noted that the Newton equations (4.3b, c) or (4.4b, c) only use

primal scaling, as opposed to primal-dual scaling. They are derived by

approximating the barrier problem BP (e, p) by its second-order (quadratic)

approximation at the primal point , and so only use primal scaling. However, in

view of the centering condition (3.3e) and Theorem 4.1, one can easily show that the

primal scaling matrix (X) is not materially different from the primal-dual scaling

matrix (X S-l)112 , and that the algorithm is in fact a primal-dual type of

algorithm.
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Finally, note that the algorithm is of the short fixed-step variety of path-

following algorithms. There is the potential for the use of a line-search to enhance

the convergence of the algorithm (if used with an aggressive choice for a and/or 

at each iteration, or as part of a predictor-corrector variant of the algorithm), but such

a line-search might not be very valuable in practice.
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5. Complexity Analysis of the Algorithm

We say that x is an e-feasible solution to the primal P if x 0 and

Ib - Axil < e . Wesay that (y, s) isan el-feasible solution to thedual D if

s 0 and lic - ATy - sil < el . Wesay that x and (y, s) arean e-optimal

solution to the primal-dual pair P and D if xTs < e2 .

Now let us examine the algorithm. Because e k is a monotone decreasing

sequence,if lib - A xII < e;, then lib - A xkII e 1; foralliteratevalues. That

is, if the starting primal solution is el-feasible, then all primal iterate values xk

will be el-feasible . Similarly for the dual, if (y^, ) is el;-feasible for the dual, then

(y k, S k) willbe el-feasible for the dual forall iterate values (y k, sk) . If

lib - A x > e; and/or IIc - AT?- > ;, wehave the following

complexity results:

Theorem 5.1 (Primal Feasibility) Let y = 1 /4 in the algorithm, and let

Tp = (2 + 4 + 15n 81) In (lib A 11 + L(4 ) 862

Thenforall iteratevalues k Tp , xk isan el-feasible solutiontotheprimal P. U

Theorem 5.2 (Dual Feasibility) Let y = 1 /4 in the algorithm, and let

TD = (2 + 4f + 15 In 1)In c- ) + L(4 ) 82

Then for all iterate values k T D , (Y k, sk) is an el-feasible solution to the dual

D. 
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Before proving these two theorems, we offer the following interpretive remarks.

Fora fixed e£ > 0 , the quantity Tp (respectively, TD ) isa function only of n,

61 , 82 , and jib - A xll (respectively, c - AT9 - sI ), and is monotone

increasing in all of these quantities. As developed in Section 2, 81 , | b - A xj | , and

Ic - ATy - II aredistance measures from the initial point (, , ) to the

feasible regions X and S , and 82 is a distance measure from the initial point

(x, , s ) totheoptimalregions X and S .

Suppose (k, yk, s ) is a sequence of starting points whose limit is an

optimal point (x', y , s) where x e X , and s*e S . Then from Proposition

2.1 and Proposition 2.2, lim sup ({8k} $ i , lim 8 = 0 , and since
k - oo k - oo

I b - A xi -' 0 , Tp - 0 as k - .o Thus,asthestartingpoint (, s)

approaches any optimal solution (x , y , s ) , T p goes to zero. The exact same

analysis holds for the dual problem. Thus, as (, y, ) approaches any optimal

solution (x, y , s) , T D goes to zero.

Let us also consider the case when either the primal or the dual have no feasible

solution. Then 82 = + , andso Tp = +oo and TD = + , as expected.

(Note that when 82 = + , the algorithm cannot visit Step 2 infinitely often. For if

so, then lim ek = 0 , but Theorem 4.1 and Proposition 3.1 would imply that
k - oo

mn (lib - A 1 + Ic - AT- ;11 ) = O, contradictingtheinfeasibilityof
s 0, y

either the primal or the dual.)

We also have the following complexity result regarding e -optimal solutions.
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Theorem 5.3 (Optimality) Let y = 1 /4 in the algorithm, and let

To= (2 + 4 + 15n (8 2 + In ((s 1 +25) + (4v)8 2

Thenforalliteratevalues k To , xk and (yk, sk) arean e;-optimal

solution to the primal-dual pair P and D. 

Again, before proving the theorem, we offer the following interpretive remarks. For a

fixed duality gap tolerance 2 > 0 , To is a function only of the quantities n, 1

82, and xTs , and is monotone increasing in all of these quantities. As developed in

Section 2, xTs is also a distance measure from the initial point (x, , ) to the

optimal regions X and S . Suppose (x , y , s k is a sequence of starting points

whose limit is an optimal point (x*, y, s) where x X * and s * . Then

(xk)T k 0, 0 and lim sup ( k) < i, and therefore
k - o

To - O.

Finally,notethatif 2 = + , To = + o as expected.

