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Abstract

This study examines two different barrier functions and their use in both
path-following and potential-reduction interior-point algorithms for solving a
linear program of the form: minimize cTZ subject to Az = b and e < z < u,
where components of e and u can be nonfinite, so the variables z can have
0-, 1-,or 2-sided bounds, j = 1, ..., n. The barrier functions that we study in-
clude an extension of the standard logarithmic barrier function and an extension
of a barrier function introduced by Nesterov. In the case when both e and u
have all of their components finite, these barrier functions are

(Z) l {- n(uj - ) - ln(zi - j)}

and

*(z) = Z{ - ln(min{uj - zj, zj - j }) + min{uj - zj, zj - j }/((uj - j)/2)}.
i

Each of these barrier functions gives rise to suitable primal and dual metrics that
are used to develop both path-following and potential-reduction interior-point
algorithms for solving such linear programming problems. The resulting com-
plexity bounds on the algorithms depend only on the number of bounded vari-
ables, rather than on the number of finite inequalities in the system e < z < u,
in contrast to the standard complexity bounds for interior-point algorithms.
These enhanced complexity bounds stem directly from the choice of a "natural"
metric induced by the barrier function. This study also demonstrates the inter-
connection between the notion of self-concordance (introduced by Nesterov and
Nemirovsky) and properties of the two barrier functions that drive the results
contained herein.

Key words: linear programming, barrier functions, interior-point algorithms,
complexity theory, self-concordance.

Running Header: Barrier Functions for Linear Programming
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1 Introduction

This study examines two different barrier functions and their use in both path-
following and potential-reduction interior-point algorithms for solving a linear
program of the form:

(p) mn cTz

s.t. Ax = b,

te < < u,

where the components of t and u can be infinite, so that the variables zj can
have 0-, 1-, or 2-sided bounds, j = 1, ..., n. Variable with no bounds are free
variables, and the others are bounded variables.

This study is motivated in part by the desire to redress a weakness in much
of the research in interior-point algorithms (both theoretical and computational)
that assumes that all variables have one-sided bounds. To satisfy this assump-
tion, a free variable zj can be eliminated through row operations on A, but this
is neither computationally convenient nor natural. We can deal with a 2-sided
bounded variable z by adding an additional variable zj and a new equation
zj + x = j . In this way both zj and zj become one-sided bounded vari-
ables with finite lower bounds of tj and 0, respectively. This procedure seems
also to be inconvenient and unnatural. Furthermore, by converting a two-sided
bounded variable to two one-sided bounded variables, attention is drawn away
from the inherent relation between the slacks on the two bounds, namely that
they must sum to the positive constant u3 - t , and that the two bounds cannot
therefore be simultaneously binding at any feasible solution.

The standard logarithmic barrier function for a two-sided bounded variable
is

- ln(uj - zj) - ln(zj - e). (1.1)

This barrier function repels zj from ej and uj , but takes no advantage of the fact
that zj cannot simultaneously approach tj and uj (unless uj = j , which can
easily be assumed away). It seems on intuitive grounds that a logical alternative
barrier function for a two-sided bounded variable is - ln(min{uj - xj, zj - Cj }),
but this barrier function is not differentiable at xj = (uj + j)/2. Therefore we
also consider herein a barrier function of the basic format

- ln(min{uj - zj,zj - tj))+ min {u - j, zj - t }/((uj - tj)/2), (1.2)

which has an additional piecewise-linear term that causes the function to be
twice differentiable. (The twice-differentiability of the barrier function is impor-
tant for many reasons, including constructing good local approximations and
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using Newton's method, and is intimately related to the self-concordance notion
of Nesterov and Nemirovsky [14], as is discussed in Section 2 of this paper. The
above barrier function is a mild extension of a barrier function introduced in
Nesterov [13].)

By providing a unified and consistent framework for studying barrier func-
tions for the very general linear program (P) with possibly nonfinite values of
t and u, this study attempts to redress the weaknesses mentioned above: the
awkwardness of assuming no free variables, and the unnaturalness of replacing a
two-sided bounded variable by a pair of one-sided bounded variables. However,
there is another added benefit from this study as well, related to the analysis of
the computational complexity of interior-point algorithms for linear program-
ming, that derives from the appropriate choice of metrics associated with the
two barrier functions of the forms (1.1) and (1.2). By choosing suitable primal
and dual metrics based on such barrier functions, we derive complexity bounds
for path-following algorithms and potential-reduction algorithms that depend
on the number of bounded variables rather than on the number of inequali-
ties. (This runs counter to previous research in interior-point algorithms, in
which any increase in the number of inequalities of the linear program necessi-
tated an increase in the complexity of the algorithm.) The derivation of these
complexity improvements stems from the choice of the metric used to measure
displacements in both primal and dual space, and our results indicate that there
is indeed a "natural" pair of primal-dual metrics derived from the choice of the
barrier function. A similar connection between the barrier function and the
choice of metric is also discussed in the context of the Riemannian geometry of
linear programming problems in Karmarkar [8], and in particular in the work
of Nesterov and Nemirovsky [14].

Another motivation of our study is to examine exactly which properties
of an interior-point algorithm contribute to polynomial time bounds. Many
methods use scaling by the components of the current iterate at each iteration;
our development, for a slightly more general problem, shows that this scaling
corresponds to using a primal metric derived from the Hessian of a barrier
function. In addition, our problem seems to be about the simplest for which two
different barrier functions can be used, while maintaining the same polynomial
time complexity. Finally, our treatment is intended to illustrate in a fairly
simple setting the ideas of the very general theory developed by Nesterov and
Nemirovsky in [14].

The paper is organized as follows: In Section 2 we describe two barrier func-
tions for the linear programming problem (P) with possibly nonfinite values of
components of t and u. The barrier functions are essentially the same as (1.1)
and (1.2), with modifications to conveniently handle infinite values of tj and
uj. Basic differential properties of these barrier functions are developed as well.
These barriers are used to define primal and dual metrics on displacements,
and to define primal and dual projections. Central trajectories based on these
barriers are also defined and duality gaps and measures of centrality are studied

3



III

next. Finally, approximations to barrier functions and their gradients are de-
veloped. These approximations are derived using notions directly related to the
self-concordance of the barrier functions, and the relation of self-concordance to
the results is discussed.

Section 3 contains a description of a primal path-following algorithm (based
on the use of Newton's method) for solving the linear programming problem
(P). This algorithm obtains a fixed reduction in the duality gap in O(v/p)
iterations, where p is the number of bounded variables (as distinct from the the
number of inequalities, which will be possibly larger).

Section 4 contains a description of a primal potential-reduction algorithm
for solving the linear programming problem (P). This algorithm obtains a fixed
reduction in the duality gap in O(p) iterations.

Section 5 contains concluding remarks, open questions, and possible direc-
tions for future research.

Notation. For the most part, the notation is standard. If v is a vector in
R", V denotes the diagonal matrix with diagonal entries corresponding to the
components of v. The vector of ones, (1, 1, ..., 1)T , is denoted by e, where the
dimension is dictated by context. Let 11 11 and I11 II1 denote the Euclidean and
the Il- norm, respectively. In context, parentheses are used to denote indexing
of components of a vector, e.g., z = (min{vj, 1 - vj}) connotes that z is the
vector whose jth component is min{vj, 1- vj },j = 1, ... , n.

Finally, we point out that this study is intended to be self-contained, and
does not rely on previous knowledge of results on interior-point methods in
linear programming.

2 Barrier functions for interval bounds and their
properties

In this section, we describe two barrier functions for the bounded linear pro-
gramming problem. These barriers are a crucial ingredient in the algorithms we
describe in the following sections. Among their roles are:

a) being part of primal potential functions;
b) defining metrics both on primal displacements and dual slack vectors;
c) determining central trajectories; and
d) permitting the derivation of dual slack vectors from primal solutions.
We will derive some key properties of our barrier functions that facilitate

their use for the purposes above.
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2.1 Problems, assumptions and duality

We are interested in the problem

min cT z
(P) X

s.t. Az = b,

te < < u,

where A is m x n and the vectors z, b, c, e and u have appropriate dimensions.
Here the components tj of can be -oo or finite, while the components of uj
of u can be +oo or finite. We insist that e < u. (If I > uj for some j, (P) is
clearly infeasible; and if ej = uj, zj is fixed and we can substitute for it and get
a lower-dimensional problem.) We say zj has 0-sided, 1-sided, or 2-sided bounds
according as the number of finite elements of {j, uj } is 0, 1, or 2, respectively.
Variables with 0-sided bounds are called free; all remaining variables are called
bounded. Let p denote the number of bounded variables, and note p < n.

Let F(P) denote the feasible region of (P) and F(P) the set of strictly
feasible points:

F°(P) := {z E R : Az = b,I < z < u}.

We assume that F°(P) is nonempty, and that we know some z° E F°(P). We
suppose the set of optimal solutions of (P) is nonempty and bounded. We also
assume without loss of generality that A has rank m.

Let A consist of the columns of A corresponding to free variables. If for
some nonzero d we have Ad = 0 and cd # 0, where is the corresponding
subvector of c, then by moving the free variables in the direction ±d from any
feasible solution we see that (P) is unbounded. If Ad = 0 and cJd = 0 for some
nonzero d, then the set of optimal solutions cannot be bounded for the same
reason. Hence our assumptions imply that A has full column rank.

