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Abstract

We consider the problem of finding the minimum capacity cut in a network G with n
nodes. This problem has applications to network reliability and survivability and is
useful in subroutines for other network optimization problems. One can use a maximum
flow problem to find a minimum cut separating a designated source node s from a
designated sink node t, and by varying the sink node one can find a minimum cut in G as
a sequence of at most 2n - 2 maximum flow problems. We then show how to reduce the
running time of these 2n - 2 maximum flow algorithms to the running time for solving a

single maximum flow problem. The resulting running time is O(nm log n 2 /m) for
finding the minimum cut in either a directed or undirected network. The algorithm also
determines the arc connectivity of either a directed or undirected network in O(nm) steps,
and it can be used as a subroutine in a randomized algorithm to determine the node
connectivity with probability at least 1-e in running time O(nm(n-X)/n log 1/e), where X is
the node connectivity of a network.
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1. Introduction.

A classic result in the area of network flows is that the maximum flow from a

designated source node s to a designated sink node t is equal to the minimum capacity of a
cut separating s from t. This simple but elegant result, proved by Ford and Fulkerson
[1956], has a number of applications in practice, and unifies a number of disparate results
in the area of combinatorial optimization.

In this paper, we focus on finding a minimum cut in a network in which no source

node or sink node is specified. The classic maximum flow problem assumes the existence

of a designated source node s and sink node t. We refer to any cut (S,N-S) with s E S and t

E N-S as an s-t cut, and we refer to the problem of determining a minimum capacity s-t

cut as the s-t cut problem. Although the s-t cut problem has a wide range of applications

(see, for example, Picard and Queyranne [1982] and Ahuja, Magnanti, and Orlin [1992] for a

number of these applications), for other applications one wants to determine the

minimum cut in a network in which there is no designated source or sink node. In this

case, one wants to partition the node set N of a network into two non-empty parts

denoted as S* and N-S* such that the capacity of the cut (S*,N-S*) is as small as possible.

We refer to this problem as the "minimum unrestricted cut problem" to emphasize that

there is no designated source and sink.

In the case that the network is undirected, the best algorithm for solving the

minimum unrestricted cut problem has a running time of O(nm + n2 log n) and was

developed by Nagamochi and Ibaraki [1988a]. The Nagamochi-Ibaraki algorithm
dominates our algorithm by a factor of log n except for very dense networks. Of course,
the performance in the worst case does not necessarily indicate the performance in
practice. The algorithm which is the better in practice would need to be determined

through appropriate computational testing.
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In the case that the network is directed, the previous best algorithm for solving the
minimum unrestricted cut problem (in terms of performance guarantees) was to solve
the problem as a sequence of 2n-2 minimum s-t cut problems (find the minimum s-j cut
and the minimum j-s cut for each j • s and select the best of these 2n-2 cuts), and thus the
running time was O(n M(n,m)), where M(n,m) is the best running time for solving a
maximum flow problem with n nodes and m arcs. Currently the best strongly
polynomial running time for solving the maximum flow problem is an algorithm by
King, Rao, and Tarjan that runs in O(min(nm + n2+8, nm log n)) steps, where £ is any
fixed positive constant.

In this paper, we show how to solve the minimum cut problem as a sequence of
2n-2 minimum s-t cut problems in such a way that the total running time is comparable
to the time to solve one minimum s-t cut problem. In particular, one can solve all of the
O(n) minimum s-t cut problems in a total of O(nm log n2 /m) steps. The algorithm relies
on a simple idea, also exploited in the very efficient parametric flow algorithm developed
by Gallo, Grigoriades, and Tarjan [1989]; i.e., the initial distance labels for any minimum
s-t cut problem are always the distance labels obtained by the algorithm at the termination
of solving the preceding minimum s-t cut problem. (We describe distance labels in the
next section.) If one handles distance labels carefully, and if one solves the O(n)
minimum cut problems in an appropriate order, then the running time to solve the O(n)
minimum cut problems using a variant of the Goldberg-Tarjan preflow push algorithm is
comparable to the time to find a single minimum s-t cut. We remark that the best weakly
polynomial algorithms for the minimum s-t cut problem as well as the algorithm by
King, Rao, and Tarjan rely on the idea of scaling, and these ideas do not seem to extend to
our approach for solving the minimum unrestricted cut problem.

When restricted to the problem of finding the arc connectivity of the network, our
algorithm runs in O(nm) time, which is comparable to the best other algorithms
(developed by Matula [1987] for the undirected problem and by Mansour and Schieber
[1988] for the directed problem), under reasonable assumptions on the data. In the case of
undirected graphs, one can use the preprocessing procedure of Nagamochi and Ibaraki
[1988b] to improve the running time to O(Xn 2 ), where x is the arc-connectivity of the
network. Moreover, the algorithm can be used as a subroutine to find the node
connectivity X* of a network with probability at least 1-c for any fixed e in running time
O(nm (n-X*)/n log 1/)) using a randomized algorithm.

The algorithm can also be sped up in the case that the network is bipartite, using
the algorithm of Ahuja, Orlin, Stein and Tarjan [1990]. If the number of nodes on the
smaller half of the bipartite network is n', and if n' is much smaller than n, then the
running time of the algorithm can be improved to O(n'm log((2 + n'2/m)).
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In addition to having a good performance guarantee, we anticipate that our
algorithm will be quite good in practice, and it is as easy to implement as any other
preflow push algorithm for the maximum flow problem. In particular, it does not require
contraction of nodes as does, for example, the algorithm of Padberg and Rinaldi [1990].
While contraction is conceptually quite simple, it is difficult to implement when one uses
the usual network data structures such as a "forward star".

Before proceeding to a technical description of the results, we first give two
motivating applications. The first application is to find a most unreliable cut in a
network. Consider an undirected network G = (N,A) in which the probability of any arc
(i,j) working reliably is Pij. Ideally, Pij is close to one, and every two nodes in the network

are connected by a reliable path; however, in practice many arcs may be unreliable, and
they are susceptible to failure. If two nodes i and j are not connected by some working
path, then there is some cut (S,N-S) separating i from j such that i E S, j E N-S, and there
is no arc joining any node of S to any node in N-S. The probability that each arc in the cut

(S,N-S) is not working is F(S,N-S) = i N N-S (l-pij). Suppose that one wants to

identify the cut in G which is the most likely to fail. Such a cut is useful in diagnosing the
susceptibility of the network to failure, and may also be of use in determining where the
network should be fortified.

To maximize the probability of failure is equivalent to minimizing -log F(S,N-S),
which is IiX NJ N-S -log(1-pij). So if we let uij = - log(l-pij), a minimum cut in the

network corresponds to a cut with maximum probability of failure.

