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Abstract

This paper studies the relationship between the hub-and-spoke design in air trans-

portation and the phenomenon of landing congestion in a transient environment. We

model the weather, the principal source of uncertainty, as a Markov or semi-Markov

process, and we treat arrivals as time-varying but deterministic. We develop a recursive

algorithm for predicting transient queueing delays. To test our model, we conduct a

case study using traffic and capacity data for Dallas-Fort Worth International Airport.

Our results show that the model's estimates are reasonable, though substantial data

difficulties make thorough validation difficult. We explore in depth two policy ques-

tions: schedule interference between the two principal carriers, and the likely effects of

demand smoothing policies on queueing delays.

1 Introduction

Among the most noticeable innovations of the 1980's within the U.S. airline industry was

the development of extensive hub-and-spoke networks by the major carriers. These net-

works allow carriers to serve demands from numerous origin-destination (OD) markets with

relatively few aircraft and flight legs. As a result, airlines may realize certain economies

of scope and scale, achieve higher average load factors, and offer consumers more frequent
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flights [18,19]. But while these economic advantages are widely acknowledged, consumer

dissatisfaction with certain aspects of the design is on the rise. An article in The New

York Times Magazine recently reported that the fraction of Americans dissatisfied with the

deregulation of the industry has risen from 17 percent to 36 percent over the past decade.

According to the legal director of the Aviation Consumer Action Committee, delay is the

principal reason for this rise in dissatisfaction [21]. In 1986 ground delays at domestic air-

ports averaged 2000 hours per day, the equivalent of grounding the entire fleet of Delta

Airlines at that time (250 aircraft) for one day [6]. In 1990, 21 airports in the U.S. exceeded

20, 000 hours of delay, with 12 more projected to exceed this total by 1997 [26].

While much of the growth in delays has come about because of demand increases over

the last decade, the development of hub-and-spoke networks has also played a role. Hubs

are congested because they experience higher traffic levels 'than other airports. In fact,

among the 11 airports with the highest number of reported delays in 1990, 8 were hubs:

Chicago (O'Hare), Dallas-Fort Worth, Atlanta (Hartsfield), Denver (Stapleton), Newark,

Washington (Dulles), Detroit, and San Francisco [26]. Moreover, hub-and-spoke systems

tend to concentrate major airport operations (landings and takeoffs) into short periods of

time, placing further strain on capacity. Because the hub is the center of operations for a

carrier, large delays can have serious adverse effects on system operations. Understanding

and predicting these delays is a matter of importance to carriers, regulators, air traffic

controllers, and passengers.

Although the general queueing theory literature is vast, the number of works dealing

with the transient behavior of queueing systems is surprisingly small, mainly because of

the difficulty of obtaining analytical results for these kinds of problems. Most approaches

model service and arrival processes as phase-type and attempt to solve the resulting forward

Kolmogorov equations. The various methods differ mostly in the approach they take to

solving these equations.

The mast direct approach is numerical solution. Gross and Harris [10] give a thorough

discussion of the competing methods (see especially their Section 7.3.2). Most of these

become computationally expensive because of the large state spaces needed to make the

system Markovian. A second approach developed in response to this difficulty is that of

uniformization (see Grassmann [9] and Gross and Harris [10]). A third solution method due

to Bertsimas and Nakazato [3,4] takes transforms of the Kolmogorov equations and then

2

III



inverts these numerically to obtain the waiting time and queue length distributions.

Diffusion methods are alternative approximate models which may be used for transient

analysis - see Iglehart and Whitt [12,13], Kobayashi [17], Gelenbe and Mitrani [7] and

Heyman and Sobel [11].

Research demonstrating the inadequacy of steady state analysis for certain queueing

systems is foundational to this paper. Odoni and Roth [22,24] investigate the difference

between transient and steady state queueing systems of phase-type. They use numerical

methods to solve the Kolmogorov equations for a variety of these systems and compare

the expected queue lengths with steady state values. Their results indicate that substantial

differences persist for long enough periods to raise serious doubts about the validity of steady

state approaches in airport and other applications.

Airport capacity and queueing studies have a history of over 30 years. The earliest work

dates back to 1960 with the work of Blumstein [5] investigating the determinants of airport

capacity. Newell [20] provides a thorough discussion of how airport geometry, flight rules,

and weather conditions determine airport capacities and includes a discussion of how these

have developed over the years. He claims, as we do, that standard queueing approaches are

inadequate for airport queueing systems, and he argues instead for a deterministic approach.

Two recent studies concern simulation approaches for estimating aircraft queueing delay.

Abundo [1] considers the problem of queueing for landing at a single airport. She employs

an M(t)/Ek(t)/1l model for the landing queue. She solves this model numerically in com-

bination with a weather capacity profile obtained from simulation. St. George [25] studies

the issue of delay at hub airports using a simple simulation model. He treats the queueing

processes for landings and takeoffs deterministically at several alternative levels of airport

capacity, using data from 12 U.S. airports in 1977. The work does not address the issue of

capacity slow-down due to poor weather conditions, focusing instead on comparing airport

schedules for a given level of capacity.

The main contribution of the present work is a direct modeling of weather conditions,

the principal source of uncertainty in airport capacity, and the development of an exact,

efficient algorithm to predict congestion in airports. We have applied our methods to an

airport using real data with very encouraging results.

The rest of the paper is organized as follows. In Section 2 we discuss the arrival and

service operations for the landing queue at a hub airport and develop a model of capacity
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based on a semi-Markov process. In Section 3 we develop an algorithmic approach for

computing queue-length and waiting time moments over time, using a simple recursive

procedure. In Section 4 we apply our methods in a case study of congestion at Dallas-Fort

Worth Airport. Using data obtained from weather observations taken over eight years at

DFW, we indicate the sensitivity of congestion delay to starting conditions and explore

how the smoothing of demand during the most congested periods of the day could reduce

queueing delay. We also attempt to validate the model using delay data obtained from the

U.S. Department of Transportation. Section 5 summarizes the main contributions of the

paper.

2 Models of Demand and Capacity

Incoming aircraft at a hub airport require service at a series of three stations: a landing

runway, a gate, and a departure runway. Traditional queueing analyses are not appropriate

for this system because of the following characteristics:

1. Time variation in arrival rate. A hub airport is subject to a highly time-varying

demand rate. Work comparing transient and steady state results for single-server

queues [22,24] suggests that in such cases, the time necessary to reach "steady state"

substantially exceeds the time over which the demand rate may reasonably be taken

as constant. The implication is that models which describe only steady state behavior

are of very limited value in this context.

2. Service times are not identically distributed. For the landing and departure processes

at an airport, capacity is weather-dependent, implying that service times are neither

independent nor identically distributed. Thus it is inappropriate to model service

times as i.i.d.

3. Inter-dependence of service times. Because of connections between flights, an aircraft's

time at the gate depends on the arrival times of other flights. Moreover, separation

rules for large and small aircraft negate the assumption that consecutive landing service

times are independent.

