

Journal of Engineering Science and Technology Review 7 (1) (2014) 1 – 8

Research Article

 Induction of formal concepts by lattice computing techniques for tunable classification

V. G. Kaburlasos and L. Moussiades

Dept. of Computer and Informatics Engineering, Eastern Macedonia and Thrace Institute of Technology, Kavala, 65404 Greece

Received 23 February 2014; Accepted 5 March 2014

Abstract

This work proposes an enhancement of Formal Concept Analysis (FCA) by Lattice Computing (LC) techniques. More
specifically, a novel Galois connection is introduced toward defining tunable metric distances as well as tunable
inclusion measure functions between formal concepts induced from hybrid (i.e., nominal and numerical) data. An
induction of formal concepts is pursued here by a novel extension of the Karnaugh map, or K-map for short, technique
from digital electronics. In conclusion, granular classification can be pursued. The capacity of a classifier based on
formal concepts is demonstrated here with promising results. The formal concepts are interpreted as descriptive decision-
making knowledge (rules) induced from the training data.

Keywords: Classification, Formal Concept Analysis, Lattice Computing

1. Introduction

With the proliferation of computer-supported devices there
is a sustained interest in human/machine-to-machine
interaction applications involving numerical and/or nominal
data. In the aforementioned context, Machine Learning (ML)
and Computational Intelligence (CI) techniques are
promising. In particular, Formal Concept Analysis (FCA)
supported by Lattice Computing (LC) techniques might have
a significant potential as demonstrated in this work.
 Formal Concept Analysis, or FCA for short, is a branch
of applied (mathematical) lattice theory [4] which is used in
data-mining and knowledge-representation applications.
Typically, FCA induces lattice-ordered structures, namely
formal concepts, restricted in finite power-sets.
Nevertheless, traditional FCA lacks a capacity for (tunable)
generalization. This work equips an extended FCA with LC
tools for tunable generalization, also in spaces of
(un)countably infinite cardinality involving hybrid (i.e.,
nominal and numerical) data; linguistic data processing is
another possibility as explained below.
 The LC paradigm has been defined as “an evolving
collection of tools and mathematical modelling
methodologies with the capacity to process lattice-ordered
data per se including logic values, numbers, sets, symbols,
graphs, etc” [13], [22]. The LC paradigm suggests an
alternative to conventional “number crunching” in
computational intelligence applications by considering
semantics, represented by a lattice-order relation [7].
Specific examples of the LC paradigm are described in [9],
[20]. In a broad sense, the LC paradigm subsumes any
lattice-theory-based information processing approach. In the
aforementioned sense, a number of cross-fertilizations have

been proposed in the LC paradigm by different authors [1],
[17]. Trends in LC appear in [5], [8].
 This work pursues an enhancement of the traditional
FCA using LC techniques. In particular, this work is an
extension of recent work regarding (optimized) granular knn
classifiers [6], [21] based on Type-1 Intervals’ Numbers, or
(Type-1) INs for short. Recall that an IN has been described
as a mathematical object that may represent either a fuzzy
interval or a distribution of numeric data samples [14]. The
space F1 of INs has been studied. In particular, it has been
shown that F1 is a metric lattice with cardinality �1, where
“�1” is the cardinality of the set R of real numbers; the
space F1 is a cone in a linear space; non-linear
transformations in F1 have been shown [14]. This work
considers INs jointly with symbols in data mining and
pattern recognition applications. In conclusion, tunable,
hybrid formal concepts are induced from both numerical and
nominal data as explained below.
 The novelties of this work are summarized next. First, a
measure (set) function is introduced in a power-set of
(un)countable cardinality toward employing LC instruments
in traditional FCA. Second, an extension of the K-map
technique from digital electronics is introduced toward an
optimal calculation of formal concepts. Third, hybrid formal
concepts are considered including both nominal and
numerical data (IN) representations; in particular, a (Type-1)
IN here represents a population of numerical data.
 The layout of this work is as follows. Section 2
summarizes the mathematical background. Section 3
presents FCA extensions based on LC techniques. Section 4
describes a K-map extension. Section 5 presents
computational experiments. Section 6 concludes by
summarizing our contribution and discussing future work.
The Appendix includes useful mathematical definitions.

JOURNAL OF
Engineering Science and
Technology Review

 www.jestr.org

 * E-mail address: vgkabs@teikav.edu.gr
ISSN: 1791-2377 © 2014 Kavala Institute of Technology. All rights reserved.

V. G. Kaburlasos and L. Moussiades/Journal of Engineering Science and Technology Review 7 (1) (2014) 1 - 8

 2

2. Mathematical Background

This section presents general notions from lattice theory
followed by the presentation of two lattices, namely a
power-set and the set of INs.

2.1 General
A binary relation�๤ on a set P is a partial order iff it satisfies
the following three conditions:

(P1) x ๤ x � Reflexivity.

