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Abstract

We generalize the well-known Little's law E[L] = AE([W to a distributional

form: L - No(W), where N (t) is the number of renewals up to time t for the

equilibrium arrival process, L is the number in the system (or in the queue)

and W the time spent in the system (or in the queue) under FCFS. We provide

two proofs of the result. In the process we generalize a well known theorem

of Burke on the equality of pre-arrival and post-departure probabilities. By

offering very simple proofs of several known as well as new results in a variety

of queueing systems, we demonstrate that the distributional law has important

algorithmic and structural applications and leads to a certain unification of

queueing theory.

1 Introduction

One .t.h most fundamental results in queueing theory is that the number of

custonma -- the system (or queue), denoted by L, and the waiting time W of a

*D'I Beia, Mosa School of Management and Operations Research Center, MIT, Cam-
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customer in the system (or queue) obey Little's law ([15]) that under a wide variety

service disciplines

E[L] = AE[W],

and A is the arrival rate. In a highly unnoticed paper, Haji and Newell [9] address

the issue of relating the distributions of L and W. Although their result is, in

our opinion, both fundamental and important, it has remained widely unnoticed

for the last two decades even by top queueing theory researchers. As an example,

Keilson and Servi [13] have recently proved a distributional form under FCFS for

the special case of a Poisson arrival process. They proved that if GL(z) = E[zL]

and Ow(s)= E[e'- w] then

GL(Z) = Ow(A - A ).

In this paper, we offer two proofs of the relation of the distributions of L and

W, when the arrival process is a general renewal process and the queueing discipline

is FCFS. We also remark that the result holds even for more general nonrenewal

arrival processes. Although we derived the distributional law independently as a

generalization of Keilson and Servi [13], as we have already pointed out, the result

is not new; we believe, however, that the paper makes a contribution for the following

reasons:

1. The paper makes an important structural result of queueing theory widely

known to the research community.

2. We offer two proo& of the result. The first proof, which is a simple probabilistic

prf thom firt principles, is similar to the one in [9]. Our second proof,

wi inew, offers more insight on the relations of pre-arrival, post-departure,

genera tms probabilities and the waiting time. Moreover, it is the natural

matrix geometric generalization of the proof technique of Keilson and Servi

[13].

2

III



3. We generalize a well known theorem of Burke on the equality of pre-arrival and

post-departure probabilities for stochastic processes with unit jumbs, to more

general processses. Although this generalization is of independent interest, it

was the key for our second proof of the distributional law.

4. Most importantly, we examine several interesting applications of the distribu-

tional law and offer very simple proofs to a variety of known as well as new

results. This is particularly important, since it shows that the distributional

law is a quite powerful tool for the analysis of several models in queueing

theory.

The paper is structured as follows. In section 2 we present the first simple prob-

abilistic proof of the distributional law and describe certain systems in which the

result is applicable. In section 3 we present our second proof for the case in which

the interarrival distribution is Coxian. This section also includes the generaliza-

tion of Burke's theorem. The last section contains some algorithmic and structural

consequences of the distributional law for a wide variety of queueing systems.

2 The distributional law

Consider a general queueing system, whose arrival process is an arbitrary renewal

process. Let c(s) be the Laplace transform of the interarrival distribution, with

arrival rate A = -/&(O).

Let Na(t) be the number of renewals up to time t for the ordinary renewal process

(where the time of the first renewal has the same distribution as the interarrival

time).

Let Nh(t) be the number of renewals up to time t for the equilibrium renewal process

(where the time of the first renewal is distributed as the forward recurrence time of

the arrival process).

The distributional law can be stated as follows:
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Theorem 1 Let a given class C of customers have the following properties:

1. Arrivals of class Cform a renewal process whose interarrival time has a trans-

form distribution a(s).

2. All arriving customers enter the system (or the queue), and remain in the

system (or the queue) until served, i.e. there is no blocking, balking or reneging.

S. The customers are served one at a time and leave the system (or the queue)

in the order of arrival (FCFS).

4. New arriving class C customers do not affect the time in the system (or the

queue) for previous class C customers.

Then, in steady state, the waiting time W of the class C customers in the system

(or the queue) and the number L of the class C customers in the system (or queue)

are related in distribution by:

L N(W). (1)

In other words, the c.d.f. Fw(t) of W and the generating function GL(z) of L

satisfies the following relation:

GL(z) = j K(z,t)dFw(t) (2)

where the kernel is the generating function of the equilibrium renewal process. i.e.
00

K(z,t) = zn" Pr[N.(t) = n]. (3)
n=O

It is well known (see Cos[7]) that the Laplace transform of the renewal generating

function K(z,t) is giNen by

K'(*,) = -" K(, t) dt = -_ d- =)( - O )) (4)
s s 2(1 - za(s))

If the Laplace transform pdf qw(s) of the waiting time is known, then

GL(Z) = 27r-1f K'(z, 8s)w(-s) dS (5)

where for a fixed z the contour contains all singularities of K'(z, s) but not $w(-s).

