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1. Introduction

Communication, transportation, and electric power distribution networks
are often hierarchical, requiring higher grade interconnections for certain
critical nodes. In a companion paper (Balakrishnan, Magnanti and
Mirchandani [1991]), we proposed and formulated a Multi-level Network
Design (MLND) model to address topological design tradeoffs in these
hierarchical networks. The model is defined on an undirected graph whose
nodes are partitioned into L levels. Each edge of the network can contain one
of L different facility types, with higher grade facilities requiring higher fixed
costs. In the MLND problem we must select a connected subset of edges, and
choose a facility type for each edge so that all nodes at any level communicate
via the corresponding or higher grade facilities. The objective is to minimize
the total cost of the chosen facilities. We assume that all edge costs are
nonnegative.

We refer to a special case of the MIND problem with only two node
levels-primary and secondary-as the Two-level Network Design (TLND)
problem. The TLND problem generalizes several well-known optimization
models including the Steiner network problem (Dreyfus and Wagner [19721),
and the Hierarchical network design (HND) problem (Current, ReVelle, and
Cohon [1986]). The Steiner network problem is a version of the problem with
two levels: terminal nodes are primary nodes, and potential Steiner points
are secondary nodes; in this case, every edge has zero secondary cost. The
HND problem is a version with only two primary nodes; all other nodes of
the network are secondary. Thus, the optimal solution to the HND problem
is a spanning tree (assuming nonnegative costs) with primary facilities on all
of the edges on the unique path in this tree connecting the two primary
nodes.

Our previous paper (Balakrishnan et al. [19911) examined modeling issues,
and studied the worst-case performance of Steiner and spanning tree-based
heuristics for the MLND problem. In this paper, we develop and test a dual-
based solution strategy.
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The MLND problem is NP-hard since it generalizes the Steiner network
problem and the HND problem which are both known to be NP-hard even
for certain special cost structures (Garey and Johnson [1979], Orlin [1991]).
Consequently, our algorithmic strategy focuses on constructing a good
heuristic solution using optimization-based techniques, and verifying the
quality of this solution by generating lower bounds. Our proposed solution
method for the MLND problem builds on the heritage of successful dual
ascent procedures that researchers have previously developed for three
related design problems-the Steiner network problem, the uncapacitated
plant location problem, and the uncapacitated network design problems.
Wong [1984] developed an efficient dual ascent algorithm to generate
heuristic solutions (with associated performance guarantees) that were
remarkably close to optimal. Erlenkotter [19781 and Balakrishnan, Magnanti,
and Wong [1989] reported similar success using dual ascent algorithms for the
uncapacitated plant location and (single-level) network design problems. We

describe a closely related dual ascent method for the MLND problem.
Furthermore, we augment this method by first performing a preprocessing
step. This step applies certain problem reduction tests to identify included

and excluded edges in the optimal solution. By reducing the problem prior to
solving it, we reduce the computational effort.

Since dual ascent methods generate lower bounds by approximately
solving the linear programming dual, the algorithm will be effective only if

the linear programming formulation is a good (tight) approximation of the

integer programming model of the problem. This requirement motivates

our study of alternative model formulations. In Balakrishnan et al. [1991] we

showed that an enhanced, undirected flow-based formulation, containing
additional valid inequalities (called bidirectional, commodity-pair forcing

constraints), is LP-equivalent to a more compact directed flow-based
formulation (i.e., the linear programming relaxations for both formulations
have the same optimal value). This result enables us, as in this paper, to use

a simpler "directed" dual ascent algorithm (because the directed formulation

has fewer constraints) without sacrificing the quality of the resulting solution.

For the Steiner network problem, Wong (19841 and Chopra, Gorres, and Rao

[19901 have successfully used a similar strategy of solving the compact, but
strong, directed formulation.
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Our previous paper also analyzed the worst-case performance of a
combined heuristic method that considers Steiner tree and spanning tree-
based solutions. We showed that if all the edges have the same primary-to-
secondary cost ratio, whenever we can identify the optimal Steiner network,
the combined heuristic has a worst-case performance ratio of 4/3. This
situation applies, for example, to the HND problem, since in this case the
Steiner network corresponds to a shortest path between the two primary
nodes. When we solve the Steiner network problem approximately, the
combined heuristic has the same worst-case performance ratio p as the
Steiner network heuristic, and when the primary-to-secondary cost ratio
varies by edge, the worst-case ratio of the combined heuristic becomes p + 1.
Using worst-case examples, we demonstrated that these worst-case
performance ratios are tight.

The dual ascent method does not ensure good worst-case performance (in
an unpublished paper, Sastry [1987] constructed some Steiner tree problem
instances for which the dual ascent method has arbitrarily bad performance
ratios). Nevertheless, in extensive computational testing reported in this
paper, the method has generated solutions guaranteed to be within 0 to 0.9%
of optimality. In contrast, for a subset of our test problems, the combined
(Steiner, spanning tree) heuristic method has generated solutions at least 20%
more expensive. Our computational tests considered different network sizes
(containing up to 500 nodes and 5000 edges), various primary-to-secondary
cost ratios, and different cost structures (random, Euclidean, Manhattan, and
L. norms). The integer programming (directed) formulation for our largest

test problem contains 10,000 binary variables, 5 million continuous variables,
and over 5 million constraints.

Our discussion in this paper focuses on the TLND problem, even though
the dual ascent methodology extends easily to problems with more than two
levels. We begin by briefly reviewing the definition and a directed flow-based
formulation of the TLND problem. In Section 2, we discuss properties of
optimal TLND solutions, and develop preprocessing tests to fix certain design
variables. Section 3 develops the dual ascent method and an associated
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heuristic improvement strategy. Section 4 presents our computational

results, and Section 5 offers concluding remarks.

1.1 TLND Problem Formulation

We are given an undirected graph G = (N,E) containing two types of
nodes-P is the set of primary nodes, and S is the set of secondary nodes. We
index the primary nodes from 1 to p (= I P I), and secondary nodes from (p+l)
to n. On each edge (i,j) e E, we can install either a primary facility at a fixed
cost aij or a secondary facility at a fixed cost bij. We assume that aij bij 0 for

all edges i,j) E E. The TLND problem seeks a minimum cost spanning tree
that contains an embedded primary subtree connecting all the primary nodes
(and optionally including secondary nodes). All of the edges of the primary
subtree contain primary facilities, and all of the remaining edges of the
spanning tree contain secondary facilities.