(P2) x ๤ y and y ๤ x � x = y � Antisymmetry.

(P3) x ๤ y and y ๤ z � x ๤ z � Transitivity.

 In this case (P,๤) is called a partially ordered set, or
poset for short.
 A lattice is a poset (L,๤) with the additional property
that any two elements x,y�L have both a greatest lower
bound, namely infimum (or, equivalently, meet), denoted by
x๦y and a least upper bound, namely supremum (or,

equivalently, join), denoted by x๧y. If in a lattice (L,๤) every

(x,y) pair satisfies either x๤y or x๣y then we say that the

lattice (L,๤) is totally-ordered. A lattice (L,๤) is called
complete iff each of its subsets X has both an infimum and a
supremum in L (hence, taking X = L, we see that a complete
lattice has both a least element and a greatest element
denoted by O and I, respectively).
 A valuation on a lattice (L,๤) is a real function v: L�oR

which satisfies v(x) + v(y) = v(x๦y) + v(x๧y). A valuation is

called positive iff x ๢ y � v(x) < v(y). Given a positive

valuation on a lattice (L,๤), a metric distance function d:

LuL�o 0
�R is given by d(x,y) = v(x๧y) - v(x๦y) � The

definition for a metric is given in the Appendix.
Furthermore, a positive valuation results in an inclusion
measure function V: L�uLo[0,1] given by

()(,)
()

V � �
v yx y

v x y
 � The definition for an inclusion

measure is given in the Appendix.
 Our interest here focuses on a complete lattice (L,๤). Of
special interest is a dual isomorphic function T: LoL
which, by definition, satisfies both “x ๢�y � T(x) ๣�T(y)”
and “T is onto L”. Note that function T(.) may be interpreted
as a negation operator in lattice (L,๤). Function T(.) may
extend, as explained below, the metric given by d(x,y) =
v(x๧y) - v(x๦y) to the set I1 of a lattice (L,๤) (Type-1)
intervals defined by

I1 = {[a1,a2] | a1,a2�L such that a1 ๤ a2} � {�}

 The empty set (�) is also considered to be an interval
[a1,a2] with any a1,a2�L such that a1 ີ a2. In particular, the

empty interval in a complete lattice (L,๤) is typically
represented by [I,O]. In turn, (I1,��) is a complete lattice,

where � is the conventional set-inclusion relation with order
[a,b] � [c,d] � (c ๤ a and b ๤ d) [24] and least (resp.
greatest) element denoted by [I,O] (resp. [O,I] = L).
 It is known that given both a positive valuation v: L�oR
and a dual isomorphic function T : LoL on a lattice (L,๤),
the function v': LuL�oR given by v'([a,b]) = v(T(a)) + v(b)
is a positive valuation on lattice (LuL,�๥u๤) [10]. Hence,
the function v'(.) can be used to define a metric distance on
the lattice (I1,��) of (Type-1) intervals. Furthermore,
function v'(.) can be used to define an inclusion measure in
(I1,��). This work focuses on metrics. Future work will
consider inclusion measures.

2.2 A power-set
Based on the definitions of a V-algebra as well as of a
measure given in the Appendix, a measure space is defined
as a triplet (:,6:,

:6
m), where : is a set, 6: is a V-algebra

over :, and
:6

m is a measure over 6:. Note that a

probability space is a measure space such that
:6

m (:) = 1.

 Given a measure space (:,6:,
:6

m) it follows that

(6:,�) is a complete lattice ordered by set-inclusion (�).
The corresponding lattice meet and join operators are the
conventional set intersection (�) and union (�) operators,
respectively. In particular, note that if A,B�6: then (1)
(A�B)��6: and (2) Ac,Bc�6: �� (Ac�Bc)c = (A�B)��6:.
Furthermore, note that the measure

:6
m is a positive

valuation function on lattice (6:,�). A dual isomorphic
function T : 6:�o6: is given by the set complement T(A)=
Ac = (:-A)�6:. Our interest in the context of this work
focuses on a measure space (:,6:,

:6
m) such that : =

{1,},K} is a finite set, 6: = 2:, and
:6

m remains to be

defined in a specific application.

2.3 Intervals’ Numbers (INs)
We present a hierarchy of lattices stemming from the totally-
ordered set R of real numbers.

Real numbers
 Consider the set R = R�{-f, f}, namely set of
extended real numbers. It turns out that (R ,d) is a
complete- as well as a totally-ordered lattice, where d is the
usual order relation of real numbers. The corresponding
infimum and supremum operators are denoted by � and �,
respectively. There are both a least element denoted by “-f”
and a greatest element denoted by “f” in lattice (R ,d).

