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Abstract

There are several classes of interior point algorithms that solve linear programming problems

in O(Vin L) iterations, but it is not known whether this bound is tight for any interior point

algorithm. Among interior point algorithms, several potential reduction algorithms combine

both theoretical (O(+/E L) iterations) and practical efficiency as they allow the flexibility of

line searches in the potential function and thus can lead to practical implementations. It is

a significant open question whether interior point algorithms can lead to better complexity

bounds. In the present paper we give some negative answers to this question for the class

of potential reduction algorithms. We show that, without line searches in the potential

function, the bound O(v/i- L) is tight for several potential reduction algorithms, i.e., there

is a class of examples, in which the algorithms need at least Q(v/i L) iterations to find an

optimal solution. In addition, we show that for a class of potential functions, even if we

allow line searches in the potential function, the bounds are still tight. We note that it is

the first time that tight bounds are obtained for any interior point algorithm.
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1 Introduction

In the last decade there has been a lot of excitement about interior point algorithms for

linear programming (LP). In his seminal work, Karmarkar [7] presented an O(nL) iterations

algorithm with O(n 3) work per iteration thus resulting in an O(n4 L) algorithm for the linear

programming problem (LP):

minimize c z

subject to A = b

> 0,

where A is an m x n matrix and L is the input size of the linear program. Moreover,

he used rank one updates to obtain an O(n3 5 L) algorithm for LP. Since then, there have

been several path following algorithms for LP that need O(/iTL) iterations (Renegar [10],

Gonzaga [4]) with time complexity O(n3 L). The drawback of the latter approaches is that,

although they achieve the best known worst case bound, they are restricted to make small

steps by following the central trajectory. As a result, these path following methods are not

attractive for a practical implementation.

A major step in the direction of practical algorithms, yet achieving the best known worst

case bounds, was taken by Ye [12], in which he presented a potential reduction primal-dual

algorithm, which solves linear programming in O(#V/L) iterations and O(n3 L) operations.

Freund [3] simplified the algorithm by Ye and showed that certain choices for the parame-

ters in the algorithm are in a sense best possible. Gonzaga and Todd [5] proposed another

potential reduction algorithm, which also solves linear programming in O(fViL) iterations.

The major advantage of this class of algorithms is that they are conceptually elegant and

natural, achieve the best known worst case bounds and yet they lead to practical implemen-

tations through the use of line searches. In the theory and practice of linear programming

this is a rare combination. The simplex method and affine scaling algorithm for example

are efficient practical algorithms, but are not known to be polynomial algorithms.

Since a variety of interior point algorithms solve LP in O(FiiL) iterations, one can

naturally ask:

1. Can the bound O(V/7L) be improved for any interior point algorithm, i.e., is the bound

inherent in the algorithm or is it because of the weakness of our proof methods ?
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2. Do line searches improve the theoretical complexity of interior point algorithms ?

3. More ambitiously, is the bound O(/inL) inherent in the linear programming problem

? We remark that this question is rather deep as it is related with the existence of a

strongly polynomial algorithm for LP.

Related with the first two questions Anstreicher [1] (see also McDiarmid [8]) showed

that in the worst-case, there is a step among all steps of Karmarkar's algorithm such that

the reduction of the potential function can not be greater than a constant. Anstreicher

[2] sharpened this observation and showed that with exact line searches, there is a class

of linear programs, in which Karmarkar's algorithm can only obtain a decrease of the

potential function that is no more than a constant for every iteration; he further showed

that O(log n L) iterations are actually needed to solve this example. Finally, Kaliski and

Ye [6] showed that Karmarkar's algorithm requires at least fQ(n) iterations to converge for

solving a linear program with only one constraint. Although the above results provide

insights, they do not answer the first two questions.

In the present paper we give negative answers to the first two questions for the potential

reduction algorithms of Ye [12], Freund [3], and Gonzaga and Todd [5]. We show that,

without line searches in the potential function, the bound O(VJ/ L) is tight, i.e., there is

a class of examples, in which the algorithms need at least 1O(vn L) iterations to find an

optimal solution. In addition, we show that even if we allow line searches in the potential

function in Ye's algorithm, the bound is still tight. We note that it is the first time that

tight bounds are obtained for any interior point algorithm.

