
The Origin-Destination Shortest Path Problem

March 1993 WP # 3546-93

Muralidharan S. Kodialam*
James B. Orlin**

AT&T Bell Laboratories
Holmdel, NJ 07733

Sloan School of Management
Massachusetts Institute Technology
Cambridge, MA 02139

The Origin-Destination Shortest Path Problem

Muralidharan S. Kodialam.
AT &T Bell Laboratories

Holmdel, NJ 07733

James B. Orlin
Sloan School of Management

Massachusetts Institute of Technology
Cambridge, MA 02139

November 16, 1992

The Origin-Destination Shortest Path Problem

Abstract

In this paper we consider the Origin-Destination (O-D) shortest

path problem. We define the O-D shortest path problem as follows: We

are given the set of nodes and edges in a network. Associated with each

edge is a weight. In addition, we are given two subsets of the node set.

One set is called the set of origin nodes and the other is called the set of

destination nodes. The objective of the O-D shortest path problem is

to determine the shortest path between every node in the set of origin

nodes and every node in the set of destination nodes. This problem gen-

eralizes several traditional shortest path problems and has applications

in transportation and communication networks. We develop two algo-

rithms for this problem and analyse the average case running time of

these algorithms.

1 Introduction

Shortest path problems are arguably the most fundamental and also the most com-
monly encountered problems in the study of transportation and communication net-
works. The repeated determination of shortest paths in large networks often forms
the core of many transportation planning and utilization models. Deo and Pang [2]
survey a large number of algorithms and applications of shortest path problems.

At the broadest level, shortest path algorithms can be classified by three taxo-
nomic categories: The first is the type of shortest path problem being solved. The
most common being the single source to all nodes shortest path problem and the
all pairs shortest path problem. The second is the classification based on the input
network: whether the network is sparse or dense, planar or non planar, positive or
general edge weights, grid or general structure etc. The third classification is based
on the solution methodology. For example, some methods use labelling and oth-
ers use matrix multiplication to determine the shortest paths. The most common
shortest path problems addressed in the literature are the single source and the all
pairs shortest path problems. In the single source shortest path problem the aim is
to find the shortest path from a given node to all other nodes in a given graph. In
the all pairs shortest path problem, the objective is to determine the shortest path
between every pair of nodes in the network.

We define a problem that is intermediate between the single source and the all
pairs shortest path problems. We refer to this problem as the O-D shortest path
problem. We are given a set O of no nodes called the origin nodes and a set D of nD
nodes called the destination nodes. The problem is to find the shortest path from
every origin node to every destination node. This problem is interesting from both
theoretical and practical viewpoints. It is interesting in a theoretical sense because
it generalizes several classical shortest path problems and all these problems are
studied in a common framework. From a practical viewpoint, the O-D shortest path
problem has numerous applications in transportation and communication networks
[10]. For example, road networks sometimes have a specified subset of nodes called
the centroid. A centroid in a road network is defined as the set of nodes in which the
traffic originates of terminates [11]. Typically, each transport zone has one centroid.
The input for many transportation problems consists of the shortest path distances
between all pairs of nodes in the centroid, which in turn is a special case of the O-D
shortest path problem. A related application of the O-D shortest path problem
is the generation of data for combinatorial optimization problems on a network.
Data for the travelling salesman problem and vehicle routing problems often comes
from solving O-D shortest path problems. For example, in the well known 48 city
travelling salesman problem between the capitals of the states in the continental
United States, the distances between the cities can be obtained by letting O and
D to be the set of 48 cities, and by solving an O-D shortest path problem. This
data may then be used as the input the TSP algorithm. The O-D shortest problem
can also be used to generate data for transportation problems on graphs where the

1

transportation cost between two nodes is approximately the length of the shortest
path between these nodes. Numerous problems in combinatorial optimization use
the shortest path length as an approximation to the transportation cost.

An obvious approach for solving the O-D shortest path problem is to solve a
single source problem from each source node. While there is no other approach that
is known to be better in terms of worst-case analysis, there is strong evidence that
this approach is not as good on the average.

For the purpose of performing average case analysis, we first need to specify the
class of problems over which we will be averaging the running time of the algorithm.
We assume that the input graph has arc lengths that are independent, identically
distributed random variables that satisfy some weak assumptions. The details of
the probabilistic model is given in Section 2.1.

The average case analysis of shortest path algorithms originated in the study of
random graphs and the study of graph properties when the arc lengths are random
variables. Pioneering work in the area of random graphs was done by Erdos and
Renyi [3]. Using results from the study of probabilistic networks we can analyse the
average performance of an algorithm if the input network has a random component.

In the next section we will formally describe the problem that we will solve and
the underlying probabilistic assumptions for analysing the average case behavior.

2 Problem Definition

We define the O-D shortest path problem as follows: Let G = (V, E) be a network
in which V is a node set with n nodes, E is an arc set with m arcs, and for each arc
(i,j) there is an associated arc length cij. (Occasionally we will use le to denote the
length of arc e). In addition, let O be a subset of nodes called the origin nodes, and
let D be a subset of nodes called the destination nodes. Let no = lO and noD = IDI.
We do not necessarily assume that 0 and D are disjoint. The objective in the O-D
shortest path problem is to find a shortest path from each node in O to each node
in D.

The O-D shortest path problem generalizes several related problems. For exam-
ple, if 101 = 1, and if D = V, then the O-D shortest path problem is the problem of
finding the shortest distance from a single node to all other nodes. If O = D = V,
then the O-D shortest path problem becomes the problem of finding the shortest
path between all pairs of nodes in a network.

The O-D shortest path problem is the same as the D-O shortest path problem
on the graph obtained from G by reversing all arcs in the graph. For this reason, we
may assume without loss of generality that no < nD. This assumption will simplify
the statement of the running times.

In terms of worst case analysis, the best algorithm for the O-D shortest path
problem is the best of the following two approaches:

i. Run the single source shortest path problem for each node i E O.

2

ii. Run the all pairs shortest path problem using fast matrix multiplication.
In the first case, the running time is O(nD(m + nlogn)) using Fredman and

Tarjan's [4] fibonacci heap implementation of Dijkstra's algorithm. In the latter
case, the running time is O(n2.3 76) using the results of Coppersmith and Winograd
[1].

2.1 Probabilistic Model

The main result of our paper is an algorithm for the O-D shortest path problem
that has a very good expected running time on random networks. For our random
network model, we assume that each arc (i,j) has a probability m/n(n - 1) of being
in G. Thus the expected number of arcs in G is m. We also assume for our analysis
that m > n logn so that each node has degree fl(logn) and so with very high
probability the graph is strongly connected [3]. We assume that the arcs in G have
i.i.d. exponentially distributed lengths; however, we may relax the assumption that
the distribution is exponential, as did Luby and Ragde [8] in their analysis of the
single source single sink shortest path problem. Our results generalize to a number
of other distributions on the arcs costs. For the initial analysis, we also assume that
the input instance is a complete graph. Therefore the only random component in
the input are the arc lengths (costs). Note that all logarithms in the paper are to
base e.

2.2 Summary of running times

Our algorithm is based on the bidirectional search algorithm analyzed by Luby
and Ragde [8]. They solved the single source single destination problem on ran-
dom networks in expected running time O(m/\vi), which is a factor of Vii better
than that obtainable using Dijkstra's algorithm. Our algorithm for the O-D short-
est path problem optimally finds the shortest path from each node in O to each
node in D in expected running time O(nonD log2 n + min(nDVogn;; m/n, m +
nD/nglog n)). In the case that the arcs incident to each node are sorted in in-
creasing order of distance, the running time of Luby and Ragde's algorithm for
the single source single sink case reduces to O(v/i'logn) and the running time
of our algorithm for the O-D shortest path problem reduces to O(nonD log 2 n +
nDo/n oign log n). As a result, whenever nD = o(V//logn), the running time of the
algorithm is sublinear; i.e., one can find the shortest path between all nodes in O
and all nodes in D faster than the time it takes to read the data for a single source
shortest path problem. For the case that no = nD = Vmi/ log n, the running time
of the algorithm is O(m), which is a factor of ~/ log n better than the running
time achieved by solving ViT/ log n single source shortest path problems. It is also
a factor of V;/ log n faster than the time bound obtained by applying Luby and
Ragde's algorithm nonD times, once for each origin-destination pair.

