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Abstract

In this paper, we consider the linear assignment problem defined on a bipartite network
G = ( U V, A). The problem may be described as assigning each person in a set IU to a
set V of tasks so as to minimize the total cost of the assignment. The cost of assigning
person i to task j is cij if (i, j) E A and is infinite otherwise. This paper describes a new
algorithm called QuickMatch for solving the assignment problem. QuickMatch is based on
the successive shortest path (SSP) algorithm for the assignment problem, which in turn is
a modification of Kuhn's primal dual algorithm. However, we have added several natural
heuristics that speed up the performance of the standard successive shortest path algorithm
by several orders of magnitude. We present some theoretical justifications as to why the
algorithm's performance is superior in practice to the usual SSP algorithm, and we provide
computational support as well. In addition, the theoretical analysis and computational
testing supports (but does not prove) the hypothesis that QuickMatch runs in linear time
(i.e., in expected time O(m)) on randomly generated sparse assignment problems.

1 Introduction

We consider the assignment problem on a network G = (U U V, A) in which both Ur and

V/ contain n nodes, and the arc set A has m arcs. This paper presents QuickMllatch,

a very fast algorithm for solving the assignment problem. We present strong empirical

evidence of the efficiency of Quickmatch in practice, including evidence that supports

the hypothesis that QuickMatch runs in linear time on randomly randomly generated

assignment problems. QuickMatch improves upon the successive shortest path (SSP)

algorithm for the assignment problem, which solves the assignment problem as a sequence

of n shortest path problems.

We present two variants of the successive shortest path algorithm. The first variant

solves the assignment problem as a sequence of n shortest path problems and has a corn-
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parable worst case bound to that of the usual implementation of SSP, but an improved

average case performance, as measured empirically. QuickMatch is a further improve-

ment of the SSP algorithm that apparently reduces the average running time to O(7m)

on randomly generated problems. This improvement in the average performance comes

at an expense of degrading the worst case bound by a factor of O(logn). If QuickMatch

does solve randomly generated assignment problems in linear time, then the time to solve

assignment problems is comparable (to within a constant) to the time to generate these

problems.

We have explored the possibility that the growth in running time is asymptotically

worse than linear by a slowly growing function in n. In order to justify the claim of a

linear time algorithm, we have proved that the algorithm runs in linear time if a certain

convergence property is satisfied, and then we have provided computational evidence

that is strongly suggestive of the convergence property, although it is not in and of itself

a rigorous proof.

1.1 The assignment problem

Consider a problem of matching n persons to n. tasks where for each person i and for

each task j there is an associated cost cij of assigning person i to task j. The assignment

problem is the problem of matching n persons to n tasks so as to minimize the total cost.

Although the assignment problem is traditionally phrased in terms of assigning persons

to tasks, it also models applications in a wide range of different settings. For example,

the assignment problem also has applications in vehicle routing and signal processing,

and it is an important relaxation of the traveling salesman problem. For a survey of the

applications, see Ahuja, Magnanti, and Orlin [1].

The assignment problem is arguably one of the three most important subproblems of

the minimum cost flow problem. (The other two are the shortest path problem and the

maximum flow problem.) Tens of papers have been written which discuss computational
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aspects of the assignment problem. Some of the authors who have proposed solution

techniques for the assignment problem include Akgul [2], Balinski [3], Bertsekas [5],

Gabow and Tarjan [6], Hung [7], Hung and Rom [8], Karp [9], Kennington and Wang [10],

Lotfi [11], and Megson and Evans [12].

In section 2 of this paper, we briefly review the successive shortest path algorithm,

the concept of the residual network, and describe the QuickMatch algorithm. We also

provide an average case running time analysis of the QuickMatch algorithm. In section

3, we provide computational results on randomly generated networks. We present most

of our computational results in the form of combinatorial counts instead of CPU time so

that the results are largely independent of the computing environment. Also we compare

our run time with two other codes.

We use n for the number of node pairs in an assignment problem instance and m for

the number of arcs in an instance throughout the paper. Also all log() functions are of

base 2 unless otherwise stated.

We view the primary contributions of this paper as two-fold:

1. First, we have developed a significant improvement over the traditional SSP algo-

rithm for the assignment problem. Its running time is superior to all other imple-

mentations that we have seen of the assignment problem with the exception of the

reverse auction algorithm of Bertsekas and Castenon [4]. Their algorithm appears

to be faster by a small constant factor (less than 3 for problems with n = 20, 000),

and we do not know if this improvement is a result of improved implementation

details and/or compiling or whether it is intrinsic to the algorithm.