The standard dual of (P) is

max bTy + ETir - uTset

s.t. AT y + st - s" - c,
s' > 0, s > O.

Since we are assuming that t < u, it is sufficient to consider solutions where
for each j, ai or 'j is zero. Writing s = s' - s", we can alternatively express the
dual in the form

max bTy + /Ts+ - uTs -

(D) A + =
s.t. ATy + s = e,
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where s + := (max{O, sj}) and s- := (max{O, -sj}). We have been implicitly
assuming that e and u are finite, but (D) is a valid dual problem even when
some components of and/or u are infinite. If any tj = -oo, then (s+)j must
be zero so sj < O; if any uj = +oo, then (s-)j must be zero so s > O. We follow
the usual understanding in extended-real-valued arithmetic that 0 x (+oo) = 0
and 0 x (-oo) = O. In particular, s8 = 0 if zj is free. With these conventions,
(D) satisfies the usual duality relationships with (P).

It will be convenient to refer to the situation where e = 0 and each component
of u is +oo as the standard case. Then s > 0 and eTs+ -uTs - = O, so we recover
the usual dual problem.

Let F(D) denote the feasible region of the dual problem:

F(D) := {(y, s) : ATy + s = c, eTs+ - UTS- > -oo00}.

We also let

F°(D) := {(y, s) E F(D) : sj > 0 if -oo < ej < Uj = +oo,

Sij < if -oo = < Uj < +oo}.

For any z E F(P), (y, s) E F(D), the duality gap is

CTz- bTy - + + uTs - = CTz- (Az)Ty - E S+ + TS -

= zTs _ s+ + UT

= ( - )Ts+ + (u - )Ts- (2.1)

This shows that the duality gap is zero if and only if complementary slackness
holds.

2.2 Two barrier functions

Let X := {z E R : < z < u}. By our assumptions, int X = {z E R" : t <
z < u}) is nonempty.

The typical logarithmic barrier function associated with the linear program
(P) associates a logarithmic penalty with each inequality slack, and it is of the
form:

n n

(z) := - E In(zj - tj) - E ln(uj - zj).
j=1 j=1

When and u are both finite, then B(z) is well-defined. But if for some j,
tj = -oo or u = +oo, then 8(z) is not well-defined. In order to incorporate in

6



a unifying framework the cases when some or all of the components of e and/or
u are not finite, we choose an arbitrary reference value of z = 2 with e < 2 < u,
and define

(In the standard case, we choose = e.) Then note that () is well-defined

(In the standard case, will rewrit choose (z = e.) Then note that s(z) is well-defined
for all z E int X. We will rewrite (z) as

(z) := 5(5):= (zj; tej, uj, j), (2.2a)

where , is of the form:

() := v,(; A, v, -ln() n-Z--) - n(-) (2.3)

and A < < v. When A = -oo and/or v = +oo, then is defined to be the
limit of the expression (2.3) as A - -oo and/or v - +oo. Note that when A
or v is infinite, the effect of the denominator in (2.3) is to erase the appropriate
logarithmic barrier term. In particular, in the standard case, = I and we
recover the usual logarithmic barrier function - In(f). When A and v are finite,
the effect of the denominator is to add a scalar constant to the "normal" barrier
function - In(( - A) - ln(v - ).

In the case when both A and v are finite, the purpose of the barrier function
x(() is to repel from the boundary values of A or v. Since A < v, it is
impossible for ( to simultaneously approach A and v. It therefore seems more
efficient to consider a barrier of the form

-ln(min{4 - A, v-(}),

which only penalizes one of the slacks of the interval inequalities A < < v.
This yields the barrier function

a(z) := - ln(min{zj - tj, uj - z })-
j=1

However, A(z) is not differentiable at z = (u - t)/2 in the case when u and t are
finite. In order to remedy this, we augment 8(z) with an extra piecewise-linear
term which will cause B(z) to be twice continuously differentiable, as follows:
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minlzi -e,,u, -e } a-z s E m (u - )}2 In(min{xj - e, uj zj})

(The differentiability of B(z) will be proven in Lemma 2.1, to follow). However,

just as in the function B(z), B(z) is not well-defined if 4i = -oo or u = +oo

for some j. Thus, as with B(z), we define:

n (min{i -,u - zi (minz - ,u - Z'}
( ) := (; ) B=- (u, -ej)/2 - min{i - u, -j

j=l

We will write

i(2z) := t(zj) := (Zj; , Uj, j). (2.2b)

where ~ is of the form

min{t - A, v - t} m in{ - A, v - 4)
(; , v,) : (v - A)/2 In min{ - A, v - } . (2.4)

When A = -oo and/or v = +oo, then l is defined to be the limit of the

expression (2.4) as A = -r and/or v = +r and r - +oo. (As in the case of the

function t, the role of i in ~ is to ensure that limits exist and different values

of 4 affect if and 4 only through additive constants.)
Note then

((;, +o, ) -= (E;, +oo, ) =-In (-A ) (2.5)

and

I ;-h00, V,) = (; -oo00, v, = - In . (2.6)

(In the standard case, A = 0, v = +o0, and 1 = 1, and we obtain the standard

logarithmic barrier function - In4 from (2.6).) If A = -oo and v = +oo, then

(,;-o,+oo,() = and t((;-oo,+oo,) = 1.- (2.7)

For simplicity of notation we frequently omit the parameters A, v, and j. We

will also write 4 for i or t and a for 4 or 4, so that (2.2a) and (2.2b) become
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1i(z) = E tj(z) = E (Zj; j,uj, j), (2.2c)
- j

where k is either or k. We will also use the notation

p = (v + A)/2, v = (v- A)/2 (2.8)

when v and A are finite. One can think of p as the midpoint and v as the radius
of the interval [A, v]. Then min{( - A, v - } can also be written as v - 4 - pi.

The barrier function tb can be thought of as the sum of two standard log-
arithmic barriers, one for the slack variable f - A and the other for the slack
variable v - f. We prefer to consider it as a single barrier associated with the
variable (. The barrier function ' was introduced by Nesterov [13] for the case
A = -1,v = +1,0 = O, so that p = O and v = 1. In that case,

() = -1 - - ln(1 -141).

We have

Lemma 2.1 With obvious limits if = -oo or v = +oo or both,

() ,= _ ---+ (2.9)

1 1"() (4-A) + (v - 4)2' (2.10)

O, min if- (2.11)'(') { v if A and/or v are finite (2.11)
if XA = -oo, v = +oo,

and

1
=(() (min{ - A, v - (})2 ' (2.12)

Proof: If A and v are both finite, (2.9) and (2.10) follow immediately from the
definition (2.3) of j. If either or both are infinite, these results can be checked
directly from (2.5)-(2.7).

Similarly, (2.11) and (2.12) are immediate from (2.5)-(2.7) if either or both
of A and v are infinite. Suppose now both are finite. Then if I < p, then 1
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li

coincides with (- A)/v - ln(4 - A) + ln(min{( - A, v - 4}) for 4 close to 4, and
so

'(~) = l/v-1/(- ) = (- - )/((4- A))

= (4-p)/(vmin{(-A,v-f}) and

8"(E) = 1/(-A)2 = 1/(min{(- A,v-}) 2.

A similar argument holds for 4 > p. Since these formulae are continuous at
= p, it follows that they are valid for all 4. 

(Note in (2.9)-(2.12) that these derivatives are independent of the "reference"
value 4. Also note interestingly that the third derivative of ~(4) is not well-
defined at 4 = p.)

From their definitions and lemma 2.1, we see that and are convex,
and converge to +oo on a sequence of points in int X converging to a point of
X\(int X). In particular, we have

V2 4(z) = e2, V 2 (z) = 2, (2.13)

where ) and e are the diagonal positive semi-definite matrices with diagonal
entries

j := t/(·zj - tj)-2 + (u, - zj)-2 (2.14)

and

§j := (minzj - j, ui - zj})-1 (2.15)

respectively. Note that Oj and j are positive if zj is a bounded variable, and
that X, e, Oj and j depend on z. Finally, if there are no free variables, e and

e are positive definite and fi and i are strictly convex.
To conclude this subsection, we have the following:

Remark 2.1 When A and v are finite, then

()-= maxL -A l n( -A), -ln(v - ) + lnmin{ - A,v- }.

(2.16)
Thus s is the maximum of two almost standard logarithmic barrierfunctions

associated uith the two bounds.
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Proof: Let R(~) be the difference between the expressions in the maximum in
(2.16):

V VR(t) = - + n(-A)

Then R(p) = 0, and it suffices to show that R(4) > 0 for ( E (p, v) and R(t) < O
for E (A,p). Note that R'(() = - + + i., which after manipulation
becomes

2(- p)2

and so R'(t) > 0 and is zero only at t = p. Thus R(t) > R(p) = 0 for t E (p, v)
and R(t) < R(p) = 0 for E (A,p). O

2.3 Metrics on primal and dual displacements

Let E int X be fixed. Let E be either E or , and let e 2 := V2i(&), so that
e is either 0 or 0 with entries given by (2.14)-(2.15).

