
Experiments with OVAL:
A Radically Tailorable Tool for

Cooperative Work

Thomas W. Malone, Kum-Yew Lai, and Christopher Fry

CCS TR #132, Sloan School WP # 3462-92

August, 1992

Acknowledgments
This research was supported by Digital Equipment Corporation, the National Science
Foundation (Grant No. IRI-8903034), Matshushita Electric Industrial Co., Boeing, Information
Resources, Inc., Electronic Data Systems, Apple Computer Company, and the corporate
members of the MIT International Financial Services Research Center.

We are indebted to Terry Winograd for suggesting the acronym "Oval" after hearing about the
four components of our system and to John McDermott for suggesting the term "radically
tailorable" as a description of the Oval system. The Oval system has benefited from the
suggestions and work of numerous people over many years, including most recently: Mark
Ackerman, Geoffrey Bock, Kevin Crowston, Troy Jordan, Jintai Lee, Charley Osborne, Dave
Park, Mike Plusch, and Paul Resnick.



Experiments with Oval:
A Radically Tailorable Tool for

Cooperative Work

Thomas W. Malone, Kum-Yew Lai*, and Christopher Fry

MIT Center for Coordination Science

Appeared in Proceedings of the ACM Conference on Computer Supported Cooperative Work
(CSCW '92), Toronto, Ontario, Canada, November 1992.



Experiments with Oval:
A Radically Tailorable Tool for Cooperative Work

Thomas W. Malone, Kum-Yew Lai*, and Christopher Fry

ABSTRACT

This paper describes a series of tests of the generality of a "radically tailorable" tool for cooperative work. Users of

this system can create applications by combining and modifying four kinds of building blocks: objects, views,

agents, and links. We found that user-level tailoring of these primitives can provide most of the functionality found

in well-known cooperative work systems such as gIBIS, Coordinator, Lotus Notes, and Information Lens. These

primitives, therefore, appear to provide an elementary "tailoring language" out of which a wide variety of integrated

information management and collaboration applications can be constructed by end users.

INTRODUCTION

For as long as computers have been used for practical tasks, software designers have tried to match their systems to

the situations in which they are used. This problem is perhaps nowhere more important than in designing software

to support groups of people working together [8]. In some approaches to this problem, software designers study

organizations using systems analysis techniques (e.g., [23]) or social science methodologies (e.g., [5], [20], [18]).

In participatory design approaches to this problem, the eventual users of a system (who already know about the

context of its use) work with software developers in its initial design (e.g., [6], [19]).

An even more extreme version of he participatory design approach is not just to involve users in design but to let

them become designers by giving them end-user programming tools (e.g., [13], [4], [17], [12]). For instance, with

products like spreadsheets and Hypercard, end-users, who have no specific training in software development, can

* Current address: McKinsey & Co., 18/F Two Exchange Square, Central, Hong Kong.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for
commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery. To copy otherwise, or to republish, requires a
fee and/or specific permission.

2



create for themselves more and more of the kinds of applications that would previously have required substantial

work by professional programmers.

In this paper, we focus on one important class of such end-user programming tools. We call this class of systems

radically tailorable since they allow end users to create a wide range of different applications by progressively

modifying a working system. Radically tailorable systems differ from "ordinary" tailorable systems (such as word

processing programs with "Preferences" parameters) in the degree to which users can create a wide range of

substantially different applications. For instance, starting with the same blank spreadsheet, users can create

applications ranging from personal budgeting to sales forecasting to corporate finance.

Radically tailorable systems also differ from conventional programming languages (including typical fourth

generation languages) in that end users progressively modify a working version of an application (such as a blank

spreadsheet), instead of specifying instructions in some programming language. In this way, radically tailorable

systems reduce the "cognitive distance" between using an application and designing it (c.f., [71).

Radically tailorable systems are not the only approach to matching cooperative work tools to their contexts of use,

but we believe they will be an increasingly important one. One of the key problems in designing radically tailorable

tools is picking a set of building blocks at the "right" level of abstraction. That is, the building blocks should not

be so low-level that they require significant effort to do anything useful, nor so high-level that they require

significant modification whenever the users' needs change (see [3]).