2. We have used computational testing in conjunction with theoretical analysis to help

establish an average case running time.
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2 The Successive Shortest Path Algorithm

Let G = (VU U, A) be the network for the assignment problem. The node set V represent

the set of persons, and the node set UT represents the set of tasks. Whenever a person

i can carry out task j, arc (i,j) is in A. We do not assume that each person can carry

out each task, but we do assume that there is a feasible assignment. The assumption of

feasibility is without loss of generality since we may always add artificial arcs (i,i) for

i = 1 to n with very large cost and create an artificial assignment. None of these arcs

would appear in an optimal assignment, assuming that one exists.

The standard integer programming version of the assignment problem is defined as

follows:

let I 1 if person i is assigned to task j
Xij=

0 otherwise.

Minimize Y cijxij (la)
(i,j)EA

Sujbect to y xij = 1 Vj = 1,...,n, (lb)
iEN

E xij = 1 Vi =1, ... ,n, (c)
jEN

xij > 0, integral V i,j. (Id)

The assignment problem is a special case of the transportation problem, which in turn

is a special case of the minimum cost flow problem. As is well known, all corner points of

the feasible region are integral, and so the integrality constraints may be relaxed without

loss of generality.
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(a) (b)

Figure 1: Illustration of residual graph of an assignment problem network.

2.1 The Residual Network and the Optimality Conditions

We refer to a solution x satisfying constraints (lb) and (c) with inequality () rather

than with equality as a partial assignment. If the constraints are satisfied with equality,

then x is called a complete assignment or is called an assignment. For each partial

assignment x, we define the residual network G(x) as follows. For each arc (i, j) E A,

there is an associated arc (i,j) with cost cij in G(x). For each matched arc (i,j), there is

an additional associated arc (j, i) in G(x) whose cost is -cij. We illustrate the residual

network in Figure 1. The figure illustrates an assignment problem network of 8 nodes.

Figure la shows a partial assignment matching two pairs of nodes, namely node 2 with

node 5, node 4 with node 6. The cost of the matching arcs are c25 and c46 . Figure lb

shows the corresponding residual network. In the residual network there are arcs (5, 2)

and (6, 4), with cost -c 25 and -c 46, respectively. The residual network is a standard tool

for minimum cost flow problems. See for example Ahuja et al [1].

Associated with each node i is a node potential Iri, sometimes referred to as the dual

variable for node i. The reduced cost c. of arc (i,j) is defined as c = cij - ri + rj.

The reader should note that we are defining reduced costs in a manner more commonly

_ _
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associated with minimum cost flow problems. In particular, a +rj term is used instead

of -rj.

The following lemma is well known, easily proved, and is stated here without proof.

Lemma 1 Let x* be a feasible assignment and let 7r be any vector of node potentials.

The solution x* is optimal for the assignment problem with respect to costs c if and only

if x* is also optimal for the assignment problem obtained upon replacing c by c'. I

By selecting the node potentials carefully and using the results of Lemma 1 and

Lemma 2 below, one can verify if an assignment x* is optimal.

Lemma 2 (Optimality Conditions) An assignment x* is optimal if there is a set of

node potentials r such that c > 0 for all arcs (i, j) in G(x*). In particular, c = 0 for

all matched arcs (i,j).

Proof: This result is well known. To see that the second statement of Lemma 2 follows

from the first statement, note that c = c in the residual network, and both of these

costs are non-negative.

2.2 Augmentations and the Successive Shortest Path Algorithm

An augmentation in G(x) refers to a directed path P from an unmatched node in U to

an unmatched node in V. We will refer to unmatched nodes in U as origin nodes, and we

will refer to unmatched nodes in V as destination nodes. Note that in any augmenting

path, the arcs directed from node set U to node set V are unmatched, and the arcs

directed from V to U correspond to matched arcs in z. The cost of the augmenting path

P is defined to be the sum of the costs of the arcs of the path in the residual network,

and we denote this as c(P). To augment along the path P is to replace xij by 1 for each

arc (i,j) E P directed from U to V, and to replace each zij by 0 for each arc (j,i) E P

directed from V to U. Suppose that x' is the matching obtained from x after augmenting

along path P. Then the cost of x' is easily shown to be c' = cx + c(P).