We now consider another application, described more fully in the paper by Padberg
and Rinaldi [1990]. Consider the linear programming relaxation of the traveling
salesman problem in which we have assignment constraints and subtour elimination
constraints. Suppose that x is a solution that satisfies the assignment constraints, but one
wants to know whether it also satisfies the subtour elimination constraints. Equivalently,
one wants to determine whether there is a partition of the nodes into two parts, say S*
and N-S* such that ,ie s*je N-S* xij < 1. If we interpret the flows xij as capacities for a

minimum cut problem, one wants to know whether the capacity of a minimum cut in
the network is less than 1. Padberg and Rinaldi developed an approach that is very
efficient in practice, but has a worst case running time comparable to that of solving n
maximum flow problems. Our approach solves the problem in the time to solve a single
maximum flow problem. It is plausible that our approach is as efficient or more efficient
than the algorithm developed by Padberg and Rinaldi; however, the relative efficiency of
these two approaches can only be assessed by detailed computational testing.
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2. Notation, Definitions, and an Overview of the Algorithm

For the most part, the notation in this paper is consistent with the notation in the
text by Ahuja, Magnanti and Orlin [1992]. We refer the reader to that text for further
details on notation, and for further details on the algorithm developed by Goldberg and
Tarjan [1988].

Let G = (N,A) be a network with node set N and arc set A. Let n and m denote the
number of nodes and arcs of the network respectively. Each arc of the network has a
associated capacity uij, which is a non-negative real number. (In practice, one would
assume that uij is a rational number, but since this algorithm is strongly polynomial, we

do not need this additional assumption.) A cut refers to a partition of the node set into
two non-empty parts S and N-S. The capacity of the cut (S,N-S) is IiE s jE N-S uij, and we

denote the capacity of the cut as u(S,N-S). The minimum unrestricted cut problem is to
find a partition of N into two non-empty parts, S* and N-S* so as to minimize
u(S*,N-S*).

Suppose that S is a subset of nodes and j is a single node. The minimum S-j cut
problem is the following:

minimize {u(S*,N-S*): S c S*, and j E N-S*}.

In other words, one wants a minimum cut subject to the additional condition that the
source side of the cut contains the subset S and the sink side of the cut contains node j.

In the algorithm below we will determine the minimum cut (S*,N-S*) in the
network subject to the condition that a designated node s is in S*. If we apply the
algorithm to the graph obtained from G by reorienting each of the arcs, then we obtain the
minimum cut (N-T*,T*) with the property that s E T*; i.e., s is on the sink side of the cut.
The minimum cut in the network is the better of the two cuts (S*,N-S*) and (N-T*,T*).

Henceforth, we will focus on the problem of identifying the minimum cut
(S*,N-S*) with the property that s is on the source side of the cut. The previous argument
shows that this algorithm can be used to solve the minimum unrestricted cut problem as
well. Our algorithm, as presented in its most abstracted and high level, is essentially the
same as the Padberg and Rinaldi algorithm. However, the algorithm differs at a more
detailed level, and these differences account for our improved running times.
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algorithm FindMinCut(s)
begin

S := {s}
BestValue := C;

while S N do
begin

select some node t' E N-S;
determine a minimum S-t' cut (S*, N-S*);
z := u(S*,N-S*);
if z < BestValue, then Cut := (S*,N-S*) and BestValue := z;
add t' to S;

end
end

The description of the algorithm FindMinCut( ) shows how to solve the minimum cut
problem as a sequence of O(n) minimum S-t' cut problems. The algorithm uses the
notation t' to emphasize that the sink node t' changes from one minimum cut problem to
the next. We first claim that the algorithm does indeed determine a minimum cut with s
on the source side.

Lemma 1. The algorithm FindMinCut(s) determines a minimum capacity cut with the
property that s is on the source side of the cut.

Proof. Let (S',N-S') denote the minimum capacity cut in the network with the property
that s is on the source side, and let (S*,N-S*) denote the cut obtained by the algorithm.
We first note that (S*,N-S*) is a feasible cut with s E S*, and so u(S*,N-S*) > u(S',N-S').
We next show that u(S*,N-S*) < u(S',N-S') as well. Let us suppose without loss of
generality that s = 1, and the remaining nodes are labeled 2, 3, 4,..., n in the order of
their selection as sinks by the minimum cut algorithm. Let j be the minimum index of a
node in N-S'. At the time that the algorithm selects j as the sink node, S = 1,..., j-l}. By
our choice of the node j, S is a subset of S'. Thus (S', N-S') is a feasible S-j cut, and thus
the objective value of the minimum S-j cut is at most u(S',N-S'), proving the result. O

The algorithm FindMinCut(s) solves the minimum unrestricted cut problem as a
sequence of O(n) minimum S-t' cut problems. However, we will soon show that if we are
careful in the order in which we select the sink nodes, and if we modify the generic
preflow push algorithm appropriately, then we can solve these n-1 minimum S-t' cut
problems in the time that it normally takes to solve just one minimum s-t cut problem.
Using dynamic trees, the running time is O(nm log n 2 /m), as is the running time of
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Goldberg and Tarjan's [19881 algorithm for the maximum flow and minimum s-t cut
problems. Using highest level pushing and without using dynamic trees, the running
time is O(n2 m1/2), as is Cheriyan and Maheshwari's [1987] variant of the G-T maximum
flow algorithm.

In order to achieve the improvement in the running time, one needs to modify the
steps of the preflow push algorithm appropriately. In the next section we describe the
modification of the preflow push algorithm.

3. The Preflow-Push Algorithm

In this section, we describe the preflow push algorithm for finding a minimum S-t

cut, where S is a designated subset of nodes and t is a designated sink node. Our algorithm

differs from the usual preflow push algorithm in a couple of ways. First of all, the normal

preflow push algorithm finds a minimum s-t cut for some source node s rather than an
S-t cut; this distinction, however, is rather minor since it is easy to transform the S-t cut
problem into an s-t cut problem. More significantly, our algorithm partitions the node set
N into two parts W and D = N-W, where D is a set of "dormant nodes", and W is a set of
nodes that are "awake". The algorithm maintains the invariant that there is no arc of the
"residual network" directed from any node in D to any node in W.

In Section 4, we will show how to modify the preflow-push algorithm of this

section so as to solve the minimum cut problem. We have modified the preflow push
algorithm in this section specifically so that it can be extended to the minimum cut

algorithm of the next section. In particular, the rationale for partitioning the nodes into

dormant and awake nodes will be made apparent in the next section.

Let x be any integer m-vector indexed on the arcs of A such that 0 xij < uij for each

(i,j) E A. Recall that S is the set of source nodes. For each node i E N, the excess of node i

is denoted as e(i) and is defined as follows:

e(i) = -xji Z xij for all i N - S.
{j: (j, i) A j: (i, j) E A)

We say that x is a preflow if 0 < xij < uij for each (i,j) E A and if e(i) 2 0 for each i E

N-S; i.e., a preflow satisfies the bound constraints, and the net flow into node i exceeds the

outflow except for source nodes.