In this paper, we describe a set of experiments with one such set of building blocks. The building blocks are

embodied in a radically tailorable system for'cooperative work called Oval, the name of which is an acronym for the

four key building blocks of the system: objects, views, agents, and links.1 The experiments we describe are tests of

the generality of these building blocks: What is the range of different kinds of applications that can be implemented

"naturally" with these building blocks and the user level tailoring facilities provided by the Oval system?

To do this, we first constructed a wide range of relatively simple applications for tasks such as project management,

software bug tracking, meeting scheduling, and personal information management. These simple applications are

1 Oval is based upon the Object Lens system ([9], [14]). However, we picked a new name to reduce the widespread
confusion between Information Lens and Object Lens. Information Lens [16] was a system for intelligent mail sorting.
Oval, as this paper describes, is a much more general system in which Information Lens is only one possible application.

3

III



not described here. Instead, we focus in this paper on four applications that are already believed by many people to

be valuable Tor supporting cooperative work. Three of these applications were developed elsewhere: gIBIS [2],

Coordinator [21], and Notes [11]. One was developed in our laboratory: Information Lens [16].

For each of these systems, we attempted to emulate as much as possible of the functionality of the original system

using only the user level facilities provided by Oval. We also identified (and in some cases performed) system level

modifications necessary to emulate the functionality of the original systems more closely. With a few exceptions,

the basic functionality of the original systems was achieved with only user level modifications.

These tests demonstrate, therefore, that the four key components of Oval (objects, views, agents, and links) provide a

tailoring language with which a wide variety of cooperative work tools can be constructed. It would, of course, be

no surprise to say that we could implement all these applications in a general purpose programming language or that

primitives like objects, views, agents, and links were helpful in doing so. The surprising thing, we believe, is that

all these applications can be implemented using only the extremely restricted and simplified tailoring language

provided by Oval.

OVERVIEW OF OVAL

Oval is based upon four key building blocks (see [9] and [14] for much more detailed descriptions):

(1) Semistructured objects represent things in the world such as people, tasks, messages, and meetings. Each object
includes a collection of fields and field values and a set of actions that can be performed upon it. The object
types are arranged in a hierarchy of increasingly specialized types with each object type inheriting fields, actions,
and other properties from its parents in the hierarchy. The objects are semistructured in the sense that users can
fill in as much or as little information in different fields as they desire and the information in a field is not
necessarily of any specific type (e.g., it may be free text, a link to another object, or a combination of text and
links). Users see and manipulate these objects via a particularly natural form of template-based interfaces.

(2) User customizable views summarize collections of objects and allow users to edit individual objects. For
instance, users can select the fields to be shown in a table display of a collection of objects, or they can select
the links to be used to create a network display of the relationships between objects. A calendar display can be
used to summarize objects with dates in one of their fields. Any appropriate display format (e.g., table,
network, or calendar) can be used to show any collection of objects in any field of any object. Typically, these
display formats are used for the "Contents" field of "Folder" objects.

(3) Rule-based agents perform active tasks for people without requiring the direct attention of their users. Agents
can be triggered by events such as the arrival of new mail, the appearance of a new object in a folder, or the
arrival of a pre-specified time. When an agent is triggered it applies a set of rules to a collection of objects.
Rules contain descriptions of the objects to which they apply and actions to be performed on those objects.
Actions include general actions such as moving, mailing, and deleting objects or object-specific actions such as
loading files or responding to messages.

(4) Links represent relationships between objects. For example, users can use links to represent relationships
between a message and its replies, between people and their supervisors, and between different parts of a
complex product. Users can follow these hypertext links by clicking on them, and the knowledge represented by
the links can be used by rules or in creating displays.

