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A Review of Open Queueing Network Models of Manufacturing Systems

Abstract: In this paper we review open queueing network models of manufacturing systems. The

paper consists of two parts. In the first part we discuss design and planning problems arising in

manufacturing. In doing so we focus on those problems that are best addressed by queueing

network models.

In the second part of the paper we describe the developments in queueing network

methodology. We are primarily concerned with features such as general service times, deterministic

product routings, and machine failures - features that are prevalent in manufacturing settings. Since

these features have eluded exact analysis, approximation procedures have been proposed. In the

second part of this paper we review the developments in approximation procedures and highlight

the assumptions that underlie these approaches.

A significant development in the study of queueing network models is the discovery

(empirical) that under conditions that are not very restrictive in practice: (i) equilibrium expected

queue lengths behave as if they are convex functions of the processing rate of the server, and (ii)

altering the processing rate at one station has minimal effect on the equilibrium expected queue

lengths at other stations in the network. As a result researchers have been able to approximate

some of the optimal design problems by convex programs. In the second part of this paper we

describe these developments.

Inspite of the advances made in the analysis of open queueing networks, several of the

problems described in the first part of the paper cannot be analyzed without further progress in
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methodology. One of the objectives of this paper is to expose the gap between the problems arising

in manufacturing and the analytical tools that are currently available. We hope that by first

describing the problems and then discussing the methodological developments the gap becomes

apparent to the reader.

I. INTRODUCTION

Job shops are complex manufacturing systems which process a wide variety of products in

low volumes. Two dominant characteristics of job shops are complex flows through the shop, and

long queues of jobs in front of machines. It is not uncommon for a job to spend more than 90%

of the time in the facility waiting for machines to become available. The challenge of managing day

to day operations in this environment has stimulated an enormous interest in sequencing and

scheduling problems. In comparison less attention has been paid to tactical and strategic problems

such as choice of equipment, capacity planning, allocation of products to different plants, and

determination of lead times. To properly address these issues we need models that provide good

estimates of the medium to long term performance of manufacturing systems. Over the last two

decades there has been a renewed interest in open queueing network models, and major advances

have been made in their (approximate) analysis. These studies were in part motivated by

applications in manufacturing settings. In this paper we review open queueing network models of

job shops, with primary emphasis on models that facilitate the design of job-shop-like manufacturing

systems.

To outline the scope of this survey we start by pointing out what is being excluded. First,

we do not extensively survey models proposed to address operational problems arising in job shops.
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Almost all the models developed for operational problems assume that the processing requirements

of jobs are deterministic, and rely on combinatorial methods to provide solutions. The literature

dealing with this subject is huge and several excellent surveys have been written on this topic

(Graves 81, Panwalker and Iskander 77). Nevertheless for the sake of completeness we briefly

discuss some of the operational problems. Second, we focus essentially on open queueing network

models of job shops and do not explore models that are specialized to pure flow shops (tandem

queues) (eg. Reich 57, Friedman 65, Whitt 85b), queueing models of flexible manufacturing systems

(eg. Buzacott and Yao 86a and 86b), and queueing network models of systems with finite waiting

rooms (eg. Gershwin and Schick 83, Brandwajn and Jow 88, Altiok and Perros 89).

Open queueing network models have been applied in many domains including computer

science, communication engineering, and manufacturing and service operations, resulting in a large

body of literature. Thus to provide an exhaustive review of the developments in the study of open

queueing networks is a task of a magnitude well beyond the scope of this paper. An attempt to

provide such an overview will also be repetitious of excellent surveys done by Lemoine (77), Disney

and Konig (85), and Buzacott and Yao (86a). To minimize the overlap with these surveys we

concentrate on recent developments in open queueing network models that incorporate aspects such

as general service times, and deterministic product routings, features that are common to

manufacturing systems. With these features in place exact analysis has not been possible. However

researchers have been very successful in developing good approximation procedures.

1.1 CONTENTS OF THE REVIEW

We start the review by defining key manufacturing terms in section II. In section III we
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develop a list of strategic and tactical planning problems that may be addressed by queueing

network models.

In sections IV and V we focus on developments in open queueing network models. In

section IV we describe methods for evaluating the performance of open network of queues. We

are primarily concerned with features such as general service times and deterministic routing. For

such networks exact analysis has not been possible and approximation procedures have been

developed. Much of section IV is devoted to the parametric decomposition approach which has

been very effective in estimating the first moment of the queue length in general networks.

Section V is devoted to recent developments in optimization models. This section in turn

consists of two parts. In the first part we describe procedures developed for optimal design of

queueing networks. In recent years based on developments in Brownian control theory, progress

has been made in deriving near optimal rules for controlling the flow through the network. In the

second part of section V we briefly touch upon these advances. Finally in section VI we conclude

by pointing out avenues for further research.

II TERMINOLOGY

To avoid ambiguity and for the benefit of readers not familiar with manufacturing systems

we specify below the usage of key terms. Our usage of these terms conforms closely to that in the

manufacturing and operations management literature.

Operation: An operation is an elemental task which requires resources such as machines, tools, and
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labor. An example of a task would be to drill a half inch diameter hole using a drilling machine,

a drill bit, an attachment to hold the part that is being drilled, and a drill operator. There may be

several drilling machines and operators (not necessarily identical) that can perform this task.

Item: An item is a distinct physical part produced by the facility. Associated with each item are a

set of operations, and a precedence relationship that may constrain the sequence in which the

operations can be executed.

Product: A distinct commodity produced by the facility. Often a product is produced by assembling

together several items. In this survey we exclude facilities that assemble items that are also

manufactured in the same facility. Hence the terms items and products will be used

interchangeably.

Product families: Set of products that have similar manufacturing requirements. For the purpose

of this survey we assume that all items belonging to the same family follow similar routes through

the manufacturing facility.