Definition 2.1 For any z', z" E F(P), the distance between them in the metric
associated with 2 is

Ilz' - z"!, := l(z' - z")11. (2.17)

Recall that the norm on the right-hand side of (2.17) is the Euclidean norm.
We call 11 II the (primal) barrier norm at i. (The matrix e is frequently used
as a scaling matrix to define metrics in interior-point methods - see for instance
McShane et al. [11] for a primal-dual version and Vanderbei [23] for a primal-
only version. In fact, Vanderbei uses instead the scaling matrix e, which he
regards as an approximation to 0. In our development it arises naturally in its
own right.)

Proposition 2.1 1 - f-, is a norm on the null space of A.

Proof: It is clear that II' j[ is positively homogeneous, nonnegative, and satisfies
the triangle inequality. Now note from (2.14)-(2.15) that lldlls = 0 only if
dj = 0 for all bounded variables zj. Since we are assuming that the columns
of A corresponding to free variables are linearly independent, it follows that

dllfj -0 for d in the null space of A if and only if d = 0. 
We also write Ildlls for IIldI for d not in the null space of A, although it

may not be a norm.
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Let S denote the set {s : tTs
+ - uTs - > -oo}. For s E S, s > 0 if

-oo < j < uj = +oo, sj < 0 if -oo = j < u < +oo, and sj = 0 if
ej = -oo, uj = +0oo. Therefore S - S = {s: sj = 0 if tj = -oo and u = +oo}.
We use rel int S to denote the relative interior of S. It is easy to see that
(y, s) E F°(D) if and only if ATy + 8 = c and 8 E rel int S. We can define a
dual metric on displacements in S:

Definition 2.2 For any s', s" in 5, the distance between them in the dual met-
ric associated with is

Ils' - s"1l := IlI-X(s' - s")l. (2.18)

Here a diagonal entry of 0-1 is taken to be +oo if the corresponding entry of
e is zero; but for such entries the corresponding component of s' - s" is zero.

We call 1I * 1; the dual barrier norm at i. We obtain directly:

Proposition 2.2 11 II is a norm on the subspace S - S = {s : sj = 0 if
j = -oo and uj = +oo}. O

(In the standard case, 0 = k-1 where X is the diagonal matrix containing
the components of /, and so

liz' - z"11 = 11- (z' - 2")11

and

lis' - a"1; = lIX(a' - s")l.)

Proposition 2.3 Let I E F°(P). Then {z + d: Ad = 0, ldlla < 1} C F°(P).

Proof: We only need to show that i + d E int X for such d. From (2.13)-(2.15)
we see that IIdll < 1 implies Idj I/ min{j - ej, uj - ij } < 1 for each bounded
variable. Hence if j is finite, ij + dj -tj = (j -j )(1 + dj/(i -ej4)) > 0, and
similarly u - Zi - dj > 0 if uj is finite. O

We use these metrics to perform projections. The Euclidean projection of
a vector v E R' onto the null space of A can easily be seen to be the unique
solution to

max vT d - 2ldI 2
d

s.t. Ad = 0.

Correspondingly we have:
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Theorem 2.1 There is a unique solution to the problem

max vT d - d (2.19)

s.t. Ad = 0.

Moreover, this solution d is part of the solution (d, 9) to the system

( 2 AT )() (0), (2.20)

and satisfies

IIdJll = vT d; (2.21)

lidlI = lilv - AT 911;; (2.22)

and if v E S- S

11l1d < 11;. (2.23)

Proof: Since vTd - dTr 2d is concave, the Karush-Kuhn Tucker conditions
(2.20) are necessary and sufficient for d to solve (2.19). To see that (2.20)
has a unique solution, we note that if (d, y) is a solution to the corresponding
homogeneous solution, 0 = dTo 2 d + drATy = dTY 2 d and Ad = 0, so that by
Proposition 2.1, d = 0. Then, since we are assuming that A has rank m, ATy = 0
implies y = 0.

Premultiplying the first row of (2.20) by J yields dr62j = drTv, which is
(2.21). If v E S - S, then [J[]t = (0d-T (- 1v) C IIIdlil I-vll =

111Is Ilvll;, which is (2.23). Finally, 02j = v - AT 9 shows that v - AT 9 E S -S,
so that Od = - 1(v - AT 9 ), whence taking norms gives (2.22). 0

We write Pe(v) for the solution to (2.19). Dually, we have:

Theorem 2.2 There is a unique solution to

min (llv- AT yll*) 2

(2.24)
s.t. v - ATy E S-S.

Moreotcr, this solution 9 is part of the solution (d, 9) to (2.20).

Proof: We can write (2.24) as
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It

min ½STO-2s
ya

s.t. ATy + s = v,

s E S -S,

with s = v - ATy, for which the Karush-Kuhn-Tucker conditions are again
necessary and sufficient. But these conditions are again (2.20), where d is the
Lagrange multiplier vector for the constraints ATy + s = v. The results then
follow from Theorem 2.1. (Note that (2.24) is feasible from our assumption that
A has full column rank.) O

Using (2.21) and (2.22) we see that (2.19) and (2.24) are dual problems with
equal optimal values.

Proposition 2.4 For any i E int X, VI(1) E S - S and JJV7(i)J* II< /P'

Proof: It follows from Lemma 2.1 that V%(2) E S - S, so that Iv7lv()l; is
well-defined, and IIV (i)JII = II6-1V(i)11·. For the p nonzero components of
- 1LV'(i), from Lemma 2.1 and (2.13)-(2.15), we see that (0- 1V'I'(i))iI < 1

for all non-free variable indices, and so Il0- 1V%(i)l < V/. O
(Note that if all bounds are 1-sided, the inequality in the proposition becomes
an equality.)

2.4 Central trajectories and conjugate barriers

Let p > 0. Here we consider the barrier problem

min cTz + pPi(2)
(BP) Xs.t. Az = b,

where * is either f4 or 4. Here we extend and (and hence I) to all of
R", defining them to be +oo on Rn\(int X); then I is a closed proper convex
function on Rn .

By our assumption that F(P) is nonempty, there is a feasible point for
(BP) with finite objective value. Since we assume that (P) has a nonempty
bounded set of optimal solutions, on any nonzero direction in the null space of
A intersected with the recession cone of X, cTz increases linearly while i(z)
decreases at most logarithmically. It follows that the convex function cTz +
pt(z) has no nonzero direction of recession in the null space of A, and hence by
standard arguments that (BP) has an optimal solution. Moreover, since is
strictly convex in the bounded variables, and A has full column rank, we deduce
that the optimal solution is unique. We denote the optimal solution by z(p),
and define the (primal) central trajectory to be {z(p): p > 0}.
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Again, the KKT conditions are necessary and sufficient for optimality in
(BP) and we conclude that z(p) with some y(p), s(/p) satisfies uniquely

Az = b, (2.25a)

ATy + = c, (2.25b)

pV*(z) + a = 0. (2.25c)

Condition (2.25c) implies that s = -V'I(z) E S, and that -s// = VqI(z) E
8a(z), where A0 denotes the subdifferential of A. Let us define the convex con-
jugate of by

'(8s) := sup{- T z - (z)}. (2.26)

(Note that the usual convex conjugate replaces -sTz by sTz; our modification
turns out to be useful for the standard case.) Since i is closed, proper, and
convex, so is '*, and we have (2.25c) (i.e. -s/p E Oa(z)) equivalent to

-z E x'I(s/) (2.25c')

(Rockafellar [16], §§12 and 23).
When we replace (2.25c) by (2.25c'), (2.25) becomes the necessary and suf-

ficient conditions for (y, s) to solve

max bTy - jAn*(8/s)
(BD)If

s.t. ATy + = C.

(As we shall see below, *'(s/) is +oo unless E rel int S.) We can also
obtain (BD) as the ordinary (Lagrange) dual of the ordinary convex program
(BP) (Rockafellar [16], 28). Note that, while (BP) is clearly closely related
to P), (BD) seems not so closely related to (D), since the terms ts+ and
-u s- appear to be missing. It turns out, however, that these two terms arise
naturally as part of the barrier term pu*'(s/;) in (BD); see the Appendix for

(We remark that if there are no free variables, then a1 is strictly convex
as well as essentially smooth, and then '" is too, and can be viewed as the
Legendre conjugate of · (with appropriate sign changes) - see [16], 26.)

The detailed form of A' is not needed in the rest of the paper. For complete-
ness, it is derived in the Appendix, and permits the proof of the theorem below.
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We make two observations here: '* is probably important in the construction of
primal-dual algorithms; and devising a suitable primal-dual potential function
seems to be complicated by the presence of p inside the function fI'. (In the
standard case, V*(s) = - j nsj -n, so '*(s/p) = - j Insj +n(ln - 1); p
can be extracted from '' and causes no difficulty.) Nesterov and Nemirovsky
[14] introduce a primal-dual potential function via the conjugate barrier func-
tion in a fairly general setting; but their development requires the problems to
be in "conic" form and the barrier functions to be logarithmically homogeneous,
neither of which holds in our framework. See also Section 5.

Summarizing the results of this subsection, and using the derivation in the
Appendix, we have:

Theorem 2.3 For any p > 0, there is a unique solution x(p) to (BP) and
a unique solution (y(p), s(p)) to (BD), and these solutions together solve the
system (2.25). For any z E int X and any s E rel int S, p(z) - 0 and

-#p(8s/p) - Ts+ - UT8- as p 1 O. Moreover, *I'(s) = 'j 0'b(sj), where the
individual k* 's are given by (A.1)-(A.3), (A.5) or (A.7) in the Appendiz. 

