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Abstract 
 
This work proposes an enhancement of Formal Concept Analysis (FCA) by Lattice Computing (LC) techniques. More 
specifically, a novel Galois connection is introduced toward defining tunable metric distances as well as tunable 
inclusion measure functions between formal concepts induced from hybrid (i.e., nominal and numerical) data. An 
induction of formal concepts is pursued here by a novel extension of the Karnaugh map, or K-map for short, technique 
from digital electronics. In conclusion, granular classification can be pursued. The capacity of a classifier based on 
formal concepts is demonstrated here with promising results. The formal concepts are interpreted as descriptive decision-
making knowledge (rules) induced from the training data. 
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1. Introduction 
 
With the proliferation of computer-supported devices there 
is a sustained interest in human/machine-to-machine 
interaction applications involving numerical and/or nominal 
data. In the aforementioned context, Machine Learning (ML) 
and Computational Intelligence (CI) techniques are 
promising. In particular, Formal Concept Analysis (FCA) 
supported by Lattice Computing (LC) techniques might have 
a significant potential as demonstrated in this work. 
 Formal Concept Analysis, or FCA for short, is a branch 
of applied (mathematical) lattice theory [4] which is used in 
data-mining and knowledge-representation applications. 
Typically, FCA induces lattice-ordered structures, namely 
formal concepts, restricted in finite power-sets. 
Nevertheless, traditional FCA lacks a capacity for (tunable) 
generalization. This work equips an extended FCA with LC 
tools for tunable generalization, also in spaces of 
(un)countably infinite cardinality involving hybrid (i.e., 
nominal and numerical) data; linguistic data processing is 
another possibility as explained below. 
 The LC paradigm has been defined as “an evolving 
collection of tools and mathematical modelling 
methodologies with the capacity to process lattice-ordered 
data per se including logic values, numbers, sets, symbols, 
graphs, etc” [13], [22]. The LC paradigm suggests an 
alternative to conventional “number crunching” in 
computational intelligence applications by considering 
semantics, represented by a lattice-order relation [7]. 
Specific examples of the LC paradigm are described in [9], 
[20]. In a broad sense, the LC paradigm subsumes any 
lattice-theory-based information processing approach. In the 
aforementioned sense, a number of cross-fertilizations have 

been proposed in the LC paradigm by different authors [1], 
[17]. Trends in LC appear in [5], [8]. 
 This work pursues an enhancement of the traditional 
FCA using LC techniques. In particular, this work is an 
extension of recent work regarding (optimized) granular knn 
classifiers [6], [21] based on Type-1 Intervals’ Numbers, or 
(Type-1) INs for short. Recall that an IN has been described 
as a mathematical object that may represent either a fuzzy 
interval or a distribution of numeric data samples [14]. The 
space F1 of INs has been studied. In particular, it has been 
shown that F1 is a metric lattice with cardinality �1, where 
“�1” is the cardinality of the set R of real numbers; the 
space F1 is a cone in a linear space; non-linear 
transformations in F1 have been shown [14]. This work 
considers INs jointly with symbols in data mining and 
pattern recognition applications. In conclusion, tunable, 
hybrid formal concepts are induced from both numerical and 
nominal data as explained below. 
 The novelties of this work are summarized next. First, a 
measure (set) function is introduced in a power-set of 
(un)countable cardinality toward employing LC instruments 
in traditional FCA. Second, an extension of the K-map 
technique from digital electronics is introduced toward an 
optimal calculation of formal concepts. Third, hybrid formal 
concepts are considered including both nominal and 
numerical data (IN) representations; in particular, a (Type-1) 
IN here represents a population of numerical data. 
 The layout of this work is as follows. Section 2 
summarizes the mathematical background. Section 3 
presents FCA extensions based on LC techniques. Section 4 
describes a K-map extension. Section 5 presents 
computational experiments. Section 6 concludes by 
summarizing our contribution and discussing future work. 
The Appendix includes useful mathematical definitions. 
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2. Mathematical Background 
 
This section presents general notions from lattice theory 
followed by the presentation of two lattices, namely a 
power-set and the set of INs. 
 
2.1 General 
A binary relation�๤ on a set P is a partial order iff it satisfies 
the following three conditions: 
 
(P1)  x ๤ x  � Reflexivity. 