To formulate this problem as a mixed integer program, we introduce (n-l)

commodities. All commodities have unit demand, and share a common
primary node, say node 1, as their origin or root node. For k = 2, ..., n,

commodity k has node k as its destination. We refer to commodities k = 2,....,
p as primary commodities and to commodities k = p+l, ... , n as secondary

commodities. We let P and S denote, respectively, the set of primary and

secondary commodities (for convenience, we use the same notation P and S

to represent both node and commodity subsets; the usage will be clear from

the context).

Our directed flow-based problem formulation transforms the undirected

problem into a directed problem by replacing each undirected edge (i,j) of the

original network with two directed arcs (i,j) and (ji) oriented in opposite
directions. Both these directed arcs have the same primary and secondary
costs ajj and bii as the original edge. Let A denote the set of all arcs in the

resulting directed graph. The directed and undirected problems are

equivalent since all commodities share a common origin, and all costs are

nonnegative. (The directed problem, therefore, has an optimal solution that

does not select both arc (i,j) and (ji); therefore, replacing each arc in the
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optimal directed solution with an undirected edge gives an undirected
solution with the same total cost.)

The mixed integer formulation for the directed problem uses flow
conservation equations to ensure connectedness of the design, and installs
primary or secondary facilities as appropriate via forcing constraints. For this
purpose, we define two sets of binary variables xij and Yij for each arc (i,j) e A,
as well as directed, commodity routing variables for each arc (ij) A and
every commodity k P u S. The primary (secondary) arc selection variable xij
(Yij) assumes a value of 1 if arc (i,j) contains a primary (secondary) facility, and
is 0 otherwise. The continuous variable fij represents the fraction of

commodity k's (unit) demand flowing from node i to node j. In terms of
these decision variables, the TLND problem has the following Directed Flow-
based formulation, which we denote as [DFI:

[DFJ

minimize
(i,j)s A (Is Z bij Yij(ij)e A

subject to

Commodity flow conservation:
-1 if j=

= 1 if j=k

O if j k for all je N, ke PS,

Primary forcing constraints

ij 5 Xj

Secondary forcing constraints

fi

Nonnegativity, integrality:

X 'jXq, I

i j + Yij

- Oorl

for all (i,j) E A, ke P,

for all (i,j) e A, ke S.

for all (ij) e A, and

(1.3)

(1.4)

(1.5a)

for all (i,) A, ke PS. (1.5b)
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Constraints (1.2) define flow paths for the primary and secondary

commodities. The forcing constraint (1.3) ensures that arc (i,j) contains a
primary facility if it carries a primary commodity; constraint (1.4) ensures that
arc (i,j) contains a either a primary or secondary facility if it carries a secondary
commodity. This directed, flow-based formulation extends easily to general
MLND problems with more than two levels. The general formulation
contains L different design variables for each arc, corresponding to the L
facility types; a generalization of constraint (1.4) ensures that a level I

commodity can flow on arc (i,j) only if this arc contains a level I or higher
grade facility.

We next identify and exploit certain special characteristics of optimal
solutions of the TLND problem.

2. Properties f the Optimal TLND solution

The optimal two-level network design solution enjoys certain structural
properties that permit us to preprocess the problem by eliminating certain

edges or by fixing certain edges as part of an optimal design. By reducing a
problem prior to solving it, we can potentially improve algorithmic

performance by reducing the gap between the lower and upper bounds, and by

decreasing the total computational time. This section outlines these

distinctive properties of the optimal two-level network design. These

properties are analogous to previous characterizations of optimal solutions to

the Steiner network problem (Balakrishnan and Patel [19871). We state the

properties in this section for the undirected version of the TLND problem.

The results are valid for the directed case as well if we replace the undirected

spanning trees and the undirected cuts in this discussion with (directed)

spanning arborescences and directed cuts.

To begin this discussion, we introduce some notation. For any subset of

nodes Q let G(Q) denote the subgraph of the original graph G induced by the
nodes in Q. For any subgraph G', let Ta(G') and Tb(G') denote the minimum

spanning trees of G' using primary and secondary costs, respectively. We will

often consider condensed graphs that aggregate (or contract) all the primary
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nodes and possibly some secondary nodes into a single node, say node 0.
When this node aggregation process creates parallel edges, we delete all but
the cheapest parallel edge (using either primary or secondary costs, depending
on the context). For any subset of secondary nodes S' not spanned by the
primary subtree, let S'+ be the set S' u {0); the node 0 aggregates all of the
(primary and secondary) nodes spanned by the primary subtree. In the
following discussion, for convenience we assume that the primary cost of
each edge strictly exceeds its secondary cost.

2.1 Optimal Primary Subtree and Secondary Completion

Let Topt denote an optimal TLND solution. We refer to the graph defined
by the subset of primary edges of TOPt as the optimal primary subtree T P.

(Because primary costs exceed secondary costs, all the primary edges in the
optimal solution must form a single subtree.) Let S pt be the subset of
secondary nodes spanned by the optimal primary subtree; the set SoP contains
secondary nodes not belonging to T P. Let T = -TPt\TP denote the
subnetwork (forest) containing all the secondary edges in TOPt. As the
following observations indicate, finding the optimal design is easy if we know
the secondary node subset S pt spanned by the primary subtree.

Property 1:
TP= Ta(G(P; SoPt)), i.e., the optimal primary subtree is the (primary)

minimum spanning tree of the induced subgraph G(Pu Sopt).

Property 2:

TS = Tb(G( SP t+)), i.e., the edges in the optimal secondary forest coincide

with the edges of the (secondary) minimum spanning tree of the

condensed graph G( Sopt+).

We refer to the procedure for constructing the condensed secondary graph
G( '+) and finding its minimum spanning tree for any secondary node
subset S', whether optimal or not, as the Optimal Secondary Completion
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method. We will use this method to complete the primary solution in our

heuristic algorithm.