Intervals
 Given a1,a2�R such that a1da2, an interval A = [a1,a2]
is defined as

[a1,a2] = {x: x�R and a1 d x d a2]

 The empty set (�) is also considered an interval, i.e. the
empty interval; we denote the collection of intervals of R
(including the empty interval) by I1(R), or I1 for short,
namely set of (Type-1) intervals.
 The pair (I1,�) is a complete lattice with respect to the �
(set theoretic inclusion) order. The least element (�) of I1 is

V. G. Kaburlasos and L. Moussiades/Journal of Engineering Science and Technology Review 7 (1) (2014) 1 - 8

 3

typically represented as [f,-f], whereas the greatest element
of I1 is represented as [-f,f] = R . Given nonempty
intervals A = [a1,a2] and B = [b1,b2], their infimum and
supremum in I1 are given, respectively, by

A�B = [a1�b1,a2�b2] (1)

A B = [a1�b1,a2�b2] (2)

Fuzzy Intervals

A fuzzy subset F of R is identical to its membership
function F: R o[0,1]. A partial order can be defined for
fuzzy subsets as follows

F d G � (�x: F(x) d G(x)).

 It is easy to check that the infimum and supremum of
two fuzzy sets F, G is a fuzzy set denoted by F�G and F�G,
respectively, and defined for every x�R as

(F�G)(x) = F(x)�G(x) (3)

(F�G)(x) = F(x)�G(x) (4)

 Given a fuzzy subset F, the h-cut of F is the set

Fh = {x: F(x) t h}.

 Recall that we use the term “h-cut” instead of the
(equivalent) term “D-cut” used in the literature for fuzzy sets
due to the two different interpretations for an Intervals’
Number (IN) [9].
 It is known that for a fuzzy membership function F it is

(�h�[0,1]: Fh = Gh) � (�x: F(x) = G(x)) (5)

 Consider the following definition for a fuzzy interval or,
equivalently, fuzzy number.

Definition 1: A fuzzy interval is a fuzzy subset F whose
every h-cut is a closed interval: (�h�[0,1]: Fh�I1). We
denote the set of all fuzzy intervals by Fc.

 It is known that the structure (Fc,d), equipped with the
fuzzy sets order d, is a complete lattice. The infimum
operation is � as defined in (3). The supremum operation
() is defined as follows

F G = inf{H: H�Fc, F d H, G d H} (6)

 That is, F G is the “smallest” fuzzy interval which is
greater than both F and G.

Intervals’ Numbers
 Consider the following definition.

Definition 2: A Type-1 Intervals’ Number, or (Type-1) IN
for short, is a function F: [0,1]�oI1, which satisfies

h1 t h2 �

1hF �
2hF , and

�X�[0,1]: h
h�
�

X
F = X�F .

 We denote the class of all (Type-1) INs by F1. The
following theorem shows that we can associate every IN to a
fuzzy interval.

Theorem 1: Given IN E�F1, define a fuzzy set as

�x: (x) = sup{h: x�Eh}.

 The h-cuts of are denoted by and, by definition,

satisfy �h�[0,1]: ={x: (x) t h}. Then, for all h�[0,1]

we have =Eh. Hence, is a fuzzy interval. In other

words, the h-cuts of the fuzzy set are the intervals of the
original IN E. Hence, Theorem 1 indicates two equivalent
representations for an IN, namely the interval-representation
and the membership-function-representation. An advantage
of the interval-representation is that it enables useful
algebraic operations, whereas an advantage of the
membership-function-representation is that it enables
convenient (e.g., fuzzy logic, etc) interpretations.
 INs are equipped with a partial order U as follows.

Definition 3: For every pair F,G�F1 we define the
relationship U as follows

F U G � (�h�[0,1]: Fh � Gh).

 Lattices (Fc,d) and (F1,U) are (order) isomorphic as a
consequence of the following theorem � The definition for
(order) isomorphic posets is given in the Appendix.

Theorem 2: For all F,G�F1 we have

F U G � (�h�[0,1]: Fh � Gh) � (�x�R : F(x) d G(x)).

 The relation U is a lattice order and the lattice (F1,U) of
INs is complete. If we denote the infimum operation by #
and the supremum operation by �" , then �h�[0,1] we have

(F # G)h = Fh�Gh and (F �" G)h = Fh Gh (7)

Metric Distances Between INs
 The following two functions will be useful.

A1. A strictly increasing function v: R oR .
A2. A strictly decreasing function T: R oR .

 Based on two functions v and T that satisfy A1-A2, a
metric function

1I
d : I1uI1o 0

�R is defined as

1I
d ([a,b],[c,d]) = v(T(a�c))-v(T (a�c))+v(b�d)-v(b�d) (8)

 A metric function
1F

d : F1uF1o 0
�R is defined as

1 1

1

h h
0

dh(,) (,) ³F Id F G d F G (9)

 Both functions v(.) and T (.) can be parametric, therefore
all the above metrics are tunable.