(P2)  x ๤ y and y ๤ x � x = y  � Antisymmetry. 

(P3)  x ๤ y and y ๤ z � x ๤ z  � Transitivity. 
 
 In this case (P,๤) is called a partially ordered set, or 
poset for short. 
 A lattice is a poset (L,๤) with the additional property 
that any two elements x,y�L have both a greatest lower 
bound, namely infimum (or, equivalently, meet), denoted by 
x๦y and a least upper bound, namely supremum (or, 

equivalently, join), denoted by x๧y. If in a lattice (L,๤) every 

(x,y) pair satisfies either x๤y or x๣y then we say that the 

lattice (L,๤) is totally-ordered. A lattice (L,๤) is called 
complete iff each of its subsets X has both an infimum and a 
supremum in L (hence, taking X = L, we see that a complete 
lattice has both a least element and a greatest element 
denoted by O and I, respectively). 
 A valuation on a lattice (L,๤) is a real function v: L�oR 

which satisfies v(x) + v(y) = v(x๦y) + v(x๧y). A valuation is 

called positive iff x ๢ y � v(x) < v(y). Given a positive 

valuation on a lattice (L,๤), a metric distance function d: 

LuL�o 0
�R  is given by d(x,y) = v(x๧y) - v(x๦y) � The 

definition for a metric is given in the Appendix. 
Furthermore, a positive valuation results in an inclusion 
measure function V: L�uLo[0,1] given by 

( )( , )
( )

V  � �
v yx y

v x y
 � The definition for an inclusion 

measure is given in the Appendix. 
 Our interest here focuses on a complete lattice (L,๤). Of 
special interest is a dual isomorphic function T: LoL 
which, by definition, satisfies both “x ๢�y � T(x) ๣�T(y)” 
and “T is onto L”. Note that function T(.) may be interpreted 
as a negation operator in lattice (L,๤). Function T(.) may 
extend, as explained below, the metric given by d(x,y) = 
v(x๧y) - v(x๦y) to the set I1 of a lattice (L,๤) (Type-1) 
intervals defined by 
 
I1 = {[a1,a2] | a1,a2�L such that a1 ๤ a2} � {�} 
 
 The empty set (�) is also considered to be an interval 
[a1,a2] with any a1,a2�L such that a1 ີ a2. In particular, the 

empty interval in a complete lattice (L,๤) is typically 
represented by [I,O]. In turn, (I1,��) is a complete lattice, 

where � is the conventional set-inclusion relation with order 
[a,b] � [c,d] � (c ๤ a and b ๤ d) [24] and least (resp. 
greatest) element denoted by [I,O] (resp. [O,I] = L). 
 It is known that given both a positive valuation v: L�oR 
and a dual isomorphic function T : LoL on a lattice (L,๤), 
the function v': LuL�oR given by v'([a,b]) = v(T(a)) + v(b) 
is a positive valuation on lattice (LuL,�๥u๤) [10]. Hence, 
the function v'(.) can be used to define a metric distance on 
the lattice (I1,��) of (Type-1) intervals. Furthermore, 
function v'(.) can be used to define an inclusion measure in 
(I1,��). This work focuses on metrics. Future work will 
consider inclusion measures. 
 
2.2 A power-set 
Based on the definitions of a V-algebra as well as of a 
measure given in the Appendix, a measure space is defined 
as a triplet (:,6:,

:6
m ), where : is a set, 6: is a V-algebra 

over :, and 
:6

m  is a measure over 6:. Note that a 

probability space is a measure space such that  
:6

m (:) = 1. 

 Given a measure space (:,6:,
:6

m ) it follows that 

(6:,�) is a complete lattice ordered by set-inclusion (�). 
The corresponding lattice meet and join operators are the 
conventional set intersection (�) and union (�) operators, 
respectively. In particular, note that if A,B�6: then (1) 
(A�B)��6: and (2) Ac,Bc�6: �� (Ac�Bc)c = (A�B)��6:. 
Furthermore, note that the measure 

:6
m  is a positive 

valuation function on lattice (6:,�). A dual isomorphic 
function T : 6:�o6: is given by the set complement T(A)= 
Ac = (:-A)�6:. Our interest in the context of this work 
focuses on a measure space (:,6:,

:6
m ) such that : = 

{1,},K} is a finite set, 6: = 2:, and 
:6

m  remains to be 

defined in a specific application.  
 