We assume that for every arc (i,j) E G, there is also an arc (j,i) possibly with 0
capacity. This assumption is without loss of generality, and is made solely for notational

11
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convenience. Given a preflow x, the residual capacity rij of any arc (i, j) E A is the

maximum additional flow that can be sent from node i to node j using the arcs (i, j) and
(j, i). The residual capacity rij has two components: (i) uij - xij, the unused capacity of arc
(i, j), and (ii) the current flow xp on arc (j, i), which we can cancel to increase the flow from
node i to node j. Consequently, rij = uij - xij + xji. We refer to the network G(x) = (N, A(x))

consisting of the arcs with positive residual capacities as the residual network (with
respect to the flow x).

We will partition the nodes of the network into two parts, W and D denoting
respectively the set of nodes that are awake and the set of nodes that are dormant. Each
node i has a distance label d(i) which is an integer in the range {O, 1,..., n. (We remark
that for maximum flow problems the range is usually {0,..., 2n-1}; however, the range
may be made smaller for minimum cut problems.) In this section, we will generally
assume that d(t) = 0; however, in the next section, we will relax this assumption and allow
d(t) to take on other integer values between 1 and n.

We say that the set of distance labels are W-valid if they satisfy the following
property:

W-validity Property. For each pair of nodes i and j in W, if rij > 0 then d(i) < d(j) + 1.

In addition, the nodes of D will satisfy the following property:

Dormancy Property. We say that nodes in D satisfy the dormancy property if for each
node i E D there is no arc (i,j) E G(x) with j E W.

As a result, if i is in D and if D satisfies the dormancy property, then there can be no
path in the residual network G(x) from i to t or to any other node in W. The following
Lemma is a variation of a lemma given in Goldberg and Tarjan [1988], and is easily
proved via induction.

Lemma 2. Suppose that the set d( ) of distance labels is W-valid and that the set D = N-W
satisfies the dormancy property. Then for each node i, d(i) is a lower bound on the
number of arcs in any path from i to t in G(x). 0

A node i is said to be active if i E W-{t} and if e(i) > 0. An arc (i,j) is said to be
admissible if i E W, j E W, d(i) = d(j) + 1, and if rij > 0. In general, the algorithm will send

flow from active nodes and will send flow along admissible arcs. We are now ready to
give the preflow push algorithm.



algorithm preflow-push;
begin

Initialize;
while the network contains an active node do

begin
select an active node i;
if the network contains an admissible arc (i, j) then

push := min{e(i), rij} units of flow from node i to node j;
else relabel(i);

end;

end;

Procedure Initialize
begin

for each arc (i,j) with i E S and j E N-S, send rij units of flow in (i,j);
D := S;
W := N-S;
d(t) := 0;
for each j E N - {t} do d(j) := 1; {alternatively, the distance label of node j can be

computed to be the minimum number of arcs on a path from j to t}
end

procedure relabel(i);
begin

if i is the only node in W with distance label d(i) then
begin

R:= {je W:d(j) > d(i)};
D:= D u R;
W:= W- R;

end
else if there is no arc (i,j) in G(x) with j E W, then D := D u j) and W := W - {j};

else d(i) := min {d(j) + 1: (i, j) E A(i), j E W and rij > 0};
end;

We now briefly outline the differences between the usual implementation of the G-T

preflow push algorithm and the algorithm presented above. Later, we will modify the

algorithm further so that it can solve the minimum unrestricted cut problem, and we will

prove the correctness of our minimum unrestricted cut algorithm in Section 4.

As stated in the introduction to this section, the algorithm partitions the node set

into two disjoint subsets D and W = N-D. The set D refers to the set of dormant nodes,,

and there is no arc in the residual network from any node in D to any node in W. At

initialization, the algorithm saturates all of the arcs emanating from nodes in S; at this

III
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point, there is no further arc in the residual network from a node in S to a node in N-S,
and the algorithm initializes D as the set S, and it initializes W as the set N-S.

The algorithm performs pushes in a similar manner to the G-T algorithm;
however, the G-T algorithm permits any node with positive excess to be selected for
pushing whereas the algorithm presented here enforces the additional requirement that
the selected node be in W. Nodes in W with positive excess are called "active." Also, no
flow is permitted to be pushed from a node i in W to a node j in D, even if d(i) = d(j) + 1.

The algorithm performs relabels in a similar manner to the G-T algorithm, except
for two cases. In the first case, the algorithm identifies an active node i that needs to be
relabeled but with the property that no other node has distance label d(i). Then the
algorithm lets R = {j E W: d(j) > d(i)), and it transfers the nodes of R from W to D. As
stated in the next lemma, there is no arc directed from a node in R to a node in W-R, and
so the modified set D will still satisfy the dormancy property, assuming that D satisfied the
dormancy property prior to the transfer of the set R.

Lemma 3. Suppose that the set d( ) of distance labels is W-valid and that the set D = N-W
satisfies the dormancy property. Suppose in addition that i has no admissible arcs, and
there is no other node in W with distance label d(i). Let R = {j E W: d(j) > d(i)}. Then
there is no arc in the residual network directed from a node in R to a node in W-R. In
addition, the set D' = D u R satisfies the dormancy property.

Proof. By assumption and by the definition of the set R, there is no arc directed from node
i to a node in W-R. Let j be any other node in R. By assumption, d(j) > d(i). Since j E W,
and since the distance labels are W-valid, it follows for any node k E W and for any arc
(j,k) in the residual network that d(k) > d(j) - 1 > d(i). Hence k E R. We conclude that
there is no arc directed from a node in R to a node in W-R. If we let D' = D u R, it follows
that there is no arc directed from a node in D' to a node in W-R, and thus the lemma is
true. 0

We note that the procedure for identifying dormant nodes was presented as a
heuristic for speeding up the computations in Derigs and Meier [1988]. It is also presented
in Ahuja, Magnanti and Orlin [1992], where it is called the "gap heuristic." The primary
difference here is that the nodes are identified as dormant, whereas in usual
implementations of the G-T algorithm, these nodes are assigned a distance label of n.

There is one other situation in which a dormant node is identified. Suppose that
node i needs to be relabeled, and there is no arc of the residual network directed from i to
a node in W. In this case, we can add i to D and delete it from W. It is easy to see that the
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resulting set D u {i} satisfies the dormancy property so long as D satisfied the dormancy
property.

We have now completed the review of the G-T preflow push algorithm. In the
next section, we show how to modify the algorithm further so as to efficiently solve the
minimum cut problem. Moreover, in Section 4, we will prove the correctness of the
algorithm and its time bounds.

