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ABSTRACT

A major topic in software engineering is how to reuse or recycle product

components across more than one system or project, making it

unnecessary to keep specifying, building, and testing new products

completely from scratch. While reuse may seem to be primarily a

technological problem, this article illustrates how reusability also needs

to be seen as a managerial and organizational problem. This is because

the recycling of specifications, detailed designs, and actual code, as well

as development tools, engineering methods, and test cases, can either

be systematic -- occurring as frequently as possible due to management

planning as well as provision of s pport technologies and incentives --

or accidental -- occurring infrequently and in an ad hoc manner due to

the lack of formal planning, support, or personnel incentives. The focus

of the discussion is on techniques and tools used in Japanese software

factories, especially Toshiba, which in the mid-1980s was routinely

delivering software systems with nearly 50% reused code.



INTRODUCTION

A topic in software engineering as well as in product development management

in general has continued to arouse interest among academics and practitioners: how

to reuse or recycle product components across more than one system or project,

making it unnecessary to keep specifying, building, and testing new products

completely from scratch.' The real problem is how build, deposit, and then find

existing components so that reuse does not cost more than making new components,

and final products with a lot of reused designs or code do not contain too many

compromises in performance. Reuse may thus seem to be primarily a technological

problem, depending, for example, on the structure of specific software components

and their suitability for different application contexts, user requirements, or

hardware platforms. This article, however, draws on examples from Japan to

demonstrate that, in software as in other engineering domains, reusability also needs

to be seen as a managerial and organizational problem. This is because the recycling

of specifications, detailed designs, and actual code, as well as development tools,

engineering methods, and test cases, can either be systematic -- occurring as

frequently as possible due to management planning as well as provision of support

technologies and incentives -- or accidental -- occurring infrequently and in an ad

hoc manner due to the lack of formal planning, support, or personnel incentives.

Of course, if every product that a development group tries to build is totally

different, then reuse is either impossible or limited to elementary process knowledge,

such as general project-management expertise, or very common subroutines, such as

screen handlers or date-conversion modules. For a series of projects where reuse is

possible, however, many firms still find that reuse does not occur to the same extent

as there exist opportunities based on redundancies in customer requirements and

program functions. Because of the potential benefits to productivity and quality from

reusing proven components, how to raise reusability to both technological and



managerial or organizational limits has become a major strategic concern for software

producers. This is especially true in Japan, where there persists a small number of

available software packages, severe shortages of skilled programmers, and large

demand for labor-intensive custom software (including programs embedded in

hardware) where many of the required functions are not unique to each project.

REUSE CONCEPTS AND TECHNICAL SUPPORT

Reusable Components: Just as reuse of experience embodied in methods and tools is

a common engineering and manufacturing practice, reuse of software components has

its analog in any conventional industry where engineers design standardized,

interchangeable parts that factories mass produce and then use in identical or even

somewhat different end products. The notion of recycling pieces of software first

occurred to programmers in the 1950s who found they did not have to keep rewriting

common subroutines, such as for converting temperatures or sorting different types

of data. By the mid-1960s, packages of reusable Fortran routines were commercially

available from IBM. The idea of making and using reusable components gained further

popularity during the 1968 NATO conference on software engineering when M.D.

Mcllroy of AT&T suggested that governments and companies establish "components

factories" to create mass-producible modules to serve as "black boxes" for new

programs. Producers would benefit by building new programs from existing

components that represented efficient designs, while users would have products that,

even though containing some standardized parts, were tailored to their needs.2

Although Mcllroy referred primarily to reusable subroutines at the code level, reuse

has gradually come to include data types, architectures, designs, whole programs,

modules, and other elements (such as tools, methods, and experience), in addition to

executable code, which often proved most difficult to reuse across different

2

III



applications or computer systems.3

Benefits and Costs: While only a few empirical studies of reuse exist because of the

difficulty of compiling, analyzing, and revealing company data, available research

indicates that reuse has a positive impact on productivity, at least when designs and

code are not changed much before they are redeployed . 4 Reuse prior to coding seems

particularly valuable because writing requirements and detailed designs often

accounts for a much larger portion of development costs than coding. Developers can

achieve large savings in testing as well if they build reusable modules as independent

subsystems and then thoroughly test these before recycling. Reusing debugged

designs and coded modules can also reduce long-term maintenance costs, often the

most expensive part of software development. In addition, reuse has the potential of

leveraging good design across more than one project.- Most reuse proponents cited

in the literature have even argued that, since research on software tools and

methodologies has brought only limited gains, reusability, including design reuse and

automatic program generation, remained the only way to achieve large advances in

productivity.5

On a small scale, prior tothe 1980s, firms met Mcl Iroy's goal with the increasing

use of packaged subroutines and modifiable packaged software, as well as with the

gradual introduction of operating systems such as UNIX and programming languages

that supported subroutine reuse and portability of code and tools across different

hardware architectures. But, despite some progress, such as at Raytheon in the late