These characteristics require that we take a new approach to the problem.
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For the rest of this paper, we focus on the queue for aircraft landings, though we note that

with only slight modifications, our approach is also appropriate for the departure queue. We

consider landing aircraft as customers utilizing a set of runways which together constitute

a single server. At the outset, we treat the aircraft demand process as deterministic. In

practice, of course, arrival schedules contain elements of uncertainty because of earlier delays,

and in Section 3 we will show how to account for a simple probabilistic structure. We

model time-variation by dividing time into discrete intervals of fixed length and allowing the

demand rate to vary arbitrarily across these intervals. To summarize, we have Assumption

1:

Assumption 1 (Demand Process) The hub's operating day consists of discrete time inter-

vals of length At. For interval k, the number of aircraft demanding to land, A, is known,

and these aircraft constitute a continuous (deterministic) flow over the interval.

Note that since the rate is assumed constant within each interval, realism requires that At

be short, on the order of 15 minutes.

The number of aircraft which the airport can land per hour is a function of many vari-

ables (runway configuration, air traffic control patterns, gate availability), but it is mainly

a function of which runways can be used and how much separation is required between

incoming aircraft. These factors are in turn determined by weather conditions: ceiling, visi-

bility, wind direction, and wind speed. As the weather conditions change, capacity switches

from one state to another. We thus shall employ two alternative models of capacity as a

stochastic process, one based on a Markov chain and one based on a semi-Markov process.

In the most general case, our assumption is as follows:

Assumption 2 (Service Process) Landing capacity at the airport during a given interval j

takes one of a discrete number of values Pi, p2, ... , S for some finite number S of capacity

states with

PI < 12 < .< AS.

The random holding time (in intervals) for a given state i, Ti, follows an arbitrary discrete

distribution with probability mass function

Pi(k) = Pr{T = k},

the probability of a capacity pi period lasting for precisely k intervals of length At. Upon

eziting a state i, the capacity process enters another state j 6 i with probability pij.

5



3 An Algorithmic Approach

Assumptions 1 and 2 describe the arrival and service processes for our queueing system. We

now develop a computational method for describing its transient behavior. We shall assume

that within any interval k, the queue behaves like a deterministic flow process, with demand

Ak and service rate /z(k), p(k) being a random variable which takes on one of the values

lI, .. , ps. Thus given qk, the length of the queue at the end of some period k, the queue

length one period later is the maximum of 0 and the values q + Ak - pi for i = 1, ... , S.

To establish a Markov chain within the semi-Markov process, we enlarge the state space

to be {i, m}, where i is capacity and m the age (in intervals) of that capacity. The combined

age-capacity process is clearly Markov, with transition probabilities given by

/j(m) Pr ((i, ) -(j,1)) = Pr [T = m I T > m]pi j # i

Pii(m) Pr((i,m) - (i,m+1)) = Pr[T > m+l I T m] (1)

We next define the following random variables:

A
Qk Queue length at end of interval k

A
Wk = Waiting time at end of interval k

aa aaa
C = Capacity state at end of interval k

A
Ak = Age of current capacity state at end of interval k

A
Ti Random lifetime of capacity state i

For queue lengths we introduce the notation

Ql(l,i,m,q) E[Qk IQt = q,Ct = i, At = m] (2)

k=l,...,K, i=1,..., S, m=l,..., M

I < k, q = 1,.,qma(k, i).

where qm,(k, i) is the maximum attainable queue length at the end of period k, given that

at that time the capacity state is i. This obeys the recursion

qm.a(k, i) = [qmax(k- 1) + Xt -i]+ (3)

where qm,,(k) = maxi qm.(k, i) and z + = max(z, 0). Similarly, for waiting times we employ

the notation

Wk(l,i,m,q) -E [W IQt = q, C = i, A = m]. (4)
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We write the second moment analogs of (2) and (4) as Q2(l,i,m,q) and W2(l,i, m,q),

respectively. Our aim is to compute the quantities Qk(l, i, m, q), Q (l, m, q), Wm , (l, i, m, q),

and W,2(1, i, m, q). From these we can compute the mean and variance for queue length and

waiting time at the end of each period.

Our first result gives a recursion for queue length moments.

Theorem 1 The functions Qk(l, i, m, q) and Q2(1, i, m, q) obey the recursive relationships

Q(l, i, m, q) = Epij(m)Qk (+l,+1j, 1, (q + A1+ - ij)+) +
jfi

Pii(m)Qk (1+1, i, m+ 1, (q + 1+ 1 - i)+) (5)

Q (lim r, q) = Z pij(m)Q~ (l + 1,j, 1, (q + A+1- j )+) +
j•i

pii(m)Q2 (1+ 1, i, m+ 1, (q + A+l -i)
+ ) (6)

with boundary conditions Q(k, ., ., q) = q and Q2(k,, q) q2 .

PROOF:

Once a capacity state i is determined for interval +1, a deterministic queue assumption

means that the queue changes in the interval by the amount Al+ - i. Because the queue

may not drop below 0, if the queue length is q at the start of a capacity period, then

the length at the end of the period is (q + A1+l - a)+. Conditional on the fact that at

the end of interval I the queue level is q and the capacity pi has prevailed for m intervals,

one of S things may happen by the end of the next interval. Either the airport will have

remained in capacity state i, or it will have switched to one of the other S - 1 states. These

S transitions have corresponding probabilities il(m),4i2(m),... ,is(m). The result (5)

follows. An identical argument proves (6). O

For an airport queueing system, it is reasonable to assume that the queue is 0 at the

start of the operating day. From (5) and (6) we may then compute the values Qk(0, i, m, 0)

and Q2(0, i, m, 0) for all values of i, k, and m. Thus we can obtain the expectation and

variance of queue lengths at intervals of length At throughout the day, conditional on the

capacity at period 0.

Waiting time moments may be found in a similar fashion. The main part of this pro-

cedure is contained in the next theorem. The proof, identical to that of Theorem 1, is

omitted.
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Theorem 2 The functions Wk (1, i, m, q) and W2 (I , m, q) obey the recursive relation (for

I < k)

Wk(l,i,m,q) = sj(m) [Wk (+l,j, l,(q + A1+l - j)+))] +
j2i

Pi (m)W (+l1, i, m+ 1, (q + A+1 - i)+ ) (7)

Wk(l,i,m,q) = Z -(m) [W (I+ lj, 1,(q+ At+ 1 -sj)+)] +
2•'

Pii(m) [W ( + 1, i, m + 1, (q + A+ - i)+)] (8)

The complication with waiting times (as opposed to queue lengths) occurs at the bound-

ary = k. We use the notation (a A b) for min(a, b). The calculation of the expected waiting

time for an incoming aircraft at the end of interval k, given the queue length and capacity

conditions at that time, is itself a recursive procedure within a larger recursion, as seen in

the following theorem.

Theorem 3 The functions Wk(k, i, m, q) obey the recursion

Wk(k, i, m, q) Pi (m) [( A 1)+Wk(k, j, 1, (q -j)+) +
j • P

[,,(m) |(' A l)+Wk(kim+, (q- s)+)] (9)

where Wk(k,, ,0) O 0.