3

For the all-pairs shortest path problem, the algorithm with the minimum ex-
pected running time is due to Grimmett and Frieze [6]. Its running time is O(n 2 log n).
Our algorithm has a running time that is a factor of log n worse in this case. For
the case of the single-origin single-destination shortest path problem, our algorithm
is a factor of vIog slower than that of Luby and Ragde.

3 Single Source Single Sink Case

3.1 On Bidirectional Dijkstra.

Our algorithm is based on the bidirectional Dijkstra algorithm as analyzed in Luby
and Ragde [8]. In this section we describe the bidirectional version of Dijkstra's
algorithm and state relevant properties of the algorithm.

First, we need some notation. Given two nodes i and j in G, let d(i, j) be the
length of the shortest path from i to j. As stated in the introduction, we assume
that there is some path from i to j, and thus this distance is finite.

Suppose we want to identify the shortest path from an origin node s to a des-
tination node t. The way that Dijkstra's algorithm works is as follows: Dijkstra's
algorithm "permanently labels" the nodes of V in an iterative manner. Let r(k)
denote the node of V that is "permanently labeled" at the k-th iteration. Dijkstra's
algorithm labels the nodes so that

d(s, 7r(1)) < d(s, r(2)) < ... < d(s, 7r(n)).

In other words, it identifies the nodes in increasing distance from node s. (For
example, r(1) = s.) By the end of the k-th iteration, it has identified shortest
paths to each of the k closest nodes to s. We will refer to the subtree obtained at
the end of the k-th iteration of Dijkstra's algorithm as the k-stage source tree for
node s, and we will denote it as S(k). Similarly, we could have run Dijkstra to
find the shortest path distances to node t. In this case, Dijkstra's algorithm would
have permanently labeled the nodes in some other order, say a(1),..., a(n). As in
the usual implementation of Dijkstra's algorithm, this "reverse Dijkstra" identifies
nodes in the order so that

d(a(1), t) • d(a(2), t) < ... < d(a(n), t).

By the end of the k-th iteration, it would have identified a shortest path subtree
Tt(k) consisting of the k closest nodes to node t. We will refer to this subtree as
the k-stage sink tree for node t. In general, we will refer to the k-stage source tree
more briefly as a source tree and we will refer to the k-stage sink tree more briefly
as a sink tree.

If one runs Dijkstra's algorithm from the origin node or into the destination
node, then one would expect to label O(n) nodes before the shortest path from the
origin to the destination is determined. However, one can do better on average if one

4

II

simultaneously runs Dijkstra's algorithm from the origin and into the destination.
This improvement is based on the following Lemma, which can be found in Luby
and Ragde [8]. We find the proof to be elementary and enlightening, and therefore
have included it.

Lemma 1 Let S be a source tree from the origin node s and let T be a sink tree
from the destination node t (with t s). Suppose that S and T have a node in
common.

Let Al = min(d(s, i) + d(i, t) : i E S n T).
Let A2 = min(d(s, i)+ cij + d(j, t) : i E S and j E T - S).
Then d(s, t) = min(A1, A2).

Proof:
We first observe that each of Al and 2 is the length of some path from node s
to node t. We want to prove that it is the length of the shortest path. Suppose
that i E S n T is the node for which Al1 is minimum. Let p be any path from
s to t such that there is a node k S U T. Then the length of p is at least
d(s, k) + d(k, t) > d(s, i) + d(i, t) = Al, since k is on neither the source tree nor the
sink tree. We conclude that there is a shortest path from s to t that consists of
nodes in S n T.

We note that the Lemma is true if t E S, since in this case Al < d(s, t) +
d(t, t) = d(s,t). The only remaining case to consider is when the shortest path p
consists only of nodes of S U T, and t ¢ S. Let j be the first node of p that is in
T - S, and let i be the node before j on the path. Then the length of p is at least
d(s, i) + cij + d(j, t) > A2.

0

In general, if S is the source tree for some origin node s and if T is the sink tree
for some destination node t, then we let

A 1(S, T) = min(d(s, i) + d(i, t): i E S n T),

and we let

A2(S, T) = min(d(s, i) + cij + d(j, t): i E S,j E T - S).

The bidirectional shortest path algorithm works as follows:
Procedure Bidirectional Dijkstra
begin
/; /; /; /; find the minimum k such that the k stage source tree S(k) from node

s and /; /; /;/; the k stage sink tree T(k) to node t have a node in common;
/; /;/; ; d(s, t) = min(Al(S, T), 2(S, T))
end

5

Theorem 2 (Luby and Ragde) Let G = (V, E) be a random graph with i.i.d. e-
ponential arc costs. Then the bidirectional Dijkstra's algorithm computes the shortest
path from s to t in expected time O(m/vin-).

The single source single sink algorithm of Luby and Ragde is a two phase algo-
rithm. In the first phase of the algorithm, we evaluate the value of Al and in the
second phase we evaluate the value of 2. Therefore the first phase is the execution
of Dijkstra's algorithm forward from the source and backward from the sink one
node at a time till the source tree and the sink tree meet. In the second phase they
implicitly look at all the arcs between the two trees to determine the value of A2.
One key aspect of the analysis was that the expected number of nodes in the source
tree and the sink tree was O(vf/-), and the number of arcs that needed to be scanned
by Dijkstra's algorithm was O(/ni). The second phase is more complex. If the arcs
lengths are independent, identically distributed random variables, we can simplify
the second phase of the algorithm considerably to give the same running time. The
modification of the second phase is based on a special case of the following obser-
vation due to Grimmett and Frieze [6]. Consider a subgraph of the input graph
restricted to the shortest 20 log n arcs out of every node. The set of arcs in this
subgraph is termed active arcs. The shortest path between any two nodes lies in
this subgraph with high probability. This observation is true for independent, iden-
tically distributed arc lengths such that the distribution function of the arc lengths,
F(x) satisfies some weak conditions. This is stated formally in the following lemma.

Let
d(i, j) = Distance between nodes i and j.

d* = maxd(i,j).

Let
M = min(cij: (i,j) is not active).

Lemma 3 (Grimmett and Frieze) If F(x) is differentiable at 0 and F'(0) > 0
then

Pr[d* > M] = 0(
n

Therefore in the second phase of the algorithm, we consider only the shortest
20 logn arcs out of each node in the source tree to do the patching-up. If the
first phase of the algorithm ends after K steps (the number of steps is a random
variable), then the number of arcs explored in the second phase of the algorithm
is 20Klog n. Since the expected length of the first phase of the algorithm i.e., the
expected value of K is O(V/) , the running time of the second phase of the modified
algorithm is O(V/ilog n). Another related result due to Zemel and Hassin [7] shows
that the length of the shortest path between any two nodes in a random graph

6

with the lengths satisfying some weak assumptions is bounded by clogn with high
probability for some constant c. At this stage we define some notation that we will
use in the analysis of our bidirectional search algorithm. Let us first consider the
working of the algorithm in the unidirectional case. Usually one views Dijkstra's
algorithm as finding the shortest path from the source node to all other nodes in
the graph. As in Luby and Ragde [8], we will adopt a related view of Dijkstra's
algorithm that is more suited to our analysis. Associated with the algorithm is a
real variable L which is initialized to zero and increases continuously during the
execution of the algorithm. Let d(s, i) denote the length of the shortest path from
s to i. All arcs are initially considered to be inactive. An arc (i, j) becomes active
when L = d(s, i) and is revealed when L = d(s, i) + cij. After it is revealed, it is no
longer considered active. At time 0, Dijkstra's algorithm labels the origin node
permanent, and waits for the next active arc to be revealed. If arc (s, j) is revealed
when L = I then there is a path from s to j with length 1. In general, if arc (i,j)
is revealed when L = 1, then there is a path form s to j with distance 1. If j is not
permanently labelled before this point, then it can become permanently labelled.
Note that no arc (i,j) can be revealed till after node i is permanently labelled. Also
note that (i,j) may remain active even if both i and j are permanently labelled,
so long as (i,j) has not been revealed. If an active arc has both its end points
permanently labelled, it is called an internal arc. All other active arcs are external
arcs. In the next lemma we determine the probability that (i, j) will be the next arc
to be revealed for each active arc (i, j) at some point in the running of the algorithm.