1970s, extensive reuse appeared not to become a major objective of software-

engineering practice in the United States until a revival in the early 1980s in academic

circles and at firms such as the ITT Corporation. In the meantime, Japanese

applications-software producers, led by Toshiba, began pursuing reusability as a
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primary emphasis in the mid-1970s. A study of 40 Japanese and U.S. software

systems published in 1990 found that Japanese reuse levels were at least twice those

in the U.S. sample (averaging 18% compared to under 10% of delivered lines of code),

although the averages were not as large as sometimes claimed.6 Nor did the Japanese

achieve high levels of reuse until after they accumulated better component libraries

and support tools, and introduced systematic management practices and incentives.

Reuse in Japan and elsewhere has made slow progress because of various costs

and constraints. On the technical side, many factors influenced whether a particular

project can recycle existing components, such as the match in application or function

of the existing software compared to the new design requirements; the particular

language and the characteristics of the target computers; and the program structure

and degree of modularity, or how independent modules are of other modules or

subsystems in the original program based on the construction of the interfaces

between various layers in a complete system (the new application software, subsidiary

applications packages, utilities, the operating system, and the hardware).

Structured techniques also teach developers to conceptualize software systems anew

in a top-down manner, from large functions to smaller tasks, and to write programs

for specific applications. Reusing designs, code, or architectures, on the other

hand, requi res conceptualization and construction around pieces of existing software,

and thus acceptance of possible compromises in system features or performance.

On the organizational side, writing and documenting components for reuse

generally requires extra time that individual customers might not want or should not

want to pay for. Project managers, and project members, have good reason to resent

this extra time, unless they see opportunities to save time and money in the future.

For example, systematic recycling of designs or code required standardization of

module interfaces to fit components together, whether or not these standards prove
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useful or necessary for a given product. Developers need common tools, such as

libraries to store programs and documents, and reusable-parts retrieval systems, to

make it easier to find and understand pieces of software someone else had written. In

designing software for potential reuse, designers have to think of more possible

applications and more carefully document their work.

Reuse thus involves potential tradeoffs in product uniqueness and costs in the

short term on any individual project, even though recycling promises higher

productivity and even quality over a series of projects by eliminating the need to

reinvent designs or continue to do coding, documenting, and testing for similar

applications. In fact, while many software developers and customers might prefer

uniquely designed programs, the widespread use of software packages, as well as

several studies indicating that somewhere between 40% and 90% of the code applications

producers delivered in a given year consisted of similar functions, indicated therewas

vast potential for more reuse. 

Reuse Support: In addition to emphasizing and teaching abstraction techniques,

Japanese firms introduced several tools during the 1980s to support abstraction in

general as well as the specific reuse of system architectures, data types, designs, and

coded modules or whole programs. Hitachi, for example, began using in the early

1980s a tool called EAGLE (Effective Approach to Achieving High Level Software

Productivity), which helped applications programmers build software from reusable

modules as well as structure new designs and code for reuse. Company engineers

claimed that users could develop 60% of the application programs customers demanded

from 22 patterns, all accessible in the EAGLE database and modified only slightly for

individual applications.8

EAGLE users first analyze data items and interrelationships and catalog these
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in a data-dictionary database. Next they register the system-design and program

specifications in another database. At this point, EAGLE searches a pattern and parts

library for existing components the system might reuse. This makes it possible to

assemble some programs almost entirely from the library, although most programs

written with the tool contain reused patterns and parts as well as new designs and

routines. EAGLE next generates an outline of the program from the detailed (module-

level) specifications and then produces a source program. Programmers can edit the

source program to add particular functions wanted by individual users. Finally,

EAGLE automatically generates test commands and carries them out in conversational

Japanese. During 1984-1986, Hitachi refined EAGLE to allow it to handle PL/1 and a

Japanese specifications language, in addition to COBOL. The new version of the tool

also lets customers design their own menus (within certain limits). With these

improvements, Hitachi began using EAGLE to construct database and data-

communications programs, along with common business programs. In terms of

performance, according to Hitachi's internal audits, programs designed with EAGLE

generally showed a 2.2-fold improvement in productivity (measured by lines of code

per programmer and manpower costs in a given time period). EAGLE also shifted more

effort into system design and substantially reduced time necessary for testing.

