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Abstract:

This paper is concerned with the problem of following a trajectory from an

infeasible "warm start" solution of a linear programming problem, directly to an

optimal solution of the linear programming problem. A class of trajectories for the

problem is defined, based on the notion of a -balanced solution to the "warm start"

problem. Given a prespecified positive balancing constant , an infeasible solution

x is said to be P-balanced if the optimal value gap is less than or equal to [3 times the

infeasibility gap. Mathematically, this can be written as cTx - z* < 34Tx, where the

linear form t x is the Phase I objective function. The concept of a -balanced

solution is used to define a class of trajectories from an infeasible points to an

optimal solution of a given linear program. Each trajectory has the property that all

points on or near the trajectory (in a suitable metric) are -balanced. The main thrust

of the paper is the development of an algorithm that traces a given -balanced

trajectory from a starting point near the trajectory to an optimal solution to the

given linear programming problem in polynomial-time. More specifically, the

algorithm allows for fixed improvement in the bound on the Phase I and the

Phase II objectives in O(n) iterations of Newton steps.

Key Words: Linear program, interior-point algorithm, polynomial-time complexity,

trajectory method, Newton's method.

Running Header: Balanced Trajectory for Linear Programming
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1. Introduction:

This paper is concerned with following a trajectory from an infeasible "warm

start" solution of a linear programming problem, directly to an optimal solution of

the linear programming problem. By a "warm start" solution, we mean a solution

that is hopefully close to being feasible and is hopefully close to being optimal. Like

other research on the "warm start" problem, this paper is motivated by the need in

practice to solve many amended versions of the same base-case linear programming

problem. In this case, it makes sense to use the optimal solution to the previous

version of the problem as a "warm start" solution to the current amended version of

the problem. Whereas this strategy has been successfully employed in simplex-based

algorithms for solving linear programming problems, there is no guarantee that it
will improve solution times, due to the inherent combinatorial nature of the

simplex algorithm. However, in the case of interior-point algorithms, there is no

limiting combinatorial structure, and the potential for establishing guaranteed

results abounds.

Most of the research on "warm start" algorithms for solving a linear

programming problem has been part of the research on combined Phase I - Phase II

methods for linear programming. These methods attempt to simultaneously solve

the Phase I and Phase II problem over a sequence of iterations. The starting point for
these methods need not be feasible, and a "warm start" solution should serve as an

excellent starting point for these methods. Most of the research on combined

Phase I - Phase II methods has concentrated on potential reduction algorithms, see,

e.g. de Gellinck and Vial [10], Anstreicher [1] and [2], Todd [16] and [18], Todd and

Wang [17], and [6]. Typically, these approaches are based on trying to reduce the

values of two potential functions, one for the Phase I problem, and a second

potential function for the Phase II problem. In [9], the concept of a 3- balanced point

was introduced, and this allows the solution of the combined Phase I- Phase II

problem with only one potential function. All of these methods achieve a

complexity bound involving a fixed improvement in the two goals of attaining

feasibility and attaining optimality in O(n) iterations, where n is the number of

inequalities in the underlying problem.

Research on trajectory-following approaches for the combined Phase I - Phase II

problem has not been as successful. Gill et. al. [11] as well as Polyak [14] have studied

general shifted-barrier approaches to solving the "warm start" linear programming

problem by examining properties of parameterized trajectories underlying the
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shifted-barrier problem. In [5], complexity bounds on the use of Newton's method
for solving this problem were developed, but they depend very much on the
availability of very good dual information. The potential reduction algorithms for
the combined Phase I - Phase II problem have not in general lent themselves to
analyzing trajectories, since there is no one natural trajectory associated with the two
potential functions.

In this paper, we develop a class of trajectories for the combined Phase I - Phase II
problem that borrows heavily from the development of the notion of a a-balanced

infeasible solution from [9]. Given a prespecified positive balancing constant 3, an

infeasible solution x is said to be P-balanced if the optimal value gap is less than or

equal to 13 times the infeasibility gap. Mathematically, this can be written as

cTx -* < Tx,

where c is the linear programming objective function vector, z* is the optimal

value of the linear program, and the linear form Tx is the Phase I objective
function. As discussed in [9], there are some practical linear programming problems
where it may be very appropriate to set large, and other practical problems where

it may be very appropriate to set to be quite small. [9] contains a further discussion

and motivation for the 3-balancing criterion.

In this paper, the concept of a 13-balanced solution is used to define a class of

trajectories from an infeasible points to an optimal solution of a given linear

program. Each trajectory has the property that all points on or near the trajectory (in

a suitable metric) are -balanced. The main thrust of the paper is the development of

an algorithm that traces a given P-balanced trajectory from a starting point near the

trajectory to an optimal solution to the given linear programming problem in

polynomial-time. More specifically, the algorithm allows for fixed improvement in
the bound on the Phase I and the Phase II objectives in O(n) iterations of Newton

steps.

The paper is organized as follows. Section 2 develops notation, standard
forms, and assumptions for the problem at hand. In Section 3, the -trajectories are

defined, and the metric for measuring the closeness of points to a given trajectory is
developed. In Section 4, the algorithm for tracing a given -trajectory is presented,
and basic properties of this algorithm are proved. In Section 5, the main complexity

result regarding convergence of the algorithm is stated and proved. Section 6

contains an analysis of a particular set of almost-linear equations that is used in
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Section 4. Section 7 comments on how to satisfy one of the assumptions needed to

start the algorithm. Section 8 contains open questions.
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2. Notation, Standard Form, and Assumption for a Combined Phase I- Phase II
Linear Program:

Notation. The notation used is standard for the most part. The vector of
ones is denoted by e = (1, 1, ..., 1)T, where the dimension is n. For any vector x ,,
X denotes the diagonal matrix whose diagonal components correspond to x. If
v E Rn, II v II denotes the Euclidean norm.