2.2 Excluded Secondary Edges

To identify secondary edges that do not belong to an optimal TLND
solution, we first find the minimum spanning tree Tb(G(S+)) over a

condensed secondary graph G(S+) that combines all the primary nodes into a

single aggregate node 0.

Property 3:
The TLND problem has an optimal solution that contains only secondary
edges belonging to Tb(G(S+)).

Proof:
We prove this property by contradiction. Suppose the optimal secondary

completion with respect to the optimal primary subtree T P selects a secondary
edge e that does not belong to Tb(G(S+)). Let C(e) denote the cutset edges

defined by eliminating edge e from this optimal tree. The minimum tree
Tb(G(S+)) must have at least one edge, say e', belonging to this cutset;

furthermore, since Tb(G(S+)) has minimum cost, the secondary cost of edge e'

must be equal or lower than the secondary cost of edge e. Therefore, replacing

edge e with edge e' in the given tree gives a solution with equal or lower total

cost. *

Property 3 implies that, before solving the TLND problem, we can discard
all secondary edges not belonging to Tb(G(S+)), leaving only I S I secondary

edges to consider. Equivalently, we can set bij = aij for all edges i,j) that do not

belong to Tb(G(S+)). This preprocessing step reduces the computational effort

to perform the optimal secondary completion in our heuristic algorithm.
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2.3 Included Primary Edges

We now examine a converse property, namely, a sufficient condition that
guarantees the inclusion of a primary edge in the optimal TLND solution.
Consider the (primary) minimum spanning tree Ta(G) of the original graph.

Property 4:
Every edge (i,j) E Ta(G) with i,j e P must also belong to an optimal TLND

solution.

We can prove this property by a contradiction argument similar to the
proof for Property 3. This property enables us to reduce the network by
aggregating primary nodes that are directly connected in the minimum
spanning tree Ta(G).

2.4 Excluded Primary Edges

We now describe two properties that permit us to identify prohibited
primary edges (i.e., edges that do not contain primary facilities in an optimal
TLND solution) by solving minimum spanning tree problems over certain
induced subgraphs.

Property 5:
The TLND problem has an optimal solution in which every edge (i,j)
with i,j e P also belongs to the minimum spanning tree Ta(G(P)).

The proof of this property, and of the related Property 6 to follow, is similar to

the proof for Property 3.

Property 5 implies that we can eliminate from the network all the edges

(i,j) connecting primary nodes i and j that do not belong to the minimum
spanning tree Ta(G(P)) of the subgraph G(P) induced by the primary nodes.

(Notice that the optimal UTND solution will never install a secondary facility

on an edge connecting two primary nodes.) Effectively, of the O(p2) possible
edges connecting pairs of primary nodes, we need to retain only the (p-l)
edges belonging to Ta(G(P)). Next, we extend this property to edges
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connecting a primary node i to a secondary node j. This property requires us
to first solve the minimum spanning tree problem (using primary costs) over
the subgraph G(Pu(j)) induced by the node set P u j).

Property 6:

For every secondary node j, the TLND problem has an optimal
solution containing a primary edge (i,j) with i e P only if (i,j) belongs to
the minimum spanning tree T(G(Pu(j)).

Property 6 requires us to first solve I S I minimum spanning tree problems,
one for each secondary node j. Then, for every edge (i,j) with i e P and j S,
we can set the primary cost aij = if i,j) Ta(G(Pu(j)); notice, however, that

the optimal TLND solution might still install secondary facilities on these
edges.

These properties of the optimal TLND solution enable us to reduce the
problem size prior to applying the dual ascent algorithm described in the next
section. The implementation that we have used for computational testing
did not incorporate the reduction test implied by Property 6. Also, we applied
the preprocessing method to the given undirected problem, and then
transformed the reduced, undirected network to a directed version for the
dual ascent method (which requires a directed network). When the dual
ascent method terminates, we construct an undirected heuristic design based
on the dual solution to the directed network. A local improvement method
then improves this dual-based network design. We next describe the dual
ascent and heuristic solution methods.

3. Dual-based Algorithm for the TLND problem

The literature does not contain any solution methods for the general
multi-level and two-level network design problems with more than two
primary nodes, and positive secondary costs. However, researchers have
studied several important special cases including the Steiner network
problem and the HND problem. For the Steiner network problem, the
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literature contains various optimal and optimization-based heuristic
approaches (see Winter [1987] for a recent survey of Steiner network
algorithms), including dynamic programming (Dreyfus and Wagner [1972]),
Lagrangian relaxation (Beasley [1984], [1989]), dual ascent (Wong [1984]),
polyhedral methods (Chopra et al. [1990]), and simulated annealing (Osborne
and Gillett [1991]). Chopra et al. [19901 have solved to optimality Steiner
network problems defined over complete networks containing up to 500
nodes, and sparse networks containing up to 2500 nodes, and 62500 edges. For
the HND problem, Current et al. [19861 and Shier [1991] describe heuristic
methods based on shortest path and spanning tree computations. Pirkul,

Current, and Nagarajan [1991] recently developed a Lagrangian relaxation

algorithm embedded in a branch-and-bound scheme. They report

computational results for complete networks containing up to 85 nodes.

Since the TLND problem is NP-hard, our algorithmic development efforts

focused on optimization-based heuristic methods that provide a posteriori
performance guarantees (i.e., lower and upper bounds). This section describes

a dual ascent method that generates a lower bound on the optimal TLND

value, and also constructs a good heuristic solution that we improve using an

Add-Drop method. As we mentioned in the introduction, the dual ascent

technique has proven to be very effective for finding near-optimal solutions

to several related discrete optimization problems including the Steiner

network problem (Wong [1984]) and uncapacitated (single-level) network

design problem (Balakrishnan et al. [19891). Our TLND algorithm is closely

related to these previous methods, but incorporates multiple commodity

types (in contrast, both the Steiner network problem and the single-level

network design problem consider only a single commodity type).

Since the directed TLND formulation [DF] is more compact than its LP-

equivalent (enhanced) undirected version (see Balakrishnan et al. [1991]), we

describe the dual ascent algorithm as it applies to the directed TLND problem.