We now prove these three theorems:

Proof of Theorem 5.1: With Tp as given, and k Tp, Corollary 4.3 implies that the

number of iterations of which the algorithm visits Step 2 is at least

T = (2 + 4 f + 15n 1) n b- A II)

Therefore k ()T2EO = (a)T2 , and

In (ek) < T 2 In a T2 (a - 1),
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from the concavity of the logarithm function. With y = 1 /4 , (4.1) yields

5 = 1+ 1 <

4vi- 2

2 41 - +
2 + 4 f +

Therefore

In (k) -In
jlb - A '11

and so

From Theorem 4.1 and (3.3a),

xk 0 and b - A x k Ek Ilb - AxII

Proof of Theorem 5.2: This proof exactly parallels that of Theorem 5.1, for the dual

problem D. .

Proof of Theorem 5.3: Using the same logic as in the proof of Theorem 5.1, with

T2= F(2 + 4 Wff + 15n 1) 862 + In ( (Ts) (1.25)

we obtain that for k To, In (ek) -2 - In ( )( 1.25 ) 
£2

ek < £2

(x s) 2( 125 )

29
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15n 8 1

< 1 .

· and so

ek < l*/ 11b -A 'X"11



From Theorem 4.2, g k 20

(Xk)T (Sk) < ekgk n (1 + y)

e I
* ̂

= E2 ,

since x Ts nO and y = 0.25 . m

.2(1.25) )
20)(n)(1 + y)
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6. Proof of Theorem 4.1

We will split Theorem 4.1 into the two separate theorems corresponding to when

the algorithm branches to Step 2 and Step 3, respectively. We will therefore prove the

following two theorems:

Theorem 6.1 If the algorithm is at Step 1 and (x , , s, , ) is a y-approximate

solution for a given ye ( 0, 1 ) , and the algorithm proceeds to Step 2, then

(x, y, s, , g) isa y-approximate solution.

Theorem 6.2 If the algorithm is at Step 1 and (, , , , ) is a y-approximate

solution for a given ye ( 0, 1 ), and the algorithm proceeds to Step 3, then

(x, y, s, e, g) isa y-approximate solution.

Theorem 4.1 is then an immediate consequence of Theorem 6.1 and Theorem 6.2.

We first lay the foundation for the proof of Theorem 6.1.

Note that from the definition of a in (4.1) that

(1-a)( + n6 (1 + + ) = 

Dividing by a and rearranging terms yields

=y + (1- a)( n + 8(1 + y )+ (6.1)
a a i .

Equation (6.1) will come in handy in the following proposition.
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Proposition 6.2 Under the assumptions of Theorem 6.1,

IXJ-ldll < .

Proof: Examining the Newton equations (4.3b) and (4.3c), we see that since A has full

rank m, then (d, y) is determined uniquely. After some laborious manipulation, we

can use (4.3b) and (4.3c) to assert that d must satisfy:

x-d = P[e - 1_ XSe] - [I - p][X (- )] (1 - a)E A

(6.2)

where = [- XAT( A2 AT)- A] (6.3)

To see the validity of (6.2), note that d in (6.2) satisfies

Ad = AXX- 1 d = -AXX-1 (x-x)(1 - a)e = -e(1 - a)(Ax-b)

(since A x = b ), which satisfies (4.3b), and that (6.2) implies (4.3c) is satisfied for some

y.

Since both P and [ I - P ] are projection matrices,

(6.4)[x-ld[[ < lie-XSel + X-(~-X)J} (1-a) + X(s-s[)[(la .

II I IX ell = ||e-l I II =I-I le + aal e||11 E agr
e- 4---'e e- 1 Xe = ( ( e-S)e + )· 1eegL aeg a e a
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le- I s e +
a 

; a Ilellat

w a + a 

where the last inequality follows from (3.3e).

Also

1
g( - )

< (1 - a)
ai( 1 - )

s)ll (1 - a)
a( - )P

IIfl - )II

,! ( - )11

Combining (6.4), (6.5), (6.6), (6.7), and Proposition 2.3 yields:

IIX-ld I I + ( -+VW~ +

+ (1 - a) 
a( - Y)}

81 n(1 + y + )

(from Step 1 of the algorithm (4.2))

(from (6.1)). I

(6.5)

(6.6)

and

( 1A (6.7)

<47

33

:5 1 - a)E 119(x^ - Z) II

< T+ VW~~~icc 

(1 - a)z 113Z-'(-X - R) 11

a( - Y) ji l c l~ll



Proof of Theorem 6.1: Direct substitution shows that with x = x + d

Ax = b + e(Ax - b)

and x = x+ d = X(e + X-'d) > 0 since ilX-1ddl 47 <

Proposition 6.1. Thus (3.3a) and (3.3b) are satisfied. Also note that from (4.3c) and (4.3e)

that

ATy + S = c + (ATy + -c) ,

verifying (3.3c), and s = e X -1 ( e - > 0 since II X- d I 

from Proposition 6.1, verifying (3.3d). From (4.3d) and (4.3e) we obtain

XjSj 1
e 

+ (-1d)j) - 1

W < 1

l I- ( xL)2

and so e - 1 XSell < Ile - XSejlj
n

= Z
j=l

= 11X-'dll2 S (47)2 = y. This demonstrates (3.3e),

andso (x, y, s, , ) is a y-approximate solution.