2.3 Intervals’ Numbers (INs) 
We present a hierarchy of lattices stemming from the totally-
ordered set R of real numbers. 
 
Real numbers 
 Consider the set R  = R�{-f, f}, namely set of 
extended real numbers. It turns out that ( R ,d) is a 
complete- as well as a totally-ordered lattice, where d is the 
usual order relation of real numbers. The corresponding 
infimum and supremum operators are denoted by � and �, 
respectively. There are both a least element denoted by “-f” 
and a greatest element denoted by “f” in lattice ( R ,d). 
 
Intervals 
 Given a1,a2�R  such that a1da2, an interval A = [a1,a2] 
is defined as 
 
[a1,a2] = {x: x�R  and a1 d x d a2] 
 
 The empty set (�) is also considered an interval, i.e. the 
empty interval; we denote the collection of intervals of R  
(including the empty interval) by I1( R ), or I1 for short, 
namely set of (Type-1) intervals. 
 The pair (I1,�) is a complete lattice with respect to the � 
(set theoretic inclusion) order. The least element (�) of I1 is 
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typically represented as [f,-f], whereas the greatest element 
of I1 is represented as [-f,f] = R . Given nonempty 
intervals A = [a1,a2] and B = [b1,b2], their infimum and 
supremum in I1 are given, respectively, by 
 
A�B = [a1�b1,a2�b2]                        (1) 

 
A B = [a1�b1,a2�b2]                        (2) 
 
Fuzzy Intervals 

A fuzzy subset F of R  is identical to its membership 
function F: R o[0,1]. A partial order can be defined for 
fuzzy subsets as follows 
 
F d G � (�x: F(x) d G(x)). 
 
 It is easy to check that the infimum and supremum of 
two fuzzy sets F, G is a fuzzy set denoted by F�G and F�G, 
respectively, and defined for every x�R  as 
 
(F�G)(x) = F(x)�G(x)                          (3) 

 
(F�G)(x) = F(x)�G(x)                          (4) 

 
 Given a fuzzy subset F, the h-cut of F is the set 
 
Fh = {x: F(x) t h}. 
 
 Recall that we use the term “h-cut” instead of the 
(equivalent) term “D-cut” used in the literature for fuzzy sets 
due to the two different interpretations for an Intervals’ 
Number (IN) [9]. 
 It is known that for a fuzzy membership function F it is 
 
(�h�[0,1]: Fh = Gh) � (�x: F(x) = G(x))           (5) 

 
 Consider the following definition for a fuzzy interval or, 
equivalently, fuzzy number. 
 
Definition 1: A fuzzy interval is a fuzzy subset F whose 
every h-cut is a closed interval: (�h�[0,1]: Fh�I1). We 
denote the set of all fuzzy intervals by Fc. 
 
 It is known that the structure (Fc,d), equipped with the 
fuzzy sets order d, is a complete lattice. The infimum 
operation is � as defined in (3). The supremum operation 
( ) is defined as follows 
 
F G = inf{H: H�Fc, F d H, G d H}                 (6) 

 
 That is, F G is the “smallest” fuzzy interval which is 
greater than both F and G. 
 
Intervals’ Numbers 
 Consider the following definition. 
 
Definition 2: A Type-1 Intervals’ Number, or (Type-1) IN 
for short, is a function F: [0,1]�oI1, which satisfies 
 
h1 t h2 � 

1hF  � 
2hF , and 

�X�[0,1]: h
h�
�

X
F  = X�F . 

 

 We denote the class of all (Type-1) INs by F1. The 
following theorem shows that we can associate every IN to a 
fuzzy interval. 
 
Theorem 1: Given IN E�F1, define a fuzzy set  as 
 
�x: (x) = sup{h: x�Eh}. 
 
 The h-cuts of  are denoted by  and, by definition, 

satisfy �h�[0,1]: ={x: (x) t h}. Then, for all h�[0,1] 

we have =Eh. Hence,  is a fuzzy interval. In other 

words, the h-cuts of the fuzzy set  are the intervals of the 
original IN E. Hence, Theorem 1 indicates two equivalent 
representations for an IN, namely the interval-representation 
and the membership-function-representation. An advantage 
of the interval-representation is that it enables useful 
algebraic operations, whereas an advantage of the 
membership-function-representation is that it enables 
convenient (e.g., fuzzy logic, etc) interpretations. 
 INs are equipped with a partial order U  as follows. 
 