The Phase I - Phase II Problem. Following

Anstreicher [1], this paper will work with a linear

the convention

program of the

established by

form:

LP:

s.t.

minimize cTx

x

Ax =

Tx =

x > 0,

where we are given an infeasible "warm start"

constraints of (LP) except 4TxO > 0, and that

strictly. Thus AxO = b, TxO > 0, and x0

with (LP) is to solve:

vector x0 that is feasible for all

x0 satisfies the inequality constants

> 0. The Phase I problem associated

minimize cT x

x

s.t. Ax

4Tx

= b

> 0

x > 0,
and note that x0 is feasible and lies in the relative interior of the feasible region for

this Phase I problem.

(There are a number of straightforward ways to convert an arbitrary linear
programming problem with an initial infeasible "warm start" solution into an
instance of (LP) above, by placing all of the infeasibilities of the initial "warm start"

solution into the single constraint T x = 0, see, e.g., Anstreicher [21, or [9]. At the
end of this section, we will discuss this issue further.)

If x is feasible for the Phase I problem and z* is the optimal value of the

Phase II problem (LP), then T x measures the feasiblility gap and (cT x - z*)

4
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measures the optimal value gap. Note that the feasibility gap is always nonnegative;

but due to the infeasibility of x in (LP), the optimal value gap (cT x - z*) can be

positive, negative, or zero. The combined Phase I- Phase II approach to solving (LP)

is to generate values of x = xk that are feasible for the Phase I problem and for

which Txk ~ 0 and cTxk - z - O0 as k -- oo,where (xk} is the sequence of

iteration values.

1-Balance. Let = 0 be a given parameter. If x is feasible for the Phase I problem,

we say that x is " P-balanced" if x satisfies:

ctx - z* < Tx , (2.1)

and an algorithm for solving (LP) is "3-balanced" if all iteration values xk satisfy

(2.1).

Inequality (2.1) has the following obvious interpretation. The left-hand-side

is the optimal value gap, and the right-hand-side is times the feasibility gap.

Therefore x is 1-balanced if the optimal value gap is less than or equal to the

feasibility gap times the parameter 13.
We call the "balancing parameter" because it measures the balance or trade-

off between the twin goals of attaining feasibility (Phase I) and of obtaining

optimality (Phase II). Suppose that (2.1) is enforced for all iteration values of a given

algorithm. If the value of P is set very high, then even near feasible solutions to (LP)

can have a possibly large optimal value gap. Then if the algorithm is set to stop

when the feasibility gap is reduced to a given tolerance , the optimal value gap

might possibly still be quite large. If the value of P is set very low, then even very

infeasible solutions cannot have a large positive optimal value gap. In this case,

even if the tolerance value is not very small, (2.1) will ensure that the optimal

value gap is very small (positive) or negative. As discussed in [91, there are some

practical instances of (LP) where it may be very appropriate to set 3 large, and other

practical instances of (LP) where it may be very appropriate to set 3 to be quite small.

[9] contains a further discussion and motivation for the -balancing criterion.

In order to enforce (2.1) in an algorithm for solving (LP), the value of z*

needs to be known, which is not generally the case in practice. Instead, suppose that

we are given a lower bound B on the optimal value z of (LP), and that we impose

the following constraint on iteration values of x:
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(-5t + c)Tx = B . (2.2)

Then because B < z*, (2.1) will be satisfied automatically as a consequence of (2.2).

If xk} and {Bk} are a sequence of primal iteration values and lower bounds on z*

and that (2.2) is satisfied for all iterations k, then (2.1) will be satisfied for all
iterations k as well. In particular, we will assume that we are given an initial lower

bound B and that the initial value x together with B satisfies (2.2). (At the end

of this section, we will discuss how to convert any linear program into the form of
(LP) that will also satisfy (2.2) for the initial primal values x and the initial lower

bound B.)

Based on this discussion, we can now state our assumptions regarding the

linear programming problem (LP), as follows:

A(i) The given data for LP is the array (A, , b, c, x,, B0, 3).

A(ii) Ax0 = b, Tx0> 0, x0 > 0, B < z

A(iii) [ > 0 and (-F3 + c)TxO = B0 .

A(iv) (deRnI Ad = 0, Td = 0, d > 0, eTd > 0, cTd < 0 = .

A(v) b 0, and the matrix

M =T

cT

has full row rank.

Assumptions A(i), A(ii), and A(iii) are based on the discussion up to this point.

Assumption A(iv) states that the set of optimal solutions to (LP), if it exists, is a

bounded set. This assumption is necessary in order to process many interior-point

algorithms for linear programming, although there are ways to avoid the

assumption, see, e.g. Anstreicher [3] or Vial 211. Assumption A(v) ensures that the
rows of the equations of (LP) are linearly independent, and that the objective
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function is not constant over the entire feasible region of (LP), in which case it is not

important to distinguish between Phase I and Phase II. The linear independence of

the rows of (LP) is assumed for convenience, and could be removed with the

additional burden of more cumbersome notation in the use of projections, etc.

Conversions: Here we briefly describe how to convert a linear programming

problem into an instance of (LP) satisfying the five assumptions A(i)- A(v).

Suppose that the given linear program is of the form:

minimize "T^
x

s.t. Ax = b

x > 0,

where x is a given "warm start" vector that is hopefully near-feasible and near-
-0

optimal. Also suppose that B is a given known lower bound on z , and that the

set of optimal solutions of () is assumed to be a bounded (possible empty) set.

Then Section 2 of [9] describes a method for converting () into an instance of (LP)

satisfy Assumptions A(i), A(ii), A(iv), and

(-5 + cc)Tx °O < B °

Then since B0 < z*, B0 can be replaced by BO = (- + c)Tx0, and this B0 is a

valid lower bound on z* , and Assumption A(iii) is satisfied. Finally, Assumption

A(v) can be satisfied by checking the linear independence of the matrix M and

eliminating rows as necessary.
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3. The -Trajectory for a Linear Program, and Approximate Solutions Near the

Trajectory

In this section we consider solving the "standard form" problem

LP: min cTx
x

s.t. Ax

T

= b

= 0

x > 0

whose dual is

LD max bT 
/:, 0, 

s.t. ATIr+ 04+ s

s > 0.

It is assumed that the data array (A, 4, b, c, x, B0, A) satisfies assumptions A(i) -

A(v) of the previous section.