4
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Proof

We define r to be a random observation epoch, i.e. an observer starts observing the

system at a random time r. Let Tr the arrival time of the nth class C customer in

the system (or queue) and W, his the waiting time in the system (or queue). It is

important to number the customers within the class C in the right order. That is,

within the class C, the customer who is numbered 1 is the customer who arrived

most recently, i.e. the customer at the end of the queue. The customer who has

the highest ordinal number n is the customer getting served (or at the head of the

queue). Therefore r,, Wn are ordered in the reverse time direction.

Let T2 = r - rl, i.e. T' is distributed as the forward recurrence time of the

arrival renewal process, and Tn = rn- - r, n > 1 is the interarrival time for all

n > 0.

The key observation for the proof is the following. When an observer coming to

the system at a random moment r sees at least n customers from class C, the nth

most recently arrived customer among the class C is still waiting at that moment r

of the observation (see also figure 1), i.e.

L > n if and only if Wn > r - rn.

Note that we have used here assumptions 2 and 3. Therefore

Pr[L > n] = Pr[Wn > r - rn].

Now, because of assumptions 3 and 4, W, and r-r, = l'+E'=2 T, are independent.

Indeed, every person arriving after time r, joins the queue after the nth customer

and therefore each of these arrivals does not affect the waiting time W, of that nth

customer under assumptions 3 and 4. Also, in steady state W, -, W. Hence we

have
PrL ] = r[ + <] d

Pr[L > n] = Pr(7 + E Ti < ] dFw(t),
0o i3=2

which essentially proves the theorem.

We next compute generating functions. As usual, Pr(L = n] = Pr[L > n] - Pr[L > n + 1]
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Figure 1: An illustration of Little's law.

GL(z) = E Z' Pr[L = n] = K(z, t) dFw(t)
n=O

n

pr[ + Ti < t]
i=2

n+1

- Pr[Z + E
i=2

oo

= Ez" Pr[N*(t)= n]-.
nOBy taking the Laplace transform of K(z, t), we have

By taking the Laplace transform of K(z, t), we have

J 00

e t K(z, t) dt0o I ct(s) +I 0 0( )

n=1

1- () 
1- za(s)

(1 - 2V(1 - evfel

a 82(1 - ZC(8))

Finally we use the inverse Laplace transform formula for the kernel,

'K(z,t) = f C tK-(z, ,8) d

where the contour contains all singularities of K*(z, 8) for a fixed z. We then have

GL(Z) = I j f e't K(z, s) ds dFW (t).iLz = 2,V-

6

Wn

Ifn I

time
Toa T- 1 A -i t- -- - 2 I1

t : random observer

and thus

where

K(z, t)

(6)

T <t]}

- ,I-8
2

1
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Since w(s) = fo e-tdFw(t), we get

GL(z) = 2 >, 1 jK(zs).Ow(-s)ds.

Note that any one of the singularities of K*(z, s) need not coincide with a singularity

of kw(-s), since we can always perturb z. 

The distributional form of Little's law (1) has the the following intuitive inter-

pretation. In steady state, the time average number of class C customers has the

same distribution as the number of class C arrivals, arriving according to the equi-

librium renewal process, during the waiting time.

Important remarks:

1. Note that in order to derive (1), (2) and (3) only assumptions 2, 3 and 4

were used and not assumption 1. The renewal character of the arrival process

(assumption 1) was only used to derive (4).

As a result, the result also holds for general arrival point processes, not neces-

sarily renewal. An example of a nonrenewal arrival process arises naturally in

tandem queues, where the departure process of one queue is the arrival process

of another queue. In Bertsimas and Nakazato [1] we study the characteristics

of departure processes from a GI/G/1 queue and compute the kernel K(z, t)

appearing in the distributional law.

2. Note that if the arrival process is Poisson, then it can easily be proved that

K(z,t) = e- A( 1-' ) t

Substituting into (1) we obtain Keilson and Servi's result [13]:

GL(z) = w(A - A).

3. Let L, L+ be the number in the system (or the queue) just before an arrival or

just after a departure respectively for a system that satisfies the assumptions
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of theorem 1. The number of customers left behind in the system (or in the

queue) by a departing customer a, is exactly the number of customers that

arrived during the time customer a spent in the system (or in the queue),

because the queue discipline is FCFS. As a result,

L + N.(W)

and since the number of customers changes by one

L+ L.

As a result,

GL+(z) = j Ko(Z,t)dFw(t) (7)

where the kernel is the generating function of the ordinary renewal process,

i.e.
00

K o(.,t) = zn Pr[N.(t) = n]. (8)
n=O

It is well known (see Cox[7]) that the Laplace transform of the renewal gener-

ating function Ko(z, t) is given by

(1 - ())

If, in addition, the arrival process satisfies the ASTA property (see Melamed

and Whitt [16]), then

L+ L- L N(W),

Note that the ASTA property is more general than PASTA and as a result,

we again obtain Keilson and Servi's [13] result.