PROOF:

Suppose that at the end of period k the capacity is pi, the age is m, and there are q waiting

aircraft. Consider an aircraft which arrives at this instant. Its waiting time, which is the

time necessary to clear the existing queue, is the sum of two components:

[W If] = [W + W 1]. (10)

Here W, is the part of the waiting time experienced during the next interval (k + 1), WI is

the part experienced thereafter, and Z denotes the conditioning information

{Qk = q, Ck = i, A = m} .

Given this conditioning, the possible capacity-age states for interval k+1 are

(1, 1), (2, 1), . . ., (i- 1, 1), (i, m+ 1), (i+ 1, 1), .. , (S, 1).
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Let Ck+l = j be the event that the capacity during the next interval is j. Then

[Wk I Z, C:+1 = j] = min(q/pi, 1). (11)

This follows because during the interval k+ 1 the queue in front of the aircraft is reduced

by min(q, j). If the queue is reduced to 0 during the interval, the aircraft waits for a time

q/pj; otherwise, it waits for the entire interval. To obtain Wi', note that after the interval

has ended, any remaining waiting time is stochastically equivalent to the waiting time of an

aircraft arriving one interval later to a queue of q-pj, a prevailing capacity of pj, and an

age of either 1 (if j is a new capacity) or m+ 1. Symbolically, this is

[W~' , I,C+1 = j] - [Wk Qk = (q - j )+,Ck = j,Ak = 1], j i

[Wk' I ,Ck+1 = i] - [Wk I Qk = (q - pi)+, C = i, Ak = m+1] . (12)

Taking expectations of (11) and (12) and unconditioning on Ck+1 = j yields the result. 

For second moments, the boundary condition is still more complicated. The appropriate

recursion is stated next as a corollary of Theorem 3.

Corollary 4 The functions W2(k, i, m, q) obey the recursive boundary condition

W2(k,i, m, q) =

ZIpii(m) [( q A 1)2 + 2( q A 1)Wl (k, j, 1, (q-!i)+) + W2 (k, j, 1, (q- j)+ ) +
jfi

(13)

with W(k, , ,0) O 0.

PROOF:

Suppose again that at the end of period k the capacity is pi, the age is m, and there are q

waiting aircraft. As before, let I denote the conditioning information

{Qk = q, Ck = i, Ak = m}.

Using (10) we write E[W I Qk = q,Ck = i,A = m]

= E[(W + Wf')2 I 1

9



= E[(Wl)2 + 2WWk' + (Wk') I ]

Zij(m)E[(w I)2 + 2WkWk + (Wk') 2 I , c+l = ]

- Z.Pij(m) [( A 1)2 + 2(- A I)E[Wk | ,Ck+l = j] + E[W | ICk+l = j] +

i 1(m) [(k q A 1)2 + 2( A 1)E[Wk I , C+ 1 = i] + E[W2 I , C+ 1 = i]
Pi P i P

The final equality is a consequence of (11). The result (13) now follows from (12). 0

Theorems 1, 2, 3, and Corollary 4 imply the algorithm given in Figure 1. This algorithm

obtains values for the expressions

W(O,i,m,O)E[WkIQo = O,Co = i,Ao = ml, i= 1,...,,m= 1,. M.

and

Wk(O, i, m, O)-E [W2 I Qo= ,O=i, = i ml = i= ,S, m = S, m ,...,M.

From these we may obtain expectations and variances of waiting times at the end of each in-

terval, based on given initial conditions. This can be achieved with moderate computational

complexity, as the next theorem indicates.

Theorem 5 The memory requirement for the semi-Markov algorithm is O(SKMQmax)

and the running time is O(S 2 K2 MQma,), where S is the number of capacity states, K

the total number of time intervals, M an upper bound on the memory argument m, and

Qmax= maxk qmax(k) is the highest attainable queue length over all periods.

PROOF:

The number of table entries in the above recursion is

K

4 x S x M x E Eqm x(l). (14)
k=1 I<k

Within iteration k, however, the algorithm needs only to store eight values at a time,

Ql(l,i,m,q), Qk(l+l,i,m,q), Wk(l,i,m,q), and W,(l+1,i,m,q) for the first moments,

Q2(l + 1, i, m, q), Q(l + 1, i, m, q), W2(l+ 1, i, m, q), and W2(l+ 1, i, m, q) for the second.

Thus since qmx(l) < Qm x the memory requirement is O(SKMQm.U). The bottleneck for

the running time is clearly the main recursion for I < k, in which we calculate the table

10
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Algorithm for Queue Length and Waiting Time Moments

For k = 1 to K (boundary conditions)

For i = 1 to S

For m = 1 to M

WL(k,, ,0) Wk(k,, ,0) 0O

Qk(k,, ,0) = Wk(k,., ,0) = 

For q = 1 to qm,,(k, c)

Qk(k, i, m, q)= q

Q2(k, i, m, q) = q2

Wk(k,i,m,q) =

Ezi• (Pij(m) [( Al) + Wk(kj, 1, (q - )+)]+

3i,(m) [(- A 1) + Wk(k, i, m+ 1, (q - i)+)]

W2(k,i,m,q) =

Eji (ij(m) [( A 1)2 + 2( A )W(k, j, 1, (q - )+) + W(,, , (- +)]) +

Ai (m) [( A 1)2 + 2( A 1)Wk(k, i, m+ 1, (q - pi)+) + W(k, i, m+ 1, (q - i)+)]

For k = 1 to K (main body)

For 1 = k-1 down to O

For i = 1 to S

For m = 1 to M

For q = 0 to qm(l, c)

Qk(l, i,m,q) = ji biij(m)Qk (+ 1,j, 1,(q + A1+l - li)+)] +

ii.(m)Qk (1+ 1, i, m+ 1, (q + At+ - li)+)

pi,(m)QI (1+ 1, i, m+ 1, (q + A+,i -i) + )

W(l, i, m, q) = Eji [i (m)Wk (1+1,j, 1, (q + A1+1 - j)+)] +

Pii(m)Wk (1+ 1, i, m+1, (q + ,+, - i)+)

W(l, i, m, q) = Eji [ (m)W (l+ 1, j, 1,(q + At+ 1 - pj)+)] +

Pii(m)Wi (1+1, i, m+ 1, (q + At+l -,pi) + )

END.

Figure 1: Recursive algorithm for queue length and waiting time moments conditional on

initial capacity and age conditions 11



entries for < k. Each such calculation requires O(S) time, so the overall running time has

complexity O(S2K 2 MQmax). °

Note that in the more specialized Markov case, the dimension m is unnecessary. Hence

the memory requirement for the Markov case is reduced to O(SKQmax) and the running

time to O(S2 K2 Qmax).