4. The minimum cut algorithm

To start off this section we expand our previous outline of the ~procedure
FindMinCut(s).

Algorithm FindMinCut(s)
begin

ModifiedInitialize
while S e N do

begin
while the network contains an active node do

begin
select an active node i;
if the network contains an admissible arc (i, j) then

push 6 := min{e(i), rij} units of flow from node i to node j;

else ModifiedRelabel(i);
end;

-- Recall that D denotes the set of dormant nodes, and W = N-D--
if BestValue > u(D,W), then Cut := (D,W) and BestValue := u(D,W);
SelectNewSink;

end
end

The algorithm has as its inner loop the preflow push algorithm of the previous
section with some small but technically needed differences. We now summarize these
differences, and subsequently we will prove the correctness of the algorithm.

In the procedure ModifiedRelabel, the algorithm will relabel a node i or else it will
transfer i and possibly other nodes of W to the set D of dormant nodes. The difference
between ModifiedRelabel and Relabel is that in ModifiedRelabel we will partition the set
D into subsets called DormantSet(O), DormantSet(l),..., DormantSet(Dmax) according to
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the step at which the nodes were transferred from W to D. For example, suppose at some
iteration that Dmax = K and that D = U K DormantSet(i). Suppose at that iteration that

one wants to transfer the set R of nodes from W to D. This is accomplished by
incrementing Dmax from K to K+1, and then letting DormantSet(K+1) = R. DormantSet(i)
is, in general, determined by transferring a subset of nodes from W to D in a relabel, except
for DormantSet(O) which is the set S of source nodes.

As in the description of the preflow push algorithm in Section 3, there is no arc
directed from a node in D to a node in W; so the nodes in D need not be considered in the
current minimum S-t' cut procedure; however, these nodes may need to be considered at
a later stage in the algorithm FindMinCut since the algorithm solves a sequence of S-t'
minimum cut problems, with each node being the sink node once except for node s. After
determining a minimum S-t' cut, the algorithm then transfers t' to S, and selects a new
sink node. If possible, it selects the node in W with minimum distance label; however,
it is possible that t' was the only node in W at the end of the procedure for finding a
minimum S-t' cut, and that subsequent of the transfer of t' to S, there is no node in W. If
W is empty, the algorithm then transfers the set DormantSet(Dmax) to W, which makes
W non-empty again. Once W is non-empty, the algorithm selects the node in W with
minimum distance label, and starts a new minimum cut procedure.

We now explain why we have referred to the nodes in D as dormant. Each of the
nodes in D (except for the nodes in S) will ultimately be "awakened" and transferred back
to W. In fact, each of these nodes will be the sink node for some subsequent minimum
cut problem.

We now provide the remaining procedures and prove the correctness of the
algorithm. We will assume that node 1 is the source node and that node 2 is the initial
sink node.

procedure ModifiedInitialize

begin
for each arc (1,j) send rlj units of flow in (1,j);
DormantSet(O) := {1};
Dmax := 0;
W := N-{l);
t':= 2;
d(t') := 0;
for each j N - {t'} do d(j) := 1;

end

���_I�_ _I_·)I I�
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procedure ModifiedRelabel(i);
begin

if i is the only node in W with distance label d(i) then
begin

Dmax := Dmax + 1;

R := j E W: d(j) > d(i)};
DormantSet(Dmax) := R;

W := W- R;
end

else if there is no arc (i,j) in G(x) with j W, then
begin

Dmax := Dmax + 1;
DormantSet(Dmax) := {i};

W := W-i;
end

else d(i):= min {d(j) + 1: (i, j) E A(i), j W and rij > 0)};

end;

Procedure SelectNewSink
begin

--let node t' denote the old sink node-
delete t' from W;
add t' to both set S and to DormantSet(O);
if S = N, then quit; else continue;
for each arc (t',k) with k E N-S do send rtk units of flow in arc (t',k);

if W = o then

begin
W := DormantSet(Dmax);
Dmax :=Dmax -1;

end
select j E W such that d(j) is minimum;
t' := j;

end

The correctness of the algorithm and its time bounds rely on several properties
satisfied by the algorithm. We list these properties below, and prove them subsequently.
For a given set V of nodes, we let d(V) = {k: d(j) = k for some j E V}. In other words, d(V)
is the set of distance labels of the nodes of V.

lil
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Property 1. (Optimality conditions). Suppose that S denotes the set of source nodes and
that t' denotes the current sink node. If there are no active nodes, then (D, N-D) is a
minimum capacity S-t' cut.

Property 2. (W-Validity Property). For each arc (i,j) in the residual network, if i and j are
both in W, then d(i) < d(j) + 1.

Property 3. (Increasing distance labels). The distance labels are non-decreasing
throughout the execution of the algorithm. Moreover, at the relabel of node i, either d(i)
is increased or else i is transferred from W to D.

Property 4. (Dormancy Property). There is no arc of the residual network directed from a
node in D to a node in W. (Extended Dormancy Property). For each pair i, j of indices
with i < j, there is no arc of the residual network directed from a node in DormantSet(i) to
a node in DormantSet(j).

Property 5. (d-Consecutiveness Properties). d(W) is a set of consecutive integers. Suppose
that R = DormantSet(j) for some j. Then d(R) is a set of consecutive integers.

Property 6. (Bounds on relabels). Each node label is increased at most n-1 times. In fact,
d(j) < n-1 for all nodes at all iterations.

Property 7. (Bounds on saturating pushes). Each arc (i,j) is saturated at most n-1 times.
The number of saturating pushes is O(nm).

Property 8. (Bounds on transfers between W and D). The number of times that a node or
subset of nodes is transferred from D to W is less than n. The number of times that a
node or subset of nodes is transferred from W to D is less than 2n.

Properties 1, 2, 3, and 7 are rather direct extensions of properties of the original G-T
preflow push algorithm. We only outline their proofs here. The other properties are
more specific to the algorithm presented here, and their proofs are presented in more
detail.