V. G. Kaburlasos and L. Moussiades/Journal of Engineering Science and Technology Review 7 (1) (2014) 1 - 8

 4

 Assume N metric spaces (Si,di), i�{1,},N}, where Si is
a space and function di: SiuSio 0

�R is a metric. Then, the

k-Minkowski metric dk: SuSo 0
�R , where S = S1u}uSN, is

defined as

� �
1

N kk
i i i

i 1
() ()

ª º
« »
« »¬ ¼
¦kd , = d a ,ba b (10)

where a = (a1,},aN), b = (b1,},bN), k�{1,2,}f}.

 Apparently, k-Minkowski metrics can be used between
N-tuples of INs.

3. FCA Extensions Based on LC Techniques

Formal Concept Analysis (FCA) deals with a formal context
defined next [3].

Definition 4: A formal context is a triplet (G,M,I), where G
and M are two finite sets called objects and attributes,
respectively; moreover, I�GuM is a binary relation, namely
incidence relation.

 Consider two derivation operators as follows.

Definition 5: Given a formal context (G,M,I) as well as the
subsets A�G and B�M, two derivation operators, namely
Galois connectors, are defined as

Ac := {m�M | (g,m)�I, �g�A}

Bc := {g�A | (g,m)�I, �m�B}

 The aforementioned derivation operators satisfy the
following conditions for A1,A2�G and B1,B2�M:

1. A1�A2 � 2 1c c�A A ; dually, B1�B2 � 2 1c c�B B .

2. 1 1cc�A A , 1 1c ccc A A ; dually, 1 1cc�B B , 1 1Bc ccc B .

3. 1 1c�A B � 1 1c�B A � 1 1u �A B I .

 A formal concept is defined next.

Definition 6: Let (G,M,I) be a formal context. A formal
concept C is a pair C = (A,B), where A�G and B�M such
that c A B and c A B .

 We remark that A is called extent and B is called intent
of the formal concept (A,B).
 Next, we define formally a Galois connection [4].

Definition 7: Let M: PoQ and \: QoP be maps between
two posets (P,๤) and (Q,๤). Such pair of maps is called a
Galois connection between the posets if

 1. p1 ๤ p2 � M (p1) ๥ M (p2).

 2. q1 ๤ q2 � \(q1) ๥\(q2).

 3. p ๤ \(M (p)) and q ๤M(\(q)).

 The following Theorem [4] will be instrumental below.

Theorem 3: A pair (M,\) of maps is a Galois connection iff
p ๤ \ (q) �� M (p) ๥ q.

 FCA focuses on a Galois connection M: 2Mo2N and \:
2No2M between power-sets lattices (2M,�) and (2N,�) of two
(finite) sets M and N, respectively.
 If (A1,B1) and (A2,B2) are concepts of a context, we
define an order (A1,B1) ๤ (A2,B2) iff A1 � A2 (which is
equivalent to B2 � B1). The set of all concepts of a formal
context (G,M,I) ordered in this way is denoted by

(, ,)G M IB and it is called the concept lattice of the context
(G,M,I).

Theorem 4 (The Basic Theorem of Concept Lattices): The
concept lattice (, ,)G M IB is a complete lattice in which the
meet and join are given, respectively, by

t t t tt t t
(,) ,

� � �

§ ·cc§ ·¨ ¸� ¨ ¸¨ ¸¨ ¸¨ ¸© ¹© ¹
� *

T T T
A B A B

and

t t t tt t t
(,) ,

� � �

§ ·cc§ ·¨ ¸� ¨ ¸¨ ¸¨ ¸¨ ¸© ¹© ¹
* �

T T T
A B A B

 Various techniques have been proposed for computing
formal concepts in FCA [3], [16]. This work proposes a
novel computation of a novel formal concept as explained
below.

3.1 A Novel Formal Concept Definition
This work proposes defining a formal concept as an interval
[a,b] in a complete lattice (L,๤) data domain. Recall from
subsection 2.1 that the interval [a,b] is an element of the
complete lattice (I1,��) of intervals.
 We assume both a dual isomorphic function T : LoL
and a positive valuation function v : LoR toward defining a
metric as well as an inclusion measure function in lattice
(L,๤) as explained in subsection 2.1. An additional
constraint, namely T(T(x))=x, results in the following
Theorem.

Theorem 5: Let function T: LoL on a lattice (L,๤) satisfy

both x๢y � T (x)๣T (y) and T(T(x))=x. Then, the pair (T,T)
is a Galois connection � For simplicity we say that “T is a
Galois connection”.

Proof: p = T (T (p)) ๤ T (q) � T (p) ๥ T (T (q)) = q.

Due to Theorem 3, T is a Galois connection.