Lemma 4 At any stage of the unidirectional Dijkstra's algorithm each active edge
is equally likely to be revealed.

Proof:
The proof of this lemma is very similar to the proof given in Luby and Ragde
[8]. Consider the algorithm when L = t. Let the active edges at this stage be
el , e 2 ,...ek. Let us assume that ei was activated at L = i. We therefore know
that li > t - xi. The next edge to be revealed is the active edge that has minimum
li + i. For any y 0

Pr[li + i ylli >t-zi] = Pr[li (t - i)+y-tl > t- - zi]
= Pr[li < y -t]

This quantity is independent of the edge ei since the edge lengths are independent
identically distributed exponential random variables. Thus each active edge ei is
equally likely to get chosen.

0

In the bidirectional case we execute Dijkstra steps from the source node and
into the sink node. At some intermediate stage of the algorithm, let S be the set of
nodes labelled from the source and let T be the set of nodes labelled from the sink.

7

During the running of the algorithm there are S external, S internal, T external and
T internal arcs. The definitions of these sets are similar to definitions given in the
unidirectional search algorithm. Further we define cross arcs as arcs that have their
tail in S and head in T. Similar to the case of unidirectional search we define the
qunatities Ls and LT to be the distance searched from s and t at some stage of the
algorithm. The source tree and the sink tree behave exactly in the same way as in
the unidirectional search case. However, the analysis of the algorithm is complicated
by the fact that for the cross arcs, we have information about the length of the arcs
both from the source tree and from the sink tree. For instance, if some arc e was
activated at time 21 on the source side and at time z 2 on the sink side then we know
that the length of the edge

l > max{Ls - x1 , LT - X2 })

Thus if Ls - x1 < LT - X2 then this arc cannot be discovered from the source side.
Therefore we define S enabled edges to the cross arcs for which

Ls - 1 > LT - X2. T enabled edges are cross arcs for which Ls - x1 < LT - X2.
We state this result in the following lemma.

Lemma 5 In the bidirectional search algorithm, all the S enabled arcs are equally
likely to be discovered from the source side search and all T enabled arcs are equally
likely to be discovered from the sink side search.

3.2 Composite Algorithm

Although, the bidirectional search algorithm described in the previous section can
be directly extended for the O-D shortest path problem, the analysis cannot be
directly extended. We therefore modify this algorithm suitably, and present the
modified algorithm first for the single source-single sink case and later for the O-D
shortest path problem. The outline of the algorithm is the following: We execute a
fast procedure to determine the shortest path between a given source node s and a
sink node t. This procedure identifies the shortest s - t path with high probability.
If it has identified the shortest s - t path, we stop. If not we run another (slower)
procedure which always determines the solution. The probability of identifying the
minimum cost s - t path is sufficiently high that the expected running time will
be dominated by the running time of the first procedure. In this case the main
procedure is a truncated bidirectional search algorithm. We execute the Phase 1
of the bidirectional search algorithm from the source and the sink. In the previous
case we executed the algorithm till the source tree and the sink tree intersected. In
the truncated bidirectional search algorithm we execute phase 1 of the algorithm for
a fixed number (4vnilog n) of steps. We can show that the source tree and the sink
tree will intersect with high probability by the end of Phase 1. In the second phase
of the bidirectional search algorithm, we restrict attention to the shortest 20log n
arcs out of every node in the source tree for "patching up". We can show that

8

with high probability, the shortest path lies within the subset of arcs considered.
We perform a test to determine if the shortest path has indeed been determined.
If not, we execute the unidirectional search algorithm that runs in expected time
O(n log n).

We now outline the running time analysis for two versions of this algorithm. In
the first version of the algorithm, we assume that the arcs are sorted in increasing
length from each of the nodes. In the second version we will assume that the arcs
are not sorted. The data structure that is used to implement the algorithm is the
following: At each node i that is permanently labelled we initialize the CURRENT
ARC(i) to be the shortest arc out of node i. Whenever this arc is revealed, we
replace CURRENT ARC(i) with the next longest arc. We maintain a priority
queue Q with the CURRENT ARC of all the labelled nodes. At every step of the
algorithm, we find the minimum element in Q. If this arc (i,j) is an internal arc,
we replace CURRENT ARC(i) with the next longest arc. If the arc is an external
arc we permanently relabel node j and add CURRENT ARC(j) to Q. Therefore
there are two costs associated with the running of Phase 1 of the algorithm. One
is time needed to find the minimum element in the priority queue which is done
each time an arc (both internal and external) is discovered. The time for finding
the next minimum is O(logn). The second is the cost associated with initializing
and updating the CURRENT ARC at each node. This initializing and updating
is done each time an arc (both internal and external) is discovered. If the arcs are
sorted then the time for each call is 0(1). If the arcs are not sorted, then using a
priority queue at every node we can show that the time per call is propotional to
the degree of the node. Therefore the expected running time of the first phase if
the arc lengths are not sorted is the product of the number of arcs revealed in the
first phase and the average degree of a node. (The average degree of a node is in
the general case). We will show in lemma 7 that the number of nodes permanently
labelled by Dijkstra's algorithm and the number of edges revealed in the first phase
is O(Vn 1ogin) on average. Since we examine only the shortest 20 log n arcs out
of every source tree node in the second phase of the algorithm, the time to run
the second phase of the algorithm is O(Vfl'ilog n). The overall analysis of the
running time of the composite algorithm (Sorted case) is as follows:

T = Running time of composite algorithm
T = Running time of main algorithm
T2 = Running time of backup algorithm

p = Probability of success of main algorithm

E[T] = p E[T] + (1 - p) ET2]

9

< O (1 - (Vn l/log n) + n log n)

= O(n/rilogn)

The overall analysis of the running time of the composite algorithm (Unsorted
case) is as follows:

T = Running time of composite algorithm
T = Running time of main algorithm
T2 = Running time of backup algorithm
p = Probability of success of main algorithm

E[T] = pE[T]+(1 - p) E[T2]

< 0 ((1-) (nlgnm) +- nlogn)

n

This algorithm is suitable for generalization to the O-D shortest path problem.
We now show some of the detailed analysis of the running time of the algorithm and
study some characteristics of the shortest path that will be used in the analysis of
the O-D shortest path algorithm.

Lemma 6 The probability that the source and the sink nodes intersect if we execute
4v/iliogn steps of Dijkstra's algorithm from the source node and to the sink node is
greater than 1- 1

Proof:
Let us call the source node i and the sink node j. Consider source tree Si and
sink tree Tj. Let us define the Eij to be the event that source tree Si and sink tree
Tj do not intersect at the end of 4/n lognii steps. Let us assume that the source
tree and the sink tree are grown simultaneously. One can view this in terms of two
docks (perhaps like chess clocks). First, we identify the next node in Si by stopping
the clock for Tj and starting the clock for Si. At some point an Si active arc is
revealed. If this arc is internal, we continue till we permanently label some node
on the source side. At this point the clock for Si is stopped and the clock for Tj is
started. That is, at stage k there are k nodes in the source tree and k nodes in the

10

lIt

sink tree. All the cross arcs are either S-enabled or T-enabled. Let C be the event
that a cross arc is not discovered in 4V/n og1n steps.

Number of active cross arcs = k2

Number of external arcs = 2k(n- 2k)
k k

Pr [Cross arc is discovered] =) > (1)
(2n - 3k) - 2n

If the arc discovered is an S-external arc, we increase LT till a T-external arc or a
cross arc is discovered and vice versa. Therefore,

Pr [C] < (1-2n) (1-2 ... 1 2n)

< e- 2(

< e-4 logn

1
<_ n

The probability that a cross arc is not revealed is equivalent to saying that the
source tree and sink tree do not intersect. Therefore,

1
Pr[Eiij < _.

In the next lemma we shall bound the total number of arcs, both internal and
external revealed by the algorithm. This will give us a bound on the running time
of Phase 1 of the algorithm as described earlier.