Definition 3: For every pair F,G�F1 we define the 
relationship U  as follows 
 
F U  G � (�h�[0,1]: Fh � Gh). 
 
 Lattices (Fc,d) and (F1,U ) are (order) isomorphic as a 
consequence of the following theorem � The definition for 
(order) isomorphic posets is given in the Appendix. 
 
Theorem 2: For all F,G�F1 we have 
 
F U  G � (�h�[0,1]: Fh � Gh) � (�x�R : F(x) d G(x)). 
 
 The relation U  is a lattice order and the lattice (F1,U ) of 
INs is complete. If we denote the infimum operation by #  
and the supremum operation by �" , then �h�[0,1] we have 
 
(F # G)h = Fh�Gh  and  (F �" G)h = Fh Gh           (7) 
 
Metric Distances Between INs 
 The following two functions will be useful. 
 
A1. A strictly increasing function v: R oR . 
A2. A strictly decreasing function T: R oR . 
 
 Based on two functions v and T that satisfy A1-A2, a 
metric function

1I
d :  I1uI1o 0

�R  is defined as 

 

1I
d ([a,b],[c,d]) = v(T(a�c))-v(T (a�c))+v(b�d)-v(b�d)     (8) 

 A metric function 
1F

d :  F1uF1o 0
�R  is defined as 

1 1

1

h h
0

dh( , ) ( , ) ³F Id F G d F G                             (9) 

 
 Both functions v(.) and T (.) can be parametric, therefore 
all the above metrics are tunable. 
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 Assume N metric spaces (Si,di), i�{1,},N}, where Si is 
a space and function di: SiuSio 0

�R  is a metric. Then, the   

k-Minkowski metric dk: SuSo 0
�R , where S = S1u}uSN, is 

defined as 

� �
1

N kk
i i i

i 1
( ) ( )

 

ª º
« »
« »¬ ¼
¦kd , = d a ,ba b                   (10) 

 
where a = (a1,},aN),  b = (b1,},bN),  k�{1,2,}f}. 
 
 Apparently, k-Minkowski metrics can be used between 
N-tuples of INs. 
 
 
3. FCA Extensions Based on LC Techniques 
 
Formal Concept Analysis (FCA) deals with a formal context 
defined next [3]. 
 
Definition 4: A formal context is a triplet (G,M,I), where G 
and M are two finite sets called objects and attributes, 
respectively; moreover, I�GuM is a binary relation, namely 
incidence relation. 
 
 Consider two derivation operators as follows. 
 
Definition 5: Given a formal context (G,M,I) as well as the 
subsets A�G and B�M, two derivation operators, namely 
Galois connectors, are defined as 
 
Ac := {m�M | (g,m)�I, �g�A} 
 
Bc := {g�A | (g,m)�I, �m�B} 
 
 The aforementioned derivation operators satisfy the 
following conditions for A1,A2�G and B1,B2�M: 
 
1. A1�A2 � 2 1c c�A A ; dually, B1�B2 � 2 1c c�B B . 

2. 1 1cc�A A , 1 1c ccc A A ; dually, 1 1cc�B B , 1 1Bc ccc B . 

3. 1 1c�A B  � 1 1c�B A  � 1 1u �A B I . 
 
 A formal concept is defined next. 
 
Definition 6: Let (G,M,I) be a formal context. A formal 
concept C is a pair C = (A,B), where A�G and B�M such 
that c A B  and c  A B . 
 
 We remark that A is called extent and B is called intent 
of the formal concept (A,B). 
 Next, we define formally a Galois connection [4]. 
 
Definition 7: Let M: PoQ and \: QoP be maps between 
two posets (P,๤) and (Q,๤). Such pair of maps is called a 
Galois connection between the posets if 
 
   1.  p1 ๤ p2 � M (p1) ๥ M (p2). 

   2.  q1 ๤ q2 � \(q1) ๥\(q2). 

   3.  p ๤ \(M (p)) and q ๤M(\(q)). 
 
 The following Theorem [4] will be instrumental below. 