The paper is structured as follows. In Section 2 we summarize the potential reduction

algorithm and the known complexity results. In Section 3 we exhibit the example that

achieves e(v/' L) iterations without line searches, while in Section 4 we exhibit the example

that achieves E(\/n L) iterations even if we allow line searches. The final section contains

some observations, critical comments, conjectures and open problems.

We briefly describe our notation below. All vectors are column vectors and the super-

script ' denotes transpose. Unless otherwise specified,II . denotes the usual Euclidean

norm, log(.) denotes the natural logarithmic function. For any x E Ri, we denote by xi the

i-th coordinate of x, and when describing an algorithm, we use the notation xk to denote

the value of variable x evaluated at the k-th iteration of the algorithm.
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2 The Potential Reduction Algorithm

We are interested in solving the linear programming problem

(P) minimize c 

subject to Ax = b

z > O,

and its dual

(D) maximize b'x

subject to A'y + s = c

s > O.

Todd and Ye [11] introduced the primal-dual logarithmic potential function:
n

G(x, s) = q log x's - E log xj -
j=l

(1)
n

E log sj,
j=1

where the first term is a measure of the duality gap x's and the two other terms are the

barrier functions. The goal of the algorithm proposed by Ye [12] is to decrease the duality

gap below a tolerance e by decreasing the potential function G(x, s) at every iteration. We

first give the following definition.

Definition 1 A primal and dual solution pair (x, s) is called -optimal if the duality gap

satisfies x's < e.

Let L be the input size of the linear program (P), i.e., we use the definition 1

L = size(detmax) + size(bmax) + size(cmax) + size(m + n)

where

detmax

bmax

cmax

A

max(I det(A)l)
A1

max(lbil)

max( cj l)
3.

1In the literature, there are many definitions for L, see for example [9] for a different definition. This
definition of L, however, suffices to prove the usual rounding theorem that if an c-optimal solution is available
with e = 2 -2L, then an exact solution can be found in polynomial time through rounding. More importantly,
the value of L defined here is always smaller than in [9].

3
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Al is any square submatrix of A and size(.) is the number of binary bits that are needed

to represent the value of its argument. It is well known that when an c-optimal solution is

available with c = 2 -2L, then an exact solution can be found in polynomial time through

rounding.

For this class of potential functions the following result holds:

Theorem 1 [Ye [12]] An algorithm that reduces G(x, s) by an amount greater or equal to

6 > 0 at each iteration finds an c-optimal solution (, S) in O(IZa log ) iterations, as long

as the initial feasible primal-dual values (x ° , s° ) satisfy G(xz, sO) < 0(2j! log ). o

We note that the previous theorem focuses to finding an c-optimal solution. If we want an

exact solution we need to replace log 7 by L.

Let (A, b, c) be the data for the LP (P); let x > 0,s > 0, y° be the initial primal and

dual solutions respectively; let > 0 be the optimality tolerance. Let X denote a diagonal

matrix with (l, 2,... , ,) in the diagonal. Let e be a column vector of all ones. Then

Ye's potential function algorithm which uses the parameters (, a, q) can be described as

follows:

Algorithm A (A, b, c, zx, s, y0 , ).

k = 0;

while (xk)'sk > do

Xk = diag(xk);

Ak = (AXk)'(AXkXkA')-1AXk;

Uk = (I - Ak)( Xksk - e);

if Ilukll > 

then (primal step)

xk+l k X- kuk
11%7~;

Sk+l = Sk;

else (dual step)

xk+ l = Xk;

Sk+ l = (' Xk)-l(uk + en);

end if

k = k + 1;

end while
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If 11ukl > 7 we say that the algorithm performs a primal step, while if Ilukll < , we say

that the algorithm performs a dual step. The algorithm proposed by Freund is somewhat

different in the dual step: It finds a scalar Ak E (0, (k)'s k] such that

11(1- Ak)( Q ksk - en)ll = 

and then updates the dual slacks as follows:

k = (I- Ak)( Xksk e),
Ak

sk+ l = (x )' (Xk)-1(lk + en).
q

Moreover, Gonzaga and Todd's [5] algorithm uses exactly the same primal step, while the

dual step is more symmetric than both Ye's and Freund's algorithms. The algorithm uses

the projected gradients of the potential function both in the primal and in the dual space.