2.1 Systenms for which the distributional law holds

We emphasize that the distributional law holds for a wide variety of settings; these

include the time and the number in the qeue of a heterogeneous service priority

8
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GI/G/s system for each priority class. It does not hold, however, for the time and

the number in the system, since assumption 3 is violated (overtaking can occur).

It also holds for both the number in the system and the number in the queue of a

GI/G/1 system and a GI/D/s system with priority classes. Moreover, it holds for

the total sojourn time and the total number of a certain class in a queueing network

without overtaking (such as G/G/1 tandem queues). Other applications include

GI/G/1 with vacations and exhaustive service but only one priority class.

3 A generalization of a theorem of Burke and its ap-

plication to the distributional law

In this section we will present another proof of the distributional Little's law for the

case when the interarrival time is a general Coxian distribution, i.e. it belongs to

the class of distributions with rational Laplace transform. This proof is a natural

extension of Keilson and Servi [13] proof technique to general arrival processes with

rational Laplace transforms.

Our strategy for proving theorem 1 is the following.

1. We introduce the Coxian distribution as a representation of a general distri-

bution.

2. We observe that when the interarrival time is Coxian distributed, the arrival

process is a special case of a phase renewal process. Using the uniformization

technique, a phase renewal process is interpreted as an imbedded Markov

Chain at Poisson transition epochs.

3. We generalize Burke's theorem by relating the post-departure and pre-transition

probabilities. Since by Wolff's PASTA theorem, an observer at a Poisson tran-

sition epoch sees time averages, we are thus able to relate the post-departure

and the general time probabilities.

9
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4. We relate the post-departure probabilities to the waiting time distribution.

5. We finally combine the last two relations and thus prove theorem 1.

3.1 The Coxian distribution

The general Coxian class C, was introduced by Cox [6]. In this section we will

consider systems with Coxian arrival processes. We conceive of the arrival process

as an arrival timing channel (ATC) consisting of M consecutive exponential stages

with rates A1, A2, ...,AM and with probabilities Pl,P2,...,PM = 1 of entering the

system after the completion of the st, 2nd, ... Mth stage. We remark that as soon

as a customer in the ATC enters the system a new customer arrives at stage 1 of

the ATC. The stage representation of the Coxian distribution is presented in figure

2. Note that this stage representation of the Coxian distribution is purely formal

in the sense that the branching probabilities pi can be negative and the rates Ai

can be complex numbers. The mixed generalized Erlang distribution is a Coxian

distribution, where we assume that the probabilities Pi are nonnegative and the

rates Ai are reals.

Figure 2: The Coxian class of distributions

Let a(t) the pdf of the remaining interarrival time if the customer in the ATC

is in stage k = 1,..., M. Therefore, a(t) = al(t) is the pdf of the interarrival time.

,For notational convienience we will drop the subscript for k = 1. Also i denotes

the mean interarrival time.
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Let c,(s) be the Laplace transform of ak(t).

Let a (t) be the probability to move from stage i < j of the ATC to stage j during

the interval t without having any new arrival.

We will also use the notation:

a,(t) = ('(t), . . ., M(t))', (t) = (.., a*(t), ... , a Y(t))'.

ca(s) denotes the Laplace transforms of da(t).

ij = (0, ... ,1,...,0), -I= (,..., ,..., ).

By introducing the following upper semidiagonal matrix Ao and the dyadic ma-

trix Al:

A1 -(1 - )X 1

0 A2

0

we can express compactly the

0

-(1 -p 2 )A 2

Al 

tran

0

-AM

zsforms

O ... 0

defined above as follows:

Ca'(s) = i(Is + Ao)- 1,

- + Mp)A
ah () = -(Is + Ao)-'Al C- = rAca (a) = 1TC(+

(s) = - trace((Is + Ao)- 'A),

thus ti iterarrival pdf becomes

a(t) = - trace(e-A°tAi).

11
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3.2 Uniformization of the input process

We will consider queueing systems with input process forming a renewal process

with interarrival time distribution being Coxian, which is a phase renewal process.

We first observe that [ c(s)cij'(s)

(Is + Ao + zAl) - l = (Is + Ao)-l + 1- k()

aM()a1'(s)

since for every pair of matrices C of full rank and D of rank 1,

(C + D)-1 = C - 1 l+trae(C- D) By expressing this in real time we obtain

al(t) ... am(t) 00

0 ... aM(t)0 JM

al(t)

aM(t)

*a-)(t)*( al (t)

By interpreting this expression directly, it is clear that this is the phase

(generating) function of the arrival process.

We apply the uniformization technique (see Keilson[12]) to the phase

function:

a... (t) ).

(10)

renewal

renewal

e-(Ao+zA,)t = e-teVt(I- 1 Ao- Al)

where we choose v > maxi=l,...,M Ai.