NEC in 1984 began using a similar tool set called SEA/I (System Engineering

Architecture/I). Its three subsystems consist of an Empirical Information Base

(El B), a collection of support tools, and a standardized methodology covering system

proposals, design, implementation, testing, and installation. The EIB provides set

formats and ready access to previously written system definitions, layout designs,

systemand program structures, programmodules ("sou rce parts"), tested programs,

and test data. Rather than requiring one development methodology for all customers,

SEA/I also specifies five approaches.
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First, the tool users can adopt a conventional life-cycle model and move,

sequentially with the usual iterations, from requirements definition through

implementation and testing. A second approach relies on SEA/I's software CAD

capabilities for prototyping, design, and then semi-automated generation of program

components (automation except for some special coding). A third calls for building

new software from reusable design specifications and coded modules, with minimal

modifications but customization in the sense that SEA/I users can offer different

configurations of the components for different customers; this approach minimizes

testing, since the program components come from a library of fully tested items. A

fourth model addresses the development of customized systems where SEA/I helps

users build a prototype and finished program without changing individual modules but

by offering the customer a combination o; existing applications packages; in this case,

the new program needs little if any coding or testing., The fifth calls for the use of

SEA/I tools to analyze, restructure, and re-document existing programs built before

the introduction of SEA/I, to facilitate enhancements, reuse, or maintenance of these

older software systems.

Fujitsu has a comparable but larger set of reuse-support tools, including

several dedicated to particular applications. These include PARADIGM (for general

business applications primarily in COBOL), ACS-APG (a specialized version of

PARADIGM that supports applications control structure and program generation for

more complex on-line transactions processing systems), and BAGLES as well as

BAG LES/CAD (specialized versions of PARADIGM forgenerating ban king applications

software). BAGLES/CAD is particularly significant as a simplified, menu-based tool

that allows users with little or no knowledge of software programming to produce

executable banking programs of considerable size and complexity.

A sample of Japanese R&D for reuse support comes from work originating with
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Japan's Fifth-Generation Computer Project. A group within Fujitsu's central research

laboratories has developed an experimental programming-support system that

includes an English-like specification language mechanically translated into predicate

logic formulas, and a logic-based system to retrieve reusable softwaremodules, stored

by function, from a modules library. The library stores specifications for each

module, coded in PROLOG, which the tool compares with requirements to identify

functionally equivalent modules reusable for particular parts of a new program. The

tool goes beyond conventional reuse-support systems by adding superior retrieval

and verification capabilities. Earlier reuse-support methods located modules by

matching specifications or code, whereas the PROLOG system makes it possible to

identify modules with similar functions even if the specifications do not match in a

conventional search process. Another feature of the tool, which supports reuse as

well as maintenance, is an "explanation generator" that analyzes code and produces

English-like explanations of the program logic by comparing the code with preexisting

templates (skeletons) of explanations stored in a separate database.

CASE STUDY: THE TOSHIBA SOFTWARE FACTORY 9

Factory Structure and Process: Toshiba established a software factory in 1977 to

develop real-time process-control software embedded in hardware systems made at the

company's Fuchu Works, located in the western outskirts of Tokyo. In the late 1980s,

the Works had approximately 7,500 employees primarily in four areas: Information

Processing and Control Systems, Energy Systems, Industrial Equipment, and

Semiconductors (Printed Circuit Boards). Product departments within the divisions

corresponded roughly to 19 product lines; each department contained sections for

hardware and software design as well as for manufacturing, testing, quality

assurance, and product control. Approximately half the Fuchu Works' employees were
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software developers, with about 2,300working in the Software Factory, assigned from

the product departments for particular projects.

Following this matrix structure, Toshiba had no single manager of its Software

Factory, although the factory contained a permanent staff spread over five sections.

Four provided administrative support for software production, relying on systems

analysts as well as programming and testing personnel f rom product departments. The

fifth maintained the tool set, called the SoftwareWorkbench (SWB), helped R&D teams

develop new tools, and operated the SWB Service Center, the file-storage room, and

other related SWB facilities. It also coordinated software quality-assurance plans for

the entire factory and provided assistance to keep these plans on track, in addition

to collecting data to evaluate productivity, reuse, and software reliability.

Individual software systems were huge. The average applications program

consisted of about 4 million equivalent-assembler source lines (EASL) of code; the

range was 1 to 21 million EASL. Projects (including hardware and software

components) generally took three years to complete. Four or five systems analysts

normally did high-level design and worked full-time on one project until completion.