Lemma 7 The total number of arcs revealed in the first phase is O(Vn ogn).

Proof:
Since we run the first phase of the algorithm till 4x/fnlog n nodes are permanently
labelled from the source and the sink, the total number of external arcs revealed is
8V/nlgni. The total number of internal arcs revealed can be bounded as follows:
Consider the source tree when there are k permanently labelled nodes (stage k).
The number of active internal arcs is upper bounded by k2. The total number of
external arcs is k(n - k).

/:2
Pr[Internal arc is revealed at stage k] < k

n-k)
n--k

11

Let I be the total number of internal arcs revealed during the first phase of the
algorithm. Then,

E[I < E n k = O(logn).
k-1

Therefore the total number of arcs revealed in the first phase of the algorithm
is O(/nIo gn).

The running time analysis of the second phase was discussed earlier. This com-
pletes the running time analysis of the composite algorithm for the single source
single sink case. In the next section we will study some properties of the shortest
path that will be useful in the analysis of the O-D shortest path algorithm.

3.3 Some Properties of the Shortest Path

In this section we will bound the number of nodes along the shortest path between
any two nodes in the graph. We first introduce some notation. Consider the process
of growing the shortest path tree in the first phase of the algorithm. Recall that the
algorithm is in stage k if k nodes have been labelled permanently by the algorithm.
A node u in the shortest path tree is at level t if the number of arcs in the shortest
path from u to the root node is t.

Lemma 8 Let Hk(t) be the probability that a randomly picked node of the k stage
tree is at level t. Then

Hk(t) = k Hkl(t) + Hk_(t - l) t = O,1,...k - 1.

Proof:
An alternate way of viewing the first phase of the algorithm is as follows: At every
stage of the algorithm, we pick one labelled node and one unlabelled node at ran-
dom. (Each labelled node is equally likely to get picked and so is each unlabelled
node). This unlabelled node is made permanent. After this is done, suppose we
pick a node at random from all the labelled nodes. Let us assume that we are at
stage k of the algorithm. If each of the k nodes is equally likely to be chosen then
with probability k.1 we pick a node that was already labelled by level k - 1 and
this accounts for the first term on the right hand side. With probability - we pick
the node labelled at level k. This node could have any one of the previously labelled
node as its predecessor with equal probability. This accounts for the second term
on the right hand side.

o

12

Lemma 9 Let (Hk) = CEO Z tHk(t) be the Z- transform of Hk(t). Then (Hk) =
1-I (Z+i0

Proof:
At the first stage of the algorithm only one node has been labelled. (Either the
source of the sink). This node is at level zero. Therefore Hi(O) = 1 and (H 1) = 1.
We know that

Hk(t) = k- H l(t) + Hkl(t - 1) t = 0,1,...k -1.

Multiplying this equation by Zt and summing over t we get

00 co k 1
Z tHk(t) = Zt k Hk-l(t) + E Zt Hl(t- 1)

t=O t=O t=O

(Hk) k*Hk-l)+ O(Hkl)k

Rewriting the previous equation as

g)(Hk) k-1 + Z

(Hk-l) k-+

Therefore,

- (Hk) O(Hk)

Hi') (Z + i)
k!

Note that Hk) is a function of k and Z. O
The next theorem and proof is due to Chernoff. In this theorem we will bound the

probability that a positive random variable is greater than some constant in terms
of its Z- transform. The Z-transform of a random variable X is +(X) = E[ZX].

Theorem 10 (Chernoff) Let X be any positive random variable whose Z-transform
is (X). Then,

Pr[X > a] < (X)Za.

Proof:
For any positive random variable Y, the well known Markov inequality states that

Pr[Y > a] < E[Y]
a

13

We apply this inequality to the Z-transform of X which is just E[ZX]. Therefore,

P [z x > t] < E[zx] t t

Let t = ZG then,
PT[ZX > Z*] < O(X)Z -a

Pr[X > a] < (X)Z-*.

This is true for all Z> 1.
1o

Lemma 11 Let F be the event that at the end of 4vn Ioign steps, a randomly picked
node is at a distance greater than 6 log n from the source. Then,

1
Pr[F] <

Proof:
We use the Chernoff bound to get an upper bound for the probability of F. The
Z-transform of the distribution for the depth of a randomly picked node after k steps
have been executed is

1 k-i
(Hk) = k! l(z(+ i)

i=1

Let X be the depth of a randomly picked node after k steps of the algorithm. We
want to determine Pr[X > 6 logn].

Pr[X > 6 log n] = Pr[ZX > Z6 °lon]

Using the Chernoff bound with Z = e and k = 4 /n logni we get,

1
Pr(X > 6ogn] < (H 4 fi r)-n (2)

1
< O(n) 6

< !(4)(5)...(n + 2)6
1

< n3

D

14

III

Lemma 12 For any sink tree,

Pr{AII nodes are at a distance < 6 log n] > 1 - 2

The expected depth of any node in the sink tree is less than 7 log n.

Proof:
From the previous lemma, we know that at the end of 4Vno/15in steps of the algo-
rithm,

1
Pr[Randomly picked node is at depth > 6 log n] < 4.

Let,
Ei = (Node i is at depth > 6 logn} i = 1,2,...,4V/nIogn

Each of the 4Vn log n nodes is equally likely to get picked. Therefore,

1 4 1
4 1 /n log n <i=l

Then,

E Pr[Ei]< < n2'
t=l

Since all the probabilities are non-negative quantities,

Pr[Ei] < - i.

This implies that

Pr[AIl nodes are at depth < 6 log n] 1 -
1

This also implies that

E[Depth of any node] < (1 - 12)6 log n +_o
1<

T2 4 J'n ~Iog n < 7 log n.

These results characterizing the number of nodes along the shortest path will be
used later on in the analysis of the O-D shortest path algorithm.

15

III

4 The Bidirectional O-D Shortest Path Algorithm

Our algorithm is an extension of the composite algorithm described in the previous
section. The algorithm may be summarized as follows:

For each node i E O, let Si(k) denote the k-stage source tree rooted at node i
and for each node j E D, let Ti(k) denote the k-stage sink tree rooted at node j.

begin
Execute 4/n lo gni steps of Dijkstra's algorithm from all i E O and j E D;
for each i E O and for each j E D, d(i,j) = min((A(Si, Tj), A2(Si,Tj));

end
We show in lemma 13 that at the end of 4V/n ii0gn steps of Dijkstra's algorithm

from each of the source and sink nodes, all source trees and sink trees intersect
with very high probability. (We say that source tree Si and sink tree Tj intersect
if Si n Tj # 0). This algorithm succeeds with high probability and verifies if it has
succeeded. If we determine that the algorithm has failed, we then execute the single
souce single sink shortest path algorithm nD times.

Although the summary description of our algorithm is elementary, there are
several implementation details that we need to focus on. In addition, we need to
show that the analysis of the running time is accurate. The fact that the algorithm
obtains optimal O-D shortest paths follows directly from Lemma 1. The data struc-
ture for the implementation of the algorithm is similar to the implementation in
the single source-single sink case. The running time of the composite algorithm for
the O-D shortest path problem where the arcs are sorted in increasing length from
every node are analysed as follows:

T = Running time of composite algorithm
T = Running time of main algorithm
T2 = Running time of backup algorithm
p = Probability of success of main algorithm

E[T] = p E[T1] + (1- p) E[T2]

< 0 ((1- (nDnoglog n + nonlog2n) +--nn log n

= O(nDV/inlog n + nonD log 2 n)

If the arcs are not sorted then the analysis of the runing time is as follows:

16

T = Running time of composite algorithm
T = Running time of main algorithm
T2 = Running time of backup algorithm
p = Probability of success of main algorithm

E[T] = p E[TI] + (1 - p) E[T 2]

<((1- n(nA + nonD log2 n) + -nDn-
- n n n

= (nDogZ + nonD log 2 n)

4.1 Analysis of Phase 1

We will first show that the source tree and sink tree intersect with high probability
at that end of Phase 1. Since the running time of the algorithm is proportional to
the number of arcs examined by the algorithm, we show that the number of external
and internal arcs examined during the first phase of the algorithm is O(log n). This
gives a bound on the expected running time of the first phase of the algorithm.