We now consider the parametric family of augmented Phase I problems:

T
ZB = minimize x

x

s.t. Ax

(-nS + c)Tx

(3.3)

= b

= B

0
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< z* on the optimal value z* of LP.

Note that PB is a linear program parameterized by the RHS-coefficient parameter B

of the last equation.

The following are elementary properties of PB:

Proposition 3.1 (Properties of PB ) If z < and B [BO, z*],

(i) PB is feasible, and if B < z*, PB admits a strictly positive feasible

solution.

(ii) ZB > O if B < z

(iii) ZB = if B = z*

(iv) The set of optimal solutions of PB is nonempty and bounded.

(v) For all x feasible for PB'

cTx - z* < tTx (3.4)

Proof: (i) From assumption A(ii) and A(iii), x0 is feasible for PBO. If z < oo,

then there is an optimal solution x* to LP, and so x* is feasible for P . Also,

XB = (z* - B0) 1 ((z* - B)x0 + (B - BO)x*) is feasible for PB for all B e [BO, z*]. If

B < z* ,then xB > 0 because xO > 0 and x 0 .

(ii) Suppose B < z* but zB < . Then there exists some x that is

feasible for PB and for which x < . Let B = (Tx- STx)-((Tx0)B- (T x)B0)

and x = (Tx0 - x) ((CTxo)x - (STx)x) . Then x is feasible for PB and

T- T- - - ·
t x = 0 ,and so x is feasible for LP. But ctx = B x+B = B < z ,a
contradiction. Thus zB > 0 .

9
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(iii) Suppose B = z . Let x be an optimal solution to LP. Then x is

feasible for P ,and so zB < Tx* = . But if B < 0 , an argument identical to

that in (ii) shows a contradiction. Thus zB = 0 .

(iv) From the optimality properties of linear programs, the set of optimal

solutions of PB is nonempty, since PB is feasible and z B is finite. It remains to

show that this set is bounded. If not, there exists a vector d 0 with d 0 that

satisfies Ad = 0, (-M + c)Td = O, Td = 0, whereby cTd = 0 as well. This

contradicts Assumption A(iv).

(v) If x is feasible for PB , cTx = x + B x + z .

From Proposition 3.1 (iii), zero is a lower bound on zB as long as B < z

Therefore consider the following potential function reduction problem

parameterized by the bound B < z*

n
PRB: v(B) = min F(x) = qlnT x- Inxj (3.5)

x j=1

s.t. Ax = b

(443 + c)Tx = B

T
x > 0, x> 0.

where

q n + (3.6)

for the remainder of this paper. Let x (B) denote the optimal solution of PRB if such

a solution exists.
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For the given and fixed balancing parameter > 0 , we can think of the set of

values of x (B) as B ranges from B0 to z as a trajectory, and we denote this

trajectory as

T = x(B) x(B) sovs PRB, BE [BO,) z (37)

We will refer to Tp as the "-trajectory" for the linear program LP.

In this study, we develop an algorithm that will trace the 1f-trajectory T , i.e.,

the algorithm will generate a sequence of approximate solutions x to PRB for a

sequence of strictly increasing values of B that converge linearly to z* . More

specifically, the algorithm will generate a sequence (xk) of approximate solutions to
PRBk for a sequence of strictly increasing lower bounds Bk with the property that xk

is feasible for the problem PRBk and xk nearly solves the optimality conditions of

PRBk (where the sense of approximation is developed later in this section.)

Furthermore, we will show that if LP has a feasible solution (i.e., z* < + ), then

Bk z , Txk 0 , and cTxk e z*, as k - o , and the convergence is

linear, with fixed improvement in O (n) iterations. Therefore the algorithm is of the

O (nL)-iteration variety of algorithms for linear programming.

Although our goal is to trace the set of optimal solutions x (B) of PRB in R n

for BE [B, z ) , it will be convenient from a mathematical point of view to make a

transformation of program PRB to an equivalent problem in R + 1 , and instead

perform our analysis on this transformed problem, as follows.

Suppose BE [B, z) and x is feasible for PRB . Then from Proposition 3.1 (ii),

JTx > 0 , and so consider the following elementary (nonscaled) projective

transformation:

(z,y) = h(x) = -' -, (3.8a)

Z
x = hl(z,y) = (3.8b)
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If x is feasible for PRB , then h (x) is well-defined (by Proposition 3.1) and PRB

transforms to

w(B) = minimum G(z, y)
4zy

s.t. - Az

n
= -

j=1

+ by

In zj - In y

= 0

(-A + c)Tz - By

4Tz

z > 0, y > 0.

Let z(B),

is then easy to

y(B) denote the optimal solution of TRB if such a solution exists. It

verify the following elementary proposition.

Provosition 3.2 (Properties of PR, and TR,) Under the transformations (3.8a) and
U -L

(3.8b),

(i) x is feasible for PRB if and only if (z, y) is feasible for TRB .

(ii) F(x) = G(z, y)

(iii)

(iv)

v(B) = w(B)

x = x(B) solves PRB if and only if z = z(B), y = y(B) solves TRB

Proof: Follows from direct substitution. .

From Proposition 3.2, tracing the path of solutions x (B) of PRB is equivalent

to tracing the path of solutions (z (B), y (B)) of TR . The advantage of working

with TRB lies in the fact that TRB is an analytic center problem, and Newton's

method is a powerful tool for finding and tracing approximate (analytic) centers for

such a problem, as the data is deformed, see e.g., Vaidya [201, as well as [81 and [7]. (Of

12
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course, one complication in working with TRB is that the parameter B is part of the

constraint matrix of TRB , as opposed to being part of the RHS-vector of PRB , and
this is more difficult to deal with.) Program TRB is a strictly convex program, and

so will have a unique optimal solution, as the next result states.

Proposition 3.3. If z < and BE [BO, z*), then PRB and TRB have unique

optimal solutions x (B) and (z (B), y (B)), respectively.