III
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The following algorithm is known as the successive shortest path algorithm for the

assignment problem.

Algorithm SSP
begin

x = 0;
while some node is free do
begin

select an origin node i;
in the residual network, find the minimum cost augmenting path P from i to some

free destination node t;
augment along the path P;
update data structures appropriately;

end
end

This description of the algorithm is at a very high level, and an efficient iplementa-

tion of the algorithm relies on determining shortest augmenting paths quickly. We shall

give some heuristics to speed up the algorithm.

As is common for the successive shortest path algorithms, we adopt a "primal-dual"

approach. By this, we mean that at each iteration we will maintain a set of node poten-

tials so that the optimality conditions are satisfied, i.e., each arc of the residual network

has a nonnegative reduced cost. The modification of node potentials in the residual

network does not effect which paths have minimum cost from origin to destination, as a

consequence of Lemma 3 below. The lemma is well known and is stated without proof.

Lemma 3 Let G be any directed network, and let i and j be any two nodes of G. Suppose

that P is a minimum cost path in G from node i to node j with respect to cost vector

c. Then for any vector of node potentials r, P is also a minimum cost path from i to j

with respect to costs c. I

In searching for a minimum cost augmenting path from an origin node to a destination

node, we will modify the node potentials in such a way that all arcs on some path P

from origin to destination have 0 cost. Such a path must be a minimum cost path in the

residual network since all paths in the residual network have a nonnegative cost. We can

then augment along P and create a larger matching.
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In order to modify the node potentials, we rely on shortest path distances.

Lemma 4 Let G be a network with arc costs c. Let ir be a set of node potentials for which

cr > O. For each node j, let L(j) denote the shortest path distance to j from an origin

node s. Let K be any integer. Finally, for each j, let 'y(j) = 7r(j) + max(0, K - (j)).

Then c > . Moreover, for any arc (i,j) with C(j) = £(i) + c < , it follows that

C7 = 0.

Proof: Consider first the case that ir = 0. The case for r # 0 is essentially the same.

Let (i,j) be any arc of G. By the optimality conditions for the shortest path problem,

£(j) < (i) + cij, or equivalently cij + £(i) - C(j) > O. Consider first the case that

1(i) < K and C(j) < K. In this case, (i) = K - C(i) and y(j) = - (j), and

thus c = cij + C(i) - (j) > 0. (Note that if £(j) = (i) + cij, then c = 0). We

now consider the case that C(i) > K and C(j) > K. In this case, (i) = y(j) = 0, and

so c7U = cij > 0. Now consider the case that C(i) < K and L(j) > K. In this case,

y(i) = K - L(i) and -y(j) > K - £(j), and so c > cij + C(i) - L(j) > 0. Finally, we

consider the case that C(i) > K and L(j) < K. In this case, y(i) = 0 and y(j) > 0, and

so c7j > cij > 0. This completes the proof of the lemma. I

There are various ways to employ the results of Lemma 4. Each of these ways has the

nice property that it preserves the non-negativity of arc costs in the residual network and

thus permits one to continue to run Dijkstra's algorithm. Consider, for example, selecting

s to be an origin node of the residual network and selecting K to be an upper bound on

the maximum distance from node s. This choice is equivalent to the successive shortest

path algorithm as it is usually presented in the literature. After the modification of the

node potentials, each arc in the shortest path tree directed from node s has a reduced

cost of 0. (This is a consequence of Lemma 4 and the fact that each arc (i,j) on the

shortest path tree satisfies C(j) = 1(i) + cij.) One can then select any destination node

t reachable from s, and augment along the unique path in the tree from s to t.

II
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An alternative method for using Lemma 4 is to define K to be min(C(j): C(j) > 0).

Although this choice of K may seem too low to be efficient, the modification of the node

potentials that it induces yields the original primal dual algorithm of Kuhn.

Our choice for the value of K from Lemma 4 is to define K to be min(C(j): j

is a destination node). This choice ensures that there is a 0-cost path in the residual

network from an origin node to a destination node. In addition, it is more economical

in its implementation of Dijkstra's algorithm in that it terminates Dijkstra's algorithm

as soon as an augmentation is discovered. This choice of K is exploiting the following

well-known property of Dijkstra's algorithm.