Lemma 13 The probability that all the source trees and all the sink trees intersect if
we execute 4n i gn steps of Dijkstra's algorithm from every source and sink node,
is greater than 1- -.

Proof:
Let us first consider a fixed source node i and a fixed sink node j. Let us con-
sider source tree Si and sink tree Tj. Let us define the Eij to be the event that
source tree Si and sink tree Tj do not intersect at the end of 4Vnlogn steps. From
lemma 6, we know that

1
Pr[Efj] <

This is true for any source tree sink tree pair. Using the fact that the probability of
the union of events is less than the sum of the probability of the individual events
we obtain,

Pr[Ui Uj Eij] < Pr[Eii < nonD2 1

This implies that

1
Pr [All source trees and sink trees intersect] > 1 .

17

0

Recall that active arcs were defined to be the shortest 20 log n arcs out of every
node.

Lemma 14 The running time to determine the active arcs is O(min(m, nDV/nogj n m/n)).

Proof:
We can easily determine the active arcs by scanning the arc list in O(m) time.
Alternatively, we determine the active arcs only for the nodes that we label during
the execution of Dijkstra's algorithm. The total number of nodes labelled thus is
O(nDo/ loji-). For each node the average time taken to determine the active arcs
is 0(') because m is the average degree of a node.

0

Lemma 15 The total time taken to execute Dijkstra's algorithm as restricted to
active arcs from all the source and sink nodes is O(nDV/nlog nlog n).

Proof:
We execute 4 /nloi steps of Dijkstra's algorithm from every sink and source node.
Each Find Min operation takes log n steps using a priority queue implementation.
Since we have assumed that nD > no the result follows.

o

4.2 Analysis of Phase 2

In this section we will analyse the running time of the second phase of the algorithm.
This phase involves the patching up operation. We have to look at the cross arcs,
i.e., arcs directed from a source tree into a sink tree. Each source tree and sink tree
has 4V/nloign nodes. There are nonDn log n cross arcs in total since G is assumed
to be fully dense. Therefore scanning all of the cross arcs is not an efficient method
of implementing this step. We restrict attention to the shortest 20 log n arcs out of
every node in the source tree and use these arcs only for patching up. We call this set
of arcs active . We will show that the time to carry out patching is O(nonD log 2 n).
In running the 0 - D shortest path algorithm, we maintain for each source tree Si
and for each sink tree Tj a list of nodes on Si and Tj. Concurrently, we maintain a
doubly linked list of nodes in USi and another doubly linked list for nodes in UTj.
For each node j on this list we maintain a list of all source trees and sink trees
containing node j. These lists can be maintained in 0(1) additional time per tree
operation. Thus maintaining these lists is not a bottleneck.

We would also maintain an no x nD matrix L 1, where the value Ll(i,j) is the
best current bound for Al(Si,Ti). (Recall the definitions of Al and A2 given in
Section 3.1). Initially, each entry of L 1 is set to oo. Whenever a node v is added to
the source tree for node i, then for each sink tree Tj containing node v, we let

18

III

Ll(i,j) = rnin(Ll(i,j),d(i, v) + d(v,j)).

Similarly we maintain an no x noD matrix L 2, where the value L 2(i,j) is the current
best value of A2 (Si, Tj). Suppose a node v is added to the source tree for node i,
then for each active arc (v, w) among the best 20 log n arcs from node v and for each
sink tree Tj containing w

L 2(i, j) = min(L2(i, j), d(i, v) + c,, + d(w, j)).

We also maintain a matrix L whose entry L(i,j) is

min(Ll(i, j), L 2(i, j)).

This array is therefore updated whenever either L1 or L2 is updated. It is easy
to show that the algorithm terminates with L(i, j) being the shortest path length
between source node i and sink node j as restricted to the active arcs if source
tree Si and sink tree Tj intersect. We now bound the expected number of steps to
maintain L 1 and L 2.

To update Ll(i,j) requires 0(1) steps each time Si intersects Tj. Note that
in the single source single sink case, we terminate the execution of Phase 1 of the
algorithm when the source tree intersects with the sink tree. In the O-D shortest
path case, we continue the execution of the first phase for 4Vlogn steps from each
source and sink tree. This has to be done because we want all source trees and sink
trees to intersect with high probability. Therefore a source tree and sink tree can
intersect a multiple number of times.

In the next theorem we will bound the expected number of times Si and Tj
intersect. For proving this theorem we define the following terms. For a fixed sink
tree Tj, and for any given node v in the sink tree, the closure of v denoted as CL(v)
is defined as union of v and all the nodes that are in the path in Tj from v to j.
Given a set W of nodes in Tj, its closure, CL(W) is defined as the union of the
closure of the nodes in W.

Theorem 16 For a source tree Si and a sink tree Tj,

E[lS, n Til] < E[ICL(Si n Tj)l] = O(log2 n).

Proof:
The inequality is trivially true since the closure of a set subsumes the set itself.
We now prove that

ICL(Si n Tj)l = O(log 2 n).

Let us assume that we have executed 4vn/gi-Tn steps of Dijkstra's algorithm from
the sink node j. We are executing Dijkstra's steps from the source node and we are

19

at stage k + 1 of the source tree. We first observe by Lemma 12 that the length
of any path in the sink tree is less than 6 log n with high probability and that the
expected length of any path is less than 7 log n. Let us assume that the source tree
has intersected with the sink tree at some node v at this stage. Let u be the node
adjacent to v along the path from v to the sink node along Tj. The node added to
the Si at stage k + 1 could be one of the following three cases:

1. v E CL(Si n Tj)

2. v Tj - CL(Si n Tj)

3. vEV-(SiUT)

If the next node v E CL(Si n Tj), then adding it to Si, does not increase the
number of nodes in CL (SinTj). If the next node is wz E Tj-u, then it can potentially
increase the expected number of nodes in the closure by 7 log n by lemma 12. If the
next node added to the source tree is some node that is not on the sink tree, then
the cardinality of the closure does not increase. Therefore, the only case in which
the closure of the set increases is when the next node added to the source tree is a
node in the sink tree but not in the closure of Si n Tj. Let Ek+l be the event that
the node added to the source tree at stage k + 1 belongs to Tj - CL(Si n Tj). In
order to upper bound the probability of Ek+l, let us first consider the case that all
the arcs in the source tree are S-enabled. In this case

Number of arcs from Si to Tj = 4kVIn log n
Numberofarcsfrom S toV-(Si U Tj) = k(n - k - 4x/ log)

This, implies that,

Pr[Ek+l] < 8 n-1 gn
n-k - n'

Let Ik+l represent the increase in the cardinality of the closure of Si n Tj at stage
k + 1 of the source tree. Then,

E[Ik] < 8 (7 log n).
n

Therefore the expected increase in the cardinality of the closure over all the 4nlog'in
stages of the source tree is

Z E[It < n (7 log n)(4/nn) = O(log 2 n).
=This gives an upper bound on the cardinality of S

This gives an upper bound on the cardinality of Si n Tj.

20

]II

Since the number of potential updates to Ll(i, j) is equal to the number of times
Si and Tj intersect, the previous theorem implies that the number of potential
updates to Ll(i,j) is O(log 2 n). Therefore the total number of updates for all
source-sink pairs is O(nonD log2 n). The expected number of potential updates to
L 2(i,j) is the expected number of active arcs between Si - Tj and Tj - Si. In the
next theorem we shall bound the expected number of potential updates to L 2(i, j).

Theorem 17 The expected number of potential updates to L2 is O(log2 n).