Proposition 6.3 Under the assumptions of Theorem 6.2,

I-dll 47 .
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Proof: First note that from definition of j3 in (4.1) that

(a- 1)(av-,n) = e_-X,

and dividing by 13 and rearranging yields

_x - 1 ) ()= _e.

Equations (4.4b) - (4.4c) can be manipulated to yield

X d = P e - 3XSe] 

where P is defined in (6.3), and so

lie- 1 eII

Ie - 5XSelI

-X S e[ +

.+?-1¢v13

= 47

: ll e

5- 1Ilell
13

(from 3.3e)

.(from (6.8)).

35

(6.8)

1xII d|I

< 1 e
g I

-- =~= 3 e - e
E g 5



Proof of Theorem 6.2: The proof here is almost identical to that of Theorem 6.1. Direct

substitution shows that

Ax = A+ Ad = Ai = b + (Ax-b) = b + (Ax -b)

and ATy + s = c + (AT +s -c)

follows from (4.4b-e). x > 0 and s > 0 followas in the proof of Theorem 6.1

from the equations (4.4d) and (4.4e) and the fact that II X -1 d < 7 < 1 , as shown

in Proposition 6.3. Finally, the identical analysis as in the proof of Theorem 6.1 shows

that

je- £1XSe S y. Y
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7. Proof of Theorem 4.2

We begin the proof of Theorem 4.2 by proving three intermediate results. We

start with an algebraic equality motivated from the proof of Lemma 3.3 of Mizuno [16]:

Proposition 7.1 (see also Mizuno [161). Suppose x and (, s) are feasible solutions

of P () and D () , respectively, for some E [ O, 1] . And suppose x* and

(y *, s') are optimal solutions of P and D, respectively. Let x and (, s) satisfy

(P.1) - (P.3).

Then

(-s + (1 - )s )T + + + (1 - )x)T =

(7.1)

(S + ( 1 - )s) T + ( 1 - )X) + TS

Proof: Direct arithmetic substitution establishes that

A(Ex' - (1 - )x* - ) = 

and

AT( y + (1 - )y - y) + (iEs + (1 - )S - s) = 0 .

Therefore ( X+ (1 - e)x - )T (ES + (1 - £)s - ) = 0,

and rearranging proves the result. U

The next Lemma can be considered as a generalization of Lemma 3.3 of Mizuno [16].

Lemma 7.2 Suppose (, y, s, e, g) area y-approximate solution of BP(E, ) .

37



Then

+ l+y).

Proof: If 2 = + , the result is trivial. If 2 < +oo , then P and D have

optimal solutions. In light of (2.4), let x e X

X2 1> X-lx1 1 | and 2
> Ssillo .

and seS *

We have

)
AT- + -ST-= S5 X + X 

< (S + (1 - E) s*)T + (x + (1 -

= ( + (1 - )S *)T ( + (1 - e)X ) + Ts

(from Proposition 7.1)

= -Z2sT + (1 -

= 2nO + (1 -

)(Ts* + sTx*) +

)(e T- S eT -1 x) + -T-0( 'Oe + 'Oe X 

(from (P.1) - (P.3))

- ) eT( + -1 +-E) "0 X

(using 2 1 and Proposition 3.1).

However, due to the complementarity of s and x , at most one component of

( s * + -1 x j is nonzero for each j, and each term is bounded by 2 .
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Therefore

(IIxil + lxsll) • a2n"X2+ £( -)n z2+ n ( + )

Dividing by A£ and simplifying gives the result. U

Proof of Theorem 4.2: Note that Lg = O < 20 , since 2 1 . Therefore (4.5) is

satisfied at k = 0. We now proceed by induction on k. Suppose g k < 20 . If at

the ldh iteration the algorithm branches to Step 2, g k+l = k < 20 . Therefore,

suppose instead that the algorithm branches to Step 3. In this case, for the current values

(X, y, S. , ),

n(1 + y + ) < (IIsixll + 1IR ill) / n((0 / )X 2 + 1 + )

where the first inequality follows from Step 1 of the algorithm (4.2), and the second

inequality is from Lemma 7.2. From the above we obtain

OX2 > k = p.k. (7.2)

From (4.4a), we obtain

ILk+ = pg.k < 02 ·

Therefore, by induction, the theorem is proved. U
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8. Discussion