Remarks

1) Theorem 5 indicates that the speed of the recursive method rests on the relative sizes of

K, M, and Qma,, since S is very small (- 5). We note that a typical airport operating day

is twenty hours at most (K = 80 for At = 15 minutes) and that a practical upper bound on

Qma is 200 (including aircraft held on the ground). A theoretical upper bound for Qrnax is

K

Qmax < E (Ak - /Amin)+ ,
k=1

where P/min is the lowest capacity. There is a degree of latitude in the choice of the parameter

M. The age m has been introduced into the state space because holding times in each

capacity might not be geometric. At a maximum, M is an upper bound on these holding

times. As a practical matter, however, above a certain value of m, the transition probabilities

fij(m) often remain fairly constant. Where this is the case, one need only take M high

enough to cover the part of the distribution over which the {pij(m)} vary significantly. In

the case study of the next section, for example, a value of M as low as 20 proves adequate.

At the extreme M = 1, a Markov chain replaces the semi-Markov model, with the state

space is reduced from {i, m} to {i}, the set of capacities.

2) It is clear that the recursive approach could be used to obtain still higher moments or

indeed even the whole distribution of the queue length or waiting time at any given interval.

This latter calculation could be achieved by transforms or by direct enumeration of the state

space. However, the problem of determining a given term

Pr[Q = q I Qo, Co, Ao]

has the same complexity as that of determining any moment. Thus there is an additional

factor of Qma, in the complexity of such an approach, i.e. an algorithm for the full distri-

bution would be expected to run about 200 times slower than those above.
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3) The algorithms presented thus far are appropriate when the input stream is well approx-

imated as a deterministic flow. We have justified this assumption by the fact that aircraft

are deliberately scheduled into their landing slots. On the other hand, congestion and other

sources of upstream delay introduce a degree of uncertainty into the arrival schedule which

our models have thus far ignored. Particularly in the context of a network of airports, it

may be important to take account of this uncertainty. Although we cannot accommodate

a fully general stochastic arrival process, we can allow for some degree of uncertainty. Sup-

pose that during period k, the demand Ak is a random variable which may take on a finite

number of values A,..., AR with corresponding probabilities y ... , yR. In recognition of

this stochasticity, the innermost loop of the recursion is re-written to take the expectation

over all possible values of Ak. For the expected queue length the main recursion becomes

(c.f. (5))

R

Qk(l, i, m, q) = 7+1 ii(m)Qk (1+1, i, m+ 1, (q + A+ - i)+) +

- pijn(m)Qk (+l, j, l,(q + A" -i) ) (15)

with boundary condition Qk(k,.,, q) q. Similarly, for waiting times we have

R

Wk(l, i, m, q) = Z r[+1 Pii(m)Wk (1+1, i, n+ 1, (q + A+ l - i) + ) +
r=l .

aP'ij(m)W (+l,j, l,(q + + -j))] (16)

Clearly, these additions to the algorithm multiply the running time by a factor R. Note

that the method treats arrival rates {A*} in different periods as independent. While this

extension does not encompass a fully general arrival stream, it does allow some degree of

uncertainty to be reflected in the queue statistics. The method is of more value treating

congestion in the network environment, as seen in [23].

4) The recursive algorithm as presented obtains moments conditional on the starting state.

For planning purposes, these conditional moments may be exactly what is required, or a

more general average profile may be desired. It is possible to obtain such a profile via the

steady state probabilities for the different starting conditions. More precisely, let

7r(i, m) = Pr{state of the system at time 0 is (i, m)).
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Then the unconditional mean queue length at the end of interval k is given by

Qk = Z r(i, m)Qk(O, i, m, 0), (17)
i,m

while the corresponding mean waiting time is

Wk = E r(i, m)Wk(O, i, m, O). (18)
i,m

Clearly the numbers r(i, m) correspond to the steady state probabilities for the Markov

chain defined on the capacity-age state space m = 1,..., M, s = 1,... ,S. To calculate

them, one must solve the system

r= rP, (19)

where P is the full set of transition probabilities. Because of the special structure of the state

space, the solution to (19) can be obtained by solving a system of only S linear equations.

To see this, note that for m = 2,..., M - 1 we may write

m-l

r(i, m) = r(i, 1) 1I ii,(k) (20)
k=l

while
M-1

7r(i, M) = r(i, 1)/(1 - Piii(M)) JI Pii(k) (21)
k=l

Thus the problem of finding the steady state probabilities reduces to that of solving for the

S unknowns 7r(1, 1), ir(2, 1),..., ar(S, 1) in the system

M- 1 m M-1
(j, 1) (m) I k) + I (1 - =j(M)) r(i, 

' ml k=

(22)
S . M-m-1 M-1

,~I, k m1' ()+ (1- ,,(M)) = : 1 (23)
i= - m~l k= l=

Thus the enlargement of the state space via the age process Ak does not severely affect the

computation of the steady state probabilities. One solves equations (22) and (23) for the

probabilities r(i, 1) and then uses the relations (20) and (21) to solve for the others.

5) The algorithm is unable to provide waiting time distributions without significant compua-

tional expense. However, through the first two moments we can develop a useful approxima-

tion motivated by simulation results. Consider a simple simulation in which capacity period
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Figure 2: Histogram from simulated waiting times in a single queue

by period is determined in Monte Carlo fashion from the Markov chain or semi-Markov

process. From the simulation we obtain the matrix of observations

W = {Wk } 

where W~ is the waiting time at the end of period k for the nth simulation. Ordering

the observations, we obtain histograms for the waiting times for each period, like the one

illustrated in Figure 2 for a constant arrival rate (p 0.85, A = 60 per hour). Note the

presence of a substantial probability mass at the minimum value (in this case, 0). Values

above this minimum seem to follow an approximately exponential distribution. This is

confirmed in Figure 3, which plots the transformations

y(n) = e(-(n. f)),

where {to(")} are the ordered values of observations which exceed the minimum and l/ is

their mean. If the underlying distribution were truly an exponential, this plot should be a

straight line sloping down to the right, since the numbers exp(-vw( n)) are realizations of

the reverse cumulative distribution (wu) and should behave like the reversed order statistics

15
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Figure 3: Test for exponential distribution of positive waiting time realizations

of a U[O, 1] distribution. Plots such as this one suggest an approximate mixed distribution

for the waiting times Wk:

Pr { Wk = min(k)} = 6

Pr {W < w w > Wmin(k)} = -1 e-(wwz-i-()) (24)

The parameters Wmin(k), usually but not always 0, can be calculated directly from the

recursion in a manner similar to that for the parameters qma,,(k). The two numbers 6 and

v can be estimated using the first two waiting time moments and solving the two equations

(omitting the subscript for clarity)

wn, +(1-)J - e) wve-(w-w' - ) dw = E[W]

6 (Wumi) 2 + (1 -6) W 2ve-'(w-'.) dw = E[W2 ] (25)

6) The above simulation procedure also provides a check on the algorithm. Simulating

capacities, tracing the resulting changes in the queue, and taking averages of the resulting

sample paths over different simulation runs, we obtain the results of Figure 4. The slight

under-estimation which the simulation gives suggests that the tail occurrences for the waiting

16



Single Queue with Heavy Traffic

Figure 4: Comparison of mean waiting times estimated by simulation and by the recursive

algorithm for a single queue with constant demand and heavy traffic

times are not sufficiently sampled. These occurrences correspond to extended periods of

low capacity and occur with very low probabilities (less than 10-6). Although these tail

occurrences do not have a large effect on the means, our experiments show them to have a

more noticeable effect on the standard deviations, as we would expect.