Outline of Proof of Property 1. An S-t' preflow is called maximum if it maximizes the
flow into the sink node t'. If x* is a maximum S-t' preflow, then the flow into t' is the
same as the maximum flow from S to t', which is the same as the minimum S-t' cut.
(This is true since any preflow can be transformed into a flow without decreasing the flow
into the sink node. See, for example, Goldberg and Tarjan [1988].) Suppose that there are
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no active nodes, and that x' is the current preflow. Then the flow across (D, N-D) (i.e., the
sum of the flows of arcs directed from D to N-D minus the sum of the flows of the arcs
directed from N-D to D) is the flow into t' since no node of N-D-{t'} has any excess. It
follows that the flow into node t' is also the capacity of the cut (D,N-D), and thus this flow
is maximum, and the cut is minimum. 0

Outline of the Proof of Property 2. The set of distance labels are W-valid at the beginning
of the algorithm. It is easy to prove by induction that the distance labels remain W-valid

following a push or relabel. (See, for example, Goldberg and Tarjan [19881). 0

Outline of the Proof of Property 3. Since the distance labels remain valid, at each
iteration, there is never an arc (i,j) in the residual network with d(i) > d(j) + 1. Thus there
is no need to reduce the distance label of a node. Moreover, the algorithm calls
ModifiedRelabel(i) only when i has no admissible arcs. In this case, either i will have its

distance label increased or a new DormantSet will be created, and i will be transferred into
it, with other nodes possibly being transferred as well. 0

Proof of Property 4. This property is an extension of Lemma 3. We first note that the
proof of Lemma 3 is valid for proving the dormancy property (but not the extended
dormancy property) except in the case that nodes are transferred from D to W. However,

it is easy to see that if the extended dormancy conditions are satisfied prior to transferring
DormantSet(Dmax) to W in a SelectNewSink procedure, then the dormancy conditions

and the extended dormancy conditions are satisfied subsequent to the transfer.
(We note that the significance of the extended dormancy conditions is that it permits the
dormancy conditions to be satisfied subsequent to waking up DormantSet(Dmax).)

To complete the proof of property 4, we assume that the extended dormancy

property is satisfied prior to some operation P, where P is not the transfer of nodes from D
to W. It suffices to prove the extended dormancy property is still satisfied subsequent to

carrying out operation P. If P is a push, the extended dormancy property remains
satisfied. It also remains satisfied if P is a relabel of node i in which no node is transferred

to D. Let us now consider the case in which ModifiedRelabel(i) is called, and i is
transferred to D because there were no arcs from i to any other node in W. In this case,
after the transfer, the algorithm sets DormantSet(Dmax) to {i}. Suppose that j' < j < Dmax.

If j < Dmax, then there was no arc directed from DormantSet(j') to DormantSet(j) prior to
the operation P, and this remains true after P. Consider now the case in which j = Dma x -

Prior to executing operation P, there was no arc directed from DormantSet(j') to a node in

W, and thus subsequent to the operation, there is no arc directed from DormantSet(j') to
DormantSet(j).

The remaining case is the one in which ModifiedRelabel(i) is called and i is the

only node in W with distance label d(i). Let R = {j E W: d(j) > d(i)}. The algorithm

iI
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increments Dmax by 1, and then lets DormantSet(Dmax) = R. Suppose that j' < j < Dma If j
< Dmax, then there was no arc directed from DormantSet(j') to DormantSet(j) prior to the
operation P, and this remains true after P. Consider now the case in which j = Dmax. Prior

to executing operation P, there was no arc directed from DormantSet(j') to a node in W,
and thus subsequent to the operation, there is no arc directed from DormantSet(i) to
DormantSet(j). 0

Proof of Property 5. Let us assume that the d-consecutiveness property holds at some
iteration immediately prior to carrying out operation P. If P is a push, the
d-consecutiveness properties are still satisfied subsequent to operation P since pushes do
not effect distance labels. Consider next the case that P is a relabel of node i in which d(i) is
increased. Let d'( ) denote the distance labels subsequent to the relabel. The procedure
ModifiedRelabel(i) would not have increased the distance label of node i unless there was
another node j E W with d(j) = d(i) prior to the relabel. It follows that d(W) = d'(W-i}) =
d(W-(i}), and thus d'(W-{i)) is a set of consecutive integers, say from k to k'. Then d'(i) =
d(j) + 1 for some j E W, and d'(W) = d(W-i}) u {d'(i). Since k+l < d'(i) < k' + 1, it follows
that d'(W) is a consecutive set of integers.

We now consider the case in which the procedure SelectNewSink is called, and W
= o, and DormantSet(Dmax) is transferred to W. Let W' denote the set of awake nodes
subsequent to the transfer, and let R = DormantSet(Dmax). By assumption, d(R) was

consecutive prior to the operation, and thus d(W') = d(R) is consecutive.
We now consider the case in which ModifiedRelabel(i) is called, and nodes are

transferred to D from W. Consider first the case in which there is some other node j E W
with d(j) = d(i) and there is no arc in the residual network directed from node i to a
another node in W. In this case, Dmax is incremented, and DormantSet(Dmax) is set equal
to i). d(DormantSet(Dmax)) = d(i), and d(i) is trivially consecutive. Moreover, after the

operation, the new set of awake nodes is W-{i), and d(W-{il) = d(W) by hypothesis. Thus
d(W-{i}) is consecutive.

The last case that we consider is the case in which ModifiedRelabel(i) is called and
there is no other node in W with distance label d(i). In this case, we let R = {j E W: d(j) >
d(i)}. Since d(W) is consecutive, it follows that d(R) and d(W-R) are both consecutive.
Subsequent to this operation being executed, Dmax is incremented, DormantSet(Dmax) is

set to be R, and W is replaced by W-R. It follows that the d-consecutiveness properties are
satisfied in each of these cases. O

Proof of Property 6. Here we will prove a slightly stronger property that will imply the
results of Property 6. Let us define dmin(R) = min(d(i): i E R), and let us define dmax(R) =

max(d(i): i E R). We claim that for each dormant set R that dmin(R) < n - I R 1I. We also
claim that dmin(W) < n - I W I. Since d(R) is a set of consecutive integers, these claims
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imply that dmax(R) < dmin(R) + I R I - 1 n-1. Similarly dmax(W) < dmin(W) + I WI -1 < n-l.

Thus the claims together with the consecutiveness properties prove the validity of
Property 6. We now prove that the claims are true.

The claims are easily seen to be valid after initialization when I W I < n and d(t') = 0
for the first sink node t'. Assume that the claims are true prior to carrying out some
operation P. The DormantSet's do not change unless we are carrying out the operation
SelectNewSink or unless we are transferring nodes from W to D. Thus, we can restrict
attention to the case in which nodes are transferred from W to D or we are selecting a new
sink.