This dual ascent method extends easily to the general MLND problem as well.

For problem contexts requiring multicommodity flows between multiple

origins and multiple destinations (in this case, we cannot transform the

undirected problem into a directed version), we can augment this method to

directly solve the enhanced undirected formulation.
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3.1 Dual Ascent Algorithm for Directed TLND Problems

The dual ascent method attempts to approximately solve the dual of the

linear programming relaxation of the flow-based formulation [DF] using an

iterative procedure that monotonically increases the dual objective function

value at each iteration. The final value of the dual solution provides a lower

bound on the optimal value of the TLND problem. The final dual solution

also provides a heuristic solution that we improve using an Add-Drop

procedure to obtain good upper bounds.

Let [LDF] denote the linear programming relaxation of formulation [DF],

obtained by replacing the integrality conditions (1.5a) on the binary variables

xij and yij with nonnegativity constraints. Let x, t j, and [ k denote,
respectively, the dual variables corresponding to constraints (1.2), (1.3), and

(1.4). We refer to kj as the node price for commodity k at node j and the

variables 4i and 3k as the allocated arc costs for primary and secondary

commodities on arc (i,j). The motivation for this terminology will become

apparent as we describe the dual ascent method. Since one of the flow

conservation equations in (1.2) is redundant for each commodity k, we can
arbitrarily select the value Xi for one node j. Accordingly, we set k = 0 for

every commodity k =- 2, 3, ... , n. (Recall that node 1 is the common origin for

all commodities.) Then, the dual of [LDF, denoted [DDF], has the following

formulation:

[DDF]
n

minimize (3.1)
k.2

subject to
Xj - 4I s atJ for all (i,j) A, kP, (3.2)

xk _ k S Pk for all (ij) A, ke S, (3.3)

kEPZ + kSk 5 ai for all (ij) A, (3.4)
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ok <eS b for all (i,j) E A, and (3.5)

akp k > 0 for all (i,j) e A, k PS. (3.6)

Formulation [DDF] has the following shortest path interpretation.
Suppose we are given values of ak and 3i that satisfy constraints (3.4) and

(3.5). Then, by dropping constraints (3.4) and (3.5), we decompose [DDF] into
(n-l) independent subproblems, one for each commodity k; the subproblem
for commodity k corresponds exactly to the dual of a (directed) shortest path
problem from node 1 (the origin) to node k (the destination) using the
allocated costs ack and 1k as arc lengths for the primary and secondary
commodities k. In particular, the objective function value xk for the kth

subproblem is the shortest distance from node 1 to node k using the primary
or secondary allocated arc costs for k e P or k e S. The dual ascent method
exploits this observation by iteratively increasing the allocated arc costs for
selected arcs and commodities in order to monotonically increase the shortest
path length(s). To ensure that the allocated arc costs satisfy constraints (3.4)
and (3.5), the method maintains and updates the slack in these two
constraints for every arc (i,j). For given values of and 1 let pj and sij
denote the slack in constraints (3.4) and (3.5), respectively. We refer to Pij as
the primary slack or p-slack for arc (i,j); sij is the secondary slack or s-slack.

Let us now examine how the method. increases the allocated arc costs
while maintaining dual feasibility. It initializes all of the allocated arc costs
and node potentials to value zero, and sets Pij = aip and ij = bij. Consider a
primary commodity k e P. To increase the shortest path length k from node
1 to node k for this commodity, we must increase values of crij. However,
increasing zakj for an arc (ij) that does not lie on the current (directed) shortest

O-D (origin-to-destination) path does not increase kk; furthermore, we
cannot increase the akq values for arcs (ij) that have zero p-slack Pij. To easily

identify arcs that belong to current shortest O-D path(s) for commodity k, the
dual ascent method maintains and iteratively updates a (directed) cutset of
arcs, say A(k), separating the commodity's origin and destination. Let N(k)
denote the node subset that defines this cutset and contains the destination
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node k (i.e., all the arcs in the cutset A(k) are directed into the nodes in N(k));
we refer to nodes in N(k) as the labeled nodes for commodity k. By
construction, all the arcs directed from the unlabeled to the labeled nodes for
commodity k must belong to some shortest O-D path for this commodity. At
every step, the method:

(i) determines the minimum p-slack, say, 8 among all arcs in the cutset,

(ii) reduces the p-slacks Pij for all the cutset arcs (i,j) by 8,

(iii) increases akj for all the cutset arcs (ij) by 8,

(iv) increases the node potentials ixc of all the labeled nodes j by 8,

(v) increases the dual objective function value by 8, and

(vi) labels a currently unlabeled node i whose incident cutset arc, say (i,j), is

critical, i.e., the p-slack for arc (i,j) defined the minimum value 8.

We refer to these six operations collectively as one labeling step. The method
stops increasing the allocated arc costs oj for commodity k when it has labeled

the origin (node 1) for this commodity. For secondary commodities k, the
procedure is very similar, except that the method increases 3i (instead of k

in operation (iii)) for cutset arcs (i,j), and defines the amount of increase 8 (in

operation (i)) as the minimum of the p-slack and the s-slack among all cutset
arcs. (Recall that the kij values must satisfy both constraints (3.4) and (3.5)).