7) In [23] we have reported results for an alternative approach to the queueing problem

using a diffusion approximation. Consider successive aircraft periods indexed by k. Let

(k denote the number of services in period k. Let arrivals be deterministic at rate A, and

let the steady state capacity probabilities be given as rl,..., rs, so that the time average

capacity is

= L Tii
i=l

We can define a traffic intensity
AA

and speak of a heavy traffic limit as p - i1. Application of the diffusion equation is not

entirely straightforward because of capacity correlations over time. In fact, estimation of the
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key coefficients requires a result (due to Keilson and Wishart [15,16]) concerning a central

limit theorem for additive processes on a Markov chain. Details of our approach may be

found in [23]. Our results indicate that while the diffusion approach deviates significantly

in its estimates from the recursive method, it does capture the same qualitative behavior.

Because of its greater computational speed, the diffusion approach may prove valuable in

network models, provided that it can be adapted for a time-varying arrival rate. See [23]

for further details.

4 Dallas-Fort Worth: A Case Study

In this section we discuss an application of the one-hub recursive model of Section 3 to

the case of Dallas-Fort Worth International Airport. The Dallas-Fort Worth International

Airport (DFW) is an ideal airport for studying the effectiveness of the delay model. It ranks

among the highest in the nation in terms of delay problems, with only the three New York

area airports, San Francisco, and Chicago having significantly greater numbers of delays

in 1989 [26]. Its delay problems are largely due to the high level of traffic resulting from

the dual hub presence of American and Delta Airlines, which together account for 75% its

operations.

4.1 Model Implementation and Validation

Arrival traffic at DFW falls into four categories: air carrier, air taxi, military, and general.

Among these, the first two types account for almost all of the traffic. A typical daily

demand schedule is illustrated in Figure 5. Adopting the convention At = 15 minutes, we

have grouped flights according to the 15-minute interval in which they arrive. The peaked

pattern reflects 12 American Airlines and 11 Delta Airlines banks.

In favorable weather conditions DFW has three runways available to handle landing

aircraft. However, in less favorable conditions, only two runways are available for landings,

and capacity is correspondingly reduced. Specific landing capacity at any time depends upon

the runway configuration in use, and this is turn depends on elements of the weather: wind

speed, wind direction, cloud ceiling, and horizontal visibility. Considering these factors,

we chose a total of six capacity states for DFW. Table 1 lists these six states together

with the associated engineered performance standards (EPS) in aircraft per hour. The
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Demand Schedule for March, 1989
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Figure 5: Arrival schedule at DFW for March 1989. Sources: DOT, OAG, and DFW Airport

Authority

Table 1: Engineered performance standards

Authority

at DFW. Source: Dallas-Fort Worth Airport

abbreviations 'IFR' and 'VFR' stand for instrument and visual flight rules, respectively.

There is a substantial difference between the two highest capacity states and all other

states, due to the availability of the third runway.

In practice these EPS estimates are considered conservative for high-capacity configu-

rations. To compensate, we have used preliminary results of an ongoing study by UNISYS

Corporation [8] estimating runway capacity per hour from observations of peak periods.

These put the highest arrival capacity state at DFW in the range of 115 aircraft per hour,

a substantial increase over the EPS number 95. Thus far, UNISYS has provided no further

estimates for other configurations, but it is reasonable to expect a similar increase for state

'E', while the 4-runway configuration estimates should remain essentially unchanged. We
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A IFR-2 & lower 50

B IFR-1 60

C VFR-2, windy 66

D VFR-1, windy 70
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F VFR-1, still 95
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have adopted these changes for the capacities in this study and note that the need for more

accurate capacity estimation procedures seems obvious.

Because historical capacity data were not available to us, we were forced to reconstruct

capacity histories from weather data obtained from the National Oceanic and Atmospheric

Administration (NOAA). Simple tabulation of eight years of hourly observations reveals

that the six capacities at DFW shown in Table 1 occur with quite different frequencies.

Over the course of a year, the highest capacity state (configuration 'F') is observed about

80% of the time, while IFR conditions (states 'A' and 'B') occur only about 6% of the time

in total. Seasonal variability is high. Not surprisingly, lower visibility conditions tend to

occur more in the winter; indeed, in summer, occurrences of this worst state are exceedingly

rare. Because of this seasonal variation, we chose a particular month (March) and based

the parameter estimates on data for that month only. Configuration 'F' constitutes about

75% of March observations.

From the data we estimated three sets of parameters: the transition matrix

P = {Pij)

for the Markov model, and for the semi-Markov model the transition matrix

P = ij

as well as the holding time probabilities

Pr[T = m]i.

Details of the estimation procedure are found in [23].

Recall from the earlier discussion that while the semi-Markov model is less restrictive

than the Markov model, its run time is higher by the factor M. Thus a question of interest

is how well a Markov hypothesis fits the weather observations.

To examine this question we consider the hourly observation process. For given state i,

we define a rn of lengtA m to be the event that this state is observed exactly m consecutive

times in the hourly observation process. Let N(i, m) be the number of runs of length m for

state i, and let

N(i) N(i,m). (26)
m>l
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state occupancy probability

expected actual

A 3.13% 3.06%

B 2.06% 2.05%

C 1.01% 1.01%

D 6.36% 6.36%

E 11.97% 11.95%

F 75.47% 75.58%

Table 2: Predicted and actual occupancy probabilities at DFW

For a particular state i, the collection of N(i, m) over all values of m constitutes a kind of

histogram for the holding periods. Informally, we can compare the observed frequencies of

the N(i, m) (the numbers N(i, m)/N(i)) with the probabilities Pr [Mi = m I Mi > 1], where

Mi is a random variable representing the length of a run for state i. In Figure 6, the smooth

curves indicate predicted distributions, while the jagged lines connect the data points.

Several features are quite striking. First of all, notice that states 'B', 'C', and 'D' tend to

have very short durations, states 'A' and 'E' short to medium durations, and state 'F' short

to very long durations. In fact, the full tail of the 'F' histogram extends into the hundreds

of hours, though this is not shown in the figure. Second, notice that all six distributions

have a probability mass at 1 hour which is higher than that predicted by the Markov model.

In fact, these fits do rather poorly on a formal x2 test. On the other hand, while geometric

holding times do not conform exactly to the data, the state occupancy probabilities (i.e.

the numbers ri) predicted under a Markov chain hypothesis are extremely close to the

time-fractions observed in the data (i.e. the numbers N(i)/ Fi N(i)) - see Table 2).