Another 10 to 15 engineers did detailed design, while 70 to 80 programmers completed

the coding and debugging. To divide and then coordinate their activities, Toshiba

broke down the software production process into distinct phases, following a life-

cycle model common to both hardware and software products: requirements

specification and design, manufacturing, testing, installation and alignment, and

maintenance. Prescribed procedures and specific tools from the SWB system provided

support for each phase.

While having analysts, designers, and programmers in the same departments

encouraged communication between the different groups, Toshiba also relied on a

formalized process for requirements specification and design, which it broke down
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into two parts. Part I included the customer's specific objectives as well as constraints

such as cost and time, and particular methodologies the customer wanted Toshiba to

follow. Systems analysts outside the factory drew up these system designs. Part II,

a more precisely structured document done after analysis of the Part I requirements,

outlined the overall functions of the program and simulated its operation to generate

performance parameters that Toshiba used to negotiate prices and other contract

elements with the customer. Designers already assigned to the project and physically

located in the Software Factory drew up these Part II specifications. On some

occasions, such as when they did not want to share too much proprietary knowledge

with Toshiba, customers wrote their own Part I specifications and then the Software

Factory turned these into code.

Reuse Promotion: Toshiba's strategy for accommodating rising demand for software

and ensuring a high level of productivity and quality, despite variations in individual

skills, was to build products from standardized components reassembled or combined

with new components. This approach - - the systematic creation and reuse of reusable

software parts -- lay at the heart of Toshiba's concept of factory production for

software. Toshiba did not solve all problems related to reusability; it did not, for

example, utilize very formalized or sophisticated methods for classifying reusable

software components and recycling them across different product families.

Nonetheless, the factory simplified or restricted problems to manageable areas, and

provided incentives both for project managers and personnel to write reusable

software and reuse it frequently, at least within similar application domains. How the

factory promoted reuse in the face of organizational as well as technological

constraints illustrates the strategic management of technology, integrating product

planning, engineering tools and techniques, personnel training and incentives, as
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well as management control systems.

Approximately half the software Toshiba's factory delivered in 1985 (the last

year for which Toshiba has made data public) consisted of reused code and designs,

including some applications packages developed in product departments to serve as

major components of customized systems and designs or code with minor modifications

(usually no more than 20% of the contents of an individual module). The other half of

delivered software was new, mainly written for an individual customer or application,

again including some tailored packages. The SWB system collected data on all reused

elements, converted designs to equivalents in generated code, and paid particular

attention to a simple output measure: the number of reused lines converted to EASL

code in a delivered system.

Table 1 provides a breakdown of the three categories into which the

approximately 50% reused software fell. One category consisted of packages of design

skeletons, called "white-box" parts, kept in department program libraries. These

described functions common to applications within a particular domain, such as

nuclear-power plant control systems, or steel-mill process control systems, and

ranged in size from 1,000 to 10,000 EASL. Software developers in the factory often

merely chose the right package and filled in blank slots for different customers; code

generators produced much of the actual code. Developers could also modify the

designs. Another portion consisted of relatively large utility programs that worked

in between operating systems and industry-specific applications packages to control

communications, database management, and other basic functions; or tools and other

embedded sub-programs generally usable in a variety of systems. Toshiba deposited

these components, which ranged in size from 10,000 to 100,000 EASL, mainly in

department libraries but sometimes in the factory library system. The final category

(about 10% of delivered code) consisted of black-box modules, usually no more than
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3,000 EASL in size. These common subroutines, also accessible from across product

departments through a central factory library, covered functions demanded in most

systems the factory built, such as for managing general-purpose displays or

converting temperature data.

For the other 50% of delivered software that Toshiba wrote from scratch for

individual customers, in addition to SWB tools and conventional languages such as

Fortran, factory departments were beginning to deploy very-high level (4th-

generation) application-specific languages for systems design that eliminated coding

as a separate task. An example is POL (Problem-Oriented Language), which the

nuclear power-plant department relied on extensively to design components specific

to individual customers. Unlike conventional computer languages, POL relied on

menus and tables with blank spaces representing control logic for various functions

(found primarily in nuclear power plants, however, limiting the use of this language

to one application domain). Engineers filled in the blanks and a compiler produced

executable code. Another tool that worked with POL, RRDD (Reverse Requirements

Definition and Documentation System), generated updated documentation

automatically, in the event personnel changed parts of an existing program.