4



User tailoring

The primary user level modifications to the system include: (1) defining new object types, (2) adding fields to

existing object types, (3) selecting views for objects and collections of objects (from a prespecified set of display

formats), (4) specifying parameters for a given view (such as which fields to show), (5) creating new agents and

rules, and (6) inserting new links.

Sharing information

There are three primary ways for people to save and share information in Oval: (1) They can save any collection of

objects in a file which they (or other people) can load later. For instance, all the objects linked (directly or

indirectly) to a given object can be automatically collected and saved in a file. (2) They can mail any collection of

objects back and forth to each other in messages. When users load a previously saved file or receive a message

containing objects, the identity of the objects is preserved (i.e., pre-existing links will point to the newest versions

of the objects and the previous versions will be stored as "previous versions" 2 ). (3) We have also implemented a

rudimentary version of "live" sharing of objects stored on remote databases. Even without this capability, agents can

be used to automatically mail and sort "shared" objects thus providing many of the benefits of live sharing.

Implementation status

Oval is implemented in Macintosh Common Lisp on networked Apple Macintoshes. As of this writing, various

versions of this system have been used intermittently by up to six people in our research group over a period of

approximately 2 years, and by numerous other people for shorter periods. Over 100 copies of the software have been

distributed to other researchers and developers for demonstration purposes.3

TEST APPLICATIONS

To test our hypothesis that Oval is radically tailorable, we used the system to try to implement the functionality of a

variety of cooperative work applications for which descriptions have been previously published. In this section, we

2 Users are notified of these changes, and if they desire, can undo them in specific cases.

3 For information on how to obtain a copy of the software for research purposes at no charge, contact Peter Richards, MIT
Technology Licensing Office, E32-300, 28 Carleton Street, Cambridge, MA 02139 (Telephone: (617) 253-6966. Email:
par@eagle.mit.edu.)

5



will describe briefly how we implemented the major features of each application and what features of the original

applications we did not implement. The first application is described in somewhat more detail than the others to

illustrate how the system works. More detailed examples of how new applications are created can be found in [9] and

[14]. Note that we would not expect beginning users of a system like Oval to be immediately able do all the

tailoring needed for some of these applications. Some of the applications require the use of tailoring features (such

as defining new object types) that we would expect of experienced users.

For each application, we were primarily concerned with whether the overall user interface paradigm provided by Oval

could accommodate in a "natural" way the primary functionality of the application. We did not attempt to mimic

exact details of screen layout and command names. Similarly, since our system is only a research prototype, we did

not attempt to replicate the level of attention to robustness, speed, access controls, and so forth present in the

commercial products we analyzed. In all cases, however, we tried to be faithful to the spirit of the original systems.

glBIS - Argumentation Support

gIBIS [2] is a tool for helping a group explore and capture the qualitative factors that go into making decisions.

Elements of a policy analysis in gIBIS are represented as a network containing three types of nodes: Issues,

Positions, and Arguments. Each Issue may have several Positions that "Respond to" it, and each Position, in turn,

may have various Arguments that "Support" or "Object to" it.

Defining new object types and creating examples of them

To emulate gIBIS in Oval, we first defined the three types of objects used by gIBIS: Issues, Positions, and

Arguments. For instance, to define the new type ,f object called "Argument", we performed the actions illustrated in

Figure 1. First, we selected the basic object type called "Thing" and then chose the "Create Subtype" action (Figure

l(a)). To create individual examples of this type, we selected the new type and chose the "New object" action. The

new Arguments have the fields "Name", "Keywords", and "Text" by default, since these fields are present in all

Things. To add the fields (like "Supports", "Objects to", and "Entered by") that are present in Argument objects but

not in all Things, we used the "Add Field" action on one of the new Argument objects (Figure l(b)). Finally, we

filled in the fields of this (and other objects) by typing and by adding links (Figure l(c)).

6



TYPE FOLDER: Office application types

| ct Se I Sand D plib.... i

Figure 1(a). To define a new type of object, users create it as a subtype of some existing object type. (Note: In this
and subsequent figures, the heavy curved arrow is added for clarity. It is not part of the actual screen display.)