Machine center or stage: A set of machines that are capable of performing similar operations, but

are not necessarily identical. An example of a machine center could be a set of drilling machines

with varying horse-powers. We distinguish between two types of machines that we call discrete and

batch machines. A discrete machine processes one item at a time, whereas a batch machine can

operate on several items simultaneously. The processing time of a batch machine does not depend

on the number of items being processed, but there is a limit on the number of items that can be

processed in a batch.
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Job Shops: Based on the number of products that are manufactured in a facility, manufacturing

systems are classified into assembly lines or continuous flow systems, and intermittent systems

consisting of batch and job shops. Readers are referred to Buffa and Sarin(87), Schmenner(89) or

any introductory text on operations management for a detailed description of these three systems.

Job shops produce a large number of products and the average demand per period for each item

is small relative to the capacities of the machines required to produce the item. Unlike flow shops,

in job shops the sequence of visitations to machine centers varies from job to job, and the flow of

items through the facility is not unidirectional. As a result of the diversity in the products produced

in a job shop the processing requirement at each machine center varies from one job to the next.

Also, each job may require different amount of processing at different machine centers. Waiting

becomes inevitable due not only to imbalances in the work load at different machine centers but

also due to factors such as variability in the arrival of the work orders to the manufacturing facility,

machine failures and malfunctioning, absenteeism, and unavailability of proper raw materials and

tools. Another significant factor that contributes to queues in job shops is the uncertainty in

processing requirements. Typical sources of uncertainty in the processing requirements are

production processes that produce defective items that have to be reworked. An example of a

manufacturing system that is subject to most of these forms of variability and uncertainty is a semi-

conductor wafer fabrication facility (Chen et al 88). It is therefore not surprising that these facilities

have motivated considerable interest in open queueing network models( Bitran and Tirupati 88,89a,

Chen et al 88, Harrison and Wein 90a).

Job shops have been further classified into open and closed job shops. In open job shops

each job is unique and is produced to a custom order. Closed job shops produce only a specific set

of products, typically described in a company catalog.
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Batch Shops: Almost all the characteristics of job shops are shared by batch shops. Batch shops

can be viewed as special cases of closed job shops. The primary difference between batch and job

shops is the number of products produced by the facility. Batch shops produce fewer products.

Those readers not familiar with manufacturing systems, can for the purpose of this survey, ignore

the difference between these two systems.

II. MANAGERIAL PROBLEMS

In what follows we describe a set of the problems associated with job shops, that are best

addressed by queueing network models. We partition the problems into three categories: strategic,

tactical and operational problems (Anthony 65, Hax and Candea 84).

III.1 STRATEGIC PROBLEMS

One of the objectives of strategic planning is to identify long term goals of the company.

To achieve these goals the strategic plan determines the resources that are to be utilized, and the

policies that govern the use of these resources (Anthony 65). An important component of the

strategic plan is the design of the manufacturing system. System design involves (i) choice of

technologies, (ii) acquisition of capital equipment, (iii) the allocation of the products to different

plants,(iv) choice of location, and (v) design of the distribution systems. For the purpose on hand

we restrict the scope of the design problem to the first three factors.

The design of a plant is a major constraint under which the operating manager makes

decisions. For instance, if several machine centers operate at or near their capacities and there is
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considerable diversity in the processing requirements of the products assigned to that plant, then

queues at machine centers are likely to be very long and, more importantly, the variance of the time

a job spends in the system is also likely to be very high. Among the primary tasks of the operating

manager are to assign and predict completion times for jobs, control the flow of jobs through the

facility, so that due dates are not violated, control the work-in-process inventory levels, respond to

unanticipated loss of capacity due to factors such as uncertain yields and machine failures, and strive

to improve the processes and products. Since most scheduling, sequencing and routing problems

are known to be extremely difficult to solve (Garey, Johnson and Sethi 76, Rinnooy Kan 76, Lenstra,

Rinnooy Kan and Brucker 77) the system should be designed so that simple real time control rules

are adequate to obtain good performance.

System design involves a trade-off between (i) the fixed cost of facilities and equipment, (ii)

variable cost of operating the facility, (iii) processing capabilities of the machines (iv) throughput,

(v) lead times, (vi) work-in-process levels and (vii) the complexity of managing the facility.

There are many factors that determine the performance characteristics of a facility including:

(i) technology - type of equipment, flexibility of the machines, process controllability, reliability, etc;

and (ii) product characteristics - level of standardization among products, tightness of specifications

(effects yields), processing flexibility (routing, and machine requirements), variability in demand,

etc. Clearly there are a large number of variables and objectives that have to be taken into

consideration while designing or re-designing a facility. The tasks are further compounded by the

risks and uncertainty induced by the continuous evolution of technologies and products. To provide

a meaningful discussion of the design problem we restrict the scope of the problem by fixing some

variables and allowing others to be determined by the designer. We only consider those design
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objectives that are related to the formation of queues in the shop. Listed below are three important

classes of design problems. In all three classes we assume that the demand patterns for the

products are known. The principal decision to be made in each of the problems is the selection of

physical assets.

In the first class of problems(SP1), the performance characteristics of the system are

externally determined, and the designer's task is to determine the lowest cost of the facility. In the

second class of problems (SP2) there is a capital budget that constraints the amount that can be

spent on acquiring new machines. This constraint is particularly significant when an existing facility

is being upgraded. Under such circumstances the models should identify the usage of the available

capital that provides the best system performance.

Due to diseconomies of scope, the management of a manufacturing facility becomes

increasingly difficult as the number of products produced in the facility increases. Hence it is

desirable to partition a large facility into smaller more focused sub-units. However, partitioning a

facility can result in duplication of equipment. As a result there is a trade-off between increased

equipment cost and reduced managerial complexity. In the third class of problems (SP3) we discuss

models that can guide managers in partitioning facilities.