In order to build programs around existing components as much as possible,

Toshiba required projects to draw up plans, called "repeat maps," at the

requirements-analysis and module-design phases. Systems analysts produced the

first map by comparing the main subsystems they wanted to build with existing

packages in the department and factory libraries. After inserting the appropriate

packages into the system under construction, designers in the factory drew up

another set of repeat maps, identifying specific modules to reuse or modify and new

components needed to implement requirements.

The organization Toshiba created to promote reuse and overcome short-term
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concerns of project managers and development personnel relied on software reusing

parts steering committees along with software reusing parts manufacturing

departments and software reusing parts centers (Figure 1). Product departments

formed steering committees for different areas (with different members, depending

on the application) to determine if customers had a common set of needs suitable for

a package, and then allocated funds from the Fuchu Works' budget for these special

projects. Some packages were utilities usable in different departments, although most

served specific applications. For example, PODIA (Plant Operation by Displayed

Information and Automation), a package created in the department for nuclear power

plants, covered all the basic functions common t these systems and accounted for

about half the software the department delivered.

The reusing parts manufacturing departments and parts centers, at the

project, product-department, and factory levels, evaluated new software and

documentation to make certain it met factory standards; after certification, engineers

registered the software in department or factory reuse databases (libraries).

Registered items required a key-word phrase to represent the functionality of the

part or correspond to a specific object, as well as a brief "description for reusers"

that explained the part's basic characteristics. These descriptions came in a code-like

format, with specific names such as "slab" or "roller" converted to generalized

notations like "MOVING_OBJECT." The cataloging procedures also required

engineers to identify parts they expected to reuse frequently, such as common

subroutines, and those they did not, such as job-oriented applications packages they

might retrieve once at the beginning of development rather than daily. The factory

kept the frequently reused software (source code and functional abstracts) on easily

accessible disk files and the less frequently reused software on magnetic tape.

Evaluation criteria to determine which software parts were good enough for
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reuse focused on measu res such as fitness, quality, clarity, abstractness, simplicity,

coupling level (with other modules), completeness, "human interface" (module

identification andalgorithmdescriptions), software interface, performance (response

time), and internal configuration of the module. These criteria supported more

specific, factory-oriented guidelines: The contents of a module (objects,

relationships between objects, algorithms) had.to be easily understandable to users

who did not develop the code. The interfaces and requirements to execute the

software (other code needed, language being used, operating system, automatic

interrupts, memory needed, input/output devices, etc. ) had to be clearly specified.

The software had to be portable (executable on various types of computers) or

transferable (modifiable to run on different computers, if not designed to be

portable). Finally, the software had to be retrievable in a program library by people

who were not familiar with it.

Toshiba had tools similar to Hitachi's EAGLE, NEC's SEA/I, and Fujitsu's

PARADIGM, ACS-APG, and BAGLES/CAD to support reuse of designs and coded

modules, as well as other functions. A corporate R&D group, formally attached to the

Fuchu Works, developed these and more advanced tools. One example is a tool that

facilitates the labelling and retrieving of reusable modules, relying on a special

language Toshiba developed, called OKBL (Object-Oriented Knowledge-Based

Language). A menus asks users a series of questions to define precisely what type

of part they needed. For example, if developers want to see what functional modules

are available for a particular application, they can enter the library for that

application and then type "function" when asked for "Super-class." If the desired

function is to scan analog data from a measuring instrument, they can type "scan"

when the system asks for the subclass and "analog" when it asks for the kind of data.

The tool then specifies the method of scanning, providing choices under other

14
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subclasses.

While the OKBL tool appeared relatively easy to use and will probably become

more useful as Toshiba refines it, factory personnel, especially those having worked

several years in the factory, seemed to rely mainly on manual techniques and

experience -- printed catalogues of reusable software and knowledge gained from

prior efforts -- to find software in libraries appropriate for new projects. Since

Toshiba organized most reusable software as large packages in department libraries,

and many departments used only a few packages to build most of their systems,

developers quickly became familiar with the contents of different packages and do not

seem to require much tool support. On the other hand, Toshiba reused only about 10%

of delivered software across product departments. Thus better methods and tools to

index and retrieve software components in a more generic fashion seems important to

increase reuse further because this will make more designs, code, or packages

accessible to members of different product departments who do not have a personal

familiarity with either the application or existing software.