Theorem 3: A pair (M,\) of maps is a Galois connection iff 
p ๤ \ (q) �� M (p) ๥ q. 
 
 FCA focuses on a Galois connection M: 2Mo2N and \: 
2No2M between power-sets lattices (2M,�) and (2N,�) of two 
(finite) sets M and N, respectively. 
 If (A1,B1) and (A2,B2) are concepts of a context, we 
define an order  (A1,B1) ๤ (A2,B2) iff A1 � A2 (which is 
equivalent to B2 � B1). The set of all concepts of a formal 
context (G,M,I) ordered in this way is denoted by 

( , , )G M IB  and it is called the concept lattice of the context 
(G,M,I). 
 
Theorem 4 (The Basic Theorem of Concept Lattices): The 
concept lattice ( , , )G M IB  is a complete lattice in which the 
meet and join are given, respectively, by 

t t t tt t t
( , ) ,

� � �

§ ·cc§ ·¨ ¸�  ¨ ¸¨ ¸¨ ¸¨ ¸© ¹© ¹
� *

T T T
A B A B  

and 

t t t tt t t
( , ) ,

� � �

§ ·cc§ ·¨ ¸�  ¨ ¸¨ ¸¨ ¸¨ ¸© ¹© ¹
* �

T T T
A B A B  

 
 Various techniques have been proposed for computing 
formal concepts in FCA [3], [16]. This work proposes a 
novel computation of a novel formal concept as explained 
below. 
 
3.1 A Novel Formal Concept Definition 
This work proposes defining a formal concept as an interval 
[a,b] in a complete lattice (L,๤) data domain. Recall from 
subsection 2.1 that the interval [a,b] is an element of the 
complete lattice (I1,��) of intervals. 
 We assume both a dual isomorphic function T : LoL 
and a positive valuation function v : LoR toward defining a 
metric as well as an inclusion measure function in lattice 
(L,๤) as explained in subsection 2.1. An additional 
constraint, namely T(T(x))=x, results in the following 
Theorem. 
 
Theorem 5: Let function T: LoL on a lattice (L,๤) satisfy 

both x๢y � T (x)๣T (y) and T(T(x))=x. Then, the pair (T,T) 
is a Galois connection � For simplicity we say that “T  is a 
Galois connection”. 
 
Proof:  p = T (T (p)) ๤ T (q) � T (p) ๥ T (T (q)) = q. 
 
Due to Theorem 3, T  is a Galois connection. 

Ŷ 
 We remark that a Galois connection is a critical 
instrument for representing a formal concept both in the 
context of FCA as well as in the context of this work. In 
particular, recall that a formal concept in FCA is represented 
by (A,B) such that ( )Mc  B = A A  and ( )\c A B = B , 
where (M,\) is a Galois connection; whereas, a formal 
concept (i.e., a lattice interval [a,b]) in this work is 
represented by (T(a),b), where (T,T) is a Galois connection. 
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 In either case, a formal concept is interpreted in this 
work as an information granule. Recall that the term 
(information) granule has been introduced in fuzzy set 
theory to denote a clump of values drawn together by 
indistinguishability, similarity, proximity or functionality. 
Computing with granules, namely Granular Computing, is 
important because granules may accommodate ambiguity 
and/or uncertainty [19]. 
 Even though both aforementioned formal concepts are 
induced from data there is a fundamental difference between 
them. More specifically, a formal concept in FCA “overfits 
the data” in the sense that it exclusively accommodates the 
data it was induced from; whereas, a (lattice interval) formal 
concept might include more data. The latter is called Type I 
generalization [12]. In addition, only a (lattice interval) 
formal concept provides the instruments, namely a metric as 
well as an inclusion measure function, to relate a datum 
outside all formal concepts to its nearest/most-similar one; 
the latter is called Type II generalization [12]. 
 