Fields to all Arguments

U coammW bfu, k.l I
Figure 1(b). Users can add fields to an object type with
fields then appear in all objects of that type.

the "Add Fields" action on any instance of that type. The

7

--------------- --- -



Figure 1 (c). Users can fill in !the fields of an object by typing or by inserting links to other objects.

The square brackets in Figure l(c) indicate "live" links to other objects that can be traversed by clicking on them.

To add these links in the first place, we simply selected the "Add link" action in a field and then pointed to the object

to which the link goes.

Viewing collections of objects

In the original gIBIS system, users can graphically see the relationships between the nodes in an argument network.

To do this with Oval, we selected the "Change View" action for a field containing the nodes and then chose the

"Network" display format (see Figures 2 and 3). This format allows us to choose the fields from which links will be

shown in the network. For instance, in Figure 2, we chose to show links from three fields,"Supports", "Objects to"

and "Responds to." We also chose to display in each node the "Name" and "Object Type" fields. The result is

shown in Figure 3.

8



III

FOLDER: What language for Project Sky?

MMEIOM

Figure 2. Users can "Change View" on any field. Here, the "Network" view was selected. Then, two other choices
were made: (1) the fields from which links will be used to construct the network and (2) the fields to be shown in the
nodes of the network

Figure 3. This network view, the result of the choices made in Figure 2, shows the relationships between Issues,
Positions, and Arguments as in the glBIS system.

9



Note that this simple method of tailoring a network view can be used for any collection of objects whose

relationships to each other are represented by links (e.g., organization charts, PERT charts, and software module

calling relationships). In one sense, of course, there is nothing new about this notion of using general display

formats for many kinds of objects. We have been genuinely surprised, however, at how widely useful and powerful

this feature is when users can apply it themselves to create new applications.

Features of the original system not included in our application

We omitted one feature of the original gIBIS system for aesthetic reasons: The original system included a distinction

between primary and secondary links of each type. We could have implemented this simply by defining additional

fields (e.g., "Supports (primary)" and "Supports (secondary)"), but we chose not to, in order to reduce the complexity

of the system.

In addition to a shared "live" database, gIBIS has two other features which would have required new system level

programming to implement: (1) aggregate nodes (the ability to automatically collapse a group of nodes into one

aggregate node), and (2) a node index that shows nodes in outline format (with indentations indicating their

relations). These features did not seem essential to the main point of the application, and we did not include them in

our implementation. However, they would both have been quite consistent with the overall Oval paradigm.

Aggregate nodes could be implemented with two new actions on folders (one to create aggregates and one to break

them apart). An outline display format would be reusable in many other applications as well and would, therefore,

be a useful addition to the current display formats for collections of objects (tables, networks, calendars, and

matrices).

Coordinator - Conversation structuring and task tracking

The Coordinator is an electronic mail-based system that helps people structure conversations and track tasks ([22],

[1]). To emulate the functionality of the Coordinator in Oval, we first made three system level modifications to

automatically group a series of messages into "Conversation" folders (see Figure 4): (1) When users create a new

message (without it being a reply to an old one), a new conversation folder is automatically created. This folder

contains the new message, and the conversation field of the new message is also linked to this folder. (2) When

users reply to a message of a given type, they are presented with a choice of message types for their reply. (The

choices to be presented are specified in a user-modifiable field called "Reply Types", which is not shown in the view

used in Figure 4.) (3) After users select a reply type, the Conversation field in the reply message is automatically

linked to the Conversation folder specified in the original message, and the reply is inserted in the Conversation

folder.