SP1: Targeted System Performance:

In this class of problems, the designer has to determine the processing capabilities of each

machine center in order to achieve a desired system performance. Performance measures of

interest are mean and variance of work-in-process levels at each machine center, mean and variance
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of the sojourn time for each product family, and the probability of the sojourn time exceeding a

particular value. We assume that the cost of the machines and their capabilities are known to the

designer and (s)he may have to choose among alternate technologies. The design problems

belonging to this class can be formulated as optimization problems, where the objective is to

minimize the cost of the plant, and the constraints are the desired system performance. Given

below are two problems belonging to this class:

SP1.1 Targeted Work-in-Process Levels

Objective: Minimize total cost of equipment

Decision Variables: Capacity of Each Machine Center, Technology

Constraints: Upper bound on the mean number of jobs in the system

SP1.2 Targeted Lead Times

Objective and decision variables are the same as in SP1.1,

Constraints: Upper bounds on the means and variances of the sojourn times for each

product family.

Problem SP1.1 addresses the relationship between working capital requirements and the

cost of equipment. The constraint of SP1.1 corresponds to the total work-in-process investment.

Since system design is based on multiple criteria it is useful to develop curves that reflect the trade-

off between work-in-process inventory costs and the cost of machinery. This can be done by solving

SP1.1 parametrically by varying the upper bound on the permissible average inventory level.

The length of the lead times, and the corresponding reliability and consistency are important
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elements of a firm's competitive strategy. This is the motivation for problem SP1.2

Clearly the performance of the system depends not only on the equipment selected, but also

on the control rules employed to manage the day-to-day operations. However, since the system

must be designed for the long term requirements of the firm, the design decisions are based on

imprecise long term forecasts. The forecasts lack details in terms of the timing of the demand, and

estimate demands for product families rather than individual products. Consequently at this level

of decision making it may be adequate to assume that the shop is operated using very simple rules

such as processing the jobs in the sequence in which they arrive at the machine center. This is a

concern that the modeler must resolve in all strategic and tactical problems.

SP2: Optimal System Performance:

In this class of problems the designer operates under a budget constraint that limits the

amount that can be spent in acquiring new machines. The objective of the design activity is to

determine the capacities of each machine center so that some performance measure(s) is optimized.

Examples of problems belonging to this class are:

SP2.1 Optimal Work-in-process levels

Objective: Minimize the weighted sum of the average number of jobs at each machine

center

Decision Variables: Capacities of Machine centers, Technologies
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Constraints: Upper bound on the investment

SP2.1 is analogous to SP1.1, its objective function corresponds to the average investment in

work-in-process. Due to Little's law the problem of minimizing the weighted average sojourn times

will be similar to SP2.1

As stated earlier, variability in work-in-process levels can be used as a measure of the

complexity of managing a facility. Managerial intervention becomes necessary when the work loads

are either very high or very low. For instance if the work loads are excessive then extra capacity

has to be generated either by sub-contracting some jobs or by working extra hours. Also, expediting

is more likely to occur when the work loads are high. Hence it is desirable to design the system so

that work-load variations are minimized.

SP2.2 Optimal work load variation:

Objective: Minimize the weighted sum of variances of work loads at each machine

center

The constraints and decision variables are the same as in SP2.1

For any choice of physical assets, like other performance measures, the variability in work

load will depend considerably on the control rules employed to regulate the work flow through the

facility (Graves 86, Matsuo and Gong 90, Denardo and Tang 89). Work load variability is also

effected by the diversity in the products produced in the facility. Hence, it may be possible to

reduce variability by partitioning the facility into smaller more homogenous units. We will return

to this issue while discussing the third class of design problems. Although work load variability is
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effected by factors other than capacity levels and technologies, it is an important system

characteristic that should be considered while selecting the equipment. It is useful to develop

models to measure the effect of technological factors such as machine failure rates and process

capability (yield rates, yield variability, and flexibility) on lead time variability. Choice of technology

can be an important factor in problems SP2.2 and SP1.2.

SP3: Topology of the Facility (Partitioning of the Facility):

The primary task under consideration in this class is to partition a facility into smaller sub-

units. Although we list this class separately, it can be taken into account while solving problems SP1

and SP2. In that case the designer, in addition to selecting the equipment, is permitted to partition

the factory into independent sub-networks. We have elected to describe this class separately

because inspite of its importance it has received very little attention. We describe these problems

assuming that a facility is already in place and we are undertaking a redesign problem. Note that

problems SP1 and SP2 are also equally applicable to existing facilities.

In manufacturing systems that produce a small number of products in high volumes it may

be possible to set up a flow line for each product by dedicating a set of machines to that product.

In such situations the interaction between different products is minimal. For instance the lead time

of a product does not depend on the other products that are produced in that facility. However if

the demands are not sufficiently high or if the cost of the machines is very high then several items

will have to share the same equipment. This is often the case in the semi-conductor industry where

machines needed for several processes such as metalization, and photolithography can cost over half

a million dollars.
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Even if the demand for each item is not sufficiently high to justify a dedicated line, it may

be possible to group together a set of items whose requirements are similar and set up flow lines

or cells for that group (Burbidge 89, Ahmadi and Matsuo 90). In this case, a single facility is

partitioned into several flow lines or group technology cells.

In general, in job shops it will not be economical to partition the products into groups such

that flow lines can be set-up for each group. However there are several advantages to partitioning

the manufacturing facility into smaller more focused factories. It is well known that beyond some

size manufacturing systems become very difficult to manage (Hayes and Wheelwright '84 chapter

3). Hayes and Wheelwright refer to the complexity, and chaos arising from increasing the number

of products, processes, and specialists in a given plant as diseconomies of bureaucratization and

confusion. Although this phenomena has been recognized, we are unaware of any study that

proposes measures for managerial complexity. The primary benefits that are cited for developing

focussed factories include simplified product flows, improved control, faster response to changes in

demand, and greater predictability of completion times (Skinner 74 ). Simpler and more

manageable facilities also enable product and process improvement.

Facilities that are easy to manage exhibit some important qualitative characteristics such as

:job completion times can be predicted accurately (tight confidence intervals), sources of defects

and failures can be identified easily and quickly, and the lead times for jobs are relatively small and

the facility can readily respond to changes in demands. This suggests that a partial set of surrogate

measures for the complexity of a system are (i) variances of the work loads at machine centers, (ii)

variances of the time jobs spend in the system, (iii) number of products produced in the facility, (iv)

number of different routes through the facility ( for instance in a pure flow shop the number of
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routes through the shop is only one), and (v) total number of transactions processed on an average

day. Transactions are elemental activities such as movement of jobs from one machine center to

the next, machine failures, and tool changes. The last two measure attempt to capture the

complexity of the flow patterns in the shop. Several other measures can be proposed for the

complexity of the flow in the system including the number of intersections between different routes

in the shop.