We also remark that we can improve the performance of all these algorithms by using

line searches in the potential function, i.e., by varying a to maximize the decrease of the

potential function at each step rather than keeping it fixed throughout the algorithm.

For Algorithm A the following theorem holds:

Theorem 2 [Freund [3], Ye [12] 1

1. If Algorithm A executes a primal step at step k and the step size is chosen to be a,

then

G(xk+l, k+1 ) - G(xk, k) < a-ay + 
2(1- -)'

If the algorithm executes a dual step at step k then

q - n 272
G) G(k, sk) < -- (q - n - vn) + (1-(- 3)

2. If q = n + v/E, = 0.22, a = , then Algorithm A reduces G(x,s) by a constant

amount 6 = 0.02 at each iteration, and thus finds an c-optimal solution in O(x/ilog )

iterations, provided that G(x°, S) = O(Vinlog 1).

We notice that in order to minimize the number of iterations we need to choose param-

eters (a, y) so that:

q-n
min C2 2 -y2

cra min[ay-A (- H2(11-)7(1-3qy)

5
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When q = n + v/n, the values y = 0.254, a = 1- A; = 0.186 achieve the largest decrease

6 = 0.026 in the potential function and minimize the number of iterations.

From Theorems 1 and 2 it follows that Algorithm A finds an -optimal solution in

O(V/i log 1) iterations. In the next section we show that this bound is tight.

3 On the complexity of Algorithm A without line searches

We consider the following LP:

n

(P1) minimize i2=1l xi + 2n -n=1 xi

subject to = ,i = 1

x> O,

and its dual

(D 1 ) mazimize y

subject to y + s = 2n + 1, i=1,...,

y+Si = 2 n, i= +l,...,n

s>0,

i.e., (P1 ) is in standard form with A = en, b = 1, c = f + 2nen, where

* V O()
We use as initial point the point:

1 01 1
X0 =-en, =e+fyO 22 -n! = +f, =-2 +2 .

We first prove the following proposition:

Proposition 1 Prior to the k-th iteration of Algorithm A

k k k =u1 =u , xZ = ,

U2 =u' X1 =Xjt . t 3 

st = i, j < n

k k 

Si S., 7 ,J
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Proof

By induction on k. For k = 0 the proposition is obviously true. Assuming that the

proposition holds for k, we let k = al,sk = 01 for i < and xk = a2 ,s k = 02 for i > 

Then

AXk = [al,..., al, a2 ,..., a2 ],

Ak = (AXk) (AXkXkA )AXk ( aU la 2U' )
i 2( a1 qUn a 2

where Ui = ele; is an I x matrix, in which all entries are 1.

Since

Xksk ( 2a+a2 O2 ) -ple
(zk)'sk ( qa2 - 1)e p2e(al~ l+a2 02 2 p 2

we obtain
Uk (p- a2pl+ala2 )e

n
A

u a,+a2
a2p2+ala2pl

(P2 - a2+a 2 )e2

If Ilukil > y xk+l = k - a -' 5 k+ = sk, and therefore the proposition follows by

induction. If Ilukl < , SXk+ = Xk, Sk+l = (Xk)-I(U k + e) and the proposition

follows by induction also. o

We next show that at every iteration, the gap between the primal objective value and

the optimal value does not decrease by a factor of more than 1 - 0( ).Tn.

Proposition 2 The primal objective values before and after iteration k of Algorithm A

satisfy:

C(X k + l- *) > (1 V )
c'(xk _ x*) -

where x* is an optimal solution to (P1).

Proof

Prior to iteration k, c'(xk - x*) = E= xk = ~nl , from Proposition 1. Therefore, in order

to prove the proposition it suffices to show that 4~+l > 4(1- )

If a dual step is executed at the k-th iteration x k +l , and the proposition trivially

follows.