10



CONUERSATION: UROP Open House

Save1l Dup I ct.. Others

H. LUOP Opn House I 

obiect T- Nlam From To Date
CoIIen s equ~ Kurads1 frl g ZY9/cJO

CWTEROFFER Re: Comnts fry kumyM 9/9/90
PROMISE i UII check sc presnick kumew 9/29/90

COUNTEROFFER: Re: Comments Requested
Sd I |outbox | I RW ph | Others )

r# tkuy~_0U th pl

fry

9/299"0

In-ReplITo IR: Comm:ents I

I aaps B9/30/90

I we, _.~ 9/30/90

_.tion UROP Opur H eu)

· xt ~~Friday 10/10/90 i not good dy or a*. Is any
othe d mentioned in Comnts quustedl] okol?
kumVew

FrkJ1/1/Oino.agddafo.l.Isar~

Figure 4: A conversation folder contains messages within a conversation, like those in the Coordinator.

After these system-level changes to add conversations (which can be useful in any messaging application), the other

main functionality of the Coordinator can be added by user-level tailoring. For instance, we added 15 new message

types and defined their reply types to provide the same conversational sequences (such as Conversations for Action)

used in the Coordinator. The Request message type, for example, has reply types like Counteroffer, Promise, and

Decline.

11



RGENT: Rll Promises Rgent

IrJ Ta It~f I CDescipttaron .fePges I

rigg ed erl i tes fo Changed i tefs
Oft midnight tit noon
[ startoup [ '"] tt I rn

to:tn~l COPY ITEM Field It_:Irp -To: (OFFe To:tuhe Coordinator we cated 23 Filders (such as "Open Itters"
RULE: Copy My Promises"

and "All Open Promises and Offers". Pror I-~~ -~~ Descrption o PROmISECOPY ITEMFigure 5: An agent that tracks onversations involving promises. The rule shown puts conversations that include
Promise messages from the user into the appropriate folders.

To provide the various kinds of summary displays in the Coordinator we created 23 folders (such as "Open Matters"

and "My promises"), and 14 agents with 477 rules that move messages into and out of these folders. For instance,

Figure 5 shows an agent that moves conversations into the folders for various kinds of promises. To create an agent

like this one, users fill in the fields shown in Figure 5: a folder to which the agent applies, one or more triggering

conditions, and a set of rules. Then, when the agent is triggered, it will apply the rules to the objects in the "Apply

to" folder. Rules, like agents, are created with a straightforward sequence of menu-picks and form filling. The rule

shown in Figure 5, for instance, moves conversations with promises from the user into two folders: "My Promises"

and "All Open Pronses and Offers".

Some of the agents make use of "all-objects-of-a-type" folders in Oval. An all-objects-of-a-type folder is one which

is maintained by the system so that it always contains all objects of a specified type. For example, the All

Coordinator messages" folder is dynamically maintained so that it always contains all the Coordinator messages in

Oval.

12



Features of the original system not included in our application

Unlike the original Coordinator, our application does not provide explicit support for delegation. Instead, someone

who has received a request can delegate it to someone else "manually" by sending a new request that contains a link

to the original one.

There are also several detailed features of the Coordinator not included in our application. For instance, unlike the

Coordinator, our application does not enforce the restriction that people who are only copied (cc:'ed) in a

conversation cannot change its state. Furthermore, there are some cases where users of our application would need to

do minor things "manually" that are done automatically in the Coordinator. For instance, if someone wants to

cancel a request before having received a reply to it, they would have to manually address the cancel message and

insert it in the original conversation.

Notes - Semistructured Information sharing

Of the other systems analyzed here, Lotus Notes [11] is the most similar to Oval. It is also similar to earlier

computer conferencing systems with the important additions that (1) the documents in a database are semistructured

templates (with optional "hot links" to other documents) and (2) the documents in a database can be filtered and

summarized according to various user-definable views. Like Oval, Notes can be tailored for many different

applications. The templates in Notes are equivalent to object types in Oval; the databases in Notes are equivalent to

folders in Oval; and the views in Notes are equivalent to views of collections of objects in Oval. Notes views are all

variations of a kind of "outline" display format that does not currently exist in Oval, but is similar to the table

format display that does exist (see Figure 6). Notes does not include any of the other folder display formats in Oval

such as networks and calendars. Similarly, even though Notes allows very knowledgeable users to do certain kinds

of sorting and filtering using views, it does not appear to be designed to make this easy for end users, and it does not

have active agents like those in Oval.