Proof: Suppose B E [BO, z*) . From Proposition 3.1(i), PRB has a feasible solution,

so TRB does as well. Now, TRB is an analytic center problem, and so will have a

unique optimal solution if the feasible region is bounded, see for example [8]. We
thus only need to show that the feasible region of TRB is bounded. If the feasible

region of TRB is not bounded, there exists (d, v) E Rnx R ,with d > 0, v > 0,

(d, v) 0,and -Ad+bv = 0, (- + c)d-Bv = 0, td = . If v > 0, we

can presume v = 1. Then Ad = b, d > 0, d = 0, and cd = B < z ,

which is a contradiction, since d is feasible for LP and so cTd > z*. Therefore

v = 0, and d . 0. Then Ad = 0, td = 0, cd = 0, d > 0, d 0,which
contradicts assumption A(iv). Thus, the feasible region of TRB is bounded, and so

TRB and PRB each have a unique optimal solution.

Concentrating our attention on TRB , suppose (z, y) is feasible for TRB

Then the Karush-Kuhn-Tucker (K-K-T) conditions are both necessary and sufficient
for (z, y) to be an optimal solution to TRB The K-K-T conditions are equivalent

(after arithmetic substitution) to the existence of (z, y) and multiplier vectors

(I, , 0, s, g) that satisfy the following equations:

-Az + by = 0 (3.10a)

(- ~+ c)Tz- By = 0 (3.10b)

,tz = 0 (3.10c)

z > 0, y > 0 (3.10d)

AT, + = 0(-13, +c)+8 (3.10e)
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-bTX +g = - 3 (3.10f)

Zs - e = 0, yg- 1 = 0 (3.10g)

Therefore (z, y) solves TRB if and only if there exists (, , 0, s, g) so that

(3.10a-g) is satisfied. Now let y < 1 be a positive constant. Just as in Tseng [19] and
Roos and Vial [15], we will say (z, y) is a y-approximate solution of TRB if the

following slight relaxation of (3.10a-g) is satisfied for some (, 6, 0, s, g):

-Az + by = 0 (3.11a)

(-P5 + c)Tz-By = 0 (3.11lb)

Tz = 0 (3.11C)

z > 0, y > 0 (3.11d)

AT + s = 0(- +c) + (3.11e)

-bTn + g = -P0 (3.110

n n

(1-sjZj) + (1 -y) 2 < Y (3.11g)

Note that (3.11a-f) is the same as (3.10a-f) and that (3.11g) is just a relaxation of

(3.10g). Therefore if (3.11a-g) is satisfied, (z, y) "almost" satisfies the K-K-T

conditions, if y is small. (Furthermore, one can show that if (z, y) is a y-approximate

solution of TRB and y < 1 , then v(B) < G(z, y) < v(B) + y 2/(2 (1-), and so
G (z, y) is very close to the optimal value v (B) of TRB , see Roos and Vial [15].)

Finally, we end this section with a property of LP that will be needed in the next
two sections.
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Proposition 3.5 (Infeasibility of LP) Suppose B < z*. If there exists a solution

IC, 6,, sg) to the system:

ATzI + 65 + 

-bTi + g

= Oc, s>O,

= -0B, g > ,

and 0 < 0, then LP is infeasible.

Proof: Because z* > B 0 , LP has an optimal solution if it is feasible.

Suppose LP is feasible. Then LP has some optimal solution x*. Then from (3.1)

and (3.12),

bT.r + *T^ ocTX* = z

and

-bT + g -OB .

Therefore 0 < x*Ts + g =

Therefore LP is infeasible.

O(z* - B), and so 0 > 0, a contradiction.

.

15
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4. An Algorithm for Tracing the 13-Trajectory, and Basic Properties

In this section, an algorithm for tracing the 13-Trajectory is developed and basic

properties of this algorithm are derived. The idea in the algorithm is to generate an
increasing sequence of values of the lower bound B < B1 ... < Bk < ... < z , and

for each Bk to produce a feasible solution xk to PRBk that is an approximation to
x(Bk) . Since we are working with the program T rather than PRB , the

algorithm will produce a feasible solution (zk, yk) to Tk that is a y-approximate

solution to T for some fixed constant ye(O, 1) . (We will use y = 1/9 in our

analysis to follow.)

In order to motivate the algorithm, suppose B < z* is given and (z, y) is

given, and (z, ) is a approximate solution to T, i.e., (z, y) and (, 6, 0, s, g)

satisfy (3.1 1a-g) for B = B , for some ( , , 0, ) . We will first increase the

lower bound B to a larger value B = B + A, where > is computed

(somehow), and so that B = B + A < z , i.e., B is a valid lower bound on z
Secondly, we will computer the Newton step (d, y) by taking a quadratic
approximation to the objective function of T at (z, y) = (, ) . Thirdly, we will
update the values of (z, y) to (, ) = ( + d, y + v) . Fourth, the value of x is

updated to x = /y. More formally, the algorithm is as follows:

Algorithm 1 (A, b, , c, P, x0 , B , y) (O <y < 1) (4.1)

Step 0 (Initialization) q = n + 1, k = 0

Step 1 (Transform to (z, y)-space) z = xO/(0TxO), y = 1/( Tx0) (4.2)

Step 2 (Rename Variables) (, z, y, x) = (Bk, zk, yk, xk) (4.3)

Step 3 (Compute Increase in Lower Bound A and Compute the Step (d, v))

Solve the following equations for the values

(AI, dv, x, 6, , s, g)= A, d,, , ,s, :

-Ad + bv = O (4.4a)

16



(- + c)Td -(B + A)v

,T .
-'~ ~ = -1 -

s= -1 e -2d, 

ATx +s

-bT r +g

g= -1( - - v)

0(-4 + c) + 4

-o(B + A)

VdTZ-2d + -2v2 =

A> 0.

If no solution exists, stop. LP is infeasible.

If < 0 , stop. LP is infeasible.

Step 4 (New Values in (z, y)-space)

B = B+ A

(z, ) = ( + d, y + )

Step 5 (New Value in x-space)

Step 6 (Redefine all Variables and Return)/y

Step 6 (Redefine all Variables and Return)

(Bk+l, zk+l, yk+l , k+ , 0k+ , k+, , k+) = B.zy,, ,, s, 

k+ l = X

17
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= Ay

= 0

(4.4b)

(4.4c)

(4.4d)

(4.4e)

(4.4f)

(4.4g)

(4.4h)

(4.5a)

(4.5b)

(4.6)

(4.7a)

(4.7b)



k - k+l1

Go to Step 2.