2.5 Duality gaps and measures of centrality

In the standard case (2.25c) becomes z o s = ye, where z o s := (zjsj), and the
duality gap is

(z - I)Ts+ + (u - z)T s - = T s = eT(z o s) = np.

Thus if we follow the central trajectory as 1I 0, any limit points of z(p) and
(y(p), s(p)) will necessarily be optimal primal and dual solutions to (P) and
(D). We would like a similar result in the general case. In fact, we would like a
generalization that allows z to be nearly, rather than exactly, central; this will
have applications in the algorithms to follow.

We wish to permit s/p to be close to -VI(z). We will measure closeness
in the norm jj11 I*. To simplify notation, we will write t for s/p.

Theorem 2.4 Suppose t = -VP(z) + h, where z E int X and h E S - S with

Ilhll; <13 < 1. Then t E rel int S and

(z -t )Tt+ + ( - )Tt - < p + tp. (2.27)

(Recall that p is the number of bounded variables.)

This theorem shows that the duality gap corresponding to z(p) and (y(p), s(p))
is at most pp, since we can set t = s(p)/p and p = 0.
Proof: Let e 2 - V 2,(z), so that Iie-hI <5 . Since h = 0 if zj is a free
variable, Ile-'hhll <1 ,/p. We prove (2.27) by showing that
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(Zj - tj)t + (u, - zj)t7 < 1 + lO-Thjl

if z i is a bounded variable. Since (-VI(z))j is zero if zj is free, so is tj and
hence the left-hand side of (2.28) is zero for such j. Hence adding yields (2.27).

We use the notation of previous subsections, with r denoting tj and r7 de-
noting hj. We also write for 8j. Suppose first -oo < A < v = +oo. Then
- (() = 8 = ( -A)- 1 . Since I/'-l71 < < 1, r = + > 0 and

(( - A)r+ + (v - )r- = 1( + 7) < 1 + e-l71

as desired. Similarly, if -oo = A < v < +oo, - b'(() = -(v - )-1 and
6 = (v - ()-'. Thus r = - + < 0 and

((-)+ +(v-()r- = '(- (- + ))

< 1+ 18-171.

In addition to showing the appropriate part of (2.28), we have shown that
each component of t has the correct sign if necessary, so that t E rel int S.

We still need to show (2.28) in the case -oo < A < v < +oo. We first
consider the case that = . Then -'(() = ( - A)-1 - (v - )-' and

= ((A)- 2 + ( _)-2. If r O 0 we have to show that

((A-)r+ + (v- )r- = (- A)

= ( - )(( - )-' - (v - )- + ) 1 + -'71. (2.29)

This is trivial if 7 < 0, while if > 0 it is equivalent to showing that

(( - A) - 1)('-11) ( - A)(v ()-.

But this holds since ( - A)-' < < ( - A)-' + (v - )-1 and 0 < -1' < 1.
A similar argument holds in the case r < 0.

Finally, suppose i = ~. Then -'(() = (p - )/(vmin{( - ,v - }) and
0 = (min{( - A, v - ))-'. Suppose r > 0. We want to show that

((-A)r+ + (v- )r- = ( -A)
= ( - A)(-V'() + 7) 1 + 0-T1 . (2.30)

If -A v- , this reduces to

17
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(P - )/V + 0-17 < 1 + 18-_11

which is trivial. So assume v - ~ < ~ - A, in which case (2.30) is equivalent to

- A 17 1-7 < 1 + ( -- )(( P). (2.31)

If 7 < 0, this is again immediate, so suppose > 0, in which case (2.31) holds
if and only if (multiplying by v - )

2(t - p)l-''7l < v - + ( - )(( - p)lv.

But 10-17 < < 1, -p > O and 2 = v- + < + - which together
imply the desired inequality. A similar argument holds in the case r < 0. This
completes the proof. 

We want t to be of the form s/p, where s = c - ATy for some y. Then
ph = pt + pVgP(z) = c + #V%(z) - ATy. Choosing y to make h small is then
like problem (2.24). Then combining Theorems 2.1, 2.2 and 2.4 we obtain the
following important result, which we call the approximately-centered theorem.
It allows us to obtain a feasible dual solution from a sufficiently central primal
solution.

Theorem 2.5 Suppose E F°(P) is given. Let i > 0 be chosen, and let

v := c + V'r(). (2.32)

Let (d, y) be the solution to (.20) for v given above, and hence define

:= c- AT. (2.33)

Then IIdl = III + PV*()Il{. If

Id/Pilt = Il{/P + ()ll; < , (2.34)

wtere < 1, tea
(i) (, J) E F(D);
(ii) the dlity gap is ( - )Ti+ + (u -.)Ti- < j(p + iVrp).
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If (2.34) holds, we say i is O-close to z(f).
Proof: The equality of the norms follows from (2.22). Now define := Si/ and
h := V() + /lpi = Vg(i) + i. From (2.20), (2.32) and (2.33) we have

AT+i = c,

AT + 2d = c + - (),

and we readily derive

anh = -V ) + , and so from (2.34) we can

and therefore h E S - S. Also, i = -V(z) + h, and so from (2.34) we can
apply Theorem 2.4 to obtain

( _ e)T / + + (U-)T i- P + v.S

Substituting i = ti in the above inequality gives (ii). Therefore AT9 + = c,
and eT' + - uT- > -oo, so that (, ) E F(D). Moreover, since it rel int S
from Theorem 2.4, so is , and this shows (i). O

The last result of this subsection is a sufficient condition for i to be -close
to z(i) for some > 0.

Proposition 2.5 Suppose E F°(P) and i > 0 are given and suppose there
ezist g and satisfying:

(i)AT.+i=c, ES-S,
(ii) Ili/ + (z)l < ~.

Then is .- close to z(fl).

Proof: According to Theorem 2.5 (equation (2.34)), is -close to z(A) if
Ilil/ + V()l; < , where i = c - ATO and (d, y) is the solution (2.20) with
v = c + PV(f). From Theorem 2.2, is the optimal solution to

min lic + gV'(i) - ATYll;.

s.t. c + Vt()-ATy E S - S.

But from hypothesis (i) i is feasible for this program. Therefore,

fli + psV(&)fl = 1Ic + pv'() -A T gI; < ic + v'(!)- - ATll;

= HIl + PVF(l)II; < p

from (ii) above. Therefore II/U + v'(I)I; < 13, proving the result. 0
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2.6 Approximations to barrier functions and their gradients

Here we provide bounds on the errors in first-order Taylor approximations to 
and V, for equal to and At. These bounds are crucial to the algorithms to
follow. It turns out that such bounds follow naturally from the self-concordance
of and in the sense of Nesterov and Nemirovsky [14]. We will show the
functions to be self-concordant, to stress the importance of this unifying concept.
However, our proofs of the bounds are derived independently of the results in
Nesterov and Nemirovsky [14]. In fact for the two barrier functions and ,
we are able to obtain slightly improved constants.

First we state the main results. Throughout, is either or .

Theorem 2.6 Let , z E F°(P) and let d = z - . Let 62 = V 2 (2i). Then

IiV(z) - V@(z) - 2dllj; < ldll~. (2.35)

(Note that the left-hand side is the error in the first-order approximation to
V(z) based on i.)

Theorem 2.7 Let E F(P) and d be in the null space of A. Then, if > 0
is such that jlldjllj < 1, + d E F°(P) and

(z) + V'P(i)Tj < (i + 7d) (2.36)

< '(i)+7 V'(i) T
d+ 7z

2
11dll1 2< ~(~) + ~V~(~)Td + 2(1 - 711d,)

(This result states that is well approximated by its first-order Taylor
approximation. But note that the right-hand side of (2.36) can be written as

r2 _ !11jJl
I(!) + 7yVI() T d I + 2(1 -7 IIdI) 

which is close to its second-order Taylor approximation.)
Theorem 2.7 will basically follow from the fundamental theorem of calculus

and Theorem 2.6. But in order to prove Theorem 2.7, we need to relate two
norms of the form 11 I, and II 11t. This is what the concept of self-concordance
allows us to do. There are two possible definitions, depending on whether the
function is twice or thrice continuously differentiable. The basic definition of
self-concordance given in Nesterov and Nemirovsky [14] is for thrice continuously
differentiable functions: a convex function 4 on an open subset Q of R n is self-
concordant (with parameter 1) if 4 is C3 and for every z E Q and d E R",

ID 34(z)[d, d, d]l < 2(dTV 2q4(z)d)3 / 2. (2.37)
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Because is not thrice continuously differentiable, we elect instead to use the
following definition of self-concordance which is based on twice continuous dif-
ferentiability: a convex function $ on an open subset Q of R n is self-concordant
if is C2 and for every z E Q, d R", and h E Rn, if y is a scalar satisfying
Jll(dTV2t(z)d)1/ 2 < 1, then

(1- Iy(dV 2j(z)d)l/ 2)2 hTV 2t(z)h < hTV 2 (z + yd)h (2.38)
< (1 - li(drV 2 ,(z)d)/ 2 )- 2hTV2 ,(z)hh.

In [14], Nesterov and Nemirovsky prove that (2.37) implies (2.38), and it
is (2.38) which is the basic property used to derive results. For our purposes,
(2.38) will be the working definition of self-concordance.

Proposition 2.6 Both and 4 are self-concordant on int X.