13



Figure 6. A table format display summarizing documents like those in a Notes database.

Unlike Oval, Notes is based on a database replication algorithm which approximates "live sharing" of documents.

Also, as a commercial product, Notes includes a number of features such as access controls, "rich text" fields, and

calculated fields. Even though these features are not currently part of Oval, they would be consistent with its overall

user interface paradigm and useful for many other applications.

Information Lens - Intelligent mall sorting

Information Lens ([16], [15]) helps users by automatically filtering and sorting incoming electronic messages. It

also helps users create messages using a set of (optional) semistructured message templates. Implementing

14



I111I

Information Lens in Oval is quite straightforward. For instance, users can define new message types as subtypes of

Message in the object type hierarchy and create rules to filter and sort messages (see Figure 7).

In addition to the local mail sorting agents, the original Information Lens included a second kind of agent that ran on

servers and selected potentially interesting messages for a given user from a stream of messages addressed to

"Anyone." Implementing remote agents like these would require some additional systems level programming which

we have not yet done in Oval but which would be consistent with the overall framework of Oval and useful in other

applications.

AGENT: Information Lens

-|Inforation L

l To i tha Moi l

iered Wk -r CD M I t- sa, il, i t.o
O[Rt idnight Fit noon

Strtwp QAitting

lle If Thehn

Ies FInd uIP nessl Froa un t Wrignton YE To FoI m: " tUljM"
Find Urgent esog Ouo Dat: odW, To o KE To Foldr: IUr.
Project Sky To:Project-Skyteoe MOVE To Folder:lPri

RULE: Find VIP Messages

Run | I Save I Send Oers 

Find UIP essoges 

MESSA6E: 

ro, uot, lightoI

0

o

Ir-Aplu-T

A~~~~~~~~~~~~~~~~ ext

;I MOUE Ig1
FFo l d_ I I P iskss 1 l

Figure 7. Examples of an agent and a rule like those in Information Lens.

15

_ _ -



Summary

Table 1 summarizes the results of the four application experiments described above. In three of the cases (gIBIS,

Notes, and Information Lens), some of the features of the previous systems were not included in our emulations. It

appears, however, that the functionality omitted in these cases was not essential to the main point of the

applications. Also, in all three cases, the functionality omitted would fit naturally within the user interface paradigm

provided by Oval and would be reusable in other applications. In the other case (Coordinator), we performed modest

amounts of system level programming and believe we emulated all of the major functionality of the original system.

The new system level functionality implemented in this case (Conversation folders) should also be generally useful

in other Oval applications. Overall, therefore, the primary functionality of the previous systems seems to be

captured reasonably well by user-level modifications within the user interface paradigm provided by Oval.

DISCUSSION

Limitations of experiments

Before proceeding, it is important to note several limitations of our experiments. First, even though the

experiments establish that the range of applicability of systems like Oval is large, they do not allow us to

characterize its limits. In fact, we suspect that it is difficult, in principle, to characterize the limits of radically

tailorable tools since ingenious users will always be able to think of unexpected new uses for them.

Second, we have not formally studied the usefulness of the applications that could be created with systems like Oval.

Instead, since we emulated other systems that are widely believed to be useful, we assume that systems like Oval

would be at least as useful as these previous systems are individually. We do not yet know how much additional

benefit will come from combining these and other applications that can be created with the system.

User-level modifications System-level modifications

System Object Types Folders Agents Rules

glBIS 3 1 per 1 1 per query Aggregate nodes**;"Outline" folder display
discussion format**; Live sharing t

Coordinator 19 23 14 47 Conversation folders; Reply types

Notes * * * * "Outline" folder display format**; Live sharing t

Information Lens * * 1 * "Anyone" agents**

Table 1. A summary of the modifications required to emulate the systems described in each experiment.
(* - Application specific. " - 'Optional' feature; not implemented. t - Implementation in progress)

16



III

Finally, and perhaps most importantly, we have not formally tested the usability of this system. That is, we tested

whether the system made it possible for knowledgeable users to implement the applications using only the user level

tailoring facilities. As the descriptions above indicate, the user level tailoring facilities have "face validity" as being

simple and easy to use. Another important kind of test, however, would be to examine how well typical users at

various levels of sophistication could actually create such applications for themselves.