The results of our initial run of the model for DFW data are summarized in Figure 7,

which plots the unconditional expected waiting times

W&k= E[W I Qo = 0,Co = l

based on traffic estimates for March 1989 and on a Markov capacity model with parameters

drawn from eight years of March data. The familiar peaking pattern is evident and testifies

to the deterministic effect produced by high traffic concentrations at particular times of day

- the morning American and Delta complexes, the noon double complex (Delta following
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Frequency Distributions for Holding Times of
Six Capacity States at DFW
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Figure 6: Examining goodness of fit for the Markov model. The solid lines indicate the

observed frequencies for run lengths, while the dashed lines indicate the expected frequencies

under a Markov chain model.
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Predicted Queueing Delays at DFW: March 1989

Figure 7: Expected waiting times at DFW based on March weather and 1989 traffic

American), and the 6:00 p.m. double complex (Delta again following American).

Despite the fact that overall capacity exceeds demand substantially (p -, 0.5), there

are short periods where mean waiting time reaches 15 minutes, a good illustration of how

overall system capacity may be more than adequate even while short periods show significant

capacity shortfalls. Delays 'during non-peak periods are, not surprisingly, close to 0. Queue

lengths are not shown in the figure, but they follow the same pattern as the waiting times.

Unfortunately, full validation of these results is prevented by inadequacies in necessary

data. The only publicly available data relavant to our model are the On Time Arrival

Statistics kept by the U.S. Department of Transportation. These monthly statistics for all

domestic flights include scheduled departure times, actual departure times, scheduled arrival

times, and actual arrival times. From these statistics one can calculate the apparent delay of

a flight at a given time of day. However, this apparent delay is not necessarily the immediate

landing-related queueing wait experienced by that flight. First of all, lateness of a flight's

departure and arrival may easily reflect queueing waits encountered by the same aircraft

on a different flight earlier in the day. Furthermore, lateness may reflect other causes of

delay having nothing to do with landing congestion, such as departure congestion, flight
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slow-downs or speed-ups due to wind, and lack of available gate space.

These drawbacks seriously hamper the degree to which we can validate the model's

numbers. Indeed, the only way to achieve the necessary precision for a full validation would

be to collect the data specifically for our objectives, controlling for the factors mentioned.

Bearing these remarks in mind, we present the results of a limited comparison of our model's

predictions with the DOT statistics.

The number to be compared with the waiting times predicted by the model is that of total

lateness per flight, which is defined as follows. A flight's actual flight time (FTA) is the time

taken from its actual departure time (leaving the gate) until its actual arrival time at the

destination gate. Its scheduled flight time (FTC) reflects the difference between scheduled

departure and arrival times. If we take the simple difference of these, FTA-FTC, we obtain

a measure of a flight's delay not counting differences between actual and scheduled departure

times. Since these differences may be due to ground holds at the origin airport, we add back

the departure delay (DD), which is the difference between scheduled and actual departure

times. Finally, because different scheduled flight times exist for the same origin/destination

(even for a single carrier), we replace FTC by an average number (AFTC) computed for

each O-D pair. Thus we obtain for each flight i the total delay

TDi = max {FTAi - AFTCi + DDi, 0}).

As noted above, this statistic has many faults. It includes all possible causes of delay,

not only that of landing congestion. To correct for outliers, we grouped observations by day

and scheduled arrival time, took group means and standard deviations, and then threw out

observations more than 3 standard deviations above the mean. Such a procedure helps to

discard observations reflecting long delays due to reasons other than congestion. We ordered

the remaining observations by scheduled arrival time, grouped them in 15-minute intervals

(recall At = 15), and calculated means. The solid line of the figure gives these average

cumulative delays for aircraft scheduled to land at various times of day. For example, the

average cumulative delay for an aircraft scheduled to land at 10 a.m. is about 6 minutes.

Note that there are a few gaps in the plot of the solid curve, reflecting the fact that at a

few times of day there is no scheduled jet service at DFW (prop service is not included in

the DOT numbers).

The dotted line in the figure gives the average landing congestion waiting times predicted

by the Markov model. The two curves do not match closely, nor should we expect them to in
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Figure 8: Predicted waiting times at DFW (from queueing model) compared with average

total aircraft delays from adjusted DOT statistics

light of the above remarks. Not surprisingly, the DOT average delays

higher than the queueing delays predicted by the model, a reflection

are indeed total delays.

We define a "standard error'

are almost uniformly

of the fact that they

Ze= 1 i(TD - PQD,)2

where

PQD,
a
= Predicted queueing delay for period i

= Set of periods for which delay observations are available.

For the plot, the value of a is 6.7 minutes, which is approximately 2/3 of the actual average

delay (9.46 minutes). The sum of the predicted queueing delays (E, PQDi) is about half
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the sum of the actual total delays (i TDi) - 250 minutes versus 540 minutes. Note that

the major discrepancies occur in mid-afternoon and late evening. However, traffic at those

times is in fact quite low. At least at these times of day, large discrepancies probably reflect

delays carried over from earlier portions of the day. The low-traffic time of 5:30 a.m. to

6:30 a.m. displays a similar large difference which cannot be attributed to congestion on

arrival. An explanation may lie in the fact that these early banks are mainly flights from

the west coast and Hawaii, with long flight times and late evening departure times (airlines

are more likely to hold flights at these times of day as a service for late passengers).

On balance, Figure 8 is a better indication of the shortcomings in the data than of the

accuracy of our queueing model. However, in the absence of a fully controlled validation

experiment, we must be careful in the strength of the conclusions we draw. Thus our

discussion in the following section is mainly confined to qualitative rather than quantitative

issues.

4.2 Results and Discussion

In this section we explore some of the implications of the model's results at DFW.

Markov vs. Semi-Markov Model

The first question of interest is whether there is a significant difference between the

Markov and semi-Markov models. Figure 9 plots mean waiting times (averaged over initial

conditions) for both models. The focus on only part of the day is made to facilitate faster

run-time for the semi-Markov model, which with M = 20 has run times on the order of 2

hours on a DEC-3100 workstation (for K = 80 periods) versus 5 minutes for the Markov

model. As is evident from the figure, the differences between the two models are quite small

and could easily have been produced by quirks in the estimation procedures. Although

we did not expect this close agreement between the two approaches at the outset of the

case study, the finding is a pleasant surprise and a reminder that simplicity in modeling

is always a worthwhile goal. Because of the close agreement and the greater speed of the

Markov model, the remainder of the discussion focuses on the results obtained from it alone.

Stochastic vs. Deterministic Models

An examination of the profiles predicted by the Markov and semi-Markov models sug-

26



Expected Waiting Times for March 1989
as predicted by Markov and San-Markov Models
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Figure 9: Comparison of predictions of expected waiting times at DFW under the Markov

and semi-Markov models

gests that the mean waiting times which emerge from our calculations mainly reflect high

capacity acting upon demand in peak periods. Recall that capacity at Dallas is in one of

the top two states approximately 85% of the time. Thus the question arises: how do the

results of a stochastic model compare with a purely deterministic analysis? As an answer,

consider Figure 10. Here we have employed a purely deterministic model with a constant

capacity equal to the time-average capacity at DFW:

H = E ti'ci
i

The figure plots the mean waiting times predicted by a simple deterministic model together

with themean waiting times predicted by the Markov chain model. Not surprisingly, during

the peak periods of the day, the two curves agree closely, because the deterministic effect

A > p is the dominant factor in determining delays at these times. During slack periods,

however, the picture is much different. While the deterministic model predicts very low

average waiting times, the predictions of the stochastic model are significantly higher. The

explanation is that at these times of day, the major cause of waiting is the presence of a queue
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Comparison of Markov with Deterministic Approach

Figure 10: Comparison of predictions of expected waiting times at DFW under Markov and

deterministic models

of aircraft which has formed because of earlier high demand combined with low capacity.