3.2 Hybrid Formal Concepts 
An FCA “object” (see in Definition 4) in standard 
engineering terms here is also called instance or, 
equivalently, datum; likewise, an FCA “attribute” (see in 
Definition 4) here is also called dimension. Each data 
dimension is a complete lattice. 
 We are interested in datasets including instances with a 
fixed number of dimensions per instance (per dataset). 
Certain dimensions include nominal data, whereas the 
remaining dimensions in an instance include numerical data. 
In this sense we are interested in hybrid datasets (including 
both nominal and numerical data). In conclusion, likewise 
hybrid formal concepts will be induced from the hybrid data 
as explained below. 
 A nominal data dimension Xi, i�{1,},La} obtains a 
number Ki of values in a set Vi = {i1,},

1Ki }, whereas a 

numerical data dimension Yi, i�{1,},Ra} is treated as a real 
variable, i.e. Yi�R. In all, there are La nominal data 
dimensions, namely Xi�{1,…,La+Ra} where i�{1,…,La}, 
and Ra numerical data dimensions, namely Yi�{1,…,La+Ra} 
where i�{1,…,Ra}, such that X1 < … < 

aLX  and Y1 < … < 

aRY . A datum (instance) is called trivial iff each of its La+Ra 

dimensions is either a single nominal value or a single 
number. Likewise, a formal concept might be trivial. 
Furthermore, we say that the nominal data of an instance 
(datum) D are included in a formal concept FC iff (in every 
nominal data dimension) the nominal datum of D is included 
in the nominal data of FC. The next section describes how a 
hybrid formal concept can be induced, first, by inducing sets 
of nominal data in every nominal data dimension and, 
second, by inducing one IN in every numerical data 
dimension by algorithm CALCIN [21] presented next. 
 
Algorithm CALCIN 
Consider a finite set X of (numeric) data samples, i.e., X= 
{x1,…,xn}. Two entries xi, xj of the set X are called 
successive iff there is no other entry xk, k�{1,…,n} such that 
xi�xj < xk < xi�xj, where � and � are the min and max 
operators, respectively. A strictly increasing, cumulative real 
function 0: �oc R R  is computed from the set X by, first, 
defining 

i j j i
1( )
n

| { : } | dc x x x x ,                      (11) 

where i,j�{1,…,n} and |S| denotes the cardinality of the set 
S. Finally, function 0: �oc R R  is defined by straight-line 
connecting two points (xi,c(xi)) and (xj,c(xj)), where xi, xj are 
successive entries of the set X. Note that there is a unique 
real number x0.5 such that c(x0.5)=0.5. An IN is calculated 
from function c(.) such that for values less-than or equal-to 
x0.5 the corresponding IN envelope function equals 2c(x), 
whereas for values larger than x0.5 the corresponding IN 
envelope function equals 2(1-c(x)). 
 In its interval-representation, an IN envelope is 
represented by L equally spaced intervals from h=0 to h=1 
included. Therefore, any population of data samples in the 
set X is represented by L intervals. 
 
 
4. A K-map Extension 
 
The Karnaugh map, or K-map for short, is a technique 
popular in digital electronics for simplifying a Boolean 
algebra expression [15]. More specifically, the contents of a 
Boolean Truth Table are transferred onto a two-dimensional 
grid whose cells are ordered in a Gray code. In conclusion, a 
K-map simplifies a Boolean logic expression so that the 
latter can be implemented using a minimum number of 
physical logic gates [15]. In particular, a sum-of-products 
can be implemented using AND gates feeding into an OR 
gate. 
 In the conventional K-map, a variable shifts between 1 
and 0. This work describes an extension of K-map such that 
a variable may shift among more than two values as 
illustrated next. 
 Consider three nominal data dimensions, i.e. La=3, such 
that V1= {0,1,2}, V2= {0,1,2,3} and V3= {0,1}. Furthermore, 
consider the four instances shown in the lines of Table 1. 
 In terms of the K-map, each line in Table 1 is interpreted 
as a product term. The sum of all the four terms in Table 1 
equals “030 + 230 + 130 + 131 = (0+2+1)30 + 13(0+1)= *30 
+ 13*”, where the term “131” was repeated twice to 
facilitate simplification. Hence, the four data in Table 1 can 
be represented by the disjunction of two strings of 
characters, namely “*30” and “13*”, respectively. Note that 
an asterisk (*) in a nominal data dimension denotes all the 
nominal data values in the corresponding dimension. In the 
aforementioned manner, we have extended the conventional 
K-map from binary (Boolean) values to N-ary (nominal) 
values. In conclusion, a simplified sum-of-products 
expression is produced. 
 Fig.1 presents a simple algorithm, namely “K-map*”, for 
inducing formal concepts from nominal data exclusively as 
it was illustrated above in this section. Note that algorithm 
“K-map*” induces labelled formal concepts per class. Fig.2 
presents another simple algorithm, namely “K-mapExt”, for 
inducing hybrid formal concepts including both nominal 
data (induced by algorithm “K-map*”) and numerical data 
such that one IN is induced per numerical data dimension 
per (hybrid) formal concept. Optimized extensions of the 
basic K-map will be pursued in a future work. 
 