The proofs of Proposition 2.6 and Theorem 2.6 are somewhat laborious, and are
deferred to the Appendix. However, to show how useful self-concordance is, we
now demonstrate how Theorem 2.7 follows from Theorem 2.6 and Proposition
2.6:
Proof of Theorem 2.7: The left-hand inequality is a consequence of the
convexity of A. For the right-hand inequality, first note that by replacing 7d
by d we can assume that = 1 - the presence of 7 is helpful for applications.
Then

(2f + = r(i)+ VIr ( + + Ad4)TddA

= i() + AV2*()Td A

+ [Vr( + Ad) - Vr(.)- AV2 q(.t)J4Td dA. (2.39)

The first two terms give

(i) + V ( )Td+ 2lldll,

so it suffices to show that

[V9(z+ Ad- V'J()- A 2 dCd dA < 2(1 -l allI) (2.40)

21



III

Note that the integrand involves an expression we have bounded in Theorem
2.6. Let z(A) := 2 + Ad, and observe that for v E S - S,

IvT I = I(e- 1(A)v)T(e(A)d)lI < llVII·( lldt(,

where 62 (A) := V2*(z(A)). We know from Theorem 2.6 that

IIV(.(i + Ad - V() - A2d11:(,) < IlAdllI

so the left-hand side of (2.40) is at most

j 2Illdildil(l (A)dA. (2.41)

We note here two different norms of d, but we can use the self-concordance of
A (Proposition 2.6) to obtain (see (2.38))

IIllsox < (1- lldlli)-'1

< (1 - -ldll)- 1lldll. (2.42)

Hence (2.41) is at most

(1 -Idll)- 1 11| j A 2dA

since fol A2dA = < , this establishes (2.40). 

3 Tracing the Central Trajectory Using Newton's
Method

3.1 The Trajectory-Following Algorithm

In this section we study the use of Newton's method for tracing a sequence of
points near the optimal solution of the barrier problem

min cTz + p(z)
(BP)

s.t. Az = b,

< z < u,
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for a decreasing sequence of positive values of the parameter p converging to
zero. Here % is either or 4.

The idea of the algorithm is the same as in many of the path-following
algorithms for linear programming, see, e.g., Renegar [15], Gonzaga [3], Kojima
et al. [9], and Monteiro and Adler [12]. At the start of an iteration, we have on
hand a value A > 0 of the parameter p, and a vector 2 that is P-close to z(/f)
for some fixed value of 3 < 1. We then want to generate a new value of z by
Newton's method, and to shrink a to p := a for some fraction a < 1. Finally,
we want to show that z is -close to z(p).

Let 2, i, and p be given as above. Then, just as in the "approximately-
centered" Theorem 2.5, define

v := c + jV(Z), (3.1)

let (d, .) be the solution to (2.20) with this v, and define

i := c - AT.. (3.2)

From Theorem 2.5, Ild/zll* = H/2 + V'P()II < . Now note that v is the
gradient of the objective function of (BP) at i, while its Hessian is /V 29(i) =

/,0 2. Therefore, since d is the solution to (2.19) for this v, -d/j is the Newton
step for (BP) at i. We write

d := -d/is. (3.3)

Thus, being l-close to z(p) means precisely that the length of the Newton step
for (BP) at 2 is at most 1 in the barrier norm at I. Now let z be the Newton
iterate, i.e.,

z := 2 + d. (3.4)

Proposition 3.1 z E F°(P).

Proof: From (2.20), d and hence d satisfy Ad = 0. Also IIdfl < < 1, and so
the result follows from Proposition 2.3. o

The next result shows that Newton's method exhibits quadratic convergence
if & is Pclose to z(Pf) with # < 1.

Theorem 3.1 Suppose / > 0 is given and C E F°(P) is f-close to z(/j), where

3 < 1. Let z be defined by (3.4) via (3.1), (2.20), (.2), and (3.3). Then is
, .close to z(i).
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Proof: From Proposition 2.5, it suffices to exhibit (y, s) that satisfy

ATy + s = c, s E S-S, and Is/s + V(z)11; < 32. (3.5)

We will show that (3.5) holds for (y, s) = (, i).
Let us recall some relationships. Let 0 2 := V72 p(i). Then from (2.20) we

have

02d + AT9 = c + a'(r(),

so that

g/P = (c- A T )/ = -V(i) - 2(-d/P) = -V1(2) - 2d

Hence

IlIA/ + V'(z)l11 = llV'(z) - vI() --21l,

and by Theorem 2.6 this is at most Ildil2 < 32. This proves (3.5) and hence z
is ,32-close to z(j) from Proposition 2.5. 0

As a consequence of this result, we obtain:

Theorem 3.2 Let 2 E F°(P) be 3-close to z(jf) for ,3 < 1, and define z as
above. Let

- 2 32 + V c3.a := 1 +v = 3+ + . :- : (3.6)

Then z E F°(P) and z is ,3-close to z(p). (Recall that p is the number of bounded
variables.)

Proof: That z lies in F°(P) follows from Proposition 3.1. To show that z is
,-close to z(p), note that

II// + 'I(z)11 = lIA/(4) + v'(z)l;

-= 11 ( + VI(z)) - - 1) V.(z) 1

= A3,
a j
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where the last inequality follows from (3.5) for s = and Proposition 2.4 and
the final equation from the definition of a. This establishes that z is /-close to
z(p) as desired. O

This theorem states that the Newton step allows us to reduce the barrier
parameter A by the factor a < 1 while remaining -close to the central trajec-
tory. Note that with 3 = , then a =1 - < 1 - Thus repeating
the Newton procedure k times, we can shrink the barrier parameter to at most

k
(1- ) of its original value. This is summarized in:

Theorem 3.3 Suppose z is -close to z(p °) for some p > 0 and d = 0 .
Let a := 1 - 2+1'' and define the iterates (zk, yL, sk) recursively as follows.

For each k = 0, 1,..., let := ik and := z and define d, and as in the
approximately-centered Theorem 2.5. Let (y,sk) := (,), define z + l := z
from (3.3)-(S.4), and set k+'1 := apk. Then

(i) zk E FO(P),(yk,sk) E F°(D);
(ii) 118s/,L* + V(z*))II; < P;

(iii) the duality gap is
(zk _ e)T(si)+ + (U - zk)T(sk)- < (a)%O(p + f3/). 03

Therefore, given an initial vector z 0 that is ,-close to z(p °) for 3 = ½, (a
bound on) the duality gap can be shrunk by a constant amount in at most 6/p
iterations. The next subsection describes how to find such an initial vector.

3.2 Initializing the Algorithm

Here we show how to transform a given linear program into an equivalent linear
programming problem (P) so that the new problem satisfies the condition that
we have available some p0 > 0 and a point z E F(P) that is ]3-close to
x(p°). Our construction generalizes the derivation in Monteiro and Adler [12].
To simplify the notation, we frequently omit the transposes in concatenating
several vectors in this subsection (and similarly in Section 4.2) - no confusion
should result.

Suppose our given linear program is

min TZ

(P) s.t. Az = b, (3.7)

I< Z < i,

which satisfies the assumptions in Section 2.1. Then, because the columns of
A corresponding to the free variables are linearly independent, there exists #
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for which the components of c - AT9 corresponding to free variables are all
zero. We can then replace c by - ATP, and thus can assume without loss of
generality that c E S - S. Also, we can assume (by reversing signs if necessary)
that all one-sided bounds on variables fj are of the form ij < j < iij = +o0.
Therefore we can partition the variables and their indices into three groups and
rewrite (P) as

min c2z2 + C3 Z3 
(P) s.t. Alzl + A2z 2 + A 3X3 = (3.8)

(e, e2 ,e3 ) < (21, 2,3) < (U1, U2, U3),

where el = (-oo)e, ul = (+oo)e (1 is free), e2 > (-oo)e, U2 < (+oo)e (2 has
two-sided bounds), and e3 > (-oo)e, U3 = (+oo)e (3 has one-sided bounds).
Next let A > 0 be chosen large enough so that z3 < e3 + Ae for any basic feasible
solution (21, Z2, 23) to (P). Then (P) is equivalent to

min C2Z2 + C3X3

S.t. Al: + A2 z2 + A3 Z3 = b (3.9)
eTz 3 + 24 = \(n 3 + 1)+ eTt 3

(e1,e2 ,e 3,e 4 ) < (X1,2,Z3,X4) < (Ul, U2 , U3 , U4 ),

where n3 is the number of one-sided bounded variables, and where t4 := 0
and U4 := +00, so that 24 is an ordinary slack variable. Finally, we want to
choose a convenient solution z that will be feasible for the new problem. Let

(21, 22, :3, 24) := (0, (12 + u2)/2, t3 + Ae, A). In order to make this solution
feasible, we introduce an artificial variable zs with a large cost M to obtain:

min CT2 + C3T Z 3 + M2s

s.t. A1 x1 + A2z 2 + A3 z 3 + a5xs = b
eTz3 + z4 + Z5 = A(n3 + 2) + eT13

(P) (3.10)
(t1,2,t3,4,15) < (Zl1,Z2, z3, 4, Z5) < (Ul,U2, u3, U4, U5)),

where as := A-I(! - Alil - A2 i 2 - A 3 3 ), := 0 and uss := +oo. Let :

(Il, 2, z , z4 zs) and define b, c, A, t, and u so that (3.10) is (P) of Section 2.
Then note that for M sufficiently large, any optimal solution z to (3.10) will have
Z5 = 0, and (z1, Z2, Z3) will solve (P). Also note that i := (21,, Z2, 3, 4, 5) =

(O, (2 + u2)/2, t3+ Ae, , A) is feasible for (3.10). Furthermore, for *(z) = (z)
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or *(z) = 4(z), VgI(i) = (O,,A-le, A-',A-1). We can partition the rows of
A so that

We now define a and (, i) and show that i is -close to z(~j). Let

A := (c[I;)/~,

where B < 1 is a given positive constant (e.g., one can use / = -), and let
y := (0, ..., 0, A-1)T. Then define := c - ATP. Now note that

V'(i) + g/ = 1 - f + ,-l(c- AT e)
= A-f + j/-lc - A-lf

= /-C.