Property 1 Dijkstra's algorithm permanently labels nodes in non-decreasing order of

their distance from the origin node. I

In addition, the time to update the dual prices is not necessarily proportional to the

number n of nodes. Rather it is proportional to the number of nodes made permanent,

which in practice is far fewer than n. This modification is very efficient in practice;

however, we note that this speed-up does not improve the worst case performance of the

algorithm. We now summarize in pseudo-code the modification of the successive shortest

path algorithm.

Algorithm Modified SSP
begin

x = 0; r = 0;
while some node is unmatched do
begin

select an origin node i;
run Dijkstra s algorithm to grow a shortest path tree rooted at i until a destination

node t is made permanent;
let L(j) denote the shortest path length from i to j in the residual network using

reduced costs c".
replace r(k) by ir(k) + L(t) - C(k) for each node k with L(k) < C(t);
augment along the shortest path from i to t;

end
end

The modified SSP algorithm dramatically reduces the running time of Dijkstra's

subroutine over running it to completion. Based on experimental results obtained on
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randomly generated graphs, we believe that the average number of nodes labeled per-

manently by Dijkstra's algorithm is reduced from n to some number between log 2 n and

n1/2.

We now give a theorem that is suggestive as to why the modified SSP algorithm runs

orders of magnitude faster than the original SSP algorithm

Theorem 1 Let k denote the number of matched arcs at some stage in the algorithm.

Suppose that the probability of selecting a destination node next in Dijkstra's algorithm

is at least (n - k)/(nf(n)) for some function f() that depends only on n. Then the

expected number of permanently labeled nodes in total for the modified SSP algorithm is

O(f(n.)n log n).

Proof: Suppose first that we are running the successive shortest path algorithm starting

with a partial assignment x in which k arcs are matched. Since the probability of selecting

a destination node next is at most O(n - k)/(nf(n)), it follows that the expected number

of permanently labeled nodes is 1 plus the number of consecutive non-destination nodes

which is O(nf(n)/(n - k)). If we sum this amount for k = 1 to n - 1, the total number

of permanently labeled nodes is O(nf(n) Ek 1/(n - k)) = O(nf(n)log n). In the case

that f(n) = 1, i.e., under the assumption that all nodes are equally likely to be selected

next, the average number of permanently labeled nodes will be O(nlog n). I

A plausible a priori assumption is that f(n) = 0(1), i.e., that the destination nodes

are comparably likely to be selected next as non-destination nodes. On some limited

experimental evidence, we rejected this hypothesis. Rather it seemed more likely that

f(n) was behaving like O(log n) on randomly generated problems. Even with f(n) =

O(log n), the running time is orders of magnitude faster than the usual SSP algorithm.

We now improve the Modified SSP algorithm by adding two other heuristics. First

of all, in running Dijkstra's algorithm, it is common to start at an origin node and look

for a shortest augmenting path from the origin node to some destination node. However,

III



Quick Match

it is also possible to start the algorithm at the destination node, and search backwards

finding shortest paths directed into the destination node until permanently labeling an

origin node. This algorithm, called Reverse Dijkstra's Algorithm, is mathematically

equivalent to starting Dijkstra's algorithm from the destination node and reversing all

arcs of the network. We will refer to the usual method for implementing Dijkstra's

algorithm as Forward Dijkstra's Algorithm to emphasize its difference from Reverse

Dijkstra's Algorithm.

The other heuristic is to set a threshold T on the number of nodes labeled permanently

by Dijkstra's algorithm. We refer to a T-phase as a sequence of searches for augmenting

paths each of which labels at most T nodes permanently. Our rule in a T-phase is to

permit each unmatched node to be a root node for Dijkstra's algorithm at most once.

The search from an origin node terminates when either a destination node is reached

or when T nodes are labeled permanently, whichever occurs first. Similarly, the search

into a destination node terminates when either an origin node is permanently labeled or

when T nodes are permanently labeled. Initially T is set to 2, and T is doubled at the

end of each phase. We now describe the algorithm in more detail.