In order to partition a plant into several focussed facilities, we must determine the products

that are to be produced in each facility, and allocate equipment to each of the facilities. Ideally

facilities should not share equipment and each product should be assigned only to one facility.

Thus, the trade-off is between cost of extra capital equipment against reduced managerial

complexity. A specific instance of a problem belonging to this class would be to identify the least

cost partitioning of the factory subject to an upper bound on the number of products in each plant.

SP3.1 Targeted number in each plant

Objective: Minimize the cost of new machinery

Decision Variables: Products, types of equipment, capacity of each machine centers

belonging to each plant

Constraints: Upper bound on number of products in each plant, and upper bounds on the

mean lead time for each product family

SP3.2 Optimal route complexity

Objective: Minimize the maximum number of routes in each plant

Design Variables: same as SP3.1
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Constraints: Upper bound on the capital cost of redesign, upper bound on the mean lead

time for each product family

SP3.1 and SP3.2 are two simple illustrations of the type of problems that have to be solved

to facilitate partitioning of a factory. Problem SP2.2 can also be included in this class. To develop

formal optimization models that aid mangers in setting-up plants-with-in-plants we have to gain a

better understanding of managerial complexity and develop good quantitative measures for

complexity. We hope that this paper will draw attention to this problem area.

So far we have focussed on system design, and in particular we were concerned with factors

that have to be considered while acquiring physical assets. Once the physical facilities have been

decided on, the remaining tasks include determining the number of hours the facility is to operate,

determining the appropriate lead times for each product, allocating the resources to various

products, and controlling the flow of the jobs through the facility. These problems in turn can be

partitioned into two categories tactical and operational control problems. While decisions regarding

hard assets are made primarily at the strategic planning level, at the tactical level capacity is

adjusted by changing man-power levels and the number of hours a facility operates. At the

operational level there is very little opportunity to alter capacity, and the primary concern is with

managing the flow (traffic) of jobs through the facility.

III.2 TACTICAL PROBLEMS

The planning horizon for the tactical plan is shorter than the horizon for the strategic plan.

The actual horizon length will depend on the specific problem being addressed. Since the horizon
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is shorter, the level of detail and the accuracy of the information available for tactical plans is

higher. The level of uncertainty in the information is lower. Typically, managers responsible for the

tactical plan are likely to report to those responsible for the strategic plan. As a result, the scope

of the tactical plan may be restricted to one plant, and the capital that can be expended in acquiring

machinery is significantly less than that considered by the strategic planners. Tactical plans are

constrained to a large extent by the available physical assets, and the set of products that are

produced in each plant can not be changed significantly. To simplify the discussion, and without

significantly altering the contents of the discussion, we assume in this paper that the tactical plan

can neither acquire new machines nor change the set of products that are produced in the facility.

There are three important decisions at the tactical level that are influenced by the formation

of queues in the job shop. They are: (i) operating capacity; (ii) planned lead times for each

product family; and (iii) lot sizes.

III.2.1 Capacity Planning

As stated above at the tactical level managers effect capacity primarily through the number

of hours the facility is operated and the man-power levels. Problems analogous to SP1 and SP2 also

arise at the tactical level, and will be referred to as TP1 and TP2, respectively. However, the scope

of the decision variables is significantly less. For example TPI.1 described below is similar to SP1.2.

Observe that the scope of the decision variables is restricted. Consequently, unlike SP1.2, TP1.1 may

be infeasible.
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TP1.1 Targeted Lead Time Performance

Objective: Minimize total man-power costs+ Work-in-process inventory costs

Decision Variables: Number of hours each machine center is operated

Constraints: Existing equipment and technology, upper bounds on the means and

variances of the sojourn times for each item.

As stated earlier the trade-off between capacity and work-in-process levels is useful to model

and this is done in problem TP1.2.

TP1.2 Optimal Work-in-Process Levels

Objective: Minimize the weighted average of the number of jobs in the system

Decision Variables: Number of hours each machine center is operated

Constraints: Upper bounds on the total number of hours each machine center is

operated, and the number of man hours utilized.

III.2.2 Planned Lead Times

In job shops, particularly in closed job shops, it is not uncommon to assign a lead time for

each product. The lead time is the difference between the time an order is received by the shop

and the delivery date. These lead times are determined periodically (perhaps once every quarter)

taking into account external factors such as the market conditions, actions of competitors, total

demand faced by the facility etc. The lead times may be announced in the sales catalogues and serve

as guidelines for the sales force.
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Managers can benefit from models that translate the lead time prescriptions into capacity

requirements. Problem TP1.1 is an example of an important decision aid in determining the

appropriate capacities. A closely related problem is TP2.1

TP2.1 Optimal lead time:

Objective: Minimize the lead time for a specific product family

Decision Variables: Number of hours each machine center is operated

Constraints: Upper bound on the lead times for each product

I.2.3 Lot Sizes

In batch shops that produce to stock, a work order is generated whenever the finished goods

inventory falls below a critical level. The finished goods inventory serves as a filter that smooths

out some of the variability present in the external environment. By aggregating demand and

producing in larger lots the time lost in setting up the machines is also minimized. Thus in addition

to reducing the variability observed by the manufacturing systems, finished goods inventory can also

increase the throughput of the system. In this environment the number of units produced per order

(the lot size) is an important managerial decision, that effects both the lead times and the

throughput. Observe that as the lead times increase the finished goods inventory levels will also

increase. Models that quantify the relationship between lot sizes, lead times and throughput are

very valuable (Karmarkar 87, and Karmarkar, Kekre and Kekre 85). An example of a problem

belonging to this class is:
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TP3.1 Optimal lot size:

Objective: Minimize the work-in-process inventories

Decision Variables: Lot size for each product

Constraints: Upper bound on the lead times for each product

11I3 OPERATIONAL DECISIONS

After determining the system design and making aggregate allocations of the resources, it

is necessary to manage the day-to-day operations of the facility. The operational decisions,

belonging to the lowest level of the hierarchy, must take into account the decisions made at the

higher levels, and the current status of the facility. At this level there is very little opportunity to

either increase the available productive resources, or change the mix of jobs to be processed during

a time period. Typical decisions made at this level are:

(i) the sequence of machine visitations for each job, that is the route the job will follow through

the shop.