Consider first the case that nodes are transferred from W to D in a relabel operation,
and assume that the claim is true prior to the operation. The operation decreases the
cardinality of W but does not modify dmin(W), and thus the property that dmin(W) < n -

I W I remains true subsequent to the operation. In the case that the only node transferred
from W to D in ModifiedRelabel(i) is node i, the claims are still both true following the
operation. We now consider the case that R = {j E W: d(j) > d(i), and that Dmax is
incremented, and DormantSet(Dmax) is set equal to R. In this case, dmin(R) = d(i).
Moreover, the set d(W-R) is consecutive, and thus d(i) < dmin(W) + I W-R I < n - I W I +

I W-R I = n - I R I, and thus the claim is still true for set R.
We finally consider the selection of a new sink node. First of all, the old sink node

t' is transferred from W to DormantSet(O), and thus I W I is decreased by 1.
Simultaneously, if there are any other nodes in W, then there must be some node with
distance label d(t') + 1, and thus dmin(W) is increased by at most 1. It follows that the

claims remain true following a transfer of the old sink node to D. The claims also remain
true if a dormant set is transferred to W or if a new sink node is selected. Thus in all
cases, the claims remain valid. O

Proof of Property 7. As in the case of other distance based maximum flow algorithms, for

each arc (i,j) there is at most one saturating push between consecutive relabels of node i.
Since the number of distance increases for any node is less than n, it follows that the
number of times that any arc (i,j) can be saturated is less than n, and the number of arc
saturations in total is O(nm). O

Proof of Property 8. the only time that a node is transferred from D to W is when W = 0

and we are selecting a new sink node. This can happen at most n-1 times. Thus the
number of transfers from D to W is less than n. There are two types of transfers of nodes

from W to D. The first type is the transfer of the old sink nodes, and this occurs at most
n-1 times. The second type leads the creation of new dormant sets; however each of these

dormant sets is ultimately transferred back to W in a SelectNewSink procedure.
Therefore this type of transfer from D to W can happen at most n-1 times, completing the

proof. 0
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5. Time bounds for different implementations.

In this section, we discuss the time bounds for different implementations of the
minimum cut algorithm. We first briefly discuss data structures, and then we outline the
different time bounds.

In selecting admissible arcs, we use the "current arc data structure" as described in
Goldberg and Tarjan [1988]. Briefly, the arcs emanating from node i are stored as a singly
linked list A(i). There is also a pointer called CurrentArc(i) that points to one of the arcs
in A(i). Initially, CurrentArc(i) points to the first arc of A(i). When looking for an
admissible arc in A(i), one first checks to see if the arc pointed to by CurrentArc(i) is
admissible. If it is not, then CurrentArc(i) is incremented until eventually it points at an
admissible arc or else the arc list A(i) is exhausted. In the latter case, one can show that
there are no admissible arcs in A(i), and then the procedure ModifiedRelabel(i) is called.
Goldberg and Tarjan showed that the time for searching for admissible arcs is dominated
by the time spent in relabels plus the time spent in non-saturating pushes.

For several different implementations, it is useful to maintain a set of lists
Active(k) for each k = 1 to n-l, where Active(k) denotes the set of active nodes whose
distance label is k. These n-1 sets are easily maintained at an additional cost of 0(1) per
push and 0(1) per relabel of node i. In addition, for every node transferred from D to W
or from W to D, there is an additional expense of 0(1) steps. This data structure is
particularly useful when the node selection rule selects the active node with the largest
distance label.

The ModifiedRelabel(i) procedure requires the knowledge of whether there is any
other node in W with distance label d(i). In order to implement this procedure, one can
create an array denoted as numb(k) for k = 1 to n-l, where numb(k) denotes the number of
nodes in W whose distance label is k. This array is easily maintained at an additional cost

of 0(1) steps per relabel of node i and a cost of 0(1) steps for every node transferred from D
to W or from W to D.

The running time for the algorithm may be partitioned as follows: (1) the time for
initializing, (2) the time for selecting active nodes, (3) the time for selecting admissible
arcs, (4) the time spent in saturating pushes, (5) the time spent in non-saturating pushes,
(6) the time for increasing distance labels in relabel operations, (7) the time for creating
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dormant sets and thus for transferring nodes from W to D, and (8) the time spent in
selecting a new sink node.

The time spent in initialization is O(m). We will soon show that the time spent in
selecting active nodes is O(n2 + # of pushes), and the time spent in selecting admissible
arcs is O(nm + # of pushes). The time spent in saturating pushes is O(nm) by Property 7
on the bounds for saturating pushes. The time spent on increasing distance labels in a
relabel operation is O(nm) in total, as in the original G-T preflow push algorithm because
each node has its distance label increased at most n times, and to increase the distance
label of node i once takes I A(i) I steps. The time spent in creating dormant sets is O(n) per
dormant set, and thus O(n2 ) in total, by Property 8. The time spent in selecting a new sink
node is O(1) per sink node plus the time spent in transferring nodes from D to W. This
time is O(n2 ) in total since at most n sets of nodes are transferred from D to W, and each
transfer takes O(n) time. We now summarize these results.

Theorem 4. The procedure FindMinCut(s) determines the minimum cut with s on the
source side, and the running time is O(nm + # of non-saturating pushes).

We have justified everything in Theorem 2 except for the time bound for selecting
an active node. One natural rule for selecting an active node is to select the active node
whose distance label is the highest. This is usually referred to as highest level pushing.
We claim that this operation takes O(n2 + # of pushes) to implement. We can see this as
follows. At the beginning of each max flow problem, we can select the first active node by
scanning the sets Active( ) in O(n) time, for O(n2 ) steps in total. Next, suppose that at
some iteration one has just pushed flow from node i. At the next iteration, assuming that
the next operation is a push, one either pushes from a node with distance label d(i) or else
pushes from a node with distance label d(i)-l. This selection can be carried out in O(1)
steps by scanning the sets Active(d(i)) and Active(d(i)-l). The only time that the highest
level of an active node can increase is following a distance increase of node i, at which
point the highest level of an active node is the revised distance label for node i. Thus,
selection in this case takes O(1) steps.

The only case that we have not considered is in the ModifiedRelabel procedure
when one transfers nodes from W to D. We have already seen that this can occur at most
2n times, so it is permissible to spend O(n) steps per select without increasing the time
bound beyond (n 2 + # of pushes). This is easily accomplished by scanning the sets
Active( ).

Theorem 5. The algorithm FindMinCut(s) with highest level pushing runs in O(n2m 1 /2 )
time.
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Proof. Cheriyan and Maheshwari [1987] proved that the number of non-saturating pushes
of the highest level pushing algorithm is O(n2m 1/ 2 ) when applied to the maximum s-t
flow problem. The same proof technique directly extends to the algorithm FindMinCut(s)
as well. (For an alternative proof, see Ahuja, Magnanti and Orlin[1992]). 0

Another natural rule for selecting the active node is to store the set of active nodes
as a queue. As per Goldberg and Tarjan [1988], we refer to this rule as FIFO pushing. This
rule is easily implemented in O(1) time per push plus 0(1) time for each node transferred
between D and W.

Theorem 6. The algorithm FindMinCut(s) with FIFO pushing runs in O(n3 ) steps.