Proof:

We first consider a particular source tree Si and a sink tree Tj. We consider
these trees after executing 4/nlog n steps of Dijkstra's algorithm from the source
tree and 4VT'nlog n steps of Dijkstra's algorithm from the sink tree. Consider a node
v in Si - Tj. There are n - 1 arcs directed out of this node. These arcs can be
classified into 4 types:

1. Arcs from v to Si.

2. Arcs from v to Tj - Si that are S-enabled.

3. Arcs from v to Tj - Si that are T-enabled.

4. Arcs from v to V - (Si U Tj).

Let us call these sets A, B, C and D respectively. There are 4v/rnlog;n arcs in A and
therefore there are n - 1 - 4V/iinlog arcs in B U C U D. We want to estimate the
number of active arcs in B U C, since this gives the number of active arcs between
node v and Tj - Si. The arcs in sets B and C are either S-enabled or T-enabled. By
the definitions given in section 3.1, we see that S-enabled arcs are more likely to be
active than T-enabled arcs i.e., the arcs in B U D are more likely to be active arcs
than arcs in C. All the arcs in D are S-enabled. We have to pick at least 20 log n
arcs out of E = B U C U D. We assume that all the arcs in B U C U D are equally
likely to be active in order to get an upper bound on the expected number of active
arcs in B U C. Let p denote the probability that an arc in B U C is active. Then,

20 logn 20 log n)
P < n-1- 4 (1gn= n)

There are at most 4/in log n nodes in B U C, therefore

Expected number of active arcs in B < 4 ig 0 n(-)

= o V/7log n
n

21

III

Therefore for any node v in Si - Tj the number of active arcs to Ti - S is

0("l °on). There are 4Vogn nodes in the source tree. Therefore the total
number of potential updates to L2 is

O(Vn log n log n)O (log n) = O(log 2 n).
n

0
Hence the total number of updates for all source-sink pairs is O(nonD log2 n).
We now show quote a theorem of Grimmett and Frieze [6] that shows that even

though we considered only the active arcs, the probability that the shortest paths
computed is wrong is O(-). For this lemma we assume that that the arcs lengths
are independent identically distributed random variables with a cumulative density
function F(z). (The exponential distribution satisfies this assumption). Let

d* = max(d(i,j): i E O,j E D).

Let
M = min(c/j: (i,j) is not active).

Theorem 18 (Grimmett and Frieze [6]) If F(x) is differentiable at 0 and F'(O)>
0 then

Pr [d* > M] = 0(n)
n

Proof:

For each node i scanned by the algorithm, let i = min(ci : (i,j)is inactive).
To verify the optimality of the algorithm it suffices to check if 7i > d* for each i.
If yi < L for some i, then one can solve no single source shortest path problems to
solve the O-D shortest path problem. The expected running time is O(nom) which
is less than the running time of all the other steps.

Therefore we see that this algorithm has a running time of O(nonD log2 n +
min(nDni6gn m/n, m + nDV/nlog n log n)). At the end of the execution of the
algorithm, if some L(i,j) is infinite (which occurs with probability O(s)) or if the
test given in Lemma 9 fails (which occurs with probability O(k)) we run no single
source problems. The time for the composite algorithm is still O(nonDlog2 n +
min(nDV logn m/n, m + nDvonlog n ; log n)).

We extend the same type of analysis to some other non-exponential distributions
in the following section. This completes the running time analysis of the O-D short-
est path problem on complete graphs with i.i.d exponentially distributed weights.

5 Extension to Non-Exponential Distributions

The results of the previous sections can be extended to non-exponential random
variables using the concept of cb-boundedness as in Luby and Ragde [8]. The graph
is still assumed to be complete.

22

5.1 cb-Bounded Random Variables

Let f(z) be the probability density function of a random variable and let its cu-
mulative density function be F(x). We define the hazard rate of this probability
density function as follows:

a(x) f()
1- F(z)'

This is just the probability density that the random variable takes on the value in
the interval [, z + 6z] as 6z approaches 0, given that the random variable is at least
as large as z.

Definition 1 A distribution function is cb-bounded on [0, 6] if

() cb Vx,y F(x),F(y) < 6.

We also say that a random variable is cb-bounded on [0, z] if its distribution
function is cb-bounded on [0, z]. We omit the reference to [0,6] and say that a
random variable is cb-bounded if it is cb-bounded on [0,1]. In the next two lemmas
we give examples of cb-bounded random variables.

Lemma 19 The exponential random variable with parameter A is 1-bounded on
[0, 1].

Proof:
In the case of the exponential distribution with parameter A,

f(x) = Ae- A

and
F(z) = 1- e-' .

Therefore,
f(z)

7(z)= 1-F(z)

and
7() < 1 Vz,y F(z),F(y) < 1.

(y)-

Lemma 20 The uniformly distributed random variable between 0 and I is 2-bounded
on [, 1].

23

III

Proof:
In the case of the uniform random variable wbetween 0 and 1,

f(z)=l zE[O,1]

and
F(z) = E [0,1].

Therefore,
() 1 V z

- 1- F(z) 1- x

and
I(z) 1-y 1 < 1X < 2 Vx, y F(x),F(y) <

7(Y) 1-z1- Ix

For the rest of the section we consider random variables that are cb-bounded (on
[0,1]) . We use the property of cb-boundedness to get bounds on the probability of
certain events that are used in the running time analysis of the O-D shortest path
algorithm. We then show that the expected running time of the O-D shortest path
algorithm is the same as in the exponential case if the arcs length are chosen from a
distribution that is cb-bounded. We give the following preliminary results towards
this end.

Each step of the algorithm involves choosing one of the arcs out of a set of
enabled arcs. In the next lemma we bound the probability that a particular arc is
chosen in terms of the probability of any other arc being chosen.

Lemma 21 (Luby and Ragde) Let the arc lengths be cb-bounded random vari-
ables. Let E = {el,e 2,...,ek} be the set of active arcs. For each i, let Pi be the
probability that arc ei is revealed first.

Pi < CbPj V i,j.

This lemma is proved in Luby and Ragde. In the case of the exponential distri-
bution, all the S-enabled arcs are equally likely to be chosen. The previous lemma
indicates that in the case of cb-bounded random variables the probability of an arc
being revealed is within a constant factor of any other arc being revealed. Using this
lemma, we can obtain lower and upper bounds on the probability of the selected arc
being in a particular subset of the active arcs.

Lemma 22 Let F denote the set of S-enabled arcs, and let E' denote some specified
subset of the arcs of E. Let k = IEI and let k' = IE'l. If the arc lengths are cb bounded
then

C k < P (E) < Cb k

24

Proof:
Let Pi be the probability that arc ei is picked first. Let Pm,, = maxjEE Pj and
P,min = miniEE Pj. By Lemma 20 and since jEE Pi = 1, P: < t and P,i, >
-'. Therefore,

P(E') = P, P < P < k
iCEjEE k

P(E') = > Pj > k'Pm. > k.
iEE

Lemma 23 The probability that the source tree and the sink tree intersect after
4/cbnl log n steps is greater than 1.

Proof:
Let us assume that Phase 1 of the algorithm is executed from the source node
and the sink node for 4V/cbn log n steps. The proof is identical to the exponential
case except that in equation 1 in lemma 6 the probability that a cross arc being
chosen at stage k is greater than I.2c Let C be the event that the source tree and
the sink tree do not intersect in 4Vcbn log ni steps. Then,

Pr[C] II (1-bi)
2clg bi

< e 2/ .l

- (ec~ log n)
< e 4%b

< n4

0

The proof of the next three lemmas is similar to the exponential case and there-
fore we only give a sketch of the proof.

Lemma 24 Let the arc lengths be cb-bounded random-varables. Let Hk(t) be the
probability that a randomly picked node is at level t when we are at stage k of the
tree. Then

k- cb1
Hk(t) _ k_ l (t) + b H_ (t-).

Proof:
The proof is the same as in lemma 8 except that in equation 8 we replace the
exact probability by a bound given by the c bounded random variable.

13

25

Lemma 25 Let
oo

O(Hk) E ZtHt(k).
t=O

Then '(Hk) _ I n;Il (cbZ + i) if the arc lengths are cb-bounded random variables.

Proof:
Multiply both sides of the equation by Zk and sum over k as in lemma 9 to get
the result.

Lemma 26 Let the arc lengths be Cb bounded random variables. Let E be the event
that at the end of 4Vcbn log n steps, a randomly picked node is at a distance greater
than (3cb + 3) log n distance from the source. Then

Pr[E] < 3.