(ii) the sequence in which the jobs are processed at each machine center,

(iii) tracking of jobs through the facility, expediting, and releasing jobs into the facility.

Thus at the operational level detailed sequencing and scheduling decisions are to be made

so that orders are completed on time utilizing the resources available. The class of detailed

scheduling and sequencing problems that arise in general job shops are extremely difficult to solve

exactly (Rinnooy Kan 76). Hence several approximation procedures have been proposed. Readers

are referred to Graves 81, Conway Maxwell and Miller 67, and references there in for details of
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these scheduling rules. The bulk of the scheduling literature assumes that the production

environment is deterministic and static over a specified finite horizon. These environments have

been called static job shops (Graves 81). In the context of dynamic job shops, the environment we

are concerned with, the focus of researchers has been on dispatch rules. Whenever a machine

becomes available, the dispatch rule determines the job that is to be processed next. Examples of

dispatch rules are:

(i) shortest processing time,

(ii) least work remaining,

(iii) first to arrive to the shop,

(iv) earliest due date, and

(v) first to arrive at the machine center.

For further details of the dispatching rules the reader is referred to Conway Maxwell and

Miller (67), Panwalker and Iskander (77), and the references therein.

IV OPEN QUEUEING NETWORK MODELS OF JOB SHOPS - PERFORMANCE EVALUATION

IV.1 EXACT ANALYSIS

The study of networks of queues was initially motivated by applications in the telephone

industry (Erlang 17). However the pursuit of these problems received a significant boost from two

seminal papers by J.R. Jackson (57, 63). Jackson's work interestingly, was motivated by job shops.

Since the publications of those papers significant theoretical insights have been gained into the

properties of queueing networks. In particular, in the last two decades spurred by applications in
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computer science, telecommunications, and flexible manufacturing systems, there has been a flurry

of activity in this area. Unfortunately exact analysis for open queueing networks with finite number

of servers has been possible only for networks that have the following characteristics:

(1) Exponential service time distributions.

(2) Service requirement at each station are independent of the product family. If the service times

are allowed to depend on the product family then exact analysis is possible with a preemptive

resume, last come first served discipline.

(3) Priority discipline at each queue is independent of the product family.

(4) Arrival process to the network is a Poisson process.

These Markovian systems are also known as reversible networks (Kelly 75, 79). An

important property of these networks is the product form of the equilibrium distribution of the

number in the system. Consider a network consisting of M stations (machine centers), and let (Ci)

i=1, M denote the state of the queue at machine center i. Ci is a vector with elements (Ci(1),Ci(2),

Ci(3),.. Ci(Li)), where Li is the queue length at station i, and Ci(k) specifies the product family of

the job in the kth position in the queue.

Let P(C) be the equilibrium probability of observing the network in state C; C = (C1,C2 ,C3, ..CM

). For reversible networks if the equilibrium distribution exists then it is of the following form:

P(C) = K G(C) A1(C1) A2(C 2) A 3(C3)... AM(CM)

where G(.) is a function that depends on the state vector, A,(.) is a function that depends on the

nature of machine center i, Ai(.) is proportional to the equilibrium probability distribution at

machine center i with Poisson arrivals, and K is a normalizing constant. For further details

regarding these networks the readers are referred to Lemoine (77), Disney and Konig (85), and

Buzacott and Yao (86a).
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IV.2 APPROXIMATION PROCEDURES

For general job shops the assumptions underlying reversible networks are very restrictive.

For instance work by Bitran and Tirupati(88) suggests that the exponential distributions overstate

the variability in the service times found in many manufacturing operations, and distributions with

squared coefficient of variation (scv) less than one are more appropriate. Since exact analysis has

not been possible when the assumption of exponential service times is relaxed, the focus has been

on approximation procedures. The approximation schemes can be classified into four categories:

decomposition methods, diffusion approximations, mean value analysis, and operational analysis.

The procedure that has been employed with considerable success to analyze models of

manufacturing systems is the decomposition approach (eg Shanthikumar and Buzacott 81, Bitran

and Tirupati 88, Segal and Whitt 88). Only recently diffusion models have been utilized to study

scheduling and operational control problems arising in manufacturing. Operational analysis (eg

Denning and Buzen 78) has been applied primarily to computer system models, and mean value

analysis (eg. Reiser and Lavenberg 80, Sevick and Mitrani 81, and Seidmann et al 87) is concerned

with closed queueing networks. Hence we will restrict our attention to the decomposition methods,

and applications of diffusion models to manufacturing problems(Harrison and Wein 90a,b, and

Wein 90b).

IV.2.1 Decomposition Methods

The decomposition methods are in part motivated by the properties of Jackson networks,

and can be viewed as attempts to extend the product form solution to more general networks. In

Jackson networks if the arrival rate is a constant that does not depend on the number in the system,
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then the equilibrium distribution of the number in the network can be obtained by analyzing each

machine center as a M/M/c queue (Jackson 63). Under the decomposition approach this result

is mimicked, and each node in the queueing network is approximated by a G/G/c system. There

are three basic steps in the decomposition methods:

(1) Characterization of the Arrival Process: At each station the arrival process resulting from the

superposition of different streams arriving to that station is (approximately) determined.

(2) Analysis of the queue: Based on the characteristics of the arrival process determined in step

1, the queueing effects at the station are (approximately) computed.

(3) Determination of the departure process : The characteristics of the departure process of each

product from the station are (approximately) determined. The departure streams in turn become

arrivals at some other stations.