Our implementation differs from this conceptual description of the

algorithm in two ways. First, instead of allocating costs for a single

commodity in consecutive labeling steps, we cycle through the commodity

list, performing one labeling step for each commodity in every cycle. Second,

to calculate 8 at each labeling step, the procedure does not explicitly require

the current values of ak r and x. Therefore, we maintain and update only

the p-slack Pij and s-slack sij for each arc (i,j), the dual objective function value

ZD, and the set of labeled nodes N(k) for every commodity k. Consequently,

the dual ascent procedure is deceptively simple to state, extremely easy to

implement, and imposes only very modest data storage requirements.
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The Dual Ascent Labeling Method

Step 0: Initialization

Set N(k) - k for all k = 2, 3, ... , n, labeled nodes

Pij = aij for all (i,j) E A, p-slack

Sij = bij for all (i,j) E A, and s-slack
ZD = dual objective value

Step 1: Labeling cycle

For k = 2, 3, .... , n that satisfy the property that the root node 1 N(k),

Step la: Labeling Step for Primary Commodities

ifk P,
fi = min (Pij: (i,j) e A, j e N(k)} for all i N(k);

8 = min {(fi:i N(k)};

i = argmin fi;

Pij Pi - 6 for all (i,j) e A with i N(k), j N(k);

ZD 4 ZD + 8; and
N(k) - N(k) u { i*);

Step lb: Labeling Step for Secondary Commodities

if k e S,
fi min (Pij: (i,j) E A, j E N(k)} for all i e N(k);

8 = min (fi: i N(k)};
i' =argmin fi;

Pij " Pi - 8 for all (i,j) e A with i N(k), j N(k);
sij siJ - 8 for all (i,j) A with i N(k), j N(k);

ZD - ZD + 8; and
N(k) +- N(k) uv { i};

next k;

If the root node 1 e N(k) for all k = 2, 3,...., n, STOP; else repeat Step 1.
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The final value of ZD obtained using this procedure is a valid lower bound

on the optimal value of the TLND problem since it corresponds to a feasible
solution to the dual (3.1)-(3.6) of the linear programming relaxation of the
problem. Our previous description of the method's underlying principle
intuitively justifies the validity of this procedure. A formal proof of validity
based on induction would exploit the observations that, at each stage, (i) is
O for all nodes j N(k), (ii) for every node j e N(k), x7 increases by the same

amount, thus preserving feasibility with respect to constraints (3.2) and (3.3)
for arcs (i,j) within N(k), and (iii) the nonnegativity of the p-slacks and
s-slacks guarantees the feasibility of the allocated costs with respect to
constraints (3.4) and (3.5). For each commodity, the procedure labels one node
at each step, until it has labeled the origin. Since the flow-based formulation
uses (n-i) commodities, the dual ascent labeling algorithm terminates in
O(n2 ) steps.

The labeling method extends very easily to the general MLND problem.
In particular, the labeling step for a -level commodity will define 8 as the
minimum l'-level slack (in the constraints analogous to (3.5)) for ' = 1, 2,...,
I, over all the current cutset arcs for that commodity. The step will reduce all
these I slacks by the value 8 for every arc in the cutset. Thus, for a problem
with L levels, the method requires O(Ln2 ) basic operations.

The dual ascent labeling method has several variants. For instance,
instead of cycling through all the commodities, we could divide the
procedure into two stages. The first stage would examine all primary (or
secondary) commodities in sequence, and terminate when it has labeled the
source node for all primary (secondary) commodities. The second stage then
repeats this procedure for secondary (primary) commodities. Even in the
single stage procedure, we can sequence the commodities in various
alternative ways, e.g., first examine the secondary commodities, and then the
primary commodities within each cycle. Some preliminary computational
results suggested that our choice of commodity sequence (single stage,
primary first, and secondary next) often generates the best lower bounds.
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We could also consider alternative multiplier initialization schemes prior

to performing dual ascent. Our current procedure initializes all allocated arc

costs and node potentials to zero value. Alternatively, we might use an

"advanced start" procedure that begins with, say, equal allocations of the
secondary costs bij over all commodities, and equal allocations of the

incremental cost eij over all primary commodities; we can then use a shortest

path routine to initialize the node potentials. We found our simple (zero)

initialization scheme to be quite effective in solving the test problems.

3.2 Dual-based Heuristic

Besides providing a lower bound ZD on the optimal value of the TLND

problem, the dual solution can also generate a feasible design. We use this

design as a starting point for local improvement by an Add-Drop heuristic.

To construct an undirected heuristic design for the original problem from the

dual solution to the directed problem, we install (undirected) edges

corresponding to certain (directed) arcs have zero dual slack. We next

describe two alternative ways to construct the dual-based heuristic design.

Method 1: (Dual-based primary design + secondary completion)

Select as primary edges all the arcs with zero primary slack in the final

dual solution, and apply the optimal secondary completion procedure

(defined in Section 2) to obtain a feasible TLND solution.

This method exploits the following property of the labeling algorithm: at

termination, the root node is connected to every primary node along at least

one path containing only zero p-slack arcs. Thus, when the labeling

algorithm terminates, the set of zero p-slack edges contains a subtree

connecting all the primary nodes (we discard all zero p-slack edges that are

incident to secondary leaf nodes). Method 1 completes this subtree by finding

the (secondary) minimum spanning tree for the residual condensed graph

(see Section 2).
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Method 2: (Dual-based primary + secondary design)

Select as primary edges all the arcs with zero primary slack, and install
secondary facilities on all the arcs with zero secondary slack in the final
dual solution.

Instead of applying the optimal secondary completion procedure, Method 2
directly constructs a feasible TLND solution by choosing all zero s-slack arcs as
secondary edges. Again, we can prove that, at termination, the selected edges
form a connected, feasible design.

Our implementation uses Method 1 to construct the starting solution for
subsequent local improvement. To improve the dual-based starting solution,
we apply an Add-Drop heuristic. The Add-Drop procedure attempts to
decrease the cost of the heuristic solution by iteratively adding secondary
nodes to the primary subtree or deleting secondary nodes from this subtree.

Let Sp denote the subset of secondary nodes that the primary subtree spans

in the current heuristic solution (the incumbent). For each secondary node
j e Sp, the Add procedure evaluates the potential cost saving if we introduce

node j into the primary subgraph. To evaluate this saving, the procedure:
(i) finds the minimum cost tree (using primary costs) spanning all the

nodes of P u Sp u (j); and,

(ii) applies the optimal secondary completion procedure with respect to
this tree.

The resulting design has the least cost among all designs that contain the
secondary nodes Sp u j) in the primary subtree. The cost differential

between this solution and the current incumbent gives the cost saving for
including node j in the primary subtree. The Add procedure evaluates this
savings for all nodes j E Sp, and introduces the best node, say j (i.e., the node

that produces the maximum savings) into the primary subgraph by updating
Sp S (j*). The procedure terminates if none of the secondary nodes

generate savings.