In practice, we expect that radically tailorable systems like this will be used in very different ways by end users, by

power users, and by programmers ([17], [12]). Since the system provides a wide spectrum of tailoring options, we

believe that many users would make only minimal changes to applications developed by others, while some power

users would develop applications for other people, and programmers would use the system to dramatically reduce the

time and effort required to develop completely new applications. In fact, even if the Oval system were not tailorable

at all by typical end users, radically tailorable systems like this would still be very useful for programmers as rapid

prototyping and iterative development tools.

Lessons from experiments

What can we learn from these experiments? We believe that two of the most important lessons have to do with the

power of the four primitives with which we started:

(1) Objects, views, agents, and links provide a kind of elementary "tailoring language" for user interfaces to

information management and cooperative work applications. All of the previous systems we analyzed had some

form of semistructured objects and some form of summary displays analogous to our views. Most of the systems

also had some of the functionality provided by our agents and links. With the exception of Notes, however, the

systems were built to handle only specialized kinds of objects (e.g., messages or argumentation nodes) and certain

display formats (e.g., tables). By generalizing to the abstract level of semistructured objects, customizable views,

rule-based agents, and links, we achieve a great increase in scope of applications with only a relatively modest

increase in complexity. For instance, by implementing views (such as tables, networks, matrices, and calendars)

once in a way that end users can then apply to any kind of information, a vast amount of programming effort is

avoided and the end users' power is significantly increased. We were genuinely surprised at the power of this

approach, and we believe that the generality of these basic primitives and their combination methods is not yet

widely appreciated.

(2) Radical tailorability facilitates integration. In addition to the versatility that a radically tailorable system

provides, there is another important benefit of constructing a variety of different applications within the same

system: It is much easier to integrate the different applications. For instance, discussions facilitated by systems like

17



gIBIS often lead to action items, the status of which a group might want to track with systems like Notes or the

Coordinator. In an integrated system like Oval, it is a straightforward matter to link these action items to the

discussions that generated them and vice versa.

CONCLUSION

Even though the primitives of objects, views, agents, and links provide a powerful basis for constructing

information management and cooperative work applications, there are many difficult problems to be solved before

the full promise of this approach is realized. For instance, numerous difficult issues arise in trying to manage large

numbers of linked objects in a shared, distributed network. One particularly important aspect of this problem

involves how to manage the evolution of partially shared object type definitions (e.g., [10]). Finally, even if the

approach described here were successful in completely eliminating the programming effort needed to create

applications, the task of imagining new and useful things for computers to do is a far from trivial one.

ACKNOWLEDGMENTS

This research was supported by Digital Equipment Corporation, the National Science Foundation (Grant No. IRI-

8903034), Matsushita Electric Industrial Co., Boeing, Information Resources, Inc., Electronic Data Systems, Apple

Computer Company, and the corporate members of the MIT International Financial Services Research Center.

We are indebted to Terry Winograd for suggesting the acronym "Oval" after hearing about the four components of

our system and to John McDermott for suggesting the term "radically tailorable" as a description of the Oval system.

The Oval system has benefited from the suggestions and work of numerous people over many years, including most

recently: Mark Ackerman, Geoffrey Bock, Kevin Crowston, Troy Jordan, Jintae Lee, Charley Osborne, Dave Park,

Mike Plusch, and Paul Resnick.

REFERENCES

1. Action Technologies, Inc. (1988). The Coordinator, Version II, User's Guide. Emeryville, CA:

2. Conklin, J. and Begeman, M. L. gIBIS: A hypertext tooling for exploratory policy discussion. In
Proceedings of CSCW '88 Conference on Computer-Supported Cooperative Work (Portland, OR, Sept. 26-28,
1988), ACM Press, pp. 140-152.