Therefore IIVI(() + /ll; = (cII;)/ = B, and from Proposition 2.5, is
/3-close to z(p). Therefore we can initialize the algorithm of this section with
/°0 := and z ° := . It should be pointed out that, in the integer model, the
input size of the M and A and p0 can be bounded by 2 0(L), where L is the input
length of the bit representation of the original data, and that as a consequence
the input size of the data for problem (P) of (3.10) is bounded by a constant
times that of the original data in (3.7) or (3.8).

4 A Potential Reduction Algorithm for Solving
(P)

4.1 The Algorithm

In this section, we present a potential function reduction algorithm for solving
the linear programming problem (P) that is an extension of the algorithm of
Gonzaga [4], see also Ye [24], or [1]. Given a finite lower bound z on z, the
unknown optimal value of (P), we consider the following potential function
minimization problem:
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min (z, z) := q ln(cTz - ) + 'T(z) (4.la)

s.t. A = b, (4.1b)

z < u, (4.1c)

z < z,

where q is a given parameter (we will want to set q = p + V), and is either
' or .

At the start of an iteration, E F°(P) and i < z* are given. Let denote
the gradient of +(z, z) at (z, z) = (i, i) with respect to z, and note that

= C( :) c+ V'(z). (4.2)

Let d be the projection of v onto the null space of A as given by the solution
to (2.19) with v = v. This solution d is part of the solution (d, Y) to the system
(2.20) with v = v, and is unique (see Theorem 2.1). Just as in [1], the potential
function can be reduced by at least a constant amount of 6 = by taking a step
in the direction -d from the current point z = i, as long as I[dIli is sufficiently
large.

Proposition 4.1 Suppose E F°(P), i < z', v = is given by (4.2), and
(d, D) is given by (2.20). Then if llll > and a E [0, 1),

z(a) := - cd/lJIIds E F°(P),

and z(cr) satisfies

4 o2
X((a), 2) g< +(, i) - a + (4.3a)

In particular, z(f) E F°(P), and

5W 2), ) < 6(~, ) - .(4.3b)3 
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Proof: That z(a) E F°(P) follows as in Proposition 3.1. Also we have

= qln 1- aIIl(cT- i)) + ((a))- ()

- l T^ + c(c T - ad/I|dII*) - ()

IIJIi(c T- - )
(from the concavity of the logarithm function)

aqcTj aVp(i)Tj a2

- dJll*(CT - i) - lldll, 2(1 - a)
(from Theorem 2.7)

-a qT a
-dl- cT- i c+v(i) d+ 2(1 - a)

-2 a2
_= vTd+ a = -liTl- + a

i1dlt 2(1- -a- =
2( - a)

(from (2.21) of Theorem 2.1)

4 a 2

5 2(1-a)

This shows (4.3a). Then (4.3b) follows by substituting a = . 0

Thus from Proposition 4.1, b(i, i) can be reduced by at least whenever Id1* >
4, by taking a step in the direction -d.

Now suppose instead that (d, ) is computed and lidll < 4. Then we can
update the lower bound i on z' as follows. Let

:= (cTZ _ )/q, (4.4a)

v := ~v = c + RiV(2), (4.4b)

Y := }f, (4.4c)

and

i := c- AT 9. (4.4d)
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Then d := P*(O) = pP*() = /d, so that IId/fllt = ldll t < 4. We can therefore
apply the "approximately-centered" Theorem 2.5 again to conclude that

(4.5a)

Let

z := CTf -- ( -- )Ti+ ( )TS-

= bT + Ti + _ UT- .

We have:

(4.5b)

Proposition 4.2 Suppose q > p+ /p, and suppose 2 E F°(P), i < z, is
given by (4.2), and (d, 9) is given by (2.20) with v = v. Let (, s) and z be given
by (4.4) and (4.5). If lIdl < , then (, s) E F°(D), z is a finite lower bound
on z*, and

1 1
Z(z) < ( , - ( - 2Z 6'

Proof: That (, i) E F°(D) follows from Theorem 2.5, and then z is a finite
lower bound on z by (4.5b). Now

cT_-z = (i-e)T++(u _ )Ti

< P(p + 4vr ) (by (4.5a))

(cT - )P + VP (by (4.4a)).
q

This gives

= qln cT --

< qn(+M)

1 1
< - < _,

(since q > p + /p)
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where the second to last inequality follows again from the concavity of the
logarithm function, and the final inequality derives from p > 1. 0
We summarize Proposition 4.1 and 4.2 as follows:

Remark 4.1 Assume q > p + va' Let 2 E F°(P) be given, along with i < z*.
Compute v = v from (4.2), and compute c, d, , a, z from (2.20), (4.4) and (4.5).
Then:

(i) If lidlls > 5, can be decreased by 6 > by taking a step
in z in the direction -d.

(ii)If liJdl < 5, can be decreased by 6 > by replacing i with
the new lower bound z.

This leads to the following algorithm for solving (P). Let (A, b, c, t, u) be the
data for (P), and let z E F°(P) and z° < z' be initial values.

Step 0 Set q = p + V/,
k = 0.

Step 1 Set = zk, i = Zk .

Compute v from (4.2).
Compute (d, y) from (2.20).

Step 2 (Step in 2)

If lidll > , let
2= - il/a11l.

Set z+l = , zk+ l = i, and k = k + 1, and go to Step 1.
Step 3 (Update Bound)

If ldlb < , let (, a, z) be given by (4.4)-(4.5).
Set zk+1 = 2, Zk +1 = z, and k = k + 1, and go to Step 1.

Of course, it is possible to make a line-search in Step 2 of the algorithm as long
as a potential reduction of at least 1/6 is attained.

Theorem 4.1 For k = 0,1, ..., the above algorithm satisfies zk E F°(P), zk <
z:, and O(zk*+, z*+l) < k(zk*, z*) 

Proof: Follows from Proposition 4.1, 4.2, and Remark 4.1. O

4.2 Initialization and Complexity of the Potential Reduc-
tion Algorithm

In this subsection, we discuss a way to initialize the potential reduction algo-
rithm and state complexity results. We proceed in a manner almost identical to
Section 3.2. Just as in Section 3.2, we suppose our given linear program is (P)
of (3.7) and that this program satisfies the assumptions of Section 2.1. Then
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exactly as in Section 3.2, (3.7) can be transformed into the equivalent programs
(3.8), (3.9), and finally (P) of (3.10), where

z = (1, 22, £3, 24, Z5) = = (0, ( 2 + U2)/2, e3 + Ae, A, A) (4.6)

is feasible for (P). Furthermore, upon partitioning the rows of A into

we note that V(i) = (O,O,A-'e,A- 1 ,A- 1) = A-'f = AT, where y =
(0,..., 0, A-)T. Thus = solves the optimality conditions for the barrier
problem

(B) min %I(z) (4.7)

s.t. Az = b,

e < z < U,

and so (z) < (i) for any E F°(P). In this way, we see that if the potential
reduction algorithm is applied to (P) of (3.10) starting with z ° = and z° is a
suitably chosen lower bound on z, then from Theorem 4.1,

q ln(cTzk - zk) = ((zk, zk) + (zXk)

< -k/6 + O(zO, zO) + p(z*)

= -k/6 + q ln(cT z - z0 ) + (zk) - p(zO)

< -k/6 + q ln(cTO ° - z°),

and so

cTzk- zk < exp(-k/6q)(cTz - ). (4.8)

With q = p+ /p, (4.8) states that a fixed reduction in the duality gap (cTz - z)
can be achieved in O(p) iterations. We have thus shown:

Theorem 4.2 Suppose that the linear programming problem (P) of (3.7) is
transformed into the linear programming problem (P) of (.10), and that te
potential reduction algorithm is applied to (P) starting at z = of (.6) and
z ° < , with q = p + p. Then each (k, zk) satisfies: zk E F(P), k < z*,
and cTzk - < CT - k < exp(-k/6q)(cTO - z°). 0
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One can think of the results of Theorem 4.2 as being driven by three factors:
the potential reduction theorem (Theorem 4.1), the construction of (P) in (3.10)
so that we have a known feasible solution , and the property of (P) in (3.10)
that guarantees that is "centered," i.e., that solves the barrier problem (B)
of (4.7). In the integer model of computation, where L is the input length of
the bit representation of the original linear program P, then one can choose a
priori M = 20(L), A = 2 0(L) and z = -20(L) in the construction of (P) via
(3.10).