The Drop procedure evaluates the savings obtained by dropping secondary
nodes belonging to the current primary subtree. Again, we evaluate the
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savings by finding, for each node j e S, the minimum primary subtree
spanning all nodes of P u Sp\(j), followed by the optimal secondary

completion. At each step, we drop the secondary node that produces the
maximum savings from the primary subtree. The method terminates when
none of the secondary nodes produce savings when dropped from the current
primary subtree. Our implementation alternately applies the Add and Drop
procedures until no additional improvement is possible.

4. Implementation and Computational Results

Since the general TLND problem is new, the literature does not contain
any standard test problems. We, therefore, tested the dual ascent algorithm
on numerous randomly generated problem instances. Our computational
experiments were designed to assess the sensitivity of the dual ascent
method's performance (quality of solutions and computation time) to
variations in (i) problem size and structure (number of nodes and edges, and
the relative proportion of secondary nodes), and (ii) cost structure (various
norms for the primary costs, and different primary-to-secondary cost ratios).

Our test problems varied in size from 100 nodes (50 primary nodes) and
500 edges, to 500 nodes (200 primary nodes) and 5000 edges. The directed flow-
based formulation DF] for our largest test problem contains 20,000 integer
variables, 5 million continuous variables, and more than 5 million
constraints. We used four different cost structures to generate the primary
costs: (i) Euclidean costs, (ii) random (uniform) costs, (iii) manhattan (or L1)

costs, and (iv) L. costs. For each primary cost structure, we considered two

methods for computing secondary costs:
(i) the proportional cost method: using a constant (but randomly chosen)

primary-to-secondary cost ratio for all edges; and
(ii) the nonproportional cost method: using different (randomly chosen)

primary-to-secondary cost ratios for different edges.

Our initial experimentation indicated that problems with approximately
equal numbers of primary and secondary nodes were the most difficult to
solve. Therefore, except for the HND special case (which contains only two
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primary nodes), all other problem categories have a comparable number of
primary and secondary nodes. For each category, we tested 3 problem
instances (generated using different random number seeds); all the
performance measures that we report represent average values over these 3
instances. We also tested the corresponding Steiner network version of each
problem instance, obtained by setting all secondary costs to value zero.

To solve the problems optimally, we could incorporate the dual ascent
method in a branch-and-bound scheme; at each node of the branch-and-
bound tree, the dual ascent method generates lower and upper bounds for the
current partition. We did not implement this branch-and-bound algorithm;
we applied the dual ascent labeling method and dual-based heuristic only
once to each test problem. For almost all problem instances, the gap between
the dual ascent lower bound and heuristic solution cost was less than 1%
(even for the Steiner network versions), suggesting that this approximate
method is very effective.

4.1 Random problem generator

We used a random network generator to construct the test problems. The
user first specifies the required number of nodes (n), number of primary
nodes (p), number of edges (m), and the cost structure-Euclidean, random,

manhattan, or L primary costs, with either constant or varying primary-to-

secondary cost ratios.

The problem generator randomly locates the required number of nodes on
a 1000 x 1000 grid on the plane, and designates the first p nodes as primary
nodes. To ensure problem feasibility, the method first constructs a random

spanning tree, and then randomly adds the required number of additional
edges. The generator sets the primary cost aij of each edge (i,j} equal to the
integer part of the user-specified metric: Euclidean, manhattan, or L distance

between nodes i and j, or a random integer (uniformly distributed) between 0
and 1000. The generator sets the secondary cost btj equal to aij/rij for each edge
(i,j). We choose the reciprocal of the primary-to-secondary cost ratio ri, which

is either constant for all edges (the proportional costs case) or varies by edge
(nonproportional costs), from a uniform distribution between two user-
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specified limits pi and Pu, with 0 < p, < Pu • 1. For our test problems, we used

p1 = 0 and Pu = 1.

4.2 Implementation of the Dual Ascent Method

We implemented the dual ascent labeling method and the dual-based
heuristic for the TLND problem in FORTRAN on an IBM 4381 computer
(compiled at optimization level 3 using a VSFORTRAN compiler). The
program also incorporates an optional preprocessing module that performs
the following functions (see Section 2):

(i) identifies included primary edges, and aggregates the corresponding
primary nodes (Section 2.3);

(ii) identifies excluded secondary edges (Section 2.2); and,
(iii) identifies excluded primary edges (Section 2.4).

To gauge the effectiveness of preprocessing, we tested a few problems both
with and without preprocessing. As the results of Section 4.4 indicate,
preprocessing is very effective in reducing the computational time for the
dual ascent labeling algorithm as well as heuristic local improvement.

Our preliminary experiments indicated that the choice of root node
impacts the quality of both the upper and lower bounds. (Recall that, to
formulate the problem as a multicommodity flow model, we are free to
choose any one of the p primary nodes as the common root node for the (n-l)

commodities.) To identify good bounds, we can apply the dual ascent method
p times, once for each primary node as the root node. Since this repeated
application is very time consuming for large problems, our final

implementation uses the following stopping criterion to terminate this

procedure early: starting with node 1 as the root node, we sequentially select
each primary node as the root, and repeat the dual ascent computations until
the % gap between the best upper and lower bounds drops below 2% (or until

the algorithm exhausts all p choices of the root node). Also, for a given root
node, we apply the local improvement procedure to a dual-based starting
solution only when this solution has a lower total cost than the previous best
starting solution. For almost all of our test problems, the dual ascent method
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terminated after the first application, i.e., the upper and lower bounds

obtained with node 1 as the root node differed by less than 2%.

4.3 Data Structures

Identifying all the current cutset arcs for each commodity is the main

computationally intensive operation in the dual ascent procedure. Therefore,

refining the data structures to speed up this dual ascent step can have a

significant impact on total computational time, especially for large problems.

Our implementation incorporates the following data structures.