Several variants of the decomposition method can be developed by varying the

implementation of the three steps. One of the most often used procedures is the parametric

decomposition approach.

The Parametric Decomposition Approach (PDA)

Under the parametric decomposition approach (PDA), in addition to assuming that each

node can be treated as being stochastically independent (the decomposition assumption), the arrival

process to, the departure process from, and the flow between each node are approximated by

renewal processes. Further, it is assumed that two parameters - mean and variance - of the inter-

arrival, and service time distributions are adequate to estimate the performance measures at each

node. Hence to compute the performance measures we need to (i) approximate all the flows in the
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network, and (ii) compute the performance measures based on the first two moments of the

interarrival and service times. Accordingly, the description of the PDA will be in two parts : A)

Flow analysis, and B) Estimation of performance measures.

The decomposition approach was first proposed by Reiser and Kobayashi (74), and has

subsequently been modified and developed by Sevick et al(77), Chandy and Sauer (70), Kuehn(79),

Shanthikumar and Buzacott(81), Buzacott and Shanthikumar(85), Whitt(83a), and Bitran and

Tirupati(88, 89a, 90 ). For ease of exposition we first describe the main steps in the parametric

approach assuming that there is only one product family and the routing structure is Markovian.

Also, unless we state otherwise, a FCFS queue discipline is assumed. Using this as a basis we

discuss the assumptions underlying this approach in greater detail, and then briefly describe how

it has been augmented to incorporate features such as multiple products, and deterministic routings.

A. Flow Analysis

Let rj be the probability of a job going to station j, upon completion of service at station i,

and let R be an M x M matrix with elements {rij}. Because each job eventually leaves the network

the matrix [I - R]-' is well defined, where I is the identity matrix. For external arrivals to the

network we let i = 0, and for departures from the network we let j = 0.

For the renewal process approximating the flow from station i to station j, let li, and cij be

the mean, and the squared coefficient of variation (scv) of the renewal interval length. Denote the

flow rate from node i to j by aj; aj = 1/lij. In PDA the superposition of the flows arriving at a

node are further approximated by a renewal process. We let a.i, a denote the total flow rate into
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and out of node i respectively. Similarly define c., and c . The flow rates aij are determined by the

following traffic equations:

a. - a + a.f (1)
J-1

a - arj, (2)

While determining the flow rates is straightforward, approximations are needed for the scvs.

In particular we need procedures for approximating by a renewal process each of the following: (i)

superposition of renewal processes, (ii) departure processes from queues, and (iii) flow along each

arc out of a node (splitting the departure stream).

(i) Approximations for Superposition of Renewal Processes:

In PDA only the mean and the variance of the approximating renewal interval need to be

determined. The mean is straight forward to compute - the arrival rate of the approximating process

must equal the arrival rate of the superposition process. Whitt(82) considers two basic procedures

for determining the variance of the approximating process. He calls them micro and macro

approaches.

Assume that the superposition process has been on since t = -oo, and an arrival occurs at

time 0. Let S be the time of the n h arrival after time 0, and V(S.) the variance of the random

variable S. Under the macro approach the variance of the approximating renewal interval is set
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at Lim , V(Sn) /n . The macro approach is also called the asymptotic method. Henceforth we

refer to the limiting variance and scv as the asymptotic variance and asymptotic scv.

Under the micro approach the variance of the approximating renewal interval is set at V(S1 ).

The time interval starting from 0 until the first arrival after 0 is referred to as the stationary interval

of the superposition process. Henceforth we refer to V(S1) as the stationary interval variance and

the corresponding scv as the stationary interval scv.

The asymptotic scv can be computed readily from the scvs of the interarrival times of each

of the process being merged. For instance the asymptotic scv of the arrivals to station i is given by:

M
l Ea,,j,. (3)

a.i i-0

Although the asymptotic scv is easy to compute, the stationary interval scv is cumbersome

to determine. As a result Whitt(82) proposes approximation formulae for the stationary interval

scv. These formulae are based on the characteristics of hyper-exponential, Erlang, and shifted

exponential distributions.

When the two approaches, micro and macro, were used to estimate performance measures

of queueing systems, Whitt(82) and Albin(81, 84) found that neither method dominated. Based on

their experiments they discovered that a convex combination of the scvs provided by the micro and

macro approaches yielded the best results. This approach has been called the hybrid approach

(Albin 84). If let c, cs, and c, denote the asymptotic, stationary, and hybrid scv, respectively, then

c = Wca + (1-W)c s, where O W _ 1, and W is a function of the utilization of the server and the
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number of arrival streams being merged. As the number of arrival processes being merged goes

to infinity, the stationary interval is asymptotically correct. On the other hand as the utilization goes

to 1, the asymptotic limit is asymptotically correct. The weighting factor W is so chosen that as the

number of process being merged goes to infinity, W goes to zero, and as the utilization goes to 1,

W goes to 1.

In the queueing network analyzer proposed by Whitt (83a) the following approximation for

the scv of the arrivals at station i is used:

C.i _WE aI] + i § - W (4)

where W -' - [1 + 4(1 - pi)2 (V- 1)] (5)

M 2

-1 E

j- a. (6)

pi: utilization of station i

For further details the reader is referred to Whitt (79, 82, 83a) and Albin (81, 84).