If a primal is executed at the k-th iteration

Xzk+l = (l - a U) Z k
1 JJUkJJ) X 

7
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From Proposition 1, =...= u, and therefore
2

Iluk l V/IUI 2 /

Therefore,

x k+ = (1 - ll k > (1 - ) X
1 ( IlUkl rf >

which completes the proof of the proposition. 0

We are now ready to prove the main result of this section.

Theorem 3 For n > 32 a 2 Algorithm A needs at least

91
2~ log 

to find an c-optimal solution to the linear program (P1 ), if it starts from xz° = -e, so =

1 en + f, yO = -1 + 2n, where f is defined the same as before.

Proof

Suppose the algorithm found an -optimal solution at step k*. Then

( ')'s k' = c'k _ y < .

Algorithm A generates at each step dual feasible solutions (sk,yk). In (D 1) sk + yk = 2n

for i > with si > 0, which implies that yk < 2n. Then

Ck <e+yk <e+2 n

From Proposition 2, since c'x* = 2,

c'l k ' - 2n > (1- )k(C 0- 2 n).

VJi

Therefore, since c'x ° = ½ + 2n we obtain

(1- h; ) < 2,

which implies that

k) < log (1-2) log (2).

But log(1-x) >-2x for < < . Therefore, for 2 < 3 i.e., n > 3a 2,

-k*> log .o
- 2 a 2I
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The previous example shows that as long as we use a fixed a (no line searches), algorithm

A needs at least Q(v/ log 1) iterations to find an -optimal solution for all values of q > n

and in particular for q = n+x. Since for q = n+v/ algorithm A takes at most O(V/i log -)

iterations to find an -optimal solution, we establish that in this case the bound is tight.

We note that in their analysis Ye [12], Freund [3], and Gonzaga and Todd [5] use a fixed a

and do not consider the impact of line searches on the complexity.

If we want to translate our results to the usual complexity measure L, which measures

input the size of a linear program (P), we remark that L = Q(n) in example (P1 ). The

initial potential function

n lo 3
G(x° , s ° ) = n log n-2 log = O( L).

Since G(xz,s ° ) = O(viL), by selecting = 2
- 2 L, and then using Theorems 2 and 3,

we obtain

Corollary 1 Algorithm A takes 6O(v/iL) iterations to find an exact solution for problem

(P 1).

We remark that although we only showed that the bound O(V/iL) is tight for Algorithm

A, the analysis easily extends to the algorithms of Freund [3] and Gonzaga and Todd [5].

Proposition 1 can also be proven inductively and, since both these algorithms have exactly

the same primal steps as Algorithm A, Proposition 2 also holds. As a result, the bound

O(\/iL) is tight for these algorithms as well.

4 On the complexity of Algorithm A with line searches

The analysis in the previous section did not address the case in which we allow line searches

in the potential function, i.e., we choose a in each step to achieve the most decrease in the

potential function. One might hope that line searches are not only practically useful, but

could also be used to improve the complexity of Algorithm A.

We show in this section that line searches do not improve the complexity as long as

q< n+v i.

We first prove some properties of Algorithm A that hold for an arbitrary linear program.

Let zk = (xk)'sk be the duality gap after the execution of the k - 1st step of the algorithm.

9



Proposition 3 If q < n + /, then after a dual step at step k -1, the duality gap satisfies:

zk 2
k- > 1- nzk- 1

--Z~~~~X' 

Proof

After a dual step at step k - 1 of the algorithm

zk = (sk)'xk

(= k1)'sk-i [(Xk-1)-1(u k - 1 + en)]'Xk - 1

= e(u k- + en)
q

> zk- i n -Iuk-111
q

> zk1 n- V' -11u112
q

> zk- i n- ?VF

> zk - l n -n

2
zk-'(i - ),

which completes the proof of the proposition.

Proposition 4 After a dual step at step k - 1,

Xksk < 1 _ Ifor all i, j.
: <

Sj '3

0

Proof

After a dual step at step k - 1,

Xksk = (k)'sk (uk-i + e,).

Since uk-l1 < luk-1112 < , we obtain the proposition. 0

In order to prove that line searches do not improve the complexity we consider the

following LP:

(P 2) minimize

subject to xi +

z=I, xi

z >O,

10



and its dual

(D 2) maximize Et- Yi

subject to yi + si = 1, i = 1,..., n-1

6 ~C_- Yi + sn = 1

S > O,

i.e., problem (P 2) is in standard form with A = (In_1, en-_), b = en-l, c = en, where

1n-

We use as initial point the point:

1
= 1 +en' s=en, 0 = O.