Recall that we transformed the undirected problem containing m edges to

a directed version with 2m directed arcs. Our implementation employs a

forward star pointer representation to easily identify all the arcs emanating

from a given node. That is, we maintain an array of size 2m x 2 containing,

for each node i and every emanating arc (i,j), two pieces of information: the

arc index and the node j. We maintain the arcs emanating from node i in

consecutive rows in this array. For each node i, we also maintain two

pointers identifying the starting and ending rows for its incident arc list. For

each commodity, we maintain a n-vector indicating the labeled nodes for that

commodity; element i of this vector has value 1 if node i is labeled, and 0

otherwise. Other data structures include two 2m-vectors to store the current

primary and secondary slacks for each arc.

These lists and vectors enable us to quickly identify the cutset arcs at each

labeling step without imposing extensive storage requirements. Consider a

dual ascent step for commodity k. Using the label vector, we sequentially

examine each unlabeled node for this commodity. For an unlabeled node i,

we examine each of its incident arcs; every arc (i,j) whose other end j is

labeled (for commodity k) belongs to the current cutset for commodity k.

Having identified the cutset arcs, we can easily find the critical arc (the arc that

limits the amount of increase 6 in the dual value), and perform the updating

steps (label a node, and reduce the slacks). Observe that we can further reduce

computation time by maintaining a n x 2m matrix that directly stores the

indices of all arcs belonging to the current cutset for each commodity.

However, this scheme increases the storage requirements by an order of
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magnitude (e.g., 5 million integers for a 500 node, 5000 edge problem), which
might possibly even increase the total CPU time. Finally, we use only a nai ve
implementation of Kruskal's minimum spanning tree algorithm for the
optimal secondary completion step in the heuristic improvement subroutine.
For large problems, our experience suggests that heuristic improvement
requires considerably more computational time than dual ascent; therefore,
improving the implementation of the heuristic method (e.g., using more
efficient sorting methods) might significantly improve performance and
increase the problem sizes that we can solve using this algorithm.
Furthermore, for problems defined on the plane, we could potentially exploit
ideas from computational geometry (see, for example, Shamos [1978]) to
efficiently solve the minimum spanning tree subproblems.

4.4 Computational Results

To evaluate the effectiveness and robustness of the dual-based method, we
focus on two algorithmic performance measures:

(i) algorithmic effectiveness, measured by the % gap, defined as the
difference between the best upper and lower bounds as a % of the
best lower bound; and,

(ii) computational time, measured by CPU time (in seconds, on the
IBM 4381), classified into 3 components:

(a) Set-up time: to read the input data, to initialize the data
structures, and to perform preprocessing;

(b) Ascent time: to perform the dual ascent; and
(c) Add-drop time: to construct and improve the dual-based

heuristic solution.
Note that the IBM 4381 is a mini-computer that is considerably
slower than, say, the Cray X-MP supercomputer (Beasley [1989]) or
the VAX 8700 computer (Chopra et al. [19901).

To isolate the effects of different factors-problem size, cost structure, and
primary-to-secondary cost ratio-we performed various sets of experiments,
for each set varying one dimension while keeping other parameters fixed.
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For one of these experiments, we also compared the performance of the dual-
based heuristic solution with the Minimum Spanning tree and Approximate
Steiner tree methods described in Balakrishnan et al. [1991].

We identify each test problem with a label (p/n, m, cost structure, cost
ratio) that distinguishes its parameters. In this notation, p is the number of
primary nodes, n is the total number of nodes in the network, and m is the
number of (undirected) edges of the original graph. The four cost structures
we tested are Euclidean (E), random (R), manhattan (M), or L (I). The
primary-to-secondary cost ratio is either proportional (P) (i.e., a constant ratio
for all edges) or nonproportional (N). The following subsections summarize
our results and inferences concerning the robustness of the dual-based
algorithm.

Effectiveness of Preprocessing and Impact of Problem Size
Table I summarizes the impact of preprocessing, and problem size

(including variations in the proportion of primary nodes) on the
effectiveness of the algorithm. For this part of the computational study, we
used only Euclidean (E) and random (R) cost structures, and considered both
proportional (P) and nonproportional (N) secondary costs. The results of
Table I confirm the effectiveness of the dual-based algorithm: the average %
gap ranges from 0% to only 0.89%. Although preprocessing does not affect
this % gap, it decreases the total computation time considerably for larger
networks; for the (300/400, 2000, EP) problem category, preprocessing reduced
the total CPU time by 78%. Observe that the savings in dual ascent time
accounts for most of the reduction in total computation time due to
preprocessing.

Table I also reports a more direct measure of preprocessing effectiveness,
namely, the proportion of primary nodes that preprocessing was able to
aggregate (using the included primary edges test described in Section 2.3). On
average, preprocessing aggregates 54% of the primary nodes, with higher
percentage aggregation for problems containing a larger proportion of
primary nodes. All of our subsequent computational tests include
preprocessing.
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Finally, we note that the heuristic improvement (add-drop) algorithm
consumes less time than the dual ascent procedure for nearly all the test
problems. As a general trend, the add-drop time, as a percentage of total time,
appears to decrease as the problem size increases. The add-drop algorithm
reduced the cost of the dual-based starting design from 0 to 18%. Also, we
observed that the method often dropped many more nodes from the primary
subtree than it added. For instance, for the 500 node, 5000 edge problems that
we discuss next, the algorithm typically added fewer than 10 nodes to the
primary subtree in the dual-based starting solution, but dropped more than 50
nodes from this subtree. This phenomenon suggests that we might be able to
reduce the heuristic improvement time by using a different heurisitic
initialization scheme, e.g., by selecting as primary edges only a subset of the
arcs with zero p-slack in the final dual solution (see Section 3.2).

Impact of Cost Structure:
Table II summarizes the effect of different cost structures. For this

comparison, we selected a fixed network size of 500 nodes (200 primary nodes)
and 5000 edges. The average gap between the upper and lower bounds is less
than 0.83% for all problem categories, and the results suggest no discernable
difference between the % gaps or computation times across the different
primary cost structures. However, for a given primary cost structure, the gaps
are higher when the primary-to-secondary cost ratio varies across edges. This
behavior is consistent with the heuristic worst-case analysis in Balakrishnan
et al. [1991] (in that analysis, we observed that the worst-case bound for the

nonproportional case is larger than the bound for the proportional case).