(ii) Approximations for the departure process:

The departure process from a queue is in general not a renewal process(eg Berman and
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Westcott 83), however in PDA it is approximated by a renewal process. The mean of the

approximating renewal interval is easy to determine. Two alternatives have been considered for the

variance - the stationary departure interval variance and the asymptotic limit. Whitt (84) shows that

for GI/G/c queues with utilization less than 1, the asymptotic variance of the departure process is

the same as the variance of the interarrival times. Hence, once again the asymptotic limit is easy

to determine. However the computational tests indicated that the stationary interval provides a

better approximation, and that was adopted by Whitt(83). Unfortunately, determining the stationary

interval distribution of the departure stream is not easy, and instead of computing the exact

stationary departure interval scv, approximations are employed. Combining the formulae for the

stationary interval due to Marshall(68) with Kraemer-Langenbach-Belz(76) approximation for the

expected waiting time, Whitt (83) obtains the following approximation formulae for the scv of the

inter-departure times:

C. - cs1 + (1 - )c. 

where cs : the scv of the service time at station i

(iii) Approximations for flow along each arc (splitting):

If the routing is Markovian, and the departures from the station are approximated by a

renewal process, the flow along each arc will be a renewal process (eg Disney and Konig 85

Theorem 3.1). Under these assumptions, the interdeparture time along each arc out of the station

will be the random sum of interdeparture times from the station. The number of interdeparture

times (from the station) that have to be convoluted is of course geometrically distributed. Hence

the scvs for the flows along each arc can readily be expressed in terms of the scvs of the departure
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process from the source station and the routing probabilities:

c - ro. + 1 - r. ij- toM (8)

Putting together equations 4,7,and 8, we get the following system of equations for the scvs.

M

ac - [al - pjric-
i-1

(9)

- ao.o + [arj(rji(cs + 1 - r,))] i - 1 to M
j-

Observe that once the a.is are determined from equations 1, and 2 the system of equations

(9) is linear in c. Since the performance of the queue is estimated on the basis of the first two

moments of the inter-arrival and service times, the necessary flow parameters have all been

determined.

B. Estimation of Performance Measures

The performance measures at each station are estimated using approximation formulae that

are based on the first two moments of the inter-arrival and service times. A wide variety of

approximations have been proposed for the analysis of GI/G/c queues (eg. Lindley 52, Page 72,

Cosmetatos 75, Kraemer and Langenbach-Belz 76, Marchal 76, Boxma et al 79, and Whitt 85a).

We will not review this literature but only identify approximations that have been employed in the

parametric decomposition framework.

For the single server queues an approximation formula for the average queue length due
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to Kraemer Langenbach-Belz(76) has been extensively used. For estimating the average queue

length at a single server station, Shanthikumar and Buzacott(80) tested several formulae, and for

different ranges of the scv of the inter-arrival and service times they recommend a different

formula. Their recommendations and the corresponding formulae are given in appendix 1.

Whitt(85) proposes approximations for a variety of performance measures in GI/G/c

queues. These formulae are based on the behavior of M/M/c, D/M/c and M/D/c queues, heavy

traffic approximations for GI/G/c queues, and computational experiments. Although the

performance measures considered by Whitt(85a) include the second moment of the queue length,

the probability of delay, and the waiting time and queue length distributions, in the context of

queueing networks only the estimates for the average queue length have been extensively tested.

We present Whitt's formulae for the average queue length in appendix 1.

These observations complete the discussion of the basic elements of the PDA. With in this

framework several features relevant to manufacturing system such as deterministic routing for

multiproduct networks (Bitran and Tirupati 88), batch machines (Bitran and Tirupati 89c), overtime

(Bitran and Tirupati 90), inspection and testing (Segal and Whitt 88), and machine break-down

(Segal and Whitt 88, Bugalak and Sanders 89) have been incorporated.

For networks with multiple products and deterministic routing, Bitran and Tirupati(88)

modified the procedure for splitting the output from single server stations. For ease of exposition

let us assume that upon service completion each product family flows along a different arc. As in

the case of Markovian routing, here too the output process from the station and the flow along each

arc are approximated by renewal processes. However the procedure for determining the scv of the
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flow along each arc is modified. Let us assume that we are interested in the flow of product family

k. Henceforth we refer to this product family as the marked family, and all other families arriving

at the station are referred to as the aggregate family. Bitran and Tirupati first approximate the

arrival process of the aggregate family by a Poisson process and determine the distribution of the

number of aggregate arrivals between two marked arrivals. Observe that under the assumption that

the aggregate family arrival process is a Poisson process, the number of aggregate arrivals between

consecutive marked arrivals are independent and identically distributed. Therefore if the output

from the station is assumed to be a renewal process, then the output of the marked product family

will also be a renewal process. The interdeparture time of the marked product family is the random

sum of the interdeparture times from the station, where the distribution of the number of

interdeparture times to be summed is given by the number of aggregate arrivals between marked

arrivals. Under these assumptions the scv of the flow along arc ik is given by:

fci. + (1 - fK) + (1 - f)a

where f - apK
a.i (10)

apK - arrival rate of product K

caK - scv of the interarrival times of product K

When equations 8 and 10 were tested, equation 10 enabled significantly better estimates of

the performance measures. There is also an interesting qualitative difference between equation 8

and 10. In equation 8 observe that as rij tends to zero the scv of the flow along arc ij approaches

1. On the other hand in equation 10 as the fraction of product k (f) arriving at node i goes to zero

the scv of the flow along arc k (ci)approaches the scv of the arrival process of product k (ca,). In

fact Bitran and Tirupati show that equation 10 is asymptotically exact. Whitt(88) has further
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generalized this result to show that as the proportion of product family k goes to zero, not only does

the scv of the departure process for product k approach its arrival scv, but the interdeparture times

of product family k become independent and identically distributed, with the same distribution as

the interarrival times of product k. Whitt(88) conjectures that this is the case regardless of the

number of servers, and priority discipline.

Bitran and Tirupati(88) also develop approximations for the departure process of each

family under the assumption that the interarrival times at station i of the aggregate family have an

Erlang distribution. In this case the number of aggregate arrivals between marked arrivals are no

longer independent. However they assume these random numbers to be independent and

identically distributed, and provide two procedures for computing the distribution of the number

of aggregate products interfering between consecutive marked arrivals. For further details the

readers is referred to Bitran and Tirupati(88).

For networks with batch machines employing ideas similar to those described above, Bitran

and Tirupati(89c), develop an approximation for the number of jobs of product family k in each

batch. This in turns enables them to approximate the flow process along each arc out of the batch

station. Observe that stations down-stream from the batch station will observe bulk arrivals, and

the distribution of the number of jobs arriving together will depend on the composition of the batch.