Ŷ
 We remark that a Galois connection is a critical
instrument for representing a formal concept both in the
context of FCA as well as in the context of this work. In
particular, recall that a formal concept in FCA is represented
by (A,B) such that ()Mc B = A A and ()\c A B = B ,
where (M,\) is a Galois connection; whereas, a formal
concept (i.e., a lattice interval [a,b]) in this work is
represented by (T(a),b), where (T,T) is a Galois connection.

V. G. Kaburlasos and L. Moussiades/Journal of Engineering Science and Technology Review 7 (1) (2014) 1 - 8

 5

 In either case, a formal concept is interpreted in this
work as an information granule. Recall that the term
(information) granule has been introduced in fuzzy set
theory to denote a clump of values drawn together by
indistinguishability, similarity, proximity or functionality.
Computing with granules, namely Granular Computing, is
important because granules may accommodate ambiguity
and/or uncertainty [19].
 Even though both aforementioned formal concepts are
induced from data there is a fundamental difference between
them. More specifically, a formal concept in FCA “overfits
the data” in the sense that it exclusively accommodates the
data it was induced from; whereas, a (lattice interval) formal
concept might include more data. The latter is called Type I
generalization [12]. In addition, only a (lattice interval)
formal concept provides the instruments, namely a metric as
well as an inclusion measure function, to relate a datum
outside all formal concepts to its nearest/most-similar one;
the latter is called Type II generalization [12].

3.2 Hybrid Formal Concepts
An FCA “object” (see in Definition 4) in standard
engineering terms here is also called instance or,
equivalently, datum; likewise, an FCA “attribute” (see in
Definition 4) here is also called dimension. Each data
dimension is a complete lattice.
 We are interested in datasets including instances with a
fixed number of dimensions per instance (per dataset).
Certain dimensions include nominal data, whereas the
remaining dimensions in an instance include numerical data.
In this sense we are interested in hybrid datasets (including
both nominal and numerical data). In conclusion, likewise
hybrid formal concepts will be induced from the hybrid data
as explained below.
 A nominal data dimension Xi, i�{1,},La} obtains a
number Ki of values in a set Vi = {i1,},

1Ki }, whereas a

numerical data dimension Yi, i�{1,},Ra} is treated as a real
variable, i.e. Yi�R. In all, there are La nominal data
dimensions, namely Xi�{1,…,La+Ra} where i�{1,…,La},
and Ra numerical data dimensions, namely Yi�{1,…,La+Ra}
where i�{1,…,Ra}, such that X1 < … <

aLX and Y1 < … <

aRY . A datum (instance) is called trivial iff each of its La+Ra

dimensions is either a single nominal value or a single
number. Likewise, a formal concept might be trivial.
Furthermore, we say that the nominal data of an instance
(datum) D are included in a formal concept FC iff (in every
nominal data dimension) the nominal datum of D is included
in the nominal data of FC. The next section describes how a
hybrid formal concept can be induced, first, by inducing sets
of nominal data in every nominal data dimension and,
second, by inducing one IN in every numerical data
dimension by algorithm CALCIN [21] presented next.

Algorithm CALCIN
Consider a finite set X of (numeric) data samples, i.e., X=
{x1,…,xn}. Two entries xi, xj of the set X are called
successive iff there is no other entry xk, k�{1,…,n} such that
xi�xj < xk < xi�xj, where � and � are the min and max
operators, respectively. A strictly increasing, cumulative real
function 0: �oc R R is computed from the set X by, first,
defining

i j j i
1()
n

| { : } | dc x x x x , (11)

where i,j�{1,…,n} and |S| denotes the cardinality of the set
S. Finally, function 0: �oc R R is defined by straight-line
connecting two points (xi,c(xi)) and (xj,c(xj)), where xi, xj are
successive entries of the set X. Note that there is a unique
real number x0.5 such that c(x0.5)=0.5. An IN is calculated
from function c(.) such that for values less-than or equal-to
x0.5 the corresponding IN envelope function equals 2c(x),
whereas for values larger than x0.5 the corresponding IN
envelope function equals 2(1-c(x)).
 In its interval-representation, an IN envelope is
represented by L equally spaced intervals from h=0 to h=1
included. Therefore, any population of data samples in the
set X is represented by L intervals.