Here we review the steps in more detail. The data for the algorithm is given in
(4.1). The data for LP is (A, b, 4, c) . The balancing parameter > 0 is also data.
Furthermore, an initial point x and lower bound BO are inputs as well, and are

assumed to satisfy Assumptions A(i) - A(v). Also, the approximateness constant '

is data as well. (In Section 5, we will analyze Algorithm 1 with y = 1/9 ). At Step 1,

x0 is transformed to (zo, y0) in (z, y)-space as in (3.8). Step 2 is just a renaming of

variables for notational convenience. At Step 3, the incremental increase A in the

lower bound B is computed, as is the Newton step (d, v) for the variables (z, y).

The seven equation systems (4.4a-g) is almost a linear system. We will prove below

that the work needed to solve (4.4a-g) is no more than the work involved in

computing projections with the matrix [-A, b] , and can be accomplished in O(n3)
arithmetic operations. At Step 4, the new lower bound B and new values of (z, y)
are computed, and in Step 5, the new value of x is computed using (3.8). Finally,

the variables are redefined in Step 6.

At the start of the algorithm, it is assumed that the starting values (z 0, y0) are a
y-approximate solution to TRB , stated formally as:

Assumption A (vi): The values (z °, y) = (xo/({TxO), 1/(Tx o))area -tapproximate

solution of TRB, for the given prespecified constant y . The following four

properties of the algorithm will be proved:

Theorem 4.1 (Iterative M-approximate Solutions): If (z, y) is a y.approximate solution

of TR- at Step 2, then (z, y) is a ?approximate solution to TRB at Step 4. U

Proposition 4.1 (Demonstrating Infeasibility via 8 ). If, at Step 3, (4.4a-h) has a

solution and 0 < 0 , then LP is infeasible. If 0 > 0 , then B is a valid lower
bound on z .
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Theorem 4.1 states that if the algorithm starts with a y-approximate solution

(z °, y°) of TRB , then by induction, for all iterate values of k , (zk, yk) will be a

y-approximate solution to TRBk . Proposition 4.1 validates the second stopping

criterion of Step 3 of the algorithm and validates the criterion that B must be a

lower bound on z . The next Theorem validates the first stopping criterion of

Step 3.

Theorem 4.2 (Solving (4.4a-h)).

(a) If (4.4a-h) has no solution, then LP is infeasible.

(b) Determining a solution to (4.4a-h) or demonstrating that there is no

solution can be accomplished by computing three weighted projections

onto the null-space of (A, -b), and by using the quadratic formula, in

O (n 3) operations. ·

Finally, the next result states that if LP is feasible, the value of the potential function

G (z, y) (equivalently F (x)) decreases by at least a fixed constant at each iteration:

Theorem 4.3 (Decrease in Potential Function). If x and (z, y) is given at Step 2 of

the algorithm and x and (z, y is a given at Steps 4 and 5, then

(i) G(^z, G(z, y+ Y
2( - y)

(ii) F(x) < F(x)- y+ .

Theorem 4.1, Proposition 4.1, and Theorem 4.3 are proved below. The proof of

Theorem 4.2 is deferred until Section 6.

Proof of Theorem 4.1: We will show that (B, z, y, x, 8, 0, s, g satisfies (3.11a-g) at

B - B. Since (z, y is a approximate solution to TR , (z, ) satisfies (3.11a, b, c) for

B = B . Then (4.4a, b, c) combined with (4.5a, b) combine to show that (z, y) satisfies

(3.11a, b, c) for B = B by arithmetic substitution. To see (3.11d), note that
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z = Z(e + Z- 1 d) > 0 since llZ'dII y < 1 from (4.4g), and that

= y (1 + - 1 v)> 0 since y- 1 y <y <1 from (4.4g). Also, (4.4e, f) and (4.5a, b)
imply that (3.11e, f) are satisfied. Thus it only remains to show (3.11g). We proceed
as follows:

Note that we can write z, y, s, and g as

S

g

= z- (e - -a)

= -( _ -1 V)

(4.8a)

(4.8b)

from (4.5b) and (4.4d).

Thus 1 - ZjSj

and 1 - yg

= 1-( 1+ /zi)( - dj/z j)
= 1 - )( v)

Thus we have

1
2 (-j/-j)4 (--1 ̂ V)4)2

n ^/ )4 (-j -1 

< ( , /.(j/.z)
+ .( )) 2

+~ -

from (4.4g)

Therefore (3.11g) is satisfied.
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It should be noted that this proof, which is based on

of the underlying Newton process, is based on constructs

proofs in Tseng [19] and Roos and Vial [15].

Proof of Proposition 4.1. If 0 < 0, LP is infeasible. If 0 >

lower bound on z.

the quadratic convergence

used in Newton-method

0, B = B + A is a valid

Proof: From (4.4d) and (4.4g), we have s > 0 and g > 0. Also from (4.4e, f),

AT + + + 0 S

-bTCr + g

= Oc

= -0B.

Thus (3.12a, b) are satisfied for (I, , 0, s, g) = (, -8 + 0, s, g). Thus from

Proposition 3.5, LP is infeasible if 0 < 0. If 0 > 0, rearranging the above

yields (, 0, s) = (/0, + 0 )/0, s / is feasible for LD (3.2), and so

z > bTr/ = B + / > B. ·

Proof of Theorem 4.3: From Proposition 3.2, it suffices to prove (i), since (i) and (ii)

are equivalent.

n n

=- E hizj+fry- bIlZj-hly
j=1 j=1

(from 4.8a, b)
n

=nb (1+
j=l

2 eTZ-1 d + y v - (yj
j=1 2(1 - 2(1 -

4Tz-
1'i - -1_^ Y

(from PropositionA.2
and (4.4g))

(from 4.4g)
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> - (
2(1- y)'

To demonstrate this inequality, note that

(from 4.4d)

A. ^ ^ ^T--2-A~n+ (- + c)d + d +dZd,

= - vbT + Bv + OAv + A +d d,

= g + 2^2,=gv+y v,

and

(from 4.4e)

(from 4.4a, b, c)

(from 4.4d)

T ^ _ O^ _^ A- _2= vbT- B - 0av + 2v2.