 
Table 1: A line of this Table displays nominal data 

Nominal data dimension 
1 2 3 
0 3 0 
2 3 0 
1 3 0 
1 3 1 

 



V. G. Kaburlasos and L. Moussiades/Journal of Engineering Science and Technology Review 7 (1) (2014) 1 - 8 

 6

 
Fig.1. Algorithm “K-map*” for inducing formal concepts from nominal 
data attributes alone. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2. Algorithm “K-mapExt” for inducing hybrid formal concepts 
including both nominal and numerical data. 
 
 Testing by algorithm “K-mapExt” is straightforward by 
computing the k-Minkowski metric distance of a testing 
datum TS from all the labelled formal concepts. In 
conclusion, TS is assigned the class label of its nearest formal 
concept. That is, the “K-mapExt” classifier carries out knn 
classification for k=1. 
 
 
5. Computational Experiments 
 
In this section we comparatively present preliminary 
computational experiments and results regarding an 
application of the K-mapExt classifier on a benchmark 
dataset from the UCI Machine Learning Repository [2]. In 
particular, we employ the Statlog (Australian-Credit-
Approval) benchmark dataset, which includes 690 instances 
(with 14 attributes including 6 numerical and 8 nominal 
attributes per instance) partitioned in 2 classes. There are 
missing values; more specifically, 37 instances (5% of the 
data) have one or more missing values, which were replaced 
by the mode and the mean of the corresponding attribute for 
categorical and numerical attributes, respectively. Since a 
training/testing dataset is not given explicitly, in our 
computational experiments we engaged a randomly selected 
75% of the data instances for training, whereas the 
remaining 25% data instances were used for testing. 
 A nominal dimension X takes values in the set : = 
{0,},K-1}; we assumed a measure 0:

:

�
6 :6 om R  such 

that 
:6

m ({0}) = } = 
:6

m ({K-1}) = 
1
K

. Hence, d({i},{k}) 

= 
2
K

, for izk, and d({i},:) = 1-
1
K

. Each numerical 

dimension was normalized by a linear transformation such 
that a dimension’s min and max values were mapped to the 
numbers 0 and 1, respectively. In conclusion, one IN was 
induced from the normalized training data per numerical 
dimension by algorithm CALCIN. We used L=32 levels for 

representing an IN. For every numerical data dimension we 
used the same functions v(x) = x and T(x) = 1-x for x�[0,1]. 
 The best “K-mapExt” classification accuracy of 74.67% 
for the Statlog (Australian-Credit-Approval) benchmark 
dataset is shown in Table 2 as well as the accuracy of the 
ZeroR classifier from the literature [2]. Note that the 
difference in the accuracies of the two classifiers is not 
statistically significant. The corresponding number of 
induced formal concepts was 143 and 122 for class-1 and 
class-2, respectively. Fig.3 and Fig.4 display a hybrid formal 
concept regarding class-1 and class-2, respectively. Note that 
the nominal data in Fig.3/4(a) as well as the INs in Fig.3/4 
(b)-(g) can be interpreted as descriptive decision-making 
knowledge (rules) induced from the training data. 
 
 
6. Discussion and Conclusion 
 
This work has proposed an enhancement of Formal Concept 
Analysis (FCA) by Lattice Computing (LC) techniques 
toward classification. A novel formal concept definition, that 
is an interval in a lattice-ordered data domain, has been 
proposed. It was explained how the proposed formal concept 
is also based on a Galois connection. Moreover, the 
proposed formal concept can rigorously include both 
nominal and numerical data. 
 A simple knn algorithm, namely K-mapExt, was 
introduced as an extension of the K-map technique from 
digital electronics. The capacity of the K-mapExt algorithm 
was demonstrated in a benchmark classification problem 
including both nominal and numerical data. Apart from its 
tunability as well as its capacity for disparate data 
unification, an advantage of the proposed classifier is its 
capacity to deal with non-trivial data toward accommodating 
vagueness. 
 Future work may proceed along several directions. In 
particular, intervals of (Type-1) INs, namely Type-2 INs, 
might be considered toward computing with words [18], 
[23]; alternative (tunable) measure functions may be 
considered per nominal data dimension as well as alternative 
(tunable) functions v(x) and T(x) may be considered per 
numerical data dimension toward optimizing classification 
performance. Using an inclusion measure V instead of a 
metric distance d is another promising direction toward a 
semantic optimization based on the computation of 
“maximal” formal concepts [11] as it will be detailed 
elsewhere. 
 