Algorithm QuickMatch
begin

x = O; 7r = 0;
T := 2;
for OuterCounter = 1 to Flog n do
begin

mark all unmatched nodes as unscanned;
while there is an unscanned node do
begin

begin Forward Dijkstra's Algorithm
select an unscanned origin node i
mark i as scanned;
destination node t is made permanent or until T nodes are labeled as perma-

nent;
let £* denote the label of the most recently labeled permanent node;
replace r(k) by 7r(k) + £* - L(k) for each node k with C(k) < C*;
if a destination node t is made permanant, then augment along the shortest

path from i to t and mark t as scanned;
end
if there is an unscanned node then
begin Reverse Dijkstra's Algorithm

11
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select an unscanned destination node t;
mark t as scanned;
run Reverse-Dijkstra's algorithm to grow a shortest path tree rooted into node

t until an origin node s is made permanent or until T nodes are labeled as
permanent;

let L* denote the label of the most recently labeled permanent node;
replace r(k) by r(k) - C* + £(k) for each node k with £(k) < £*;
if an origin node s is made permanant then augment along the minimum

cost path from s to t and mark s as scanned;
end

end
if all nodes are matched then quit;
T := T x 2;

end
end

The idea of alternating shortest path computations between origin nodes and desti-

nation nodes is also one of the primary aspects of the forward-reverse auction algorithm

of Bertsekas and Castenon.

We now give a Lemma that suggests why alternating between Forward Dijkstra's

Algorithm and Reverse Dijkstra's Algorithm in this manner may contribute to a reduced

running time. More precisely, it is the combination of using a threshold value and the

alternations that speeds up the algorithm.

We call a matched node i a pseudo-origin node if there is a directed path from an origin

node to i consisting entirely of arcs whose reduced cost is 0. We denote the corresponding

origin node as Root(i). Similarly, we call a matched node j a pseudo-destination node

if there is a directed path from j to a destination node consisting entirely of arcs whose

reduced cost is 0. We denote the corresponding destination node as Root(j). We assume

for convenience that Root(i) is unique. If there are several O-cost paths from origin

nodes to i we can select any of these origins as Root(i). Similarly, we assume that

Root(j) is unique. The advantage of pseudo-origin nodes and pseudo-destination nodes

i is described in the next Lemma.

Lemma 5 If Re'verse-Dijkstra's Algorithm to destination j permanently labels a pseudo-

origin node i, then subsequent to the modification of the node potentials there will be a

O-reduced cost path from Root(i) to node j. Similarly, if Forward-Dijkstra's algorithm

12
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from origin i permanently labels a pseudo-destination node j, then subsequent to the

modification of the node potentials there will be a O-reduced cost path from i to Root(j).

Proof: Let us consider only the case that we are running Dijkstra's algorithm from an

origin node i. If node j is labeled permenantly, then subsequent to the change in node

potentials, the path from node i to node j will have a 0 reduced cost. We now claim that

C(Root(j)) = (j). To see this, note that C(Root(j) > £(j) since otherwise Root(j)

would have been labeled prior to labeling node j, but then the shortest path algorithm

would have terminated upon labeling Root(j) as permanent, contrary to assumption.

We also see that L(Root(j)) £(j) since there is a 0O-cost path from j to Root(j). It

follows that C(Root(j)) = £(j). We now claim that L(j) is the largest permanent label

of a node at the termination of Dijkstra's algorithm. This claim follows from the fact

that Root(j) will be permanently labeled prior to labeling any node whose distance label

exceeds (j), and thus the algorithm will terminate prior to labeling any node whose

distance label exceeds L(j). I

Lemma 5 suggests that once Forward Dijkstra's algorithm permanently labels a

pseudo-destination node j, then the procedure will discover an augmenting path to

Root(j). This detail depends on the implementation. We chose to terminate Forward-

Dijkstra after labeling Threshold nodes even if this caused the algorithm to stop short

of identifying a O-cost augmenting path; however, it is generally true in practice that

the augmenting path to Root(j) will be discovered shortly after permanently labeling j.

Thus, permanently labeling a pseudo-destination node typically means that only a few

more nodes will be labeled before an augmenting path is determined. We considered

enforcing augmentations along O-cost augmenting paths once a pseudo-destination node

is labeled in Forward Dijkstra's algorithm, but preliminary testing indicated that this

would not noticeably speed up our implementation. We chose not to implement this

feature in our final algorithm. To summarize, it is almost as beneficial to permanently

13
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label a pseudo-destination node as it is to label a real destination node.