Even though Toshiba still had room to improve inter-departmental reuse, within

the departments, management relied on an integrated set of incentives and controls

to encourage project managers and personnel to take the time to write reusable

software parts and reuse them frequently. At the start of each project, managers

agreed to productivity targets that they could not meet without reusing a certain

percentage of specifications, designs, or code. Design review meetings held at the

end of each phase in the development cycle then checked how well projects met reuse

targets, in addition to schedules and customer requirements. At the programmer

level, when building new software, management required project members to register

a certain number of components in the reuse databases, for other projects. Personnel

also received awards for registering particularly valuable or frequently reused
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modules, and they received formal evaluations from superiors on whether they met

their reuse targets. The SWB system, meanwhile, monitored reuse levels as well as

deviations from targets both at the project and individual levels, and sent regular

reports to managers.

To implement reuse objectives at the level of module design and coding, as

opposed to the level of system design, Toshiba relied on another methodology, called

"50SM" (50 Steps/Module). '° As suggested by the name, the basic concept involved

limiting the number of lines of code (steps) in one module to 50 or less (about one

page), making the parts easier to understand and redeploy. The 50SM method

covered three kinds of modules -- procedu ral (subroutines, functions, macros, etc. ),

data (files, variables or constants in memory, interface data, etc.), and packages

(abstract data types, library programs, etc. ). The factory also required a "technical

description formula" to outline the external and internal module specifications as well

as inter-module relationships. The 50SM presented a constraint in that the technique

primarily supported structured design and reuse in procedural languages such as C,

FORTRAN, COBOL, PASCAL, and Ada, rather than the use of newer object-oriented

or logic-programming languages, which, for some applications, had advantages.

Furthermore, in practice, only about half of new modules met the 50-line limit,

although the remainder were close, usually within 100 to 150 lines. Nonetheless, this

simple technique helped make reusable code and designs understandable, and worked

well with tools such as code generators and editors.

Toshiba management reinforced its reusability strategythrough training of new

personnel in program development and in maintenance. In-house educational courses

showed employees how to build software starting at higher levels of abstraction

(requirements and design) and then working downward, which managers claimed

increases the number of reused modules and the reuse frequency of a reused module.
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At the same time, in program design, Toshiba trained personnel to abstract data,

define standardized interfaces and parameters, and follow the factory procedures for

cataloging and documenting. Furthermore, even if projects did not reuse particular

programs, managers felt the same techniques for design, testing, documentation, and

library registration that aided reuse simplified software maintenance, perhaps the

most costly part of software development for programs with a long life span and

frequent changes. It might even be the case that savings in maintenance alone made

the extra effort required for reusability worthwhile.

Performance Improvements: Table 2 shows gross software productivity for the Fuchu

Works and the Toshiba Software Factory from 1972 to 1985, and reuse rates in the

programming or coding phase as well as new code estimates from 1977, when the

software factory opened. Particularly striking is the rise in productivity (delivered

equivalent-assembler source lines per person per month, excluding operating

systems, utilities, and other basic software) and the obvious impact of increasing

reuse, measured at the code level. Productivity rose from 1,390 lines per person per

month in 1976 to over 3,100 in 1985, while reuse levels (lines of delivered code taken

from existing software) increased from 13% in 1979 to 48% in 1985. About 60% of the

code delivered in 1985 was in Fortran, 20% in high-level problem-oriented languages,

and 20% in assembler; the equivalents of these are expressed in assembler, using

Toshiba's internal conversion coefficients.

In terms of improvement rates, in the five years prior to the start of the

factory, productivity gains appeared erratic, even dropping 12% in 1975. Fuchu

software developers improved output 13% between 1972 and 1973, but nominal

productivity in 1976 was still no higher than the 1973 level. In contrast, output per

worker rose dramatically in 1978, the first full year of factory operations, while
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productivity doubled the 1975 level by 1981. Productivity improvements slowed

considerably after 1981, but still averaged 6% or 7% annually. Production of new code

actually followed a declining trend, since reusing more code required more time to

read and modify the recycled parts, as well as more time to write code (and designs)

for reuse. Toshiba's ability to recycle code rose dramatically in some years, such as

between 1982 and 1983, but rose less rapidly afterward, stopping at just under 50% in

1985. The general leveling off of gross productivity improvements appeared to relate

directly to a leveling off in reuse increases, although more data is needed to establish

this trend more precisely.

Despite slowing gains in productivity and reusability, output per employee at

the Software Factory already appeared high by the mid-1980s. The 3,130 lines of

EASL source code per month per employee in 1985 translate into approximately 1,000

lines of Fortran-equivalent code. This monthly productivity estimated in Fortran

equalled the Japanese average reported by Cusumano and Kemerer in their survey of

Japanese and U.S. software projects, also adjusted for language differences, and

exceeded by a largemargin the U. S. adjusted averageof about 600 Fortran-equivalent

lines per work-month. Other adjustments to the Toshiba numbers produce figures

that, while still laudable, are not quite as dramatic as nominal productivity suggested.