Proof. Goldberg and Tarjan proved that the FIFO rule leads to O(n3 ) non-saturating
pushes for the single source single sink problem. Their potential function argument
directly extends to the algorithm FindMinCut(s) as well. 0

Theorem 7. If dynamic trees are implemented in the same manner as in the G-T
algorithm, then the algorithm FindMinCut(s) runs in O(nm log n 2 /m) steps.

Proof. The same proof given by Goldberg and Tarjan extends to the algorithm
FindMinCut(s) as well. The only differences in the analysis involve the transfer of nodes
between D and W, and these transfers are not the bottleneck operation. 0

Bipartite Problems.

We now consider the problem of finding a minimum cut in a bipartite network G =
(N,A), where the node set N is partitioned into two parts N' and N-N', where I N' I = n'.
We assume without loss of generality that n' < n-n'.

Lemma 8. Let G = (N,A) be a connected bipartite network and let N' be one of the parts of
N. Then the minimum cut in G either is of the form ({i}, N-{i), where i E N-N', or else
there is a minimum cut (S*, N-S*) where S* contains a node of N'.

Proof. We can assume that the nodes on each side of the cut are connected. If the smaller
side of the cut has at least two nodes, then it has at least one node in N' and at least one
node in N-N', and this completes the proof. 0
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Ahuja, Orlin, Stein and Tarjan [1990] show how to solve a bipartite maximum flow
problem in time O(n'm log (2 + (n'2 /m))) steps using a bipush variant of the preflow push
algorithm and using dynamic trees. The same approach extends to the algorithm
FindMinCut as well; however, it needs a few minor modifications. First of all, as per
Lemma 8, we can restrict the sink nodes to be nodes in N'. This means that O(n')
minimum S-t' cut problems are solved. Property 8 can be modified accordingly, and the
number of times that sets are transferred between D and W is O(n'). The time spent on
carrying out these operations is O(n'n). All other time bounds are as stated in the paper by
Ahuja et al., and we state this as the following theorem:

Theorem 9. Let G = (N,A) be a connected bipartite network and let N be one of the parts
of N, and let n' = I N' I. Suppose that the algorithm FindMinCut(s) is implementing
using bipushes and using the dynamic tree implementation of Ahuja, Orlin, Stein, and
Tarjan. Then the resulting running time is O(n'm log (2 + (n'2 /m))).

Proof. The same proof given by Ahuja, Orlin, Stein, and Tarjan extends to the algorithm
FindMinCut(s) as well. The only differences in the analysis involve the transfer of nodes
between D and W, and these transfers are not the bottleneck operation.

Determining Arc Connectivity

The arc connectivity problem is the problem of finding the minimum number X(G)
of arcs whose deletion disconnects the network G. In the case of a directed network, X(G)
is the minimum cardinality subset A' of arcs such that the graph G' obtained from
deleting A' from G is not strongly connected. This problem is really the special case of the
minimum cut problem in which each arc has a capacity of 1. Since every push of the
preflow push algorithm is saturating, there are no non-saturating pushes. We are thus
led to the following conclusion. The algorithm FindMinCut(s) determines the arc
connectivity of a network in O(nm) steps.

In the case of an undirected network, Nagamochi and Ibaraki [1988b] show how to
preprocess a network in linear time so that the number of arcs in the processed networks
is O(kn) and the arc connectivity of the processed network is at least min(k,(G)). Let us
refer to the processed network as Gk. By successively determining the arc connectivity of
Gk for k = 1, 2, 4, 8,... until determining the minimum value k* such that the
connectivity of Gk* is less than k. At this point, the connectivity of Gk* is the same as the
connectivity of G. Moreover, the running time of the entire algorithm is O(n2 + 2n2 +
4n2 + ... + k*n2 = O(X(G)n 2 ). In other words, the Nagamachi and Ibaraki preprocessing

algorithm can reduce the running time of any O(nm) algorithm for arc connectivity to
O(X(G)n 2). We conclude this discussion with the following theorem.

III
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Theorem 10. The algorithm FindMinCut(s) determines the arc connectivity of a directed
network in O(nm) steps. Together with the preprocessing algorithm of Nagamochi and
Ibaraki, the algorithm FindMinCut(s) can determine the arc connectivity X(G) of an
undirected network in O(,(G)n 2) time. 0

The best other algorithms for determining the arc connectivity of a network are as
follows: Matula [1987] gave an O(nm) algorithm for finding the arc connectivity in an
undirected network. Matula showed that his algorithm can be improved to run in
O(Xn2 ) time, which dominates the O(nm) bound when x is asymptotically smaller than
m/n. Mansour and Schieber [1988] developed an O(nm) algorithm for solving the arc
connectivity problem on directed graphs.

Determining Node Connectivity

A disconnecting set is any subset S of nodes such that the graph G' obtained by
deleting S from G is not strongly connected; i.e., the nodes of N-S can be partitioned into
two subsets U and V such that there is no arc directed from U to V. The node connectivity
problem is to find a minimum cardinality disconnecting set; the node connectivity of the
network G is the cardinality of this minimum disconnecting set. For undirected
networks, the node connectivity refers to the minimum number of nodes whose deletion
disconnects the network. The undirected problem is easily transformed into the directed
problem by replacing each undirected arc (i,j) with two directed arcs (i,j) and (j,i).

In the directed case, one can transform the node connectivity problem to an arc
connectivity problem as follows: for each node i, replace i by two nodes i' and i", and
create an arc (i',i") with capacity 1. For each arc (i,j) of the original network, create an arc
(i", j') in the transformed network with capacity 1. We let G* = (N*, A*) denote the
transformed network. Also, we let N' = {i': i E N), and we let N" = (i": i E N}. We now
relate the node connectivity problem in G to arc connectivity in G*.

Lemma 11. Let (S*,N*-S*) be the minimum capacity cut of G* subject to the additional
restrictions that S* n N" 0o and (N*-S*) n N' 0o. Then the capacity of (S*,N*-S*) is
equal to the node connectivity of G.

Proof. We first show that the node connectivity of G is greater than or equal to the
capacity of the cut (S*, N*-S*). Let S be any subset of nodes whose deletion disconnects
the network into node sets U and V with no arc directed from U to V. Let S' = {i', i" : i E

U) u { i': i E S. Since U has some node s, it follows that s" E S'. Since V has some node
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t, it follows that t' E N*-S'. Moreover, the capacity of the cut (S', N*-S') is I S I since the
only arcs directed from a node in S' to a node in N-S' are the arcs {(i',i"): i E S. It follows

that the capacity of the cut (S*, N-S*) is at most the node connectivity of G.
We now show that the capacity of the cut (S*, N*-S*) is greater than or equal to the

node connectivity of G. Suppose that s" E S* and that t' E N*-S*. Without loss of

generality, for each node j" E S* with j" • t", we may assume that j' E S*. Otherwise, we

can shift j' from N*-S* to S* without increasing the capacity of the cut. Also for each
node i" E S* and for arc (i",j') with j' • t, we may assume without loss of generality that j'
E S*. Otherwise, we may shift j' from N*-S* to S* without increasing the capacity of the
cut. (The arc (i",j') would be eliminated from the cut, and since the only arc directed from
j' is (j',j"), at most one arc would be added to the cut.)