Because the deterministic model assumes a constant service rate, it does not account for the

possibility of such low capacity, and it therefore under-predicts waiting times. The figure

demonstrates the advantage we gain by using the more sophisticated stochastic models.

Effect of Correlation in Service Rates

An important phenomenon at DFW is that of correlation in service capacity over time.

More precisely, the high probabilities of self-transitions estimated for the Markov chain

indicate that when the airport begins the day in a given capacity state, it is likely to remain

in it for a significant length of time. This phenomenon in turn implies that mean queue

lengths and waiting times will look quite different conditional on different starting states.

Figure 11 plots two waiting time profiles based upon the starting states 'A' (lowest capacity)

and 'F' (highest capacity). Note that waiting times in the former case are higher by an

approximate factor of 3 throughout the day. Moreover, since these profiles are averages of

sample paths, the peaks approaching 40 minutes indicate the possibility of very long delays.

To examine the effect of correlation further, we consider an alternative, less realistic

congestion model where the capacities from period to period are i.i.d. and the probability
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Waiting Time Profiles Depend on Initial Conditions
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Figure 11: Capacity correlation means that initial conditions are important in determining

expected waiting times.

of a given state i in any period is equal to the steady state probability ri. This change

should reduce predicted mean waiting times, a fact which is confirmed by Figure 12. Note

that the Markov model has only slightly higher estimates than the independent model for

peak periods - the deterministic effect once again. The contrast is greater, however, in the

slack periods. At these times, the i.i.d. model reflects a lack of memory: delay dies out.

This phenomenon is not observed under the Markov model, where correlation is taken into

account and delay is more likely to persist. While this effect is small for the case shown

here (average over initial conditions), it can be much greater in low capacity situations.

Schedule Interference

It is an interesting fact that at DFW during the busiest times of the day, Delta's banks

tend to follow closely after American's, with greater schedule slack separating the Delta

banks from subsequent American banks. This type of scheduling suggests that Delta may

bear a share of delay at Dallas out of proportion to its level of traffic, since it is more

likely to be subject to holdover congestion delay from the preceding American bank. The

phenomenon is illustrated in Figure 13. Here, we have labeled the four highest delay peaks

where the two carriers have arrival banks in close proximity. In each case, the label indicates

29

5:00

1 _

I



Expected Waiting Times for March 1989
as predicted by Markov and I.lD. Models
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Figure 12: Comparing Markov and i.i.d. models illustrates the effects of correlations in

capacity from period to period.

the carrier which is second in the order. In all but the early morning peak, Delta follows

American. The figure suggests that Delta's schedule position may increase its queueing

delays.

To test this idea, from the DOT data we selected all reported flights for March 1989 with

scheduled arrival times during one of the four periods labeled in the preceding figure: 7:15

a.m. to 7:45 a.m., 8:45 a.m. to 9:15 a.m., 11:45 a.m. to 12:30 p.m., and 5:40 p.m. to 6:10

p.m. We refer to these double banks by the numbers 1-4, respectively. Within each bank,

we grouped flights according to carrier (American or Delta) and computed the average total

delay over all flights (defined as in the earlier validation discussion, with the exception that

outliers are not removed). Table 3 presents the results. For banks 1 and 3, the second

carrier in the order (American for bank 1, Delta for bank 3) has the higher delays, while for

banks 2 and 4, American has higher average delays despite coming first in the order (see the

fourth column of the table). The evidence seern mixed. However, it is important to note

that in every bank, American has a larger number of flights. Since in the two early morning

banks there is still some separation between American and Delta, this higher traffic would
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Delta Operates Second in 3 out ot4 Major Peak Periods

Figure 13: The four major double banks at DFW, labeled with the 2nd scheduled carrier in

each case. Although both major carriers at DFW are affected by delays, Delta may bear a

higher risk of waiting since its peaks are mostly scheduled right after American's.

tend to increase American's queueing delays. In the case where the two carriers' banks

actually overlap significantly (bank 3), Delta shows higher average delays even with less

traffic. Moreover, American's delays are only significantly higher than Delta's in the one

case where it is scheduled second (bank 1). Overall, the data suggest that schedule position

does play a role, but the effect is probably only important when banks actually overlap.

Demand Smoothing

The issue of schedule interference is related to the larger question of how the demand

peaking at Dallas affects delay. During recent years, congestion-related pricing of capacity

has been proposed as a potential way to reduce delays by smoothing the demand pattern

over the day. What effects would such smoothing produce at DFW? To explore this question,

consider a hypothetical smoothing policy in which we impose a mazimum limit L on the

number of arrivals for any 15-minute period. For periods of the day which violate the

limit, extra flights are shifted to the nearest period in which there is room (either prior or
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Table 3: Comparison of average aircraft delays for Delta and American during the four

major double-banks

subsequent). The resulting schedule is a smoothed version of the original, with the parameter

L determining the degree of smoothing. Naturally, we expect that for lower values of L there

will be greater reductions in delay at increasing inconvenience cost (displaced flights).

Smoothing policies for L = 28 and L = 20 arrivals per 15-minute period are illustrated

in Figure 14, which also reproduces the actual demand schedule for March 1989. The case

L = 28 reduces traffic so that it never exceeds the estimate for highest capacity state 'F'.

We term this level of smoothing "moderate" - to the extent that 112 aircraft per hour is a

hard upper bound on landing capacity, moderate smoothing represents a rationalization of

the schedule to reflect capacity realities. The L = 20 policy goes much further, introducing

excess capacity approximately 85% of the time at Dallas. We term this level of smoothing

"severe."

Figure 15 reproduces the average case congestion profile for March 1989, as well as the

hypothetical profiles of what delay would look like under the smoothed schedules. Improve-

ment is dramatic during peak periods - well over a 50% reduction in waiting time. Similar

reductions are not achieved for the non-peak periods, but waiting times during these periods

are already fairly small. Weighted average aircraft delays are shown in the second column of

Table 4. In moving from no smoothing to severe smoothing, there is a reduction in weighted

average delay of about 60%. This represents about 3 minutes on average, but of course

much more than that during the peaks. The key observation to be made is that most of

the reduction in delay (46%) is achieved in moving from the normal schedule to moderate
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Bank I.D. Carrier No. of Arrivals Average Total Delay per Aircraft

1 American 19 9.2

1 Delta 15 4.5

2 American 31 7.1

2 Delta 13 6.2

3 American 34 9.6

3 Delta 19 10.4

4 American 29 11.1

4 Delta 22 9.4



Demand Schedule for March, 1989
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Figure 14: Alternative degrees of smoothing for DFW traffic
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Delays Under Varying Degrees of Smoothing
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Figure 15: Predicted effects of traffic smoothing on waiting times

Smoothing Policy Percent of Flights Shifted Average Delay (mins)

None _ 6.05

Moderate 7.23% 3.29

Severe 17.37% 2.43

Table 4: Costs and benefits of smoothing policies

smoothing; reduction beyond this level of smoothing is relatively modest. Diminishing returns

exist.