Let Po = I - Ao and Pi = A 1 . Then

oo _, ,t(,t)
e-(Ao+sAl)t = e[o + P]

The interpretation of this formula is that a transition occurs in a Poisson manner

at rate with ATC phase transition probability Po and with the effective arrival

probability P 1. Note that a transition is either an arrival or a shift to the next

exponential stage. We will use this interpretation in the next two subsections.

12
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3.3 The relation between the pre-transition and post-departure

probabilities

Our goal in this subsection is to find a relation between the probabilities at pre-

transition Poisson epochs of the arrival process and post-departure probabilities as

a generalization of Burke's [5] theorem.

In the previous subsection we have introduced the matrices: Po = I- Ao

with elements Po,ij {i,j = 1, ... ,M} and P1 = L-A1 with elements Pl,i,j {i,j =

1, ., M}..

We now introduce the notation we will use:

L + = The number of customers in the system (or queue) immediately after a de-

parture epoch.

L- = The number of customers in the system (or queue) just before a transition

epoch of the arrival process. A transition includes both arrivals in the system and

shifts to the next exponential stage of the ATC. We emphasize that L- in this and

the following subsection is Wo the number of customers before an arrival epoch. The

motivation for considering L- is that, because of the uniformization, the epochs of

transition of the arrival process (n, i), are Poisson distributed with rate v. There-

fore, by Wolff's [19] PASTA result, the pre-transition probabilities are the same with

the time average probabilities. Therefore, if we are able to find the distribution of

L-, we will immediately find L.

R + = The ATC stage immediately after a departure epoch.

R- = The ATC stage just before a transition epoch of the arrival process.

= {Pr[L = ,n } 1)-, and P; = {Pr[L- = n n R- = )'-M.

P+(z)= S z ,"AP. and P-(z)= n " Pn. ·

We obsrv the system from t = O to t = T. We also define

u(n, i) = The number of upwards jumps during the period (0, T), such that L- = n

and R- = i.

u°(n, i) = The number of shifts from the ATC stage i to i + 1 during the period

13
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(0, T) such that L- = n and R- = i.

d(n,i) = The number of downwards jumps during the period (0, T) such that

L + = n and R+ = i.

U = The total number of transitions (upward jumps and shifts) of the arrival pro-

cess during the period (0, T).

D = The total number of departures (downward jumps) during the period (0, T).

We now prove the following theorem on the relation of the pre-transition and

post-departure probabilities.

Theorem 2 Let P-(z), P+(z) be the generating functionsfor the pre-transition and

the post-departure probabilities as defined above. Then

P-(z)[I- Po - P] = ( ) +(z),

which is the same with

P-(z) = A(1 - z)P+(z)(Ao + zA) - .

Proof

We follow a method used by Papaconstantinou and Bertsimas [18] and Hebuterne

[10] to establish the relation between pre-arrival and post-departure probabilities in

stochastic processes with random upward and downward jumps.

We first write down the flow balance equations; the left hand sides correspond

to flow out and the right sides correspond to flow in.

d(n - 1, i) + u(n, i) + u(n, i)

d(n - 1, 1) + u°(n, 1) + u(n, 1)

O(O, i) + u(O, i)

u°(O, 1) + u(O, 1)

= d(n, i) + u(n, i- 1)

= d(n, 1) + YM, u(n- 1, i)

= d(0, i)+ u °(O, i - 1)

= d(0, 1).

{i > l,n > 0}

{n > 0)

{i > 1}

(11)

We divide all equations by U and we then take the limit as T oo. Note that

D A
U v
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d(n,i) -- Pr[L+ = n n R + = i]

u°(n, i) -. Pr[L- = n n R- = Poii+

u(n, i) - Pr[L- = n n R- = ilPl1 i, 1

U(u(n, i) + u(n, i)) Pr[L- = n n R- = 1](1- Poi,i).

Then (11) becomes in matrix form

1-(I-Po)-P P = P+ VP {n > O}kP- , n - n >0n-1

Po(I-Po) = iPo

Computing the generating functions P-(z), P+(z), we obtain

P-(z)[I- Po - P1 ] = (- ) P+(z).O

A critical observation, which actually motivated the uniformization technique,

is that the epochs of transition of the arrival process (n, i), are Poisson distributed

with rate v. Therefore, by Wolff's [19] PASTA result, the pre-transition probabilities

are the same with the time average probabilities. Therefore, we formally state

Proposition 1 The time average number in the system L is equal to the pre-

transition number in the system L-

d
L= L-

Therefore, the time average generating function GL(z) is cqual to

GL(z) =

3.4 The relation of the waiting time and the post-departure prob-

abilities..

Let .w(s) be the transform pdf of the waiting time of a class C customer and Fw(t)

be the cdf of the waiting time. In this subsection we relate the waiting time and the

post-departure probabilities.

15
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Proposition 2 For systems satisfying the assumptions of theorem 1 the post-departure

probability generating function P+(z) is represented as

p+(z) = 'w(A + zAl),

where for any matriz D we symbolically define:

Prow(D) e-DtdFw(t).