Note that the optimal solution is

x = ) A s I

0 1-(n- 1)5

Let us observe that at every step of the algorithm xk = 1 _ 6xk for all i 1,., n - 1.

The strategy for showing the lower bound on the number of iterations even if we permit

line searches is as follows:

1. We first establish that between successive dual steps the duality does not decrease by

a factor of more than 1 - 0( ).

2. We then use Proposition 3 to show that after each dual step the duality gap does not

decrease by a factor of more than 1 - 0( ).

3. Combining these observations we prove the main theorem of this section.

Suppose Algorithm A stops at step k*. The algorithm starts with the initial point (x °, s°),

takes a number (possibly zero) of primal steps, then takes a dual step at step kl, then a

number (possibly zero) of primal steps, a dual step at step k2 and so on. The dual steps

are taken at steps kr, r = 1,..., m.

We first consider the decrease of the duality gap between consecutive dual steps. Let

kr, kr+l, (r = 1,... ,m) be two consecutive dual steps in the execution of the algorithm,

i.e., all steps between these two steps are primal steps.

11
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Proposition 5 a) For r = 1,..., m the duality gap just before kr+l satisfies:

z k +l > (1- l-7 )Zkr+l.
(1 - y)n

b) Just prior to the first dual step we have

1+y )o
z k> (1- y-)n

c) The duality gap at last step satisfies

zk > (1 1 + )Zkm+l
(1- y)n

Proof

Let k be a primal step between k and kr+1. The result holds trivially if no such k exists.

Then prior to the k-th step

zk = (k Sk

n-1 n-1

- ,i ZX(1 - ) + ~(1 - y )
i=l i=l

n-I n-1

= (1- 6X) E(1 - ik) + X(1-6 E )
i=1 i=1

rn-I

E~ - ikI - - )Xk

= s(1- ) + (1 -(n-1)6)xk)i=ln-1

ZSk + (1- (n- 1))xk

i=1 ~~~~~n-l ~n1

since during all primal steps the dual slacks sk remain unchanged. Since S < 1, we obtain

that

n-I n-1 n-1
zk > kr +l > _kkl+l _ k = E k,+l kr+l = zkr+l - kr,+1kr+l

_ a > n i - .i n n
i=l i=l i=l

Applying Proposition 4 after the execution of the dual step kc we will have

k,+ k,+l < l+ Z k +1 kr+l
n n -y Xi ' S

-l--Y'i=l 1

Therefore,

zk (1 1+7 )Zkr+l
(1- y)n

12



Applying the above inequality for k = kr+l just prior to the dual step kr+l, we prove part

(a) of the proposition. Applying the inequality for (k = k) and (k = k*) we prove parts

(b) and (c) of the proposition respectively. O

We are now ready to prove the main theorem of this section.

Theorem 4 For q < n + V/i, then for n > max[8, 4 t+, ( )2], Algorithm A needs at

least

(log n + log )

iterations to find an -optimal solution to the linear program (P 2), when it starts from

= 1en, , s = en, = 0 even if the algorithm performs line searches in the potential

function.

Proof

Suppose the algorithm found an -optimal solution at step k*. As mentioned earlier the

algorithm starts with the initial point, it takes a number (possibly zero) of primal steps,

then takes a dual step at step kl, then a number (possibly zero) of primal steps, a dual step

at step k2 and so on. The dual steps are taken at steps kr, r = 1,..., m.

From Proposition 5(b) we have that prior to the first dual step

zk > (- 1+7 ) ( 1 + n
(1-)n = i (1_ 7)n)1+6.

For q < n + /n, we obtain from Proposition 3 that for r = 1,..., m

zkr+1 > (1- - )z k r .

From Proposition 5(a) we obtain that for r = 1,..., m

Zr+1 k (1 1+Y )k,+l.
z > (1- (1 )n

From Proposition 5(c) we obtain

z > 1 + )Zkm+l.