Proof:
We replace the constant 6 in equation 2 in lemma 11 to get the result . 0

Lemma 27 For any sink tree,

1
Pr[All nodes are at a distance < (3Cb + 3)log n] 1 -

Proof:
Follows directly from the previous lemma. O

Theorem 28 The expected number of potential updates to Ll(i,j) is O(log2 n) and
the expected number of potential updates to L 2(i, j) is O(log 2 n).

Proof:
Since the length of the paths is O(log n) with high probability, the proof of this
lemma is the same as lemmas 16 and 17.

Therefore, all the results of the previous section carry over to the case where the
random variables are independent identically distributed random variables that are
cb-bounded.

Till this point we have assumed that the length of the arcs are independent,
identically distributed random variables which are cb-bounded on [0,1]. In the next
two lemmas we shall see that since we examine only short arcs during the execution
of the algorithm, it is sufficient if the random variable is cb-bounded in a region close

26

Ill

to the origin. The idea is the following: Since we examine only the shortest 20 log n
arcs out of every node, the Distribution function value corresponding to the length
of all the arcs that are active is close to the origin. In the next two lemmas we show
that with high probability we examine arcs whose length I has the property that

F(l) < 35 log n
n

Lemma 29 Let Gp, be a random graph on n nodes with the probability of an arc
being present equals p. Ifp > 3l5ogn, there are more than 20 log n arcs entering and
leaving every node with probability not less than 1- .

Proof:
The probability that any arc (i, j) is in the graph is 35 logn. Consider a fixed node v

n
in the graph. Define an indicator random variable Xi that takes on value one with
probability p = 351of. There are n - 1 such indicator random variables at node v.
Let X = __-~' Xi. We define a new random variable

Yi = Z - x ' i = 1 ... ,(n- 1) Z > 1.

Therefore the
PE[Yi] = (1 - p) + i = 1,..,(n - 1).

By a variant of the Chernoff bound (lemma 10) we can show that

Pr[X < a] < EZ-X]Z'

= (1-p+G)Za.

We will determine the probability that there are less than 20 log n arcs out of node
v. We set p = 35 log and Z = e in the previous equation.

Pr[X < 201ogn] < (-p+ e20lo g n

< 1- 35°gn(1 - 1) 20

< e-35(1-')On(n1-)n20

< e35(1-)lonn2o

1
< 2'

This implies that if p = 35 , then all nodes have more than 20log n arcs with
probability greater than 1 -.

O

We remark that l35o, is needed for the proof, although a tighter bound is
possible.

27

Definition 2 Let a-short arcs be those arcs whose length has the following property:

F(l) < 35 log n

Lemma 30 The algorithm examines only a-short arcs with probability greater than
1_
n

Proof:
We showed in lemma 3 that the number of arcs examined in Phase 1 and Phase
2 at every node is 20 log n. We know from lemma 29 that with high probability that
these arcs are a-short arcs.

o

Lemma 31 Lemmas 24,25,26, 27 and theorem 28 still hold if the distribution is
cb-bounded on [0, 35log]

Proof:
By lemma 30, the only arcs examined are a-short arcs, we need cb-boundedness
for these arcs only.

0

6 Extension to Sparse Random Graphs

In this section we will consider sparse random graphs in which the average degree
d(n) of node n is not less than 35 log n. Let us consider random graphs where the
average degree of a node is d(n).

Lemma 32 The results of the previous section holds if the distribution is cb-bounded

on [0, I].

Proof:

Let us consider random graphs where the average degree of node n is d(n). Let
the length of the arc be chosen from a probability density function f(x). At every arc
with probability (n) we choose a value from this probability density function andn-I

with probability 1 - we choose infinity. Let us call this modified probability
density function f(z) with the corresponding distribution function F'(z). The
average number of finite arcs out of any given node is d(n). This is the average
degree of the node of the sparse random graph. Since the algorithm looks at only
20 log n arcs out of every node, if we can show that there are 20 log n finite arcs out
of every node with very high probability, we will be done. Further, the modified
probability density function also satisfies the conditions of lemma 3 if the original

28

p.d.f did and therefore the testing can be done in 0(1) time. From lemma 29 we
know that if d(n) > 35 log n we have more than 20 log n arcs out of every node with
high probability.

From lemma 29, we know that the algorithm examines only a-short arcs. This
applies to the distribution function F'(x). In this case we define the a-short arcs to
be arcs that have

F'(l) < 35 log n
n

If this is the case then we transform this condition to one that involves F(I). In the
initial section of the modified distribution function,

F'(l) = F(l) d(n)
n-l

Therefore,

F() d(n) < 35 log n
n-1 n

F(l) • 35 log n
d(n)

Therefore it is sufficient if the random variables are cb-bounded in [0, ox] .

7 Parallel Algorithm

In this section, we will give a parallel implementation of the O-D shortest path
algorithm developed in Sections 1 through 6. We will first give a quick review of
the different steps of the algorithm and then show how to implement the steps in
parallel. We shall then do a running time analysis of the parallel algorithm. The
different steps of the O-D shortest path algorithm are the following:

* For each source node determine the closest 4V/1 og ni nodes.

* For each sink node determine the closest 4V/nIog n nodes.

* Patching up phase.

* Verification phase.

* Backup algorithm if necessary.

The verification phase is trivial and can be done in O(1) time since it is merely
a comparison of two numbers. The backup algorithm is to run Dijkstra's algorithm
in parallel in O(n log n) time and contributes only O(log n) to the expected running
time since the backup algorithm is run with probability O(1). Therefore, the only
steps that need detailed analysis are the tree growing and the patching up phases.
In the next two sections we will analyse these two steps in more detail.

29

II

7.1 Tree Generation

The generation of the source tree and the sink tree are similar. We shall give a
generic procedure for generating a shortest path tree. This procedure can be used
to generate the source trees and the sink trees.

Consider a root node s. Let fk(j) be the distance from the root node to node j
using at most k arcs. Let f(j) be the shortest path distance from s to j. It is well
known that fk(j) satisfies the following recursion:

fk(j) = min{fk-(j), min fk-(l) + Clj}.
IEV

The dynamic programming recursion that we use to determine the shortest path
tree is the following:

dk(j) = min(d k-(j), min dk-(I) + clj}.
IEB,,k- 1

where Bk is the smallest 4V/nogn values of dk(j).
We set the value of do(j) to infinity initially for all nodes. The previous equation

states that the shortest path between the source node and node j having at most k
arcs is the minimum of the shortest path having at most k - 1 arcs and the shortest
path having at most k - 1 arcs to some node I in Bk-l with an extra arc (l,j) from
that node to j. We define

gk = maxdk (j).
jEBk

Therefore gk is the maximum distance to a node in Bk.
We execute this recursion till for some k , the set Bk is the same as set Bk-1

and for all nodes j E Bk,
dk-l(j) = dk(j).

The set Bk does not change subsequently. In the next theorem we prove that this
recursion indeed determines the closest 4V/n log n nodes to the source node.

Theorem 33 Let dk(j), fk(j) and Bk be defined as above. Then

dk(j) = fk(j) j E Bk

and
fk(j) > gk j Bk

Further let k' be the depth of the shortest path tree. Then

dk'(j) = f(j) j E Bk,.

30

Proof.
Let s be the root node from which we want to determine the closest 4nTogni
nodes. We will prove that this recursion works by induction on k. Set Bo = {s}. In
step 1 we take the closest 4Vn lo-gi nodes to the root node using exactly one arc.
Therefore, when k = 1

d(j) = f(j) jE B1

and fl(j) > g j B1. Let us assume that the recursion is true for some k.
Therefore,

dk(j) = fk(j) j E Bk

and
fk(j) > k j Bk.

We will prove that the statements hold for k+ 1. First we will prove that for v E Bk+l
the following statement is true:

dk+l(v) = fk+l(V).

It can be proved easily by induction that dk(j) > fk(j) for all k and j. In other
words, the dk(j) is an upper bound bound on the value fk(j). We will prove that
for v E Bk+,

dk+l(v) < fk+1(v).