Subtracting reused code from the 1985 data (which is not completely appropriate,

since reusing code systematically requires time to write for reuse and to implement

reuse), Toshiba employees averaged a still impressive 1,600 EASL or around 500 lines

of new Fortran code per month. Adjusting for estimated overtime of 70 hours per

month by recalculating for a 160-hour month, Toshiba personnel in 1985 delivered

about 2,200 EASL (700 Fortran-equivalent), including reused code, and about 1,100

EASL (370 Fortran-equivalent), subtracting reused code. But while this latter

number did not suggest that Toshiba had a huge advantage over other firms, it was
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still impressive given the size and complexity of the systems Toshiba delivered, the

low level of defects, and the fact that half the factory employees were high-school

graduates (albeitJapanesehigh-school graduates, with basiccalculus, statistics, and

a variety of science courses and other college-level material behind them).

Of course, data on productivity and reusability, as well as quality, are difficult

to compare across firms. It is also difficult to measure reuse of designs, which is often

more important than reuse of executable code, since designs can be modified more

easily for different applications and machines. (The Toshiba Software Factory in 1985

claimed to reuse about one-thi rd of its design documentation and generated much code

more-or-less automatically from detailed designs, often in a flow-chart form, although

it is not clear how design reuse affected the delivered EASL numbers.) In any case,

since Toshiba appears to have collected its numbers consistently, its data provide

some sense at least of changes in productivity and reuse over time at the factory. The

numbers thus suggest strongly that (1) the factory emphasis on reusability doubled

nominal productivity levels, and (2) reusability involved some costs, such as in

overhead as well as in a decline in new-code productivity. On this last observation,

Toshiba's internal studies of reuse rates, number of lines in modules changed when

reused, and overall output per person, indicated that productivity was significantly

improved only if about 80% of a module was reused without changes. If only 20% was

used unchanged, the impact on overall productivity was negative. Between 20%6 and

80%, there was no noticeable impact on productivity. (Hitachi and Fujitsu reported

similar findings in their studies of reuse and productivity.)
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III

CONCLUSION: A SPECTRUM OF REUSE STRATEGIES

Reusability, and reuse-promotion strategies, actually fell across a spectrum.

This ranged from no reuse, because of no commonality in applications or stability in

program architectures and functions, to various degrees of accidental or ad hoc reuse

and then to systematic reuse, with categorizations of software going beyond

application domain libraries to indexing software modules and designs by functional

content (Table 3). Any software producer might achieve occasional reuse if

individuals remember what software they or other groups had built in the past that

resembles what they want to do in the present. But factory approaches such as

Toshiba's promoted more frequent and systematic reuse by planning across a series

of projects as well as devising tools, libraries, reward and control systems, and

training techniques to maximize the writing of reusable softwa re components and their

recycling as often as possible, at least within similar product families. In theory,

design for reuse constituted an investment in proven components that developers and

customers should want to recycle. In practice, reuse promotion faced technological

as well as organizational obstacles whose solution required not merely technical

analysis and support, but also management planning along with controls and

incentives above the level of the individual project.

The best departments in Toshiba and other Japanese firms also managed reuse

in relatively flexible ways. Developers mixed packages with new code -- thus giving

customers the option of buying a semi-customized product rather than either a

standardized package or a fully-customized system. Support tools emphasized the

reuse of designs as much or more than executable code; this made it easier to modify

features for different applications or reuse software across incompatible operating

systems and hardware architectures. In addition, writing new designs and code for

reusability, and depositing new parts in reuse libraries, created a continually
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expanding inventory of proven components that developers and customers should

want to recycle. Raising reusability to the level of a factory policy also seemed to

counteract objections by programmers to reusing other people's work and by project

managers to absorbing overhead costs associated with designing, documenting, and

testing softwareforgeneral usage ratherthan fora specificapplication. In addition,

Japanese companies made reuse-support systems available to in-house developers,

subsidiaries and subcontractors, as well as users of their hardware, thus increasing

the dissemination of these tools and techniques along with shifting some of the custom-

programming burden to users.