The Role of the measure 1

From Section 2, and in particular (2.1a -c), 2 is defined as the maximum of the

two quantities P 2 and a 2 , where P 2 and a 2 are the solution to the Euclidean

norm minimization problems (2.1a). Tracing the analysis through the paper, we see that

the only property of 1 that is used is in Proposition 2.3, which is used in the proof of

Theorem 4.1 (shortly following equation (6.7). Furthermore, in the proof of Proposition

2.3, the only property of 1 that is used is the property that 1 satisfies

81 > (Xj)(xj - j), 81 > (sj) (sj - j) , forsome (, y, s) thatsatisfy

the equations A = b, A T + = c, see (2.5). In fact, we have:

Remark 8.1 The scalar 81 that appears in Theorems 5.1, 5.2, 5.3, can be replaced by any

scalar 1 that satisfies the criterion:

(C.1): zl 11X-l (x)- ^xII. , i > jjSl (1 - ^)11. (8.1)

forsome ( y, ,) satisfying A = b ,AT + = c . ·

Remark 8.1 is important in analyzing and interpreting Theorems 5.1, 5.2, and 5.3 as

follows.

Let us consider a "cold" start approach to solving the linear program P via the

followingstrategy: findany (x, y, s ) that solves Ax = b, ATy + = c

(This can be done easily via Gaussian elimination.) Then set = I I I.. e ,

= II1.e, and = I1.11 .. 11|11. e Then x and s satisfy(P.1),(P.2),and

(P.3), and 1 = 2 will work in (8.1). Then under the reasonable presumption that

II lI <
2 L and II X 11 < 2 L (where L is the bit-size representation of the linear

programming data ( A, b, c ), Theorems 5.1, 5.2, and 5.3 imply that the algorithm is
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an O ( nL ) iteration algorithm for solving P, where e = 2 < 2-L and a suitable

procedure is used to round to an exact optimal solution at the termination of the

algorithm.

This "cold start" strategy sacrifices good initial complementarity slackness

(xT^ = n - II-II 11s) in order to achieve a small value of s 1 = 2 in Theorems

5.2, 5.2, and 5.3. Because a higher complementarity slackness value is not as harmful as

a high value of S 1 in the complexity bound (due to the appearance of In ( x T ) in

Theorem 5.3), this seems reasonable. One interpretation of this "cold start" strategy is

that it conservatively assigns a large initial slack to every inequality constraint. That is,

this strategy makes no guess regarding any active constraints and assumes all

constraints are inactive. In practice, this is a strategy that has worked well in the OB1

interior-point code [131. Thus, from this loose perspective, the complexity bounds

derived in Theorems 5.1, 5.2, and 5.3 are consistent with practice.

Now consider instead a "hot start" strategy based on guessing a good starting

basis. Such a strategy would assign some initial values x j or s j to be a very small

positive number e . Suppose that the set ( 1, ... , n ) is partitioned into B and N

whereB uN = (1,..., n ) and Bn N = 0 , and that AB isinvertible. If

^j = e for j N , then the only way to prevent Ii - (^x - ) =

||e - X |ll. frombeingverylargeistoset x j E for j N . This leaves

xB AB' (b - ANeNE), and (X- ( x-))B couldstillbequitelarge,even

for reasonably sized . This argument indicates a way in which a "hot start" guess of a

good basis might fail, causing S 1 to be very large. In fact, this type of phenomenon

has occurred in practice, where an initial guess of the active constraints has been wrong,

and has considerably slowed the progress of the interior-point code OB1 [13].
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Detecting Infeasibility

Note that an immediate consequence of Theorem 4.2 is:

Corollary 8.1 Suppose that y ( O, 1 ) and that 2

at some iteration. Then for all k,

inf . X x llee

or inf I. IS - 11.
s* S

is finite. Suppose Ig is increased

> gk/,,

Ž2~ ·

Proof: From Theorem 4.2 we have A 2 > g k/ . Note that g° = from (3.5).

Thenif k everincreases, 2 > 1 . Thus from (2.4b), 2 = P2 or 2 = 2 

Supposex 2= P2. Then .inf . Ilx x ll = P2 = 2 > Ik/ . Aparallel

argument proves the results when 2 = 2 m

This corollary can be used to detect infeasibility of P or D as follows. Suppose the

algorithm visits Step 3 a total number of T 3 = O( vW L) times. If each x j > 2
-L

j > 2-L , then after T 3 visitstoStep3, gk/ 0 > ( )T3 = O( 2L) , and Corollary

8.1 implies that inf . IIx'll- 0 ( 2 L) or inf . 11 s-1 ' 11 > 0(2L) . Since
x X s eS

this cannot happen (see [19]), 2 cannot be finite, and so the algorithm will detect

infeasibility in O( W' L) iterations.
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