The primary method for creating pseudo-destination nodes is through running reverse

Dijkstra's algorithm in such a way that it terminated prior to an augmentation. This is

a consequence of Lemma 5 which states that all arcs on the shortest path will have a 0-

reduced cost. Similarly, the primary method for creating pseudo-origin nodes is through

running forward Dijkstra's algorithm and terminating prior to an augmentation. In

other words, if forward Dijkstra ends in an augmentation, then this is quite beneficial

to the algorithm since it adds a matched arc (although it may have the negative effect

of eliminating one or several pseudo-origin nodes and pseudo-destination nodes) . If

forward Dijkstra does not end in an augmentation, then this is also beneficial to the

algorithm since it typically (but not always) adds new pseudo-origins. However, one

can take advantage of the new pseudo-origins only if one is running Reverse Dijkstra's

algorithm. And one can only take advantage of pseudo-destination nodes if one is running

forward Dijkstra's algorithm. To summarize, terminating early creates pseudo-origins

and destinations which are potentially of value in subsequent shortest paths; however, to

take advantage of the pseudo-origins and pseudo-destinations it is necessary to alternate

at some frequency between forward Dijkstra and reverse Dijkstra.

The value of creating pseudo-origins and destinations is even greater since pseudo-

origins and pseudo-destinations are preserved between successive augmentations, as stated

in the next theorem.

Theorem 2 Suppose that node i is a pseudo-origin or a pseudo-destination. Suppose

further that the algorithm performs an augmentation whenever there is a O-cost path from

an origin to a destination. Then node i continues to be a pseudo-origin or a pseudo-

destination until the time at which an augmentation takes place.

Proof: Let us assume that node i is a pseudo-origin, and that P is a path from origin

s to node i consisting of arcs whose reduced cost is 0. (The case that i is a pseudo-

14
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destination can be proved in the same way.) Suppose that forward Dijkstra's algorithm

relabels distances in such a way that the node potential changes for some j E P. Let

t be the last node made permanent in the shortest path algorithm run from node s.

Then d(j) < d(t) for otherwise the distance label of j would not change. But Dijkstra's

algorithm would then have permanently labeled node i as well since d(i) < d(j). It follows

that subsequent to the shortest path subroutine from node s, i is again a pseudo-origin

and its root node is s.

Next let us consider the case that reverse Dijkstra's algorithm into t labels a node of

P. In this case, by Lemma 5, after the change in node potentials there is an augmenting

path from Root(i) to t, and so the theorem is valid in this case too. I

2.3 The Average Case Running Time of the Algorithm

In this section, we describe the running time of the algorithm in terms of a convergence

rate of the algorithm. If the convergence rate is at a sufficiently fast rate, which appears

to be validated by computational experiments, then the running time of the algorithm

is linear in the number of arcs of the network.

Let Unmatched(k) denote the number of node pairs that are unmatched at the begin-

ning of the k-th phase of the algorithm, i.e., the phase at which the number of permanent

nodes that are permitted to be labeled is 2k. Let Perm(k) denote the number of nodes

made permanent by Dijkstra's algorithm during the k-th phase.

Convergence Rate Conjecture. There exists some constant a < 1/2 such that

Unmatched(k) < nak- 1.

Degree Bound Property. The number of arcs incident to each node is O(d), where

d = m/n.

We note that the Degree Bound Property will be true for almost all randomly gen-

erated networks. We do not know of a proof of the convergence rate conjecture for

randomly generated graphs. However, in the next section, we provide computational
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evidence that supports this conjecture.

Theorem 3 Suppose that Quickmatch is applied to networks generated from some proba-

bility distribution X and that the C'onvergence Rate Conjecture and Degree Bound Prop-

erty are both satisfied. Then Quickmatch runs in O(m) (i.e., linear) time on these

networks.

Proof: The number of shortest path problems solved at the k-th stage is at most

O(nak-l ) by the Convergence Rate Conjecture. During the k-th stage, each shortest

path algorithm permanently labels at most 2 k nodes, and scans O(d2k) arcs. Thus the

depth of the d-heap is O(logd(d2k )) = 0(k/ log d). To delete the minimum element from

such a d-heap will take time O(dk/ log d). Thus, for each shortest path during the k-th

phase, the time for all of the find-mins (including the deletion of the smallest element of

the heap) is O(dk2k / log d).