It should be noted that in some instances, we may be given a linear pro-
gramming problem (P) directly, with a point z ° E F°(P) and a lower bound
z° < z*. In this case, it is possible to prove the following result:

Theorem 4.3 Suppose that the linear programming problem (P) of Section 2.1
is given directly, with a point z E F(P) and a lower bound z < z. Let
(zk, zk) be the iterates generated by the potential reduction algorithm applied to
(P) starting at (z0, z°), with q = p + aV/. Then zk E F°(P) and zk < z. Also
there eist two finite positive constants C1 and C2 with the property that for all
k > C 1,

(CTzk - zk) < C2 exp(-k/6q).

Finally, in the integer model of computation, if L is the input length of the bit
representation of the problem (P), then C 1 = O(L) and C2 = 2 0(L) as long as
ln(cTzO - z° ) = O(L) and %P(z°) = O(L). o

The proof of this result follows from similar arguments appearing in [2] and
in [19].

5 Concluding Remarks

5.1 Metrics, Complexity, and Self-Concordance

The choice of the metric in which primal and dual displacements are measured
is perhaps the main point of differentiation between the analysis in this paper as
compared to the bulk of the literature on interior-point algorithms. This metric
is defined for each 2 E F°(P) by first constructing the scaling matrix 0 (see
(2.13)) and then defining the metric 11 1[[* by 11z' - z"211 = Ile(z' - z"){j, see
(2.17).

The essential difference between this metric and the traditional scaling met-
ric lies in the case of two-sided bounded variables. Traditionally the slacks
u - and tj - i are treated as separate and unrelated slack variables, and
hence the displacement in each slack becomes a separate component of the vec-
tor of primal displacements; see, for instance, McShane et al. [11]. The net
result is that the two slacks each contribute separately to the accounting of
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inequalities in the complexity analysis of any algorithm, and so this complexity
is a function of the total number of (finite) inequalities, which we denote by k.
In the analysis in this paper, however, the scaling metric combines the slacks
uj - ij and tj - j in the definition of the scaling matrix e (see (2.13)). The
net result is that the two bounds tj and uj do not contribute separately to the
accounting of inequalities in the complexity analysis, and the complexity is a
function of p, the number of variables with finite bounds, which will always be
less than or equal to k.

The definition of the scaling matrix e (2.13) used to define the displacement
metrics is very much related to the theory of self-concordance developed by
Nesterov and Nemirovsky [14]. In [14], as in this paper, the use of the square-
root of the Hessian of the barrier function to define a metric is a central concept.

5.2 Towards Symmetry and a Primal-Dual Approach

The duality results of linear programming demonstrate that the primal and
dual linear programming problems are fundamentally symmetric, in that each
problem can be cast in the format of the other. This symmetry has been manifest
as well in a number of ways in interior-point algorithms. We call an algorithm
symmetric if its iterates are invariant under a reversal of the roles of the primal
and dual variables.

Many path-following interior-point algorithms are symmetric algorithms,
e.g., those of Kojima et al. [9] and Monteiro and Adler [12]. Many of these
algorithms attain the best known complexity bounds in that they achieve fixed
improvements in the duality gap in O(Vr') iterations (where n is the number
of inequalities in the primal (or the dual). However, there are also nonsym-
metric path-following algorithms that achieve this complexity-see, e.g., Roos
and Vial [17] or Tseng [22]. The path-following algorithm presented in Section
3 of this paper is a nonsymmetric algorithm: the Newton step is derived for
the primal barrier problem (BP) by optimizing the quadratic approximation
to its objective function. The dual iterates are computed at each iteration as
part of the projection problem (2.19) and (2.20), but the scaling used in (2.19)
and (2.20) is induced only by the primal iterate z. Nevertheless, this algorithm
also exhibits the "low complexity" worst case behavior of O(Vp-) iterations for
a fixed improvement in the duality gap. A natural question to ask is whether
or not there exists a symmetric algorithm for following the central trajectory
(x(p), y(),), s()) of (P). The answer to this question will probably rely on the
construction of an appropriate combined primal-dual scaling for use as a metric
for measuring primal and dual displacements, that generalizes the metrics used
in traditional primal-dual path-following algorithms such as those of Kojima et
al. [9] and Monteiro and Adler [12]. We will discuss this further below.

In the arena of potential-reduction algorithms, symmetry has been a more
elusive target. Karmarkar's original algorithm [7] made no mention of the dual
problem at all (except that it was possibly applied to a combined primal-dual
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formulation). Todd and Burrell [20] showed how Karmarkar's algorithm pro-
duces dual variables for which the duality gap converges to zero. Tanabe [18] and
Todd and Ye [21] introduced a symmetric primal-dual potential function that
was used by Todd and Ye to produce the first potential-reduction algorithm for
linear programming that achieved constant duality gap improvement in O(Ji)
iterations. Their algorithm was symmetric, but required fixed step sizes, not
permitting a line-search. Then Ye [24] introduced an algorithm based on the
Tanabe-Todd-Ye potential function that allowed line-searches at each iteration.
However, this was not a symmetric algorithm, even though it used a symmet-
ric potential function. Kojima et al. [101 constructed the first symmetric "low
complexity" (i.e., O(v/'i) iterations for constant improvement) potential reduc-
tion algorithm with line-searches for linear programming (see also Gonzaga and
Todd [6]). Also, Gonzaga [5] showed that a symmetric potential function was
not necessary to achieve low complexity, but the arguments in his analysis are
somewhat cumbersome. Nesterov and Nemirovsky [14] extended Ye's algorithm
to a very general "conic" setting, using a logarithmically homogeneous barrier
function and its conjugate to construct a symmetric primal-dual potential func-
tion.

The potential reduction algorithm presented in Section 4 of this paper is a
nonsymmetric algorithm, and is modeled after one of the algorithms in [1]. It
uses the nonsymmetric potential function (z, z), and it does not achieve as
low a complexity bound (requiring O(p) iterations for constant improvement in
the duality gap) as the path-following algorithm of Section 3. We suspect that
in order to achieve O(VJi)-iteration constant improvement, it will be necessary
to use a potential function that incorporates the dual barrier function ' (s) in
some way and that employs the dual variables in a more symmetric manner.
As in the case of symmetric path-following algorithms, this will also probably
entail the examination of primal-dual metrics for displacements in the primal
and dual variables.

We anticipate that symmetric algorithms that extend the algorithms of Sec-
tion 3 and Section 4 herein will use a scaling metric that is a combination of a pri-
mal scaling metric and a dual scaling metric. If i E F°(P) and (, ,) E F°(D),
then e of (2.13) is the scaling matrix used to define the primal displacement
metric

IIz' - z"Ils = lle(z' - z")l1

of (2.17), and is based on the primal iterate 2. Borrowing ideas from traditional
primal-dual symmetric algorithms such as those of Kojima et al. [9] and Mon-
teiro and Adler [12], we might construct a combined primal-dual scaling matrix
of the form b where

P = (e- 1) 1/2 (5.1)
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and is a dual scaling matrix, and primal displacements ' - z" and dual
displacements (s' - s") would then be measured with the metrics

IID(z' - z")11 and Ilb)-(s' - s")11, (5.2)

respectively. We end this remark by suggesting how the dual scaling E might
be constructed based on the dual iterates (y, s) and the conjugate of the barrier
function I*(s).

The conjugate function ' (s) is finite for all s E rel int S, and we can define
VI*(s) and V2 1*(s) as follows:

-{ ()'(S)if > -oo or uj < +oo,
+oo00 else,

0 if i j,
[V 2 l'(s)]ij = j (i)"(sj) if i = j, and ej > -oo or uj < +oo, (5.4)

+oo else,

for i, j = 1, ..., n. Then one can verify via the analysis of '(s) in the Appendix
that V*(s) and V2 *'(s) are well-defined and correspond to the regular gra-
dient and Hessian functions of *'(s) in the cases when their values are finite.
Next consider a value p = i of the barrier parameter, and a feasible solution
(9, i) of (BD) with finite objective value, i.e., bTh - *'(i/p) > -oo. Define I
by:

2 = ()-2V2( ) (5.5)

Then it can be shown that E is a diagonal positive definite matrix, and E-1 is
a positive semi-definite matrix. Let 0 be defined for i E F°(P) as in (2.13).
Then f; and e can be combined as in (5.1) to give the metrics (5.2). One clear
difficulty in this approach is that P depends on the chosen barrier parameter
f when there are two-sided bounded variables. Note that in the standard case
(s > 0), (5.5) gives P = -1 to go with e = X-1. Further development of
these ideas is left to future work.
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A Appendix

A.1 Derivation of the Conjugate Barrier

Here we compute f' as defined in (2.26) in Section 2.4. Since 'P(z) = j kbj (zj),
we find that

1'(s) = Zkj(s), with <L'(o) = 0'(a;ej,j).
j

It is convenient to treat separately the cases of 0-, 1- and 2-sided bounded
variables.

If A = -oo, and v = +oo, then 0() - and 1() = 1, so that

~'(r) {0 for { _0 (A.la)
+oo for a o O,

-1 for o=0 (A. b)
+oo for ~ 0.

If -oo < A < v = +oo, then '(~) = i() = - ln( - A) + ln( - A) and an
easy computation gives

() ( -1-A - n - ln(�-A) if > (A.2){*b f' +00 if a< 0. (A.2)

In particular, in the standard case we get O' (a) = -1 - In a for oa > 0.
Similarly, if -oo = A < v < +oo, we find

+*(a - va - In( -1-a In(-) if a < (A.3)()= ( a) = +oo if > 0.