For proving this we use the induction hypothesis along with the following (obvious)
results:

gk > d(j) j E Bk.

gk > 9k+1 Vk.

gk < dk(j) j Bk.

We will split the proof into two cases and prove each case separately.
CASE 1. Let us assume that fk+l(v) = fk(v).
If v E Bk then

dk+1(v) < dk(v) = fk(v) = fk+l(v).

If v Bk then

dk+l(V) < gk+i < gk < fk(v) = fk+l(v).

CASE 2. Let fk+l(v) = fk(i) + ci.
If i E Bk then

dk+l(v) < dk(i) + Civ = fk(i) + Civ = fk+l(v)

If i Bk then

dk+l(v) < gk+l < gk < fk(i) < fk(i) + Cj = fk+l(V).

31

This therefore proves the first part of the induction hypothesis.
We will now prove the second part of the induction hypothesis, i.e.,

fk+(V) > 9k+1 V ¢ Bk+l.

We will split the proof into two cases and prove each case separately as in the last
statement.

CASE 1. For some v 0 Bk+l, let us assume that fk+l(v) = fk(v).
If v E Bk then

fk+l(v)= fk(v) = dk(v) 2 dk+l(v) 2 gk+i.

If v ¢ Bk then
fk+ () = fk(v) > gk gk+1.

CASE 2. For some v Bk+l, let us assume that fk+l(v) = fk(i) + c,,.
If i E Bk then

fk+l(v) = dk+l(v) > gk+l.

If i ¢ Bk then
fk+l(v) > fk (i) > gk > gk+l.

Therefore the algorithm determines the shortest 4Vnlog n nodes.
Note that

fk'(v) = f(v) v E Bk'.

By the induction proved earlier

fk'(v)= dk'(v) v E Bk'.

Therefore Bk, = Bk+l = ... = Bn and we are done.

Since the shortest path to the closest 4/nlo2g - 1 nodes has at most 4n-lo1 -
arcs along the shortest path, we will be done in 4/ iogn - 1 steps. Note that if
the set Bk does not change over one complete iteration, i.e., Bk = Bk+l and for all
j E Bk the distance labels dk(j) = dk+l(j) then we can stop the execution of the
algorithm as neither the set nor the distance labels change beyond this step. This
will be the termination criterion.

This algorithm in the worst case takes O(V Iog n) iterations to determine the
closest 4/n1gn nodes to the root node. In the next lemma we show that on the
average it takes O(log n) iterations before termination.

Lemma 34 The ezpected number of iterations to determine the closest 4/nlo/gn
nodes is O(log n).

32

Proof:
Note that the number of steps that we run the dynamic programming recursion
is the depth of the shortest path tree by the previous lemma. From lemma 11 we
know that the depth of the shortest path tree is less than 6 logn with probabil-
ity greater than 1- r. Therefore the expected depth of the tree O(log n), and
the expected number of iterations to run the dynamic programming algorithm to
termination in O(log n).

o
Another modification to the tree generation procedure which does not improve

the time bound but reduces the expected number of processors is the following: Since
we know that only the shortest 20 log n arcs out of every node is in the shortest path
tree with high probability, we consider only the shortest 20log n arcs out of every
node during the execution of the algorithm. We first consider the case that the arcs
are given in sorted order. We may select these arcs and assign 20 log n processors to
the first 20 log n arcs per node in O(log n) time. To evaluate cij + dk-l(j) takes 0(1)
time for the processor assigned to arc (i, j). To compute all the minimum in parallel
takes O(log n) time and 80V nlTog nlog n processors since there are 4VnGlogn nodes
in Bk-l and each node has 20 log n arcs emanating from it. We now consider the case
in which the arcs are not sorted. We may select the 20 log n shortest arcs from each
node in O(log n) time using d = m/n processors per node on average. Therefore, the
running time in both these cases is O(log n) per iteration and the expected number
of iterations is O(log n) giving an overall running time of O(log2 n). The expected
number of processors in the first case is O(v/nogin log n) and in the second case is
0 (vn -n)

7.2 Patching up

We shall see how to implement the patching up phase efficiently in parallel. Recall
that in the sequential algorithm we kept a list of all sink trees and source trees
containing some node u. These lists can also be formed in parallel in O(log n) time
and with (nDoniogn) processors. Let us say that for some node u these lists
are LT(u) and Ls(u) respectively. The lists will lead to ILs(u)l x ILT(u) updates
of L 1, one for each source tree and sink tree pair containing node u. We assign
ILs(u)l x ILT(u) processors to make these updates. The expected total number of
processors needed is the expected total number of intersections which, by lemma
16 is O(nonD log 2 n). These assignments can be made in parallel in O(log n) steps.
Once the assignments are made, the updates to L1 can be done in O(logn) time.
Thus the total time to update L 1 is O(log n).

The updates to L 2 are carried out in a similar fashion. We first determine the
potential cross arcs. For each node u in some source tree we scan the 20 log n shortest
arcs out of u and determine all arcs (u, v) such that v is in some sink tree. Once
the cross arcs have been determined, for each cross arc (u, v) we let Ls(u) be the
number of source trees containing u and LT(V) be the set of sink trees containing v.

33

We then assign ILs(u) x LT(v) processors to the cross arc (u, v) to perform the
updates to L 2. The assignment of the processors takes O(log n) time. By lemma 17
we know that the expected number of processors required is O(nonD log 2 n). The
total time to upate L 2 is O(log n).

Therefore from the analysis of the algorithm we see that the expected running
time of the algorithm is O(log2 n) and the expected number of processors required is
O(nDV/n lo-gn log n + nonD log2 n) if the arcs are in sorted order and the expected
number of processors is O(nD Vn loTogn + nonD log2 n) if the arcs are not in sorted
order.

8 Conclusion

We have developed serial and parallel algorithms for the O-D shortest path problem
and analysed its average case behavior. We show that the average running time of
these algorithms on random graph models are sub-linear for a wide range of input
values. These algorithms are easy to implement and should perform well in practice.

9 Acknowledgements

Support from Air Force grant AFOR-88-0088, National Science Foundation grant
DDM-8921835, and a grant from UPS is gratefully acknowledged. The first author
also wishes to thank Hanan Luss and Beth Munson for all the support during the
writing of the paper.

References

[1] Coppersmith, D., and Winograd, S., "Matrix Multiplications via Arithmetic
Progressions", Proceedings of the Ninteenth Annual ACM Symposium on The-
ory of Computing, 1987, pp. 1-6

[2] Deo, N., and Pang, C.,"Shortest-Path Algorithms: Taxonomy and Annota-
tion", Networks 14, 1984, pp. 275-323

[3] Erdos, P., and Renyi, A., "On the strength of Connectedness of a Random
Graph", Acta Math. Acad. Sci. Hungar. 12, 1961, pp. 261-267

[4] Fredman, M.L., and Tarjan, R.E., "Fibonacci Heaps and its uses in Improved
Network Algorithms", Journal of the ACM 34(3), 1987, pp. 596-615.

[5] Fredrickson, G.N., "Fast Algorithms for Shortest Path in Planar Graphs, with
Applications", SIAM J. 16, 1987, pp. 1004-1022

34

I11

[6] Frieze, A., and Grimmett, G., "The Shortest-Path Problem for Graphs with
Random Arc-lengths", Discrete Applied Math. 10, 1985, pp. 57-77

[7] Hassin, R., and Zemel, E., "On Shortest Paths in Graphs with Random
Weights", Math. of Operations Research 10, 1985, pp. 557-564

[8] Luby, M. and Ragde, P., "A Bidirectional Shortest-Path Algorithm with Good
Average-Case Behavior",Algorithmica 4, 1989, pp. 551-567

[9] Sedgwick, R. and Vitter, J., "Shortest Path in Euclidean Graphs",Algorithmica
1, 1986, pp. 31-48

[10] Steebrink, P.A, "Optimization of Transport Network", John Wiley and Sons,
1973

[11] Van Vliet, D., "Improved Shortest Path Algorithms For Transport Networks",
Transportation Research 12, 1978, pp. 7-20

35