4. A K-map Extension

The Karnaugh map, or K-map for short, is a technique
popular in digital electronics for simplifying a Boolean
algebra expression [15]. More specifically, the contents of a
Boolean Truth Table are transferred onto a two-dimensional
grid whose cells are ordered in a Gray code. In conclusion, a
K-map simplifies a Boolean logic expression so that the
latter can be implemented using a minimum number of
physical logic gates [15]. In particular, a sum-of-products
can be implemented using AND gates feeding into an OR
gate.
 In the conventional K-map, a variable shifts between 1
and 0. This work describes an extension of K-map such that
a variable may shift among more than two values as
illustrated next.
 Consider three nominal data dimensions, i.e. La=3, such
that V1= {0,1,2}, V2= {0,1,2,3} and V3= {0,1}. Furthermore,
consider the four instances shown in the lines of Table 1.
 In terms of the K-map, each line in Table 1 is interpreted
as a product term. The sum of all the four terms in Table 1
equals “030 + 230 + 130 + 131 = (0+2+1)30 + 13(0+1)= *30
+ 13*”, where the term “131” was repeated twice to
facilitate simplification. Hence, the four data in Table 1 can
be represented by the disjunction of two strings of
characters, namely “*30” and “13*”, respectively. Note that
an asterisk (*) in a nominal data dimension denotes all the
nominal data values in the corresponding dimension. In the
aforementioned manner, we have extended the conventional
K-map from binary (Boolean) values to N-ary (nominal)
values. In conclusion, a simplified sum-of-products
expression is produced.
 Fig.1 presents a simple algorithm, namely “K-map*”, for
inducing formal concepts from nominal data exclusively as
it was illustrated above in this section. Note that algorithm
“K-map*” induces labelled formal concepts per class. Fig.2
presents another simple algorithm, namely “K-mapExt”, for
inducing hybrid formal concepts including both nominal
data (induced by algorithm “K-map*”) and numerical data
such that one IN is induced per numerical data dimension
per (hybrid) formal concept. Optimized extensions of the
basic K-map will be pursued in a future work.

Table 1: A line of this Table displays nominal data

Nominal data dimension
1 2 3
0 3 0
2 3 0
1 3 0
1 3 1

V. G. Kaburlasos and L. Moussiades/Journal of Engineering Science and Technology Review 7 (1) (2014) 1 - 8

 6

Fig.1. Algorithm “K-map*” for inducing formal concepts from nominal
data attributes alone.

Fig.2. Algorithm “K-mapExt” for inducing hybrid formal concepts
including both nominal and numerical data.

 Testing by algorithm “K-mapExt” is straightforward by
computing the k-Minkowski metric distance of a testing
datum TS from all the labelled formal concepts. In
conclusion, TS is assigned the class label of its nearest formal
concept. That is, the “K-mapExt” classifier carries out knn
classification for k=1.

5. Computational Experiments

In this section we comparatively present preliminary
computational experiments and results regarding an
application of the K-mapExt classifier on a benchmark
dataset from the UCI Machine Learning Repository [2]. In
particular, we employ the Statlog (Australian-Credit-
Approval) benchmark dataset, which includes 690 instances
(with 14 attributes including 6 numerical and 8 nominal
attributes per instance) partitioned in 2 classes. There are
missing values; more specifically, 37 instances (5% of the
data) have one or more missing values, which were replaced
by the mode and the mean of the corresponding attribute for
categorical and numerical attributes, respectively. Since a
training/testing dataset is not given explicitly, in our
computational experiments we engaged a randomly selected
75% of the data instances for training, whereas the
remaining 25% data instances were used for testing.
 A nominal dimension X takes values in the set : =
{0,},K-1}; we assumed a measure 0:

:

�
6 :6 om R such

that
:6

m ({0}) = } =
:6

m ({K-1}) =
1
K

. Hence, d({i},{k})

=
2
K

, for izk, and d({i},:) = 1-
1
K

. Each numerical

dimension was normalized by a linear transformation such
that a dimension’s min and max values were mapped to the
numbers 0 and 1, respectively. In conclusion, one IN was
induced from the normalized training data per numerical
dimension by algorithm CALCIN. We used L=32 levels for

representing an IN. For every numerical data dimension we
used the same functions v(x) = x and T(x) = 1-x for x�[0,1].
 The best “K-mapExt” classification accuracy of 74.67%
for the Statlog (Australian-Credit-Approval) benchmark
dataset is shown in Table 2 as well as the accuracy of the
ZeroR classifier from the literature [2]. Note that the
difference in the accuracies of the two classifiers is not
statistically significant. The corresponding number of
induced formal concepts was 143 and 122 for class-1 and
class-2, respectively. Fig.3 and Fig.4 display a hybrid formal
concept regarding class-1 and class-2, respectively. Note that
the nominal data in Fig.3/4(a) as well as the INs in Fig.3/4
(b)-(g) can be interpreted as descriptive decision-making
knowledge (rules) induced from the training data.