The cost of the smoothing policies is difficult to assess. Banks with very high scheduled

traffic are smoothed significantly and become much longer. Table 4 lists the percentages

of flights shifted from their original periods under the two smoothing schemes: around

7% in the moderate case and around 17% in the more severe case. Thus in addition to

exhibiting diminishing returns, the smoothing policies also exhibit increasing costs. From

the standpoint of costs and benefits, therefore, it seems that moderate policies of demand

smoothing are better than excessive ones. The figure demonstrates the usefulness of the

queueing model in assessing the effects of policy options.
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5 Conclusion

In this paper we have developed a non-traditional queueing model in response to an im-

portant problem in practice: congestion at hub airports. Our approach explicitly models

variation in airport capacity dependent on weather conditions and exploits the structure of

that model to obtain an efficient algorithm. Analyses based on the model highlight a number

of interesting features of the problem, especially the large amount of variability due to large

differences between alternative sample paths and to the serial correlation in the capacity

process. In the realm of strategy and policy, the model points out the reality of interaction

between carriers at a hub and suggests that in the case of DFW, schedule position can affect

queueing delay. Our analysis also suggests that the high degree of schedule peaking at DFW

is responsible for many of the day-to-day delays. Traffic smoothing policies can reduce these

delays and rationalize airlines' schedules, but smoothing beyond a certain level is likely to

create a degree of excess capacity with high opportunity cost for the carriers.

References

[1] STEPHANIE F. ABUNDO. An Approach for Estimating Delays at a Busy Airport, Mas-

ter's Thesis, Operations Research Center, Massacusetts Institute of Technology, Cam-

bridge, MA, 1990.

[2] ELIZABETH E. BAILEY, DAVID R. GRAHAM, AND DANIEL P. KAPLAN. Deregulating

the Airlines, M.I.T. Press, Cambridge, MA, 1985.

[3] DIMITRIS J. BERTSIMAS, JULIAN KEILSON, DAISUKE NAKAZATO, AND HONG-TAO

ZHANG. "Transient and Busy Period Analysis of the GI/G/1 Queue: Solution as a

Hilbert Problem," Journal of Applied Probability 28, 873-85 (1991).

[4] DIMaus J. BErSlMAS AND DAISUKE NAKAZATO. "Transient and Busy Period Anal-

ysi of the GI/G/1 Queue: The Method of Stages," Qucueing Systems 10, 153-84

(1992).

[5] ALFRED BLUMSTEIN. An Analytical Investigation of Airport Capacity, Cornell Aero-

nautical Laboratory Report TA1358-6-1, Cornell University, Ithaca, NY, June, 1960.

[6] J.A. DONOGHUE. "A Numbers Game," Air Traffic World, December, 1986.

35



[7] E. GELENBE AND I. MITRANI. Analysis and Synthesis of Computer Systems, Academic

Press, Inc., London, 1980.

[8] EUGENE GILBO. "Arrival-Departure Capacity Estimates for Major Airports,"

ATMS/ETMS Project Memorandum, UNISYS Corporation, Cambridge, MA, Novem-

ber 1, 1990.

[9] W.K. GRASSMANN. "Transient Solutions in Markovian Queueing Systems," Computers

and Operations Research 4, 47-56 (1977).

[10] DONALD GROSS AND CARL M. HARRIS. Fundamentals of Queueing Theory, 2nd Edi-

tion, John Wiley and Sons, New York, NY, 1985.

[11] DANIEL P. HEYMAN AND MATTHEW J. SOBEL. Stochastic Models in Operations Re-

search, Vol. I, McGraw-Hill, Inc., New York, NY, 1982.

[12] D.L. IGLEHART AND W. WHITr. "Multiple Channel Queues in Heavy Traffic I," Ad-

vances in Applied Probability 2, 150-177 (1970).

[13] D.L. IGLEHART AND W. WHITT. Multiple Channel Queues in Heavy Traffic II: Se-

quences, Networks, and Batches," Advances in Applied Probability 2, 355-369 (1970).

[14] ADIB KANAFANI AND ATEF GHOBRIAL. "Airline Hubbing - Some Implications for

Airport Economics," Transportation Research 19A:1, 15-27 (1985).

[15] JULIAN KEILSON AND DAVID M.G. WISHART. "A Central Limit Theorem for Processes

Defined on a Finite Markov Chain," Proceedings of the Cambridge Philisophic Society

60, 547-567 (1964).

[16] JULIAN KEILSON AND DAVID M.G. WISHART. "Addenda to Processes Defined on a

Finite Markov Chain," Proceedings of the Cambridge Philisophic Society 63, 187-193

(1e?.

[17] H.m KOBAYASHI. "Application of the Diffusion Approximation to Queueing Net-

works II: Nonequilibrium Distributions and Applications to Computer Modeling," Jour-

nal of the Association for Computing Machinery 21:3, 459-69 (1974).

36



[18] STEVEN A. MORRISON AND CLIFFORD WINSTON. "Intercity Transportation Route

Structures Under Deregulation: Some Assessments Motivated by Airline Experience,"

American Economic Review 75:2, .57-61 (1985).

[19] STEVEN A. MORRISON AND CLIFFORD WINSTON. The Economic Effects of Airline

Deregulation, The Brookings Institution, Washington, D.C., 1986.

[20] GORDON F. NEWELL. "Airport Capacity and Delays," Transportation Science 13:3,

201-241 (1979).

[21] "Off Course", The New York Times Magazine, September 1, 1991, p. 14.

[22] AMEDEO R. ODONI AND EMILY ROTH. "An Empirical Investigation of the Transient

Behavior of Stationary Queueing Systems," Operations Research 31:3, 432-55 (1983).

[23] MICHAEL D. PETERSON. Models and Algorithms for Transient Queueing Congestion

in Airline Hub-and-Spoke Networks, Ph.D. dissertation, Sloan School of Management,

Massacusetts Institute of Technology, Cambridge, MA, 1992.

[24] EMILY ROTH. An Investigation of the Transient Behavior of Stationary Queueing Sys-

tems, Ph.D. dissertation, Operations Research Center, Massacusetts Institute of Tech-

nology, Cambridge, MA, 1981.

[25] MARTIN J. ST. GEORGE. Congestion Delays at Hub Airports, Flight Transportation

Laboratory Report R86-5, Massacusetts Institute of Technology, Cambridge, MA, 1986.

[26] Winds of Change: Domestic Air Transport Since Deregulation, Transportation Re-

search Board National Research Council Special Report 230, Washington, D.C.,

September 1991.

37