3. diSessa, A. A. A principled design for an integrated computational environment. Human Computer
Interaction. 1, (1985), 1-47.

18



III

4. Fischer, G. and Girgensohn, A. End-user modifiability in design environments. In Proceedings of CHI '90
Conference on Human Factors in Computer Systems (1990): ACM Press, pp. 183-191.

5. Galegher, J., Kraut, R. E. and Egido, C. (Eds.). Intellectual Teamwork: Social and Technological Foundations
of Cooperative Work. Lawrence Erlbaum, Hillsdale, N. J., 1990.

6. Greenbaum, J. and Kyng, M. (Eds.). Desgin at Work: Cooperative Design of Computer Systems. Lawerence
Erlbaum, Hillsdale, N. J., 1991.

7. Hutchins, E. L., Hollan, J. D. and Norman, D. A. Direct manipulation interfaces. In User-Centered System
Design, D. Norman and S. Draper (Ed.), Lawrence Erlbaum, Hillsdale, N. J., 1986, pp. 87-124.

8. Kyng, M. Designing for cooperation: Cooperating in design. Communications of the ACM. 34, 12 (1991),
65-73.

9. Lai, K. Y., Malone, T. and Yu, K.-C. Object Lens: A spreadsheet for cooperative work. ACM Transactions
on Office Information Systems. 6, 4 (1988), 332-353.

10. Lee, J. and Malone, T. W. Partially shared views: A scheme for communicating among groups that use
different type hierarchies. ACM Transactions on Information Systems. 8, 1 (1990), 1-26.

11. Lotus. Lotus Notes Users Guide. Lotus Development Corp., Cambridge, MA, 1989.

12. Mackay, W. E. Patterns of sharing customizable software. In Proceedings of CSCW '90 Conference on
Computer-Supported Cooperative Work (Los Angeles, CA, October 7-10, 1990),, pp..

13. MacLean, A., Carter, K., Lovstrand, L. and Moran, T. User-tailorable systems: Pressing the issues with
buttons. In CHI '90 Conference oneHuman Factors in Computer Systems (Seattle, WA, April 1-5, 1990),

-ACM Press, pp. 175-182.

14. Malone, T., Yu, K.-C. and Lee, J. (1989). What good are semistructured objects? Adding semiformal
structure to hypertext (Technical report #102). Cambridge, MA: Center for Coordination Science,
Massachusetts Institute of Technology.

15. Malone, T. W., Grant, K. R., Lai, K.-Y., Rao, R. and Rosenblitt, D. Semistructured messages are
surprisingly useful for computer-supported coordination. ACM Transactions on Office Information Systems.
5, (1987), 115-131.

16. Malone, T. W., Grant, K. R., Turbak, F. A., Brobst, S. A. and Cohen, M. D. Intelligent information-sharing
systems. Communications of the ACM. 30, (1987), 390-402.

17. Nardi, B. A. and Miller, J. R. An ethnographic study of distributed problem solving in spreadsheet
development. In Proceedings of CSCW '90 Conference on Computer-Supported Cooperative Work (Los
Angeles, CA, October 7-10, 1990), ACM Press, pp..

19



18. Olson, G. M. and Olson, J. R. User-centered design of collaboration technology. Journal of Organizational
Computing. 1, (1991), 61-83.

19. Schuler, D. and Namioka, A. (Eds.). Participatory Design. Lawrence Erlbaum, Hillsdale, N. J., 1992.

20. Sproull, L. and Kiesler, S. Computers, Networks, and Work. Scientific American. 265, 3 (1991), 84-91.

21. Winograd, T. A language/action perspective on the design of cooperative work. Human Computer Interaction.
3, (1987), 3-30.

22. Winograd, T. and Flores, F. Understanding computers and cognition: A new foundation for design. Ablex,
Norwood, NJ, 1986.

23. Yourdon, E. Modern Structured Analysis. Yourdon, Englewood Cliffs, NJ, 1989.

20