The number of arcs scanned at each shortest path during the k-th stage is at most

O(d2k) by the Arc Bound Property. To insert any element into the d-heap will take

time O(kl log d), and so the time for inserting all of the arcs from any shortest path

problem is O(dk2k/log d), which was also the time for find-mins. The total time spent

during the k-th phase is at most O(nak-ldk2k/logd)) = O(mkc-1(2a)k/logd). We

know that a < 1/2 and so we may choose a < a' < 1/2 and an integer K so that

kcar-(2c)k/ log d < (2a')k for all k > K. It follows that the running time for the k-th

phase is O(m(2a')k) for all k, and the running time time over all phases is 0(m). I

Note that if a binary heap were used instead of a d-heap, then the running time for

the first phase alone would be O(mn, log d) since all arcs would be scanned, and inserting

d arcs into a binary heap containing d arcs takes O(dlog d) steps. Thus, we could not

use binary heaps if we wanted the algorithm to run in linear time. In practice, we are

mostly interested in very sparse graphs, and so d = O(log n). The increase in running

time caused by using d-heaps is O(log log n), which is a very slowly growing function of
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n. For example, log log 232/ log log 256 < 2, which implies that as networks increase from

256 nodes to 4 billion nodes, the asymptotic increase in running time accounted for by

the loglog term is less than 2. Nevertheless, we were pleased to include d-heaps in our

algorithm because they led to a strict improvement in the asymptotic performance while

they simultaneously led to a minor improvement in the observed running time.

3 Computational Results on Randomly Generated Networks

In this section, we present computational results on randomly generated networks with

n nodes and m arcs. We generated the mn arcs one at a time by generating an endpoint

in [U uniformly at random, and generating an endpoint in V uniformly at random, and

then generating an integer cost uniformly at random from the interval [0,C']. In this

section, we demonstrate the robustness of QuickMatch, and validate that the QuickMatch

algorithm runs in linear time on these randomly generated networks. Our validation is

via computational testing.

In running Forward Dijkstra's algorithm, one alternates between permanently labeling

nodes in U and permanently labeling nodes in V. Once a node j in V is permanently la-

beled, the next permanently labeled node is automatically the node of tU that is matched

to j. Also, the only arcs scanned in each forward Dijkstra's algorithm turn out to be

those arcs (i, k) such that i E U and i is made permanent. To summarize, each perma-

nent labeling of a node j of V and its mate i of EU takes time comparable to a single

node being made permanent in the usual Dijkstra's algorithm. For this reason, we will

only keep track of the number of nodes in U that are made permanent.

The first evidence that the QuickMatch algorithm runs in linear time comes from

counting the average number of U nodes made permanent over all shortest path algo-

rithms used to solve a single instance. In figure 2, we plot the histogram of the average

number of U nodes made permanent per pair of nodes matched. Each of the four graphs

17
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represent 100 different instances solved. The graphs show that for most of the instances,

the average number of I nodes made permanent is less than 5 and does not vary with

the problem size. In the 400 instances solved, the average number of U-nodes made per-

Inanent never exceeded 6. In fact, the average remains around 5 even for problems with

1,000,000 nodes. (This is 5 orders of magnitude better than the more direct approach

of running each shortest path instance to completion. We solved a 1,000,000 node and

40,000,000 arc problem in 30 minutes on a CRAY Y-MP M92/21000, using one CPU

and 30 million words of central memory. Had we solved the same instance while letting

each shortest path algorithm go to completion, the running time on the same CRAY

would have been over 5 years.)

3.1 The Convergence Rate

Let nk be the number of unmatched U nodes at the beginning of the k-th phase of the

algorithm. Thus, no = n. We define the convergence rate of Quickmatch on an instance

to be the smallest real number a such that nk < akn for each k. We conjectured in

Section 2.3 that a < 1/2 for each instance, and we showed that QuickMatch runs in

linear time if a < 1/2. Figure 3 shows the observed a value for randomly generated

instances. The data displayed in the figure are the maximum a values obtained in the

following way: let fk be the number of free node pairs at the beginning of phase k. For

each k we calculate an ak such that atk = ntk-1. Then we present the maximum of all

atk as the a for this network instance. Each of the four graphs represent the histogram

of observed ca for 100 different instances. For all but one of the 400 instances solved, the

average of a was strictly less than 1/2, and thus our conjecture appears to be correct,

at least for the distributions that we considered. These networks ranged in size from

networks with 2000 nodes and 20,000 arcs to networks with 16,000 nodes and 200,000

arcs. In most cases ct is around 0.45. From the proof of theorem 3 we can see the number

of nodes made permanent at stage k is at most 2ncak-l2k. If we plug in a = 0.45 , we

18
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obtain that the expected number of permanent U nodes per shortest path is around 14,

which indicates that the algorithm behaves better than the bound in practice.