Now letS= {i: i' S*andi" e N*-S*} u j:j"e S*,and (j,t) E Al. LetU= {i:i' 

S* and i" E S* and i S. Let V = {i: i' E N*-S* and i" E N*-S*}. We first note that there
is no arc directed from U to V. Otherwise, there would be an arc (i", j') in the cutset

(S*,N-S*) contrary to assumption. We also note that for each node j in S there is a
corresponding arc (j',j") in the cutset (S*,N-S*), and thus the capacity of the cutset is at
least I S I. We now consider two cases. In the first case, node t is the only node in V. In
this case, I S I > the number of arcs directed into node t, and thus I S I the node capacity of

G. (S itself may not be a disconnecting set in this case.) In the second case, there is at least
one other node v E V. In this case, both v' and v" are in N*-S* and by assumption, there
is no arc (s",v') in G*. In this case, deleting S from G disconnects s from v, and so S is a
disconnecting set. It follows that the capacity of the cut (S*, N*-S*) is at least I S I and this
in turn is at least the node connectivity, completing the proof. 0

Let s be a node of N. One can use Lemma 11 to find the minimum disconnecting

set S subject to the condition that s o S. To accomplish this, one would first find the
minimum cut (S*,N*-S*) in G* subject to the condition that s" is in S* and some node is

in N" n (N*-S*). Then one would reverse all arcs in G*, and find the minimum cut
(T*, N*-T*) in the reoriented graph subject to the condition that s" is in S* and some node

t' is in N" n (N*-S*). The better of these two cuts would give us the minimum

disconnecting set S subject to the condition that s S.

It is now easy to determine the node connectivity of a directed or undirected graph

using a probabilistic algorithm. Let ,* denote the node connectivity of G and let S denote

the minimum cardinality disconnecting set. Suppose that c is some positive real number.

We first ask the following question: how many nodes would one need to select uniformly
at random, so that the probability of selecting a node not in S is at least 1-c? The answer is
the minimum value of k such that Ijk (x*-j+l)/(n-j+l) < . One can bound this value

of k from above by O( n log 1/).
n-%*

II
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Algorithm NodeConnectivity
begin

let := o;

Q = ; k := 0;
while Ijk1 (X*-j+l)(n-j+l) > e do

begin
select a node s o Q;
add s to Q; increment k by 1;
find the minimum disconnecting set S' not containing node s;
x := min(X, I S'I);

end
end

Theorem 12. The algorithm NodeConnectivity determines the node-connectivity of a

graph with probability at least 1-, and its running time is O(nm n log 1/e)). (In the case

that X* < an for some constant a, the running time is O(nm log l/e).)

Further Implementation Issues

We anticipate that thes algorithms of this paper will be quite effective in practice,
and that its practical running time should be within a constant factor of the time to solve
the first s-t cut problem. In fact, we have tailored the algorithm in some ways so that it
would be more practical. For example, it is possible to prove that the algorithm would
work even if all of the dormant sets were combined to a single set D, and that D was
awakened when W becomes exhausted. (Actually the proof that this works is not much
easier than the proof that the current version of the algorithm works). However, in
practice one would prefer to have the set W be as small as possible since a small set W
leads to fewer pushes and relabels in general.

We now consider some additional data structures that should be more efficient in
practice. We only mention a couple of data structures relating to manipulating the
dormant sets, since other data structures can be adapted from good implementations of
the preflow push algorithm. The algorithm needs to store each of the dormant sets as a
singly linked list. This can be accomplished by an array of size n called DormantPointer
and an array of size n called Successor. DormantPointer(i) gives the index of the node that
is first in the set DormantSet(i). Suppose that j is a node in D, say that j E DormantSet(k).
Then Successor(j) gives the index of the node following j on the list DormantSet(k), and if
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j is the last node on the list (or if j were in W) then Successor(j) = 0. In this way one can
store all of the dormant sets quite efficiently.

In pushing flow from node i, one needs to be able to identify whether the arc (i,j) is
admissible. For this, one needs to know whether j E W. (It is not enough to check
whether d(i) = d(j) + 1 since it is possible that this distance condition is true but that j E D).
One obvious approach is to keep a bit-vector of n bits, where the j-th bit is 1 or 0 according
as j is or is not in W. A preferred approach is to increase d(j) by n when j is transferred
from W to D, and to decrease d(j) by n when j is transferred from D to W. In this way, if j
E D and if i E W, then d(j) > d(i), and arc (i,j) would be (correctly) labeled as inadmissible.

Consider a stage of the min cut algorithm when one wants to find the best S-t' cut,
and suppose that the best current cut has capacity z*. One useful other heuristic is to stop
the procedure for finding the best S-t' cut as soon as the flow into node t' is at least z*. At
this point, the algorithm can select a new sink node. This heuristic can be added easily,
and with almost no overhead.

We remark that one advantage of our approach is that we never need to explicitly
contract nodes. In some sense, the algorithm implicitly contracts nodes. For example,
when solving a maximum flow problem for source t ', all of the nodes in D can be viewed
as being contracted into a single node. In general, all of the nodes of S can be viewed as
contracted into a single node. In each of these cases, there is no need to carry out the
contraction, and there would be no gain in computational time from contracting these
nodes.

Summary and Conclusions.

We have presented an algorithm for finding the minimum unrestricted cut in
either a directed or an undirected network, and whose running time is O(nm log n2 /m)
which is the running time of the Goldberg-Tarjan algorithm for finding a maximum flow
or minimum s-t cut. In addition, the algorithm is comparable to the best algorithm for
finding the arc connectivity or the node connectivity of a network under the plausible
assumption that the arc connectivity (or node connectivity) is proportional to the average
degree of the network.

The basic idea of our algorithm is simple. We solve n-1 minimum S-t' cut
problems, where each node in N-{s} is a sink node for one of these n-1 problems. After
having found the minimum cut for sink node t', we transfer t' to S and select the node
with minimum distance label. In general, one would expect that the distance label of the
new sink is equal to the distance label of the old sink node plus 1, and the algorithm
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proceeds using the old distance labels obtained by the algorithm at the end of solving the
previous minimum cut problem. However, this procedure does not work in and of itself
unless one is careful about relabeling nodes that have become disconnected from the sink.
In our algorithm, we identified nodes disconnected from the sink in a very efficient
manner, and we labeled these disconnected nodes as dormant. Much of the work in the
algorithm and its analysis dealt with properties of these dormant nodes.
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