Proof

Because of assumptions 2, 3, 4 in theorem 1 the number of customers left behind

by a customer departing from the system (or queue), is precisely the same with the

number of customers that arrived during this customer's waiting time in the system

(or queue). Therefore,

Pr(L+ = R = nI = J a()(t) * aL(t)dFw(t)

Taking generating functions and using (10) we find

P+(z) = E[e 'e-(Ao+'A')W]

and thus the result holds. 3

3.5 A matrix view of the distributional law

We now have all the necessary ingredients to give the second proof of the distribu-

tional law.

Theorem 3 For systems satisfying the assumptions 2, and 4 of theorem 1 and

for Cozit iterarriaI times characterized by the matrices Ao, Al, the generating

function GzL(:) and the cdf Fw(t) are related by:

GL(z) = K(z,t)dFw(t)

whe(, t) = )(Ao + Are' 

K(z,t) = A(1 - z)i e-(A+zA1)t(Ao + zA)- 1 f,

16
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which leads to

GL(z) = (1 - z)i' 'Ow(Ao + zA1 )(Ao + zA,1)- f (12)

The Laplace transform of K(z, t) is

K'(z ) = 1 (' - )(1 - (s))s 82 (1 - Z(s))

which from a well-known result from renewal theory, leads to

oo

K(z,t) = E 2z Pr[N (t) = n].
n=O

Proof

By proposition 1, GL(z) = P-(z) and by theorem 2,

GL(z) = A(1 - z)P+(z)(Ao + zAl)-1 i.

Then by proposition 2,

GL(z) = A(1 - z)e' 'w(Ao + zAi)(Ao + zAt)-lf

Note that this is a matrix geometric (see Neuts [17]) generalization of Keilson and

Servi's [131 result GL(z) = w(A - Az).

Therefore,

GL(z) = (1 - z)Cl Ie-(Ao°+xA)t(Ao + zAl)-'dFw(t),

i.e.,

K(,t) = A(1 - )L 'e-(A°+'A')t(Ao + zA,)-'i,

The triasform of K(z,t) is thus given by

K*(z,s) = A(1 - z)e, '(Is + Ao + zAl)-'(Ao + zA)-'f

= A( - z).l '{(Ao + zAl)- - (Is + Ao + zAl)-l}I.
5
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But

e1 (Is + A + zAl)_f = e4j'{(Is + Ao)- - 1_ (Is + Ao)-Al(Is + Ao)-}

= ( + 1 a()a(8)}el'(Is + Ao)-1

-a(8)-(8)
1-za(s) a
1- a(s)

,(1- a(s))'

and similarly by taking s -- O0,

1
ei'(Ao + zAl)-'= (l ) (13)

Therefore

-, 1 1- a() (1- z)(1 -(a))
K'(z,)= -{A(1- z) s(1 - za(s)) a 82 (1 - za(8))

Cox [7] contains an interpretation of this formula as the transform renewal generating

function of the equilibrium renewal process. 

Theorem 3 is a special case of theorem 1 for the case of Coxian arrival process.

Since Coxian distributions are dense in the space of distributions, one can prove the

distributional law for arbitrary arrival processes by simply taking limits of Coxian

distributions. The advantage of the proof technique that led to theorem 3 is that

it also provides a closed form expression for the Kernel K(z,t). This has some

interesting applications as we show next.

4 Applications of the distributional law

The distributional Little's law is primarily a structural result relating the distribu-

tions of L and W. In this section we investigate some important structural and

algorithmic consequences of the distributional law.

18
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4.1 Relations among the second moments

A useful application of the distributional law is a relation of the first two moments

of the queue length and the waiting time:

Theorem 4 Under the conditions of theorem 1, Little's law for the first and second

moments is

E[L] = EW]. (14)

E[L 2] =A (E[W + 2 E [ E[N.(r)] d , (15)

where E[Na(t)] is the renewal function whose Laplace transform is given by

j -St E[N(t)] = (- ()

Asymptotically,

E[L2] = 2E[W 2 + Ac2E[W - A3E[A3] (+ o(l), (16)
3 2

E[L+] = AE[W] + 2 + o(1), (17)

where c2 is the square coefficient of variation of the interarrival distribstion and

E[A3] is the third moment of the interarrial time.

Proof

We first expand K(z,t) as a Taylor series in terms of log(z):

(log(Z))2+o(log())).K(z,t) = l + Atlog(z)+A ( 2 E[Na( dr) ( + o((log(z)) )

To see this, we substitute z = c" in (4) first, expand the expression in terms of u

and then perform the inverse Laplace transform term by term.

Now if we compare it with

Gr(z) = E E[L' (1 °g ( z ))
r!we obtain (14) and (1).

we obtain (14) and (15).
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Let A be the interarrival time. Since

a(s) + - 1 2 E[A3] A3 EA 2]2 + o(),
i(l-(8)) 6 +r 2s 6 4

inverting term by term, we obtain that

E[N4 (t)] = At + -1 [A A2E(A3 ]]( + o((t)),2 4 6

where 6(t) is Dirac's function. Substituting into (15) and performing the integration

term by term we obtain (16). Starting with (7) and using the same technique as

before we obtain (17). 