Table 2: Testing data accuracy of two different classifiers 
regarding the Statlog (Australian-Credit-Approval) 
benchmark dataset 

Classifier name Accuracy (%) 
ZeroR 75.93 
K-mapExt 74.67 
 
 
 
Appendix 
This Appendix includes five mathematical definitions. 
 
A metric in a space S is a function d: SuSo 0

�R  that 
satisfies: 
(M1)  d(x,y) = 0 � x = y. 
(M2)  d(x,y) = d(y,x)  � Symmetry. 
(M3)  d(x,z) d d(x,y) + d(y,z)  � Triangle Inequality. 

for c=1 to c=Nclasses do 
 for i=1 to i=La do 
 if all the Ki discrete values of the nominal 

attribute Xi appear in dimension i then replace 
all the Ki discrete values by “*”. 

 end for 
end for 

Engage the “K-map*” algorithm (of Fig. 1) to 
induce formal concepts from nominal data attributes 
exclusively. 
for each formal concept FC do 
 for i=1 to i=Ra do 
 Use algorithm CALCIN to induce an IN from 

all the numerical data in dimension i whose 
corresponding nominal data are included in FC. 

 end for 
end for 
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*2*40112 

 
(a) 

  
(b) (c) 

  
(d) (e) 

  
(f) (g) 

 
Fig.3. A hybrid formal concept induced from class-1 training data 
regarding the “Statlog (Australian-Credit-Approval)” benchmark 
dataset. (a) The nominal data term “*2*40112” computed by Algorithm 
K-map* (Fig. 1). The remaining figures display INs, in their interval-
representation, induced from normalized numerical data in dimensions 
(b) 2, (c) 3, (d) 7, (e) 10, (f) 13 and (g) 14. 
 
 
An inclusion measure in a lattice (L,๤) is a function          
V: L�uLo[0,1] that satisfies: 
(C1)  u ๤ w � V(u,w) = 1. 

(C2)  u ๤ w � V(x,u) d V(x,w). 
 
A V-algebra 6: over a set : is a collection of subsets of : 
that satisfies: 
(Ȉ1) ��6:. 
(Ȉ2) A�6: � Ac = (:-A)�6:. 
(Ȉ3) given Ai�6:, where i�D and D is a countable indexing 
set, it follows i

i
( )
�
*

D
A �6:. 

 
 
 
 
 

 
118*10*2 

 
(a) 

  
(b) (c) 

  
(d) (e) 

  
(f) (g) 

 
Fig.4. A hybrid formal concept induced from class-2 training data 
regarding the “Statlog (Australian-Credit-Approval)” benchmark 
dataset. (a) The nominal data term “118*10*2” computed by Algorithm 
K-map* (Fig. 1). The remaining figures display INs, in their interval-
representation, induced from normalized numerical data in dimensions 
(b) 2, (c) 3, (d) 7, (e) 10, (f) 13 and (g) 14. 
 
 

A measure is a set function mS: So 0
�R  that assigns a size 

to every “measureable set” element in S such that: 
(S1) mS(�) = 0, and 
(S2) for any countable (including finite) indexing set D and 
any collection of pairwise disjoint sets Ai��S indexed by 
i�D it holds mS i

i
( )
�
*

D
A  = S i

i
( )

�
¦

D
m A . 

 
A function \: (P,๤)o(Q,๤) between posets (P,๤) and (Q,๤) 

is called (order) isomorphic iff both “x ๤ y � \(x)๤\(y)” 

and “\ is onto Q”. Posets (P,๤) and (Q,๤) are called 

isomorphic, symbolically (P,๤) # (Q,๤). 
 
 

______________________________ 
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