(1-y)n

Since the algorithm stopped at step k*, zk * < e. Combining these inequalities we obtain

( 1- )+l( 1- )m+l n
VI- (1-y)n 1+6

13
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Since log (1 - x) > -2x for 0 < xz < , taking logarithms in the last inequality and using

6< < 1 we obtain that for n > max[8, 4 1+]
-- 31-y

m + 1 > __ log -n > (logn + log
4(1 + 2-y 2c - 8 2

where the last inequality follows for n > ( _) )2.

Since k* > m + 1 the theorem follows. 0

The proof of Theorem 4 reveals that the fundamental reason that line searches do not

help in the complexity is that we need to take a large number of dual steps to decrease the

duality gap. On the other hand, because of the special structure of the problem the primal

steps do not decrease the duality gap substantially, even if line searches are executed. By

choosing 6 to be small enough, L can be set to be arbitrarily large, so that the starting point

in Theorem 4 satisfies G(x °, s °) = O(V/iL). Theorems 2 and 4 then imply that Algorithm

A takes O(ViiL) iterations to find an exact solution for problem (P 2).

5 Reflections

One might ask what is the deep reason that +/E appears in the number of iterations, i.e.,

why +/E and not some other function of n?

The reason that V/i appears in the complexity for the case without line searches is in

Propositions 2 and 3. The algorithm uses the test luk 112 > y to control whether a primal or

dual step is taken. The decrease in the potential function when a primal step is executed is

measured through Ilukl 2. On the other hand, after a dual step the dual slacks are updated

proportionally to (Xk)-l(uk + en). The decrease in the potential function after a dual step

is executed is affected by Ilukl1, not Jlukl12. The only information we have regarding Iluklll

is that

Ilukll1 < v llukll 2,

and this inequality is tight. It is this 6V/, which affects the number of iterations. It appears

then, that the key reason, at least at a superficial level, for the V/E is the use of different

norms in the primal and dual steps.

At a somewhat deeper level, we conjecture that it is the use of the logarithmic potential

function either in the construction of an algorithm or in its proof that leads to A/', i.e., we

conjecture

14
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Conjecture 1 An interior point algorithms that uses the logarithmic barrier function either

in its construction or in its proof needs at least Q(v/\iL) iterations to find an optimal solution

in the worst case.

All known proofs of polynomial number of iterations for interior point algorithms have some

relation with the logarithmic barrier function. Algorithm A uses the logarithmic potential

function to design the algorithm directly, while many other algorithms use logarithmic

potential functions to bound the number of iterations. If the conjecture is correct, it would

imply that all known polynomial interior point algorithms need at least Q(V/-L) iterations

in the worst case.

Another interesting observation is that the reasons we achieved the Q(V/ilog 1) bound

on the number of iterations are quite different in the two examples.

In the example of Section 3, the key reason was Proposition 2 that the gap between

the primal objective value (which is not affected by dual steps) and the optimal value can

not be decreased by a factor of more than 1 - O( ) after a primal step. So, in the first

example, the primal steps were central to the lower bound.

In the example of Section 4, the key reason was Proposition 3 that after a dual step the

duality gap does not decrease by a factor of more than 1- O(w). Note that this result

holds for an arbitrary linear program, not only for the particular example. The particular

structure of the example was used to show Proposition 5 that the primal steps between

duals do not decrease the duality gap by a factor of more than 1 - O( ). In this case both

the primal and dual steps were central to the lower bound. We also remark that while the

first example works for Ye [12], Freund [3], and Gonzaga and Todd [5], the second example

only works for Ye's algorithm.

We have left open the case of line searches with q > n + IVi. We conjecture that also in

this case an example can be found to achieve the O(V/E log 1) bound.

Much of the work in the complexity of interior point algorithms has focused on the

worst case, which is not in agreement with the practical experience. The observed behavior

of interior point algorithms is O(log n L) rather than O(\/ L) iterations. Although some

research on anticipative behavior has been completed, a genuine and rigorous understanding

of the average behavior of interior point algorithms is still missing.

We feel that the understanding of Conjecture 1 and of the average behavior of interior

point algorithms are probably the most interesting directions of research in the theory of

15



interior point algorithms.
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