For the Poisson case ( = 1) the asymptotic expression (16) is exact. Moreover,

in this case the distributional law leads to an easy expression between the factorial

moments. Since

E[zL] = E[e-A(1 -)W]

successive differentiation leads to:

E[L(L- 1)...(L-r + 1)] = AE[Wr], r = 1, 2,....

Moreover, since E[L], E[L+] and E[W] are independent of the queue discipline, (17)

leads to

E[L+] = EL] + + o(l),

independent of the queue discipline.

The above expressions not only offer structural insight linking together funda-

mental properties in queues, but they lead, as we see next, to a closed form formulae

for the. pected waiting time for systems that have a distributional law for both

the nnher in the system and in the queue.

4.2 Closed form approximations for systems with no overtaking

Consider a queueing system in which the distributional law holds for both the num-

ber in the system and the number in the queue. Examples in this category include
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the GI/G/1, GI/D/s queues with priorities, as well as the GI/G/I with vacations.

We will show in this subsection that the formulae we gave in the previous subsection

lead to a closed form formula for the expected waiting time.

The GI/G/1 queue

Let L, Q is the number in the system and queue respectively and S and W is the

time spent in the system and queue. Let 1/A, E[X], c2,c2 be the means and the

square coefficients of variation for the interarrival and service time distribution. Let

E[A3] be the third moment of the interarrival distribution. We want to develop a

formula for the expected waiting time as a function of just these parameters. We

will develop a formula which is asymptotically correct for all p.

Theorem 5 For the GI/G/1 queue the ezpected waiting time is asymptotically given

E[WGI/G/l] = p 2C: + p2 + pc2 - p + o(1) (18)
2A( - p)

Proof

For the GI/G/1 queue the distributional law holds for both the number in the system

and the number in the queue. Applying (14) and (16) we obtain

E[L] = AEIS] (19)

E[Q] = AE(W] (20)

2 3E(A 3 ] (c + 1)2E[L = AE[S] + AcESEM - + +o() (21)
3 2

BuE(Qt S = W 2 2e( + AcE[W 3 I + 2 + o( ) (22)

But S = W + X, where X is the service time and W, X are independent. Thus

E[S] = E[W] + E(X] (23)

E5 2[ ] = EW] + + E 2X] + 2E[ X]. (24)

Finally it straightforward to verify that the transforms of GL(z) = E[zL], and

GQ(z) = E[zQ], are related as follows:

GL(z) = (1 - )(1 - p) + zGQ(z),
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which leads by successive differentiation to

E[L] = E[Q] + p (25)

E[L2] = 2E[Q] + E[Q2] + p (26)

Substituting (23), (24) and (26) to (21) we obtain

E[Q2 ] + 2E[Q] + p = A2(E[W] + E[X1 + 2E[W]E[X])+

Ac(E[W] + E[X])- A 3E(A3] + + 1)2 + o(1).
3 2

Substituting (20), (22) to the above equation and solving for E[W] we obtain

= 2E[X2] + p C - p + (1)
2A(1 - p)

which leads to (18), since A2E[X 2] = p2(c + 1). O

Note that (18) is exactly the diffusion approximation for the expected waiting

time in a GI/G/1 queue (see for example Heyman and Sobel [11], p. 483). We have

just shown that just the distributional law leads to an asymptotically exact formula

for the expected waiting time. Note that the formula is exact for C2. = 1 (Pollaczek-

Kintchine formula) and it also agrees with the heavy traffic (p - 1) limit. Note

that the formula addresses the dependence of the expected waiting time on just the

first two moments of the interarrival and service time distributions. The o(1) terms,

which we have neglected, include the dependence of the expected waiting time on

higher order momements.

The G/D/s queue

Another system which has a distributional law for both the number in the system

and t&Xiumber in the queue is the G/D/s.

Theorem For the G/D/is qseue the expected waiting time is asgmptotically given

E[W DI,] pc + (p 2 - p)+ o(1)
2A(1 - p)

where p = AE[X]/s.
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Proof

Since the service times are deterministic, every s customers are served by the same

server. Therefore, each customer sees a G(S)/D/1 queue, where G( ') is the s convo-

lution of the interarrival distribution. As a result, the waiting time in the G/D/s

queue is the same as in the G(')/D/1 queue. Moreover, (18) is valid (note that

we need to use A/s for the arrival rate and c2/s for the coefficient of variation of

the interarrival distribution). Therefore, the expected waiting time for the G/D/s

queue is given in (27). 