Finally, we consider the general 2-sided case. We treat the two cases 'k =
and separately. In the first case we have by definition

'*(ar) = sup{-0o + ln( - A) + In(v - )} - ln( - A) - In(v - ).

The expression inside the braces is strictly convex and maximized by ~ with
-a + ( - A)-1 _ (v - )-1 = O. After some algebraic manipulation, this yields

l~ l v if a 0O
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with p and v given by (2.8). Substituting this value in our formula for *;' yields

¢() =-1- p + 1 + 222 In v (A.5)

-In( - A) -n(v - ).

If = -I, we find

+*(a) = sup{-o - min{ - A, v -

+ ln(min{f - A, v - }) - ln(min{ - A, v - i)).

Again the supremum is attained where the derivative is zero, and this gives

V2a
~=P l~vlal'(A.6)P 1 + vial (A.6)

Substituting this in our expression for ¢- gives

= -1-po + vial + In ( - ln(min{ - A, v - }). (A.7)

Note the similarity between (A.5) and (A.7): apart from an additive con-
stant, (A.7) differs from (A.5) only in that vial replaces v1 + v 2

0o
2, to which it

is asymptotic as tl - oo.
Next consider p'*(s//) as p 1 0. Looking at (A.1)-(A.7), we see that all

constant and logarithmic terms vanish in the limit, and we find

0 if A=-oo, v = +oo and a = 0

-Ao if A > -oo, v = +oo and a > 0
-va if A = -oo, v < +oo and a < 0
-pa + vial if A > -oo, v < +oo,

and +oo otherwise. Note that -po + vlcr = -Aa+ + va-. Thus '(s/a) --

-1 Ts+ + uTs - , and we see that the barrier term in (BD) contains terms like

ts+ - uTs - , and converges to it as p I 0.

(An expression similar to (A.5) can be obtained from a different perspective.
If we had modelled the dual problem with two slack vectors s' and s", and

imposed standard logarithmic barriers on each of them, we would be led to the

subproblem

min{-Ao' + vad' - In a' - In ' : a' - do' = a}
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for finding the "best" s' and s" corresponding to a given y and s = c - ATy.
The solution to this is given by ', a" = (1 + /1 + iv2o 2 )/2v ± /2, and the
resulting objective function is

11+v 2 'I1- pC + V/'j+O2 i (I 1 + i2 2

which differs by a constant from (A.5).)

A.2 Proofs of Theorem 2.6 and Proposition 2.6

Proof of Proposition 2.6: Note that since *I = or = is separable, then
(2.38) holds as long as it holds when h and d are unit vectors. Hence we need
to show that for each j

(1-l Yl(~;(Xj))1/2)2V};(Xj) < j,'(zj +7) < (1- l(47(zj))l/2)-24,7(j) (A.8)

if 7lJ(,(zj))1/ 2 < 1. Let us drop the subscripts and use the notation of section
2, and so we need to prove that

(1 -I Jl(1"(O))1/2)2,"() < 4"( + ) < (1 - 71(4"())1/2)-24,"() (A.9)

if ]T("( 4 ))1/ 2 < 1.
We first prove (A.9) when ' = A, so that = 4. Then if A = -oo and

v = +oo, 0"(4) = 0 for all 4, so (A.9) holds trivially. Next suppose A > -oo
and v = +oo. If 1 > j[l(I"(4))1/2 = i5ki then

+ 7-A ( -17- ( - (A.10)

and squaring both sides gives the right-most inequality of (A.9). Also,

1 > 1 = 1 1+l 
+v- - \ > + v - - - '

(A.11)
and squaring both sides gives the left-most inequality of (A.9). Next, suppose
that A = -oo and v < +oo. This case is symmetric to the previous case, and
parallel arguments apply.

Finally, suppose that A > -oo and v < +oo. Then k is the sum of two
one-sided barriers, each of which we have shown is self-concordant. However, it
is straightforward to show that the sum of two self-concordant functions is also
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self-concordant (this follows directly from the definition (2.38)), and hence l is
self-concordant.

Now, suppose I = A, so that 4' = 4. Unless -oo < A and v < +oo,
4' and have the same derivatives, and so the self-concordance of follows
just as in the case when 4' = 4. It only remains to show (A.9) holds when
-oo < A < v < +oo.

Without loss of generality, we assume that < p, so tP"(t) = ( A - A)- 2. If
also + < p, then (A.9) reduces to (A.10) and (A.11), which we have already
established. So suppose + > p so that "(t + ') = (v - - 7)- 2. Then
the left-hand inequality of (A.9) holds, since (v - t - 7)-2 > ( + y - A)- 2 , for
which we already have the required bound. The right-hand inequality becomes

1 < (- -2 1 1

(V - - )2 < A (F( - A)2 ( A -- l)2

and this follows because - A - 1[y > 0 (yl(01"())1/2 < 1), and ~ - A - 1 <
v - - y ( <_ p). This completes the proof. 
As a stepping stone toward the proof of Theorem 2.6, we first prove:

Lemma A.1 Suppose z E F(P) and E F(P) and let d = z - 2. Let j
and i denote the jt" diagonal entries of 0 (with 2 = V29(z)) and e (with
02 = V2

*(i)), respectively. Then for each j = 1, ..., n,

(lb; (j)- ;(2ij) - 62 jj)_ < l

Proof: We write for zj, for 21 , A for j, v for uj, 6 for dJ, and suppress the
subscripts. Hence we wish to show

e - (lb (() (()_ - j25) < j282. (A.12)

We consider the various possibilities for the bounds separately.
Case 1. z is free. Then is zero, as are 4"(i) and lt"(t), so both sides of

(A.12) are zero.
Case 2. -o < A < v = +oo. Then -= (I A)- = _-b((), 0 = (iA)-' =

-Vf(), so the left-hand side of (A.12) is

1(( - )(-(4 - A)-2 + ( X - )-' - (4- _))
= 1( - A)(-(4 - A)-2 + ( )- ( ) -$)l

(using (4 - A) - ( - A) = - = 6)

= {( - A)-25(-(f - A) + (i - A))1
= - (-_A)- 2 2 J, (A.13)
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which is j232.

Case 3. -oo = A < v < +oo. This case is completely symmetric to case 2.
Case 4. -oo < A < v < +oo. In this case we have to distinguish whether I

is I or 1P. In the former case,

- 1 = (( - A)- 2
+ (v -

) -
2)

- 1/2 < min{( - A, v -

82 = ( _ ~)-2 + (V _)-2,

,()= -( -A)- + (v ) - , and

i,(4) = -( - A)- ' + (v - ()-1

Hence the left-hand side of (A.12) is

-( - A)- 2 + ( - ~)-2)S + ( A - A)-' - ( -()

- A )-' + ( - )-')1

< 1(4 - A)(-( - A)- 2 6 + ( )-' _ ( - ( )-)

+ I(V _ ()(-(v _ ~)-26 _ (V _ ()- + ( -)-1,

where we have used the over-estimate ( - A for -I in the first term and the
over-estimate v - ( in the second. Now by (A.13) in case 2, the first term is

I - ( - A)-2521, and symmetrically the second term is - (v - )-2621, so the
left-hand side of (A.12) is bounded by

((i _ )-2 + ( _ )-2)32 = 2S2

as desired.
Finally we suppose '1 is . Without loss of generality, ~ is closer to A than

to v (i.e. < p). If also _< p, then both 0 and 6 are as in case 2, and both

k'(4) and '(i) differ by the same constant 1/v from their values in case 2 (see
Remark 2.1), so the proof of that case applies.

It only remains to assume 4 < p < 4. Then

O= (- ) -',

O = ( - )-1
~'(~) = (-p)-r( - A)-', and

'() = ( p)-'( _ )- 
- (- p)v-'(( - )-' + ((v )- - ( -)).

Thus the left-hand side of (A.12) is
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+ ( - p)v-'((, - )-' (e - A)-')]1

= I(- _ )[_(- _ A)- 26 + {( - )-' - ( A)-}

+ 2(v - )'((- A)-''(- p)]l

= I- (v - )( - )-( - A) -232) + 2(( - )-'v.-(( _ p)21,

where we have used (A.13) to get the first term. Now the expression within the
absolute value signs is either negative or nonnegative. If negative, its absolute
value is at most

(v - )((- A)-' (- A)- 262 < (e- )-22

= 8262

Finally, suppose it is nonnegative. Then its absolute value is

2(( - A)- .- 2(~ _ p)2 - (v -_()(( _ )- '( _ )-$2 2 (A.14)

But < p implies - A < v, so V- 2 < (~ - A)- 2 , and ( - p < ~ - = 6. Hence

(A.14) is bounded by

( -_ )-262 (~ - A)-'(2V, - (v - )) = (4 _ A)-262 ( _ >)- I(( A)- = 22

This completes the proof. 0
Proof of Theorem 2.6: The proof
(2.35) note that

IIV(z) - V () - 2djll

is a consequence of Lemma A.1. To prove

= le-'(v(z) - v(i) - 2d)l

< _le-'(v(z)- -) - e 2d)
< ZEd = e; lJ12 = l12, = 

where the second inequality follows from Lemma A.1. 0 
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