We demonstrate that a < 1/2 for each instance solved in Figure 4. The x-axis in

Figure 4 corresponds to the stages. The y-axis corresponds to log n.. The inequality

nk < n2-k is equivalent to the inequality lognk < logn. - k. To demonstrate the

inequality, we also graphed the line log nk = log n - k on each of the four graphs.
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3.2 Number of Arcs Scanned

The bottleneck operation for the successive shortest path algorithm is scanning arcs em-

anating from permanently labeled nodes, and then inserting these arcs into a heap. Since

arcs were generated randomly, one would anticipate that the number of arcs incident to a

node would be approximately geometrically distributed. However, it is possible that the

average number of arcs incident to a permanently labeled node would be different from

O(d) = O(m/n) for some subtle reason depending on the performance of the algorithm.

This is important because the degree bound property is critical in the linear time proof

of theorem 3.

To verify this, we examine the total number of arcs scanned to solve an instance

divided by m, the total number of arcs in the instance. If the degree bound property

holds, this ratio should remain constant regardless of the network size. Figure 5 shows

the data plotted in semilog scale. It seems that the ratio (which corresponds to the

number of times an arc is scanned on average) converges to some constant less than 5.
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3.3 Relative Running Time of the QuickMatch Algorithm

In this section, we provide a measure of the running time of the QuickMatch algorithm

that is relatively independent of the computational environment. (At the very least, it

does not require the reader to appreciate the relative running times of different comput-

ers.) Here we use an idea also employed by Hao, Kai, and Kocur in the analysis of their

matching algorithm.

The Arc-Pricing Subroutine refers to the algorithm that computes the reduced cost

cir of every arc in the network. Clearly the Arc-Pricing Subroutine runs in time linear

in the number of arcs of the network. We then computed the ratio of the running time

of QuickMatch to the Arc-Pricing Subroutine. These plots are shown in Figure 6. Data

for instances of n = 2, 000, m = 20, 000 are not shown because the run time for the Arc

Pricing Subroutine are too short to be meaningful.

The plots suggest that the Arc-Pricing Subroutine is around 25 times faster than

QuickMatch. This difference can be roughly accounted for as follows: the bottleneck

operation on QuickMatch is the scanning of arcs emanating from permanent nodes,

adjusting the temporary node labels and inserting the updated node labels into a heap.

On average the depth of the heap was less than 5, and the number of arcs scanned was

approximately 5m. Taking into account that the time spent inserting an arc into a heap

is roughly proportional to the depth of the heap, a difference of 30 in the running time

of the Arc-Pricing subroutine to QuickMatch seems quite plausible.

3.4 Run time compared with other codes

We compared our QuickMatch Code against the Semi code by Kennington and Wang, and

the Auction code by Bertsekas and Castenon using randomly generated sparse networks.

The result shows that QuickMatch is significantly faster than Semi but is slower than

Auction for networks of 20,000 pairs of nodes.
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We predicted in theorem 3 that the run time of the QuickMatch algorithm should be

linear in m, the number of arcs. If this is the case, a linear model will be a good try for

a regression. The simple least squares regression result is shown below:

QuickMatch time = -1.25 + 1.34 x 10-4 m R 2 = 0.99

(-6.78) (122)

Auction time = -1.33 + 6.89 x 10-5m R 2 = 0.99
(-13.59) (118)

The regression results shows that both QuickMatch and Auction runs in almost linear

time, with a different constant. The difference in the constants is approximately 2. We

are not sure if this difference is a result of improved implementation details and/or

compiling or whether it is intrinsic to the algorithm. The run time of the three codes

are shown in figure 7. Figure 7a shows the run time of all three codes plotted against n,

the number of nodes; figure 7b shows the same data for QuickMatch and Auction on a

different scale. Figure 7c shows the QuickMatch and Auction run times plotted against

m as well as the fitted lines. The slightly upward trend in QuickMatch data is probably

due to the phenomenon observed in secton 3.2.
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