Still, one must not overestimate the extent and nature of reuse in Toshiba or

other Japanese firms. Like their counterparts around the world, Japanese facilities

mainly confined the recycling of components to similar product families and used

relatively simple classification techniques and support tools. They also reused most

of their software in systems with relatively stable architectures and functions, such

as control systems for power plants and automated factories, or common businesss

applications for mainframe computers. As a result, opportunities for greater reuse

clearly existed in Japan, especially across different types of products with

technologies that identify the functional content of software components. But

whatever the future of reuse in Japan or elsewhere, their accumulation of practical

experience, as well as a steadfast commitment to exploiting reusability to improve both

productivity and quality, suggested that Japanese software factories would remain

among industry leaders in promoting systematic rather than accidental reuse.
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Table 1: Approximate Breakdown of Reused Software in Toshiba

Breakdown Comments

100% TOTAL SYSTEM Delivered lines of custom applications
software for an individual project, excluding
basic systems software.

Size: 1,000,000 to 21,000,000 EASL

50% REUSED SOFTWARE

(White-Box Designs) Applications-specific packages or subsystems
of design skeletons. Written, documented, and
registered for reuse in product-department
application libraries.

Size: Usually 1000 to 10,000 EASL

(Utilities, Tools) Applications-specific utilities, tools, or other
special programs imbedded in delivered
software. Written, documented, and registered
for reuse in product-department libraries
mainly but also in factory libraries.

Size: Usually 10,000 to 100,000 EASL.

(Black-Box Modules) Coded subroutines common to most software
made in the factory. Written, documented, and
registered for reuse from a central factory
library. Approximately 10% of reuse.

Size: Usually up uo 3000 EASL.

50% NEW SOFTWARE Plant- or customer-specific software, not
considered reusable but written, documented,
and registered in a similar manner for
maintenance. Often written with advanced
fourth-generation languages that generate
code from menus or tables of application
functions or specifications.

Source: Cusumano 1991, p. 260.
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Table 2: Performance at Toshiba Software Factory

Notes: EASL = Debugged and Delivered Equivalent Assembler Source
Lines Per Programmer Per Month, Averaging All
Projects in the Factory and Including All Phases and
Manpower (Requirements Analysis through Maintenance)

Index = Based on 1972 EASL productivity estimate (1230)

Change = Percent increase or decrease over previous year

Reuse % =

New Code =

Percent of delivered lines of code taken from existing
software with little or no modifications (usually no more
than 20% of a given module)

EASL x [ (100 - Reuse %)/100 ]

Defects Per 1000 Lines of Delivered Code
EAS L

Converted to

Year Total EASL Index/Change Reuse New Code Defects Employees
Delivered (100) (%) % (EASL) Per 1000 (All
Per Person EASL Phases)
Per Month

PRE-FACTORY ESTIMATES:
1972 1230 100 -- Data Not Available
1973 1390 113 +13
1974 1370 111 - 2
1975 1210 98 -12
1976 1390 113 +15

POST-FACTORY ESTIMATES:
1977 Data Not Available
1978 1684 137 -- -- -- 7 to 20 1200
1979 1988 162 +18 13 1730 1500
1980 2072 168 + 4 16 1740 1700
1981 2443 199 +18 29 1735 2050
1982 2595 210 + 6 26 1920 2100
1983 2763 225 + 7 41 1630 2150
1984 2931 238 + 6 45 1612 2250
1985 3130 254 + 7 48 1612 0.2 to 0.05 2300

Source: Cusumano 1991, p. 240.
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Table 3: The Reusability Spectrum

Reuse Levels:

None No Commonality Among Projects
No Stability in Program Architectures and Functions
No Design Planning or Management for Multiple Projects
No Reuse Support Tools And Libraries
No Reuse Promotion Organization And Incentives
Little or No Measurable Reuse

Some Some Commonality Among Projects
Some Stability in Program Architectures and Functions
No Design Planning or Management for Multiple Projects
No Reuse Support Tools And Libraries
No Reuse Promotion Organization And Incentives
Occasional But Still Ad Hoc or Accidental Reuse

More Much Commonality Among Projects
More Stability in Program Architectures and Functions
Some Design Planning or Management for Multiple Projects
Reuse Support Tools And Libraries For Application Domains
No Reuse Promotion Organization And Incentives
More Frequent But Not Maximum Reuse

Most Much Commonality Among Projects
Much Stability in Program Architectures and Functions
Design Planning and Management for Multiple Projects
Reuse Support Tools And Libraries By Software Content
Reuse Promotion Organization And Incentives
Systematic and Maximum Reuse
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Figure 1: Toshiba's Reusability Promotion System

Source: Matsumoto 1987, p. 173. Reproduced with permission.
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