Thus eT Z -1 d
"" T- T -2- _-2^2

A +d Z d +yv

= 0Ay +y (from 4.4g)

> 7,_ ¥i,

since A > 0, y > 0, and e >0. U
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5. Convergence Properties of Algorithm 1

Let Y = - be the closeness parameter used in Algorithm 1, and let

(xk, Bk), k=O, ... , be the sequence of iterate values determined by Algorithm 1. In

this section we prove the following theorem:

Theorem 5.1

= - Also,

(3.2). Then

(Convergence). Suppose Algorithm 1 is executed with parameter

suppose that z < - and let , , s.) be any optimal solution to LD

(i) F(xk+1) < F(xk) - 1/36

(ii) There exists a constant a

forallk = 0, ....

> 0 with the property that if

k > 36q(In (TxO) + In c), then

(a) 0 < Txk < (ATx)de- k/36q

(b) - o ( xo)a e- /36q < cTxk - z p( xo)- e k/36q

(c) o z -Bk < ( + o )( x) ae-

Furthermore, it suffices to set

a =max (,ac,

where a is the optimal objective value of the linear program:

L: c = max(1)eT(X) 1 x
XU

s.t. Ax = ub

(-h + c)Tx S uz*
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(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)



0 < Tx < 1

u < 1

x 2 O, u O. U

Theorem 5.1(i) states that the potential function F (x) decreases by at least 1/36

at each iteration of the algorithm. Theorem 5.1(ii) states that TxkO - 0

cTxk z* , and Bk - z. Furthermore, for k sufficiently large, the values of

tTxk, cTx k _z , and Bk - z' are bounded by a geometric sequence, thus showing

linear convergence of these series. Furthermore, since q = n + 1 , there will be a

fixed improvement in the bounding sequence in O (n) iterations. Therefore,

Algorithm 1 exhibits fixed improvement in the values Txk, cTxk -z*, and

z* - Bk, in O (n) iterations, for k sufficiently large.

Let L be the bit-size representation of the data (A, b, x, , x 0 , B0 ) .

We now argue that if z* is finite, then a* < 20(L)

and that (5.2) is satisfied after O (L) iterations. To see this, note from (5.7) that the

data for L has bit-size representation O (L), since z can be stored with O (L) bits

(see Papadimitriou and Steiglitz [13]) and all other data are O (L) . Therefore a

(which we show below is finite) satisfies a < 2 0(L) , and so from (5.7),

a 20(L) . Therefore (5.2) will be satisfied within O (L) iterations.

Before proving the theorem, we first prove the following proposition regarding

a and a:

Proposition 5.1. Suppose z* < . Then 0 < a < 

Proof: If z < oc, then LP attains its optimum at some point x . Then x = x ,

u = 1, is feasible for the linear program L (5.8), and since b * 0, then

eT (X ) x > 0. Thus a > 0. Also, a < +oo unless the linear program 
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defining a is unbounded. But if L is unbounded, there exists (d, v) > 0, with

(d,v) 0 satisfying Ad = vb, (-3p + c)Td vz*, 4Td = 0, v = 0, and so

d • 0, d 0, Ad = 0, Td = 0, cTd < 0, which contradicts Assumption A(iv).

Thus a < +. 

(It should be noted that the construction of ax and a in (5.6) and (5.7) is a

modification of the construction of bounds in Todd [181, but is more streamlined in

that is uses a linear program and a smaller implicit feasible region for the

optimization problem underlying xa.

Proof of Theorem 5.1: Note that if y= , then Y - ,andso(5.1)
9 2(1- Y) ) 36'

follows from Theorem 4.3(ii). After k iterations, (5.1) implies that

F(xk) < F(xO)- k/3 6 . (5.8)

Then substituting the formula for F (x) in (3.5) and exponentiating, (5.8) becomes

n-
STxk -<\= 1 Xj 3

(Tx 0)e -k/36qeT J(XO) xk) q (5.9)

where the latter inequality follows from arithmetic-geometric mean inequality.

Thus in order to prove (5.3), it is sufficient to show that if

k > 36q(In(TxO) + In a*),

then

I eT(XO)-'xk < c*. (5.10)
n

25



since a > 1 from (5.6).

It follows that if k satisfies (5.2) then

(Tx O) e/36 < 

a

Suppose that for some k satisfying (5.2) that (5.10) does not hold. Let

eT(X) Xk Then a > a > 1. Let x = k and u =-. Then
n a a

0 < u < 1, and Ax = uAxk = ub, andalso:

(- + c)Tx

Tx

= u(- + c)Txk = uBk < uz

= uTxk > 0.

= uTxk

n

I U~·i."·4~J(S""n (from (5.9))

*a )( 1 )(an
a ~ Iaq
a a (from (5.11))

< 1.

Thus, since x > 0 as well, (x, u) is feasible for L,

strictly.

and satisfies all inequalities

eT(X- x e(XO)-' kTherefore a > eT(x) = [a-- a a
n ax n a

contradiction since from (5.6) we have ad a. Therefore (5.10) holds, and hence so

does (5.3).
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Next, note that since xk is feasible for PRBk , then

cTxk - z < cTxk - Bk = Txk < p((TxO) a e -k /36q) (5.12)

which proves the right side of (5.4). To prove the left side, we use Proposition A.3 of

the Appendix, which states that for each xk

cTxk - z* > Txk -1e *Tk - | (x0)ae -/36q

where the last inequality follows from (5.3). Thus (5.4) is proved.

To prove (5.5), note that

0 < z -Bk =

from (5.12) and (5.13).

z* -cTxk +cTxk - Bk <

.
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6. Analysis of Equations (4.4a-h)

In this section, equations (4.4a-h) of Step 3 of the algorithm are analyzed, basic
properties are derived, and Theorem 4.2 is proved.