Table II also reports computational statistics for the Steiner network

versions (with all the secondary costs set to zero) of our 500 node, 5000 edge

test problems. Since the Steiner problem has zero secondary costs, we need
not cycle through the list of secondary commodities during the dual ascent
labeling iterations. Consequently, as we observe in Table II, Steiner problems
require considerably less ascent time than their TLND counterparts. The %
gaps for the Steiner problems range from 0.75% to 1.22%, and are uniformly

higher than the gaps for the corresponding TLND problems. This increase in
% gap results mainly from the lower value of the denominator, i.e., since the

Steiner problem has zero secondary costs, its optimal value and hence its

-25-



lower bound is smaller than the lower bound for the corresponding TLND
problem with positive secondary costs. In summary, our results for the
Steiner problem confirm the findings by Wong [1984]: namely, for this class of
problems, dual ascent is a very effective solution strategy.

Impact of Primary-to-Secondary cost ratio:
Table mI summarizes the effect of varying the primary-to-secondary cost

ratio on the % gap. Again, we fixed the problem size at 500 nodes (200
primary nodes) and 5000 edges, and we considered only the proportional cost
case. We considered three values of the primary-to-secondary cost ratio: r = 2,
4, and 10. The results reported in Table m suggest that the average % gap,
which is less than 0.91% for all cases, does not depend on the cost ratio.
However, the average total time seems to decrease as this ratio increases.

Comparative performance of AST and MST heuristics:
Table III also contains the solution values of the Minimum Spanning Tree

(MST) and the Primary Node Completion (PNC) heuristics analyzed in
Balakrishnan et al. [19911. The MST heuristic installs primary facilities on all
edges of the minimum spanning tree of the given network. The PNC
heuristic, a special type of approximate Steiner tree heuristic, uses the primary
spanning tree (the minimum tree spanning only the primary nodes) to
approximate the Steiner tree. The method installs primary facilities on the

edges of this primary spanning tree, and applies optimal secondary
completion to determine the configuration of secondary facilities. The
composite heuristic chooses the better among the MST and PNC solutions.

As Table m indicates, the composite heuristic performs substantially worse

than our dual-based heuristic. For all three primary-to-secondary cost ratios,

the average cost of the composite heuristic (as a % of the best lower bound)

exceeds 20%. Furthermore, for all our test problems, the PNC heuristic gave
better heuristic solutions than the MST heuristic.

Results for HND problems:
Table IV studies the special class of TLND problems containing only 2

primary nodes. The first two HND problems correspond to Current et al.'s
(1986) test networks containing, respectively, 15 nodes and 33 edges, and 21

nodes and 39 edges. For both problems, our algorithm terminates almost
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instantaneously; it finds the optimal solution for the first problem, and
proves that the heuristic solution for the second problem is at most 0.75%
more expensive than the optimal solution. The remaining problem
categories reported in Table IV correspond to random problems with
Euclidean primary costs and varying network sizes. For these problems, the
average % gaps are less than 0.1% suggesting that the dual-based algorithm is
also very effective for solving HND problems. Note that the number of edges
in the largest problem in this test group is more than two orders of magnitute
larger than those considered by Current et al. in their original study of the
HND problem.

5. Conclusions

This paper has developed an algorithmic approach for solving a new class
of multi-level network design problems. We have identified some structural
properties of optimal solutions that enable preprocessing, developed a dual
ascent method for generating lower and upper bounds, and performed
extensive computational testing. The dual ascent method is a very simple
and efficient technique, and does not require solving expensive linear
programs using general purpose LP solvers (see, for example, Chopra et al.
[1990]). Our computational results demonstrate that this method is quite
robust and generates good upper and lower bounds: for a variety of cost
structures, the average gap was less than 1% for problems ranging in size
from 100 nodes and 500 edges to 500 nodes and 5000 edges. The algorithm
performed equally well for the Steiner network and hierarchical network
design special cases.

Future research might further explore the polyhedral structure of the
TLND (and more generally the MLND) problem and its variants, and test the
dual ascent method for multi-level problems with variable (flow-dependent)
edge costs. One of the MLND model's main shortcomings is that it does not
incorporate more stringent connectivity requirements (e.g., all primary nodes
must be 2-connected). With the emerging emphasis on topological
robustness and reliability, studying enhanced models that incorporate
connectivity constraints is a very promising area for further investigation.
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The successful polyhedral and computational investigations of Groetschel,
Monma, and Stoer [1990a, 1990b], who have studied a single hierarchy (in
edges) network design problem with varying connectivity requirements for
primary and secondary nodes, might prove to be useful in pursuing these
extensions. So might the work by Goemans and Talluri [1991] and Talluri
[19911 on k-connected network design problems. The results in this paper
suggest that on average the relative disparity between the optimal objective
function values of the TLND problem and its linear programming relaxation
are quite small. Another potentially fruitful avenue of investigation would
be a probabilistic analysis that might analytically confirm these findings.
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Table III. Effect of Primary-to-Secondary Cost Ratio
(network size: 500 nodes, 200 primary nodes, 5000 edges)

(All computational times in seconds on IBM 4381)

f % gap - (best upper bound - best lower bound) + best lower bound

Table IV. Hierarchical Network Design (HND) Problems
(All computational times in seconds on IBM 4381)

t % gap (bestuppe-bond-bestlwer best bound

Problem Category Average Average Average add- MST PNC
gap" Ascent time drop time Heuristic Heuristic

% gap % gap

Euclidean cost structure, 0.59 2719 2405 27.37 21.56
Cost Ratio r = 2

Euclidean cost structure, 0.91 1303 2953 47.94 26.53
Cost Ratio r = 4

Euclidean cost structure, 0.66 1272 2677 72.17 23.40
Cost Ratio r = 10

Problem Category Average Average Average add-
% tgap f Ascent time drop time

Current et al., Problem # 1 0.00 0 0

Current et al., Problem # 2 0.75 0 0

Euclidean cost structure 0 8 0
100 nodesG0 edges

Euclidean cot structure 0.03 125 3
200 nod, 1000 edges

iden cost structure 0.02 754 28
400 nodes, 2000 edges

Eudim n wot c struture 0.01 3265 79
500nod SOW ed__
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