4.3 Stochastic decomposition in vacation queues

In this subsection we will illustrate that the distributional law leads to the well

known decomposition result for the expected waiting time in vacation queues. Al-

though the decomposition result is more general we will only demonstrate it for the

expected waiting time. The server of a GI/G/1 queue works as follows. When the

system becomes empty, the server becomes inactive ("on vacation") for a duration

V having Laplace transform v(s). At the end of the vacation period another va-

cation period begins if the system is empty. Otherwise the system is again served

exhaustively. It is assumed that V is independent of the arrival process. We offer

a new simple proof of the decomposition result for the expected waiting time in

vacation queues based on the distributional law.

Theorem 7 (Doshi [8]) For the GI/G/I with vacations V the expected waiting time

is the sram of the expected waiting time of a GI/G/I and the forward recurrence time

of th.- .ctio V.

Prooto-

Let Lv, Q., W, and S. be the number of customers in the system, the number of

customers in the queue and the time spent in the queue and in the system with

vacations respectively. Let B be the number of customers in queue given that the

server is on vacation. Let A be the number of customers in queue given that the
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server is not in vacation. Let V* be the forward recurrence time of the vacation

period.

Applying the distributional law to this system we will get (19)-(24) but for L,

Qv, W, and Sv.

By conditioning on whether the server is on vacation we obtain

Gq,(z) = pGA(Z) + (1 - p)GB(z)

and

GL,(z) = pzGA(z) + (1 - p)GB(z)

which lead to

GL,(z) = zGQ.(z) + (1 - p)(1 - z)Gg(z).

Differentiating twice we obtain

E[Lv] = E[Q.] + p (28)

E[L 2] = 2E[Qv] + E[Q2] + p - 2(1 - p)E[B]. (29)

Moreover, applying the Little's law for the number B and V* we obtain

E[B] = AE[V*] (30)

Solving the system of equations (19)-(24) and (28)-(30) we obtain

E[W,] = E[r] + + -p + 

i.e. from (I18)

E[W] = E[V*] + E[WGI/G/1]-. 

We clane this subsection by emphasizing that the same method leads to similar

expressions for every system that has a distributional law for both the number in the

system and the number in the queue. For example a GI/G/1 queue with priorities

can also be analyzed using the same techniques.
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4.4 Structural implications

In this subsection we present another interesting consequence of the distributional

law, which offers structural insight into the class of distributions that can arise in

queueing systems.

Theorem 8 If the waiting time distribution Fw(t) is a mixture of ezponential dis-

tributions, i.e.

Fw(t) = 1 - E A,e--' (31)
u

(zu can be a complez number), the queue length distribution is a mizture of geometric

terms. Namely

Pr[L=n] = A] A,( W u) w, (32)
u zuWU

GL(z) = 1 - E A, ( - Z)(1 - ,) (33)
,, z,( - zw.)

GL+ () = E A. I ,, (34)

WU. = ~(ZU).

Proof

From (2) we obtain

GL(z) = K(, t) A,,,,e - " t dt

= A, j zue-*tK(z, t) dt

- = A,,xK(, z).
U

Using, (4). ad th McLaurin expanding GL(z) in terms of z, we obtain (32). In a

similr-arw. obtaia (34). 

The previous theorem is applicable in a wide variety of queueing systems. In

Bertsimas and Nakazato [2] we show that a general GI/G/s system with heteroge-

neous servers satisfies the exponentiality assumption of the theorem 8. Moreover, if
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the service time distributions have rational Laplace transform then the number of

exponential terms in (31) is finite.

As an illustration of the usefullness of theorem 8, we apply it to find a closed form

expression for the queue length distribution of the G/R/1 queue. Let P(s) = O

be the Laplace transform of the service time distribution, where P3D(s), 1N(s) are

polynomials of degree m and less than m respectively. Let a(s) be the Laplace

transform of the interarrival distribution. Using the Hilbert factorization method,

one can derive the waiting time distribution for the GI/R/1 queue (see for example

Bertsimas et. al. [3]) as follows:

OW(s) II Z,W(8s) - 3D(O) 1 z, + 

where z,, r = 1, ... , m are the m roots of the equation

a(z)p(-z) = 1, Re(z) > O.

Expanding kw(s) in partial fractions and inverting we find that

Fw(t)= -D ' D-,(--) I ie_
r=1 3D(O) Zi - Z

Applying theorem 8 we find that the queue length distribution is given by

PrQ = n = (O) i't I Z, (1 (35)

where w, = a(z,).

4.5 T inwo. pl oblem

Equatin' (t2 pgiv the generating function of the number in the system (or in the

queue wan iatesl tranmsormation of the distribution of the time in the system (or

in the queue). Therefore, once the waiting time is known we can easily find through

(2) the queue length distribution. It is interesting, however, to find an inverse of
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this linear transformation in order to express W in terms of L. Our goal is to find

a kernel K(z, t) so that

Fw(t)= ; i K(z, t)GL(z)dz

where the contour contains all the singularities of GL(z) but none of K(z,t).