In order to motivate equations (4.4a-h) of Step 3 of the algorithm, suppose we
are at the start of Step 3 of the algorithm. We have on hand a lower bound B < z,
and we have on hand a -approximate solution (z, y) to TRb . That is, we have the

following array of vectors and scalars:

(Band, these values satisfy the following, system (from 3.11):

and these values satisfy the following system (from 3.11):

-Az + by

(-P + )T- B-

= 0

= 0

(6.1a)

(6.1b)

(6.1c)= 1

z,y>0 (6.1d)

ATi + s = 0(-0 + C)+ t

-bTn + = -0

(6.1e)

(6.10

(6.1g)Y SE (1 -S§Zj + (1 5-ygZ _ 
j=l

x = Z/y. (6.1h)

Our interest lies in increasing the lower bound from B = B to B = B + A for some
A > 0, and then taking a Newton step in the problem TRW + A . Specifically, we
want to find a direction array (d, v) so that ( + d, y + v) is feasible for TV + A and

that (z + d, y + v) is a r-approximate solution to T + . The issue then is how toy PT3 ~~~~~+ A'
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choose the increment value A > 0 in order to ensure that the Newton step will
result in a point that is a y-approximate solution to the new problem T + 

As we change B from B = B to B = B + A, the constraint matrix of TRB

will change. For a given value of A, the Newton direction (d, v) will be the

optimal solution to the following quadratic program:

- I T 2 1 -2 2
QA: min-eTZ -1 d -v+d Z -2d+-y v (6.2a)

dv 2 2d,v

s.t. -Ad + b = 0 (,t) (6.2b)

(- +c)T d - ( + v = (0) (6.2c)

Td = O (6) (6.2d)

It is a matter of checking arithmetic to see that if (d, v) satisfy (6.2b, c, d), then
(z + d, y + v) satisfies the equations for T + ' see (3.9). Also note that the

objective function of Q is just the first two terms of the Taylor series expansion of

G(z, y) at the point (z, y) = (z, y). Furthermore, from Assumption A(v), the rows
of equations (6.2b, c, d) must be linearly independent, and therefore, Q will always

have a feasible solution for any A. In fact, because the objective function is a strictly
convex quadratic form, then Q will always have a unique solution, and that this

solution can be computed in closed form. The Karush-Kuhn-Tucker (KKT)
conditions for Qa are both necessary and sufficient for optimality, and are satisfied if

there exists (dA, VA, Iv, IAC , A, 0a, ga) for which the following equations are

satisfied:

-Ad + bvA = 0 (6.3a)

(- = + c) d -y( + A V - (6.3b)

TdA = 0 (6.3c)

A A 1 Z-2d g -Ay1 YYv (6.3d)
s A Z= e-Z d, g Y 1-y (6.3d)
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AT7EA + Sa = Oa(-p + c) + 654 (6.3e)

-bT a + ga (6.3f)

Summarizing the discussion so far, we see that for any value of the parameter A,
equations (6.3a-f) represent the optimality conditions for the quadratic

approximation of the problem TIV + a at the point (z, y) = (, yT) . These

equations will have a unique solution for any value of A . Comparing (6.3a-f) to
(4.4a-h), note that (6.3a-f) are identical to (4.4a-f). Then if we define

k(A) /d 2d+ - -2 2 (6.4

we see that (4.4g-h) is satisfied if we can find A > 0 satisfying

k(A) = y (6.5

We now show how to solve (6.5) as well as (6.3a-f), thus solving (4.4a-h).
Structurally, the program Q is equivalent to:

minimize
x

s.t.

T 1q x + -xTx
2

Mx

(f + wA)Tx

= 0

Ay,

x = (z-d, Y v)

M

wT

wT

(6.6)

= 

Tz

[
qT

OT , -y],

[- eT, -1]

30

Pa:

where

and

- O' (1 + A)

4)

_)

bjT

[(-P5 + T)f -- Y] 



III

The program P has the property that the data in the last row depends linearly on

the parameter A . Because of this simple linear dependence, we can solve for the
unique solution x of P with relative ease, as follows. Let P be the projection

matrix that projects vectors x onto the null space of M , i.e.,

P = [I MT(MMT) M] (6.7)

Then let

q = Pq, f = Pf, and w = Pw. (6.8)

The K-K-T conditions for P can be written as:

q + x = ( + A)hXA (6.9a)

(f + WA)Tx Ay (6.9b)

This is easily solved as:

XA + (6.10a)
(f+ )T (+ W A)

XA = - q- A(f+ WA) (6.10b)

and (zdA y'v) =X (6.10c)

Therefore (6.10a, b, c) gives the optimal solution to P , and hence Q , for any

value of A . However, we seek a solution to Qa for a value of A that satisfies (6.5)

(through 6.4). Under the scale transformation (6.6), equation (6.5) becomes

(xA)T(xA) = y. (6.11)
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Substituting for x in (6.10a, b) equation (6.11) becomes

-T- (-T (t + -A)- yA) (q( + -A) - y A)
y= qTWq+ y + W -

¢ + )T(t + a
(6.12)

Now note that (6.12) can be solved analytically for A by clearing the denominator

and using the quadratic formula on the resulting quadratic equation in A . If there
is a solution to (6.12) with A > 0 , then this procedure will find such a solution;

likewise, if there is no solution with A > 0 , this will be uncovered as well. The

bulk of the work effort lies in computing the three projections q , f , and w,

which can be accomplished in O(n3) operations.

One further point must be made, namely that the denominator of (6.10a)
is never zero. To see why this is true, note from Assumption A(v) that the

following matrix must have full row rank, since z > 0 and y > 0:

-AZ

(-_T + cT)Z

0

by

· 0

-By
, -Y

But this matrix is simply

ft i
w T

which then has full row rank. Therefore the projections f and w (onto the null

space of M) are linearly independent, and so the denominator of (6.10a) does not
vanish.

Because the denominator of (6.10a) does not vanish, we have:
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Proposition 6.1 (Continuity of QA). The functions XA , xA, d, vA, and k(A) are

all continuous in A .

Proof: Follows immediately from the above discussion. .

Proposition 6.2. At A = 0 , k(A) < y .