6. Discussion and Conclusion

This work has proposed an enhancement of Formal Concept
Analysis (FCA) by Lattice Computing (LC) techniques
toward classification. A novel formal concept definition, that
is an interval in a lattice-ordered data domain, has been
proposed. It was explained how the proposed formal concept
is also based on a Galois connection. Moreover, the
proposed formal concept can rigorously include both
nominal and numerical data.
 A simple knn algorithm, namely K-mapExt, was
introduced as an extension of the K-map technique from
digital electronics. The capacity of the K-mapExt algorithm
was demonstrated in a benchmark classification problem
including both nominal and numerical data. Apart from its
tunability as well as its capacity for disparate data
unification, an advantage of the proposed classifier is its
capacity to deal with non-trivial data toward accommodating
vagueness.
 Future work may proceed along several directions. In
particular, intervals of (Type-1) INs, namely Type-2 INs,
might be considered toward computing with words [18],
[23]; alternative (tunable) measure functions may be
considered per nominal data dimension as well as alternative
(tunable) functions v(x) and T(x) may be considered per
numerical data dimension toward optimizing classification
performance. Using an inclusion measure V instead of a
metric distance d is another promising direction toward a
semantic optimization based on the computation of
“maximal” formal concepts [11] as it will be detailed
elsewhere.

Table 2: Testing data accuracy of two different classifiers
regarding the Statlog (Australian-Credit-Approval)
benchmark dataset

Classifier name Accuracy (%)
ZeroR 75.93
K-mapExt 74.67

Appendix
This Appendix includes five mathematical definitions.

A metric in a space S is a function d: SuSo 0

�R that
satisfies:
(M1) d(x,y) = 0 � x = y.
(M2) d(x,y) = d(y,x) � Symmetry.
(M3) d(x,z) d d(x,y) + d(y,z) � Triangle Inequality.

for c=1 to c=Nclasses do
 for i=1 to i=La do
 if all the Ki discrete values of the nominal

attribute Xi appear in dimension i then replace
all the Ki discrete values by “*”.

 end for
end for

Engage the “K-map*” algorithm (of Fig. 1) to
induce formal concepts from nominal data attributes
exclusively.
for each formal concept FC do
 for i=1 to i=Ra do
 Use algorithm CALCIN to induce an IN from

all the numerical data in dimension i whose
corresponding nominal data are included in FC.

 end for
end for

V. G. Kaburlasos and L. Moussiades/Journal of Engineering Science and Technology Review 7 (1) (2014) 1 - 8

 7

*2*40112

(a)

(b) (c)

(d) (e)

(f) (g)

Fig.3. A hybrid formal concept induced from class-1 training data
regarding the “Statlog (Australian-Credit-Approval)” benchmark
dataset. (a) The nominal data term “*2*40112” computed by Algorithm
K-map* (Fig. 1). The remaining figures display INs, in their interval-
representation, induced from normalized numerical data in dimensions
(b) 2, (c) 3, (d) 7, (e) 10, (f) 13 and (g) 14.

An inclusion measure in a lattice (L,๤) is a function
V: L�uLo[0,1] that satisfies:
(C1) u ๤ w � V(u,w) = 1.

(C2) u ๤ w � V(x,u) d V(x,w).

A V-algebra 6: over a set : is a collection of subsets of :
that satisfies:
(Ȉ1) ��6:.
(Ȉ2) A�6: � Ac = (:-A)�6:.
(Ȉ3) given Ai�6:, where i�D and D is a countable indexing
set, it follows i

i
()
�
*

D
A �6:.

118*10*2

(a)

(b) (c)

(d) (e)

(f) (g)

Fig.4. A hybrid formal concept induced from class-2 training data
regarding the “Statlog (Australian-Credit-Approval)” benchmark
dataset. (a) The nominal data term “118*10*2” computed by Algorithm
K-map* (Fig. 1). The remaining figures display INs, in their interval-
representation, induced from normalized numerical data in dimensions
(b) 2, (c) 3, (d) 7, (e) 10, (f) 13 and (g) 14.

A measure is a set function mS: So 0
�R that assigns a size

to every “measureable set” element in S such that:
(S1) mS(�) = 0, and
(S2) for any countable (including finite) indexing set D and
any collection of pairwise disjoint sets Ai��S indexed by
i�D it holds mS i

i
()
�
*

D
A = S i

i
()

�
¦

D
m A .

A function \: (P,๤)o(Q,๤) between posets (P,๤) and (Q,๤)

is called (order) isomorphic iff both “x ๤ y � \(x)๤\(y)”

and “\ is onto Q”. Posets (P,๤) and (Q,๤) are called

isomorphic, symbolically (P,๤) # (Q,๤).

References

1. Atif, J., Bloch, I., Distel, F., Hudelot, C., “Mathematical

morphology operators over concept lattices”, in Intl. Conf. on
Formal Concept Analysis (ICFCA’13) (Lecture Notes in
Computer Science Series 7880), P. Cellier, F. Distel, B. Ganter,
Eds. Springer-Verlag, Berlin, Germany, 2013, pp. 28-43.

2. Bache, K., Lichman, M., UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of
California, School of Information and Computer Science, 2013.

3. Caro-Contreras, D.E., Mendez-Vazquez, A., “Computing the
concept lattice using dendritical neural networks”, in Proc. of the
Tenth Intl. Conf. on Concept Lattices and Their Applications

(CLA 2013), M. Ojeda-Aciego and J. Outrata, Eds. CEUR WS
1062, pp. 141-152.