Theorem 9 When the waiting time distribution Fw(t) is a miztare of ezponential

distributions,

Fw(t) = k7 (zt)GL(z) dz

where

K(z, t) = (1 - Z)2( )

Proof

Assuming that the waiting time distribution is a mixture of exponential distribu-

tions, we obtain from (33)

GL(Z) = - A, )(1 .))
U zu(i- za(,.))

Zt(x,) (z)(- (.))'

Since both the lhs and the rhs must have the same singularity structure, GL(z) must

be singular at z = -. Therefore from the last term of the rhs, we obtain

Residual GL (Z) -( _A,

Let zo be a sin ar point of GL(z), i.e. tz = -1((-) (assuming that there exist a

uniqu*#,, such that its. > 0 for each given singular point Izol > 1). From (31), we

have-

( -o(1 -o) 2 1 - c- -()t {ResidualGL(Z)}

Expressing the last expression in terms of a Cauchy integral, we obtain

FrW(t) = - A(l - )2l(-
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Therefore,

k(z, t) Z= d (1-- z)

4.6 Algorithmic applications

In this section we use the distributional law to derive the distribution for the number

in the system.

The R/G/1 and G/R/1 queues

In (35) we have derived the queue length distribution of the G/R/1 queue using the

Laplace transform of the waiting time. We will now use the distributional law to

find the queue length distribution of the R/G/I queue.

Let a(s) = X be the Laplace transform of the interarrival distribution, where

coD(s), aN(s) are polynomials of degree m and less than m respectively. Let P3(s)

be the Laplace transform of the service time distribution. Using the Hilbert factor-

ization method, one can derive the waiting time distribution for the R/G/I queue

(see Bertsimas et. al. [3]) as follows:

k-1

w(s) = (O) (1- P)S H (8 +

fD(-) 8(1- c(-)1(o)) r= 

where z,, r = 1,..., k - 1 are the k - 1 roots of the equation

C(z),(-Z) = 1, Re(z) < .

Note that for k = 1 the product frIkl s is defined to be 1. In addition for

k = 1 the formula reduces to the well known Pollaczek-Kintchine formula for the

M/G/I queueA Applying the distributional law (12) and diagonalizing the matrix

w4hr zA1) we can find the queue length distribution as follows:

0 ... 0(%
.. : · s'(,), (36)~
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where S(z) is a matrix with columns the eigenvectors of Ao + zA 1 and G,(z), i =

1,... ,k are the eigenvalues of Ao + zA 1, which are calculated from the equation:

zoa(i(z)) = 1.

The G/D/s queue

As we observed in subsection 4.2 the waiting time for the G/D/s is exactly the

same as in a G(')/D/1 queue, where G ( ) is the s convolution of the interarrival

distribution. Therefore we can solve the R/D/s queue using the results of the

previous paragraph for the RID/I, since the class R is closed under convolutions.

The GI/D/oo queue

In this case L is the number in the system and W is the time spent in the system.

Because of the deterministic service with mean it is clearly a system with no

overtaking. Moreover, because of the presence of infinite number of servers there is

no waiting and thus fw(t) = 6(t - ). From the distributional law therefore

1
GL(z) = K(z, I).

If in addition the arrival time is Poisson, i.e. K(zx,t) = e' ( l' ) , then we obtain

the well known result that the number in the system has a Poisson distribution with

parameter A/1 s.

Systems with no overtaking

In subsection 4.2 we used the distributional lawa to find closed form approximations

for the expected waiting time in systems for which the distributional law holds

for bo*:the nuwbe iu the system and the number in the queue. We want to

argue tbM-f such systems the distributional law completely characterizes all the

distr i. i interest, i.e. just the knowledge of the distributional law has all

the probabilistic information needed to solve for these distributions. Although the

actual solution might need arguments from complex analysis, the distributional laws

fully characterize such systems. This important ideawas observed by Keilson and

Servi 14] for systems with Poisson arrival process. We generalize it here for systems
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with arbitrary distributions.

Let L, Q be the number in the system and queue respectively and S and W is

the time spent in the system and queue. From theorem 1

GL(Z) = 2 S K*(z, s)s(-s) ds (37)

GQ(z) 2rv/7 f K*(z, s)w(-a) ds. (38)

But if (s) is the transform of the service time distribution then

Os(o) = Ow(s)[3(s). (39)

Finally, depending on the system being solved GL(z), Gq(z) are related. For exam-

ple for the GI/G/1

GL(Z) = (1 - p)(l - z) + zGQ(z). (40)

Solving the system of equations (37), (38), (39) and (40) we can find an integral

equation for the transform of the waiting time pdf

2w 7f K*(z,s)rw(-)(1(-) ) - z) ds = (1 - p)(l - z) (41)

For the special case of the M/G/1 queue one can derive easily the Pollaczek-

Khintchine formula. In order to solve (41) we need to use the calculus of residuals

and regularity arguments from complex analysis. What is important is that just

the knowledge of the distributional Little's law for systems with no overtaking in

both the mmber in the queue and in the system is sufficient to fully characterize
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