Proof: Let (do, vo0) be the optimal solution to Q at A = 0 . Then from (6.3a-f),

there exists (o, 6o, 00, so, go) together with (do, vo) satisfying

-Ado + bvo

(-t + c)do- Bvo

tTdo4 do-1 -

so = Ze-Z -2do,

AT xo + so

-b T Ko + go

= 0

= 0

= 0

go = Y- (1 -y1vo)

6= (-0 + c) + 60

-OoB

Now consider the problem

minimize 1 n

t, 6, ,s,g 2j=1

s.t. - AT

-Zjsj)2+ 1 (1
2

+ (-P + ) + 4- 

bTx-0f-g = 0

The K-K-T conditions for this convex problem are:

-ATI + (- + ) + at- = 0
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(6.13a)

(6.13b)

(6.13c)

(6.13.d)

(6.13e)

(6.130

= 0

(6.14a)

Y g)2(1



bT -B- g

-Ad + by

(-1P + c)T - Bv

T .

s = Z-l(eZ-ld),

(6.14b)

= 0

= 0

= 0

g = -l(1 -y

(6.14c)

(6.14d)

(6.14e)

(6.14f)

Now note that (do, vo, no, 0., o0 , so, go) satisfy (6.14a-f) and so (o, 0o, Oo, so, go)

solves the program R . Also note, however, that (z, y) is a y-approximate solution

to TR , so that there exists ( C, , , s, g) together with (z, y) that satisfy (3.11a-g)

at B = B . Therefore (x, 6, 0, s, g is feasible for the program R. Therefore

k(O)
-- 2 2= doZ- 2do + 2 2

doZ do + Y V0
(from (6.4)

n

j=1

rI
j=1

(1 - zj j)2 +

(1 -zj(so)j) 2 + (1- ygo)

(l_ y)2 < < .

(from 6.13d)

U

We now are ready to prove Theorem 4.2.

Proof of Theorem 4.2: Part (b) of Theorem 4.2 follows from the discussion on

solving (4.4a-h) in this section. It only remains to prove part (a). From Proposition

6.2, k(O) < ;7 < 1, and from Proposition 6.1, the continuity of k(.) ensures that if

k(A) = 1y has no solution for A > O , then k(A) < FY < 1 for all values of

A > 0 . Now suppose LP is feasible. Then z* is finite, and let A be set to

A = z* -B > 0 . Let (d, VA, I, BA, 0 A, sA, gA) be the solution to (6.3a-f). Since

k(A) < 1 , s a > 0 and gA > 0O
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Therefore ATMeA + (0BP - ) + s = OAc, sA > 0,

and -bT d + ga = -0 (B + A) = -OA z* , from (6.3e, f).

Therefore if A < 0 , Proposition 3.5 states that LP is infeasible. So suppose

0A > 0 . Then from (6.3e, f) we obtain a feasible solution

(xt, 0, s) = (A / 0A, [3 - 6a/ 0a, (SA/ ea)) to the dual LD, with objective value

bTe = bT(TEA/Oa) = B + + gA/08 > + A = z

This contradicts the definition of z* , and so LP must be infeasible. U
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7. Comments on Satisfying Assumption A(vi).

Assumption A(vi) states that the starting values (zO, yO) = (O/(,Txo))I

1 / (T x0) are a ~-approximate solution of TRB , for the given prespecified constant

. Here we show how to satisfy this assumption. For convenience of notation, let

= . Then (, y-) = (/(Tx), 1/ (Tx-)) is feasible for TRB ° , with objective

value F(x) = G (z, ) . Then using the potential reduction methodology of Ye [22],

Gonzaga [12], or [4], it can be shown that in finitely many iterations of Newton's

method augmented with a line-search, that a -approximate solution of TRBo will be

generated. In fact, using analysis in [8], one can bound the number of iterations of

the Newton process by

F(x) - v (BO)
1 + y - 2t
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8. Open Questions

Monotonicity. Traditional trajectory-following interior-point algorithms for linear

programming parameterize the trajectory with a parameter Jp that is related

monotonically to the duality gap. One can show that along the idealized path of

primal values x () and dual values (g) , s () , that the duality gap is equal to

ng , where n is the number of inequalities, and hence is linear and monotone in

trajectory parameter p . The Trajectory T defined in the paper (3.7) is

parameterized by the lower bound B on z* . Theorem 5.1 indicates that as

B - z ,that cTx(B) z* and , Tx(B) 0 . Furthermore, intuition suggests that
T

T x(B) is decreasing in B as B approaches z* from below. However, after much

mathematical effort, we have not been able to demonstrate any such monoticity.

Complexity. The lack of provable monoticity of the feasibility gap has forced the

complexity analysis of the algorithm to rely on analysis of the potential functions

F(x) or G (z, y) . And using these potential functions, we are only able to prove

constant improvement in the feasibility gap in O(n) iterations. Most other

trajectory-following algorithms can be shown to achieve constant improvement in

O (vW) iterations. In fact, the bulk of the theoretical research on combined Phase I -

Phase II methods has led to O(n) iteration algorithms for constant improvement,

and only quite recently has Ye et. al [23] shown 0 (fT) iteration algorithm for

problems of this type.

Good Values of . As argued in [9], there are many instances of linear programming

problems for which the intuitive choice of the balancing constant might be very

high, or very low, depending on certain aspects of the problem. An open question is

whether computationally there is a heuristically natural optimal choice of the

balancing parameter .
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Appendix

Proposition A.1. If x > -1, In(I + x) < x.

Proposition A.2. If I x < a < 1, then
x2

In(1 +x) x- 
2(1 - a)

Proofs of the above two inequalities can be found in [4], among other places.

Prooosition A.3. Consider the dual linear programs:

= min cTx
x

s.t Ax = b

T
,Tx = r

x 0.

LD : max
r

Ir, 

bTx + rO

s.t. AT + 0 < c

Suppose ( , 0') solves LDo,

cTx 2 z + r.

and let z = z* (0). Then for any x feasible for LPr

Proof: Because (Ir, 0') is feasible for the dual

z*(r) 2 bTa + rO = z (0) + rO

Therefore, if x is feasible for Pr, cTx > z*(r) > z + r O

A-1

LP 
r z*(r)

ID r for any r,

= z* + rO .

.

---r 
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