4. Ganter, B., Wille, R., Formal Concept Analysis. Springer,
Heidelberg, Germany, 1999.

5. Graña, M., “Lattice computing in hybrid intelligent systems”, in
Proc. 12th Intl. Conf. Hybrid Intel. Systems (HIS), Dec. 2012, pp.
1-5.

6. Jamshidi, Y., Kaburlasos, V.G., “gsaINknn: a GSA optimized,
lattice computing knn classifier”, Engineering Applications of
Artificial Intelligence, under revision

V. G. Kaburlasos and L. Moussiades/Journal of Engineering Science and Technology Review 7 (1) (2014) 1 - 8

 8

7. Kaburlasos, V.G., Towards a Unified Modeling and Knowledge-
Representation Based on Lattice Theory. Springer ser. Studies in
Computational Intelligence 27, Heidelberg, Germany, 2006.

8. Kaburlasos, V.G., Ed., Special issue on: Information engineering
applications based on lattices, Information Sciences 181(10),
2011, pp. 1771-1773.

9. Kaburlasos, V.G., Kehagias, A., “Fuzzy inference system (FIS)
extensions based on lattice theory”, IEEE Trans. Fuzzy Systems,
Digital Object Identifier: 10.1109/TFUZZ.2013.2263807

10. Kaburlasos, V.G., Pachidis, T., “A Lattice-Computing ensemble
for reasoning based on formal fusion of disparate data types, and
an industrial dispensing application”, Information Fusion 16,
2014, pp. 68-83.

11. Kaburlasos, V.G., Petridis, V., “Fuzzy lattice neurocomputing
(FLN) models”, Neural Networks, 13(10), 2000, pp. 1145-1170.

12. Kaburlasos, V.G., Athanasiadis, I.N., Mitkas, P.A., “Fuzzy lattice
reasoning (FLR) classifier and its application for ambient ozone
estimation”, International Journal of Approximate Reasoning
45(1), 2007, pp. 152-188.

13. Kaburlasos, V.G., Papadakis, S.E., Papakostas, G.A., “Lattice
computing extension of the FAM neural classifier for human
facial expression recognition”, IEEE Trans. Neural Networks and
Learning Systems 24(10), 2013, pp. 1526-1538.

14. Kaburlasos, V.G., Papakostas, G.A., Pachidis, T., Athinellis, A.,
“Intervals’ numbers (INs) interpolation/extrapolation”, in Proc.
IEEE Intl. Conf. on Fuzzy Systems (FUZZ-IEEE), July 2013.

15. Karnaugh, M. “The map method for synthesis of combinational
logic circuits”, Trans. American Institute of Electrical Engineers -
I 72(9) 1953, pp. 593-599.

16. Krajca, P., Outrata, J., Vychodil, V., “Advances in algorithms
based on CbO”, in Proc. of the Seventh Intl. Conf. on Concept

Lattices and Their Applications (CLA 2010), M. Kryszkiewicz, S.
Obiedkov, Eds. CEUR WS 672, pp. 325-337.

17. Maragos, P., Advances in Imaging and Electron Physics 177.
Chapter Two: Representations for Morphological Image
Operators and Analogies with Linear Operators, pp. 45-187,
Elsevier Inc., 2013.

18. Mendel, J.M., John, R.I., Liu, F. “Interval type-2 fuzzy logic
systems made simple”, IEEE Trans. Fuzzy Systems 14(6), 2006,
pp. 808-821.

19. Pedrycz, W., Skowron, A., Kreinovich, V. (Eds.), Handbook of
Granular Computing. John Wiley & Sons, 2008.

20. Sussner, P., Nachtegael, M., Mélange, T., Deschrijver, G., Esmi,
E., Kerre, E., “Interval-valued and intuitionistic fuzzy
mathematical morphologies as special cases of L-fuzzy
mathematical morphology”, Journal of Math Imaging and Vision
43(1), 2012, pp. 50-71.

21. Tsoukalas, V.T., Kaburlasos, V.G., Skourlas, C., “A granular,
parametric knn classifier”, in Proc. 17th Panhellenic Conf. on
Informatics (PCI), Sept. 2013, pp. 319-326.

22. Valle, M.E., Sussner, P., “Quantale-based autoassociative
memories with an application to the storage of color images”,
Pattern Recognition Letters 34(14) 2013, pp. 1589-1601.

23. Wang, D., Wang, Y., “Disease-related gene identification by an
improved type-2 fuzzy method on microarrays”, Journal of
Engineering Science and Technology Review 6(2) 2013, pp. 78-
84.

24. Zapata, F., Kreinovich, V., Joslyn, C., Hogan, E., “Orders on
intervals over partially ordered sets: extending Allen’s algebra and
interval graph results”, Soft Computing 17 2013, pp. 1379-1391.