Features such as overtime and machine break-downs have been incorporated primarily by

modifying the service times. Appendix 2 illustrates one procedure that incorporates break-downs

by modifying the service time distribution. For further details the readers are referred to Whitt and

Segal(88), Bitran and Tirupati(90), Bugalak and Sanders(90).
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It is clear from the discussion above that the parametric decomposition approach involves

several layers of approximations. To start with, each flow process is approximated by a renewal

process, next the parameters needed for approximating the flows (such as the stationary interval scv

of the superposition process) are computed approximately, and finally the performance measures

are estimated using approximation formulae. Inspite of these simplifications the procedure provides

remarkably accurate estimates of the first moment of the queue length (eg Whitt 83b, Shanthikumar

and Buzacott 81 , Bitran and Tirupati 88, 89c, 90 ) in very general queueing networks. The

parametric approach is particularly appealing because its data and computational requirements are

minimal. It only requires the first two moments of the inter-arrival and service times, and the

routing matrix. Computations essentially involve solving two systems of linear equations each with

M constraints.

Given the success of the PDA in estimating the first moment of the queue length, the idea

of decomposing the network into a system of G/G/c queues is very attractive. In order to refine

and enhance the decomposition procedure so as to obtain other performance measures such as

higher moments of the queue lengths, and waiting times, further study of the three basic

decomposition steps is needed. Recall that the 3 basic steps are: (1) Characterization of the Arrival

Process, (2) Analysis of the queue, and (3) Determination of the departure process.

In this context the developments in the study of phase type distributions(Ph) and queues

with phase type arrival and/or service processes are interesting. Phase type distributions permit

detailed analysis of complex point processes, and queues with non-renewal arrivals. For instance,

for the superposition of phase renewal processes several parameters such as the stationary interval
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moments, and the lag correlations between interarrival times can be readily computed (eg Rudemo

73, Neuts 79, and Bitran and Dasu 90a). In general these parameters are not easy to compute. It

is useful to note that phase type distributions are a dense sub-set of all distributions on non-negative

real numbers. Exponential, Erlang and Hyper-exponential distributions, whose properties have been

exploited in the development of PDA, are special cases of Phase type distributions.

Employing essentially matrix geometric procedures (Neuts 81) detailed analysis of queues

with superposition arrivals can be carried out, if the inter-arrival times for each of the streams being

merged has a phase type distribution. (Ramaswami 80, Bitran and Dasu 90b). The analysis of these

queues determines performance measures as observed by each customer class, and characteristics

of the departure process such as the stationary interval distribution and the lag correlations. Matrix

geometric techniques can be employed to analyze queues with correlated arrivals, provided the

arrival instances can be depicted as transition times in a finite irreducible continuous time Markov

process.

Bitran and Dasu(90a) use the term generalized phase process (GPh) for point processes

generated by transitions on a subset of arcs in finite irreducible continuous time Markov chains.

Special case of GPhs are phase renewal processes, alternating phase renewal processes, and

superposition of phase renewal processes (Phj). Superposition of GPhs (GPhi) is also a GPh.

GPhs in turn are special cases of the N -process (N-p) identified by Neuts (79).

Since queues with correlated arrivals (GPh or N-p type) can be analyzed, it is not necessary

to approximate either the departure or the superposition arrival process by a renewal process.

Nevertheless approximations will be needed if either (i) the actual process is not a GPh (N-p), or
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(ii) the size of the exact representation is too large and is computationally prohibitive - the size of

a GPh is the number of states of the underlying Markov process. The departure process from a

GPh/G/1 queue is an example of the former case, and the departure process from a GPh/Ph/1 is

an example of the latter.

Bitran and Dasu(90) study the problem of approximating zPh i by a GPh that is smaller in

size. ( As the number of process superposed increases the size of the exact representation grows

very rapidly.) They propose an approximation scheme that takes into account only the asymptotic

and stationary interval moments of the zPhi process. To evaluate the procedure they compare the

performance measures of zPh i /E 2(M)/1 with that of the corresponding GPh/E 2(M)/1 queue.

Their limited computational tests are very encouraging in that the error in the first three moments

of the queue length are less than 5%, and the error in the scv of the stationary departure interval

is less than 10% .

Although matrix geometric techniques and phase type distributions permit analysis of fairly

complex queues and point processes, a drawback of the approach of Bitran and Dasu(90a, b) is that

it is computationally very expensive as compared to PDA. Therefore, it may not be suitable for

analyzing large networks. Nevertheless, the developments in this domain are useful for developing

and evaluating approximations needed to enhance the decomposition methods.

Recently, Bertsimas and Nakazato(90) have derived the exact characteristics of the

departure process from GI/G/1 queues. Using Hilbert factorization they have determined the

transforms of the stationary interdeparture interval and the lag-correlations. These developments

should prove useful for further refining approximations for the departure processes.
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V OPEN QUEUEING NETWORK MODELS OF JOB SHOPS - OPTIMIZATION MODELS

So far the discussion has been about how to evaluate the performance of a given queueing

system. Since we are concerned with models that aid the (re)design of manufacturing systems we

next look at procedures that determine the configuration of a queueing network that achieves a

particular performance objective. Clearly, if the system design problem is one of selecting from a

limited number of alternative system configurations (designs), then performance evaluation models

will be adequate. Otherwise, more sophisticated optimization routines become necessary.

As stated several times in earlier sections, the actual performance of a system is inextricably

linked to the control rules employed to operate the system. It is therefore tempting to require

algorithms that determine optimal system configuration to simultaneously determine the optimal

control policies. Such a monolithic approach has so far eluded analysis. Considerations such as the

detailed data requirements of operational control rules also diminishes the practical appeal of the

monolithic approach.

The optimization procedures developed for open queueing networks can be partitioned into

two categories : those that design the network assuming simple operational rules such as FCFS,

and those that determine the optimal operational rules for an existing system. Given the bias of

this paper our focus will be on the first set of models. In recent years based on the developments

in the theory of dynamic control for Brownian networks, researchers have proposed control rules

for job shops. The second part of this section contains a brief review of this literature.

38



III

V.1 OPTIMAL DESIGN OF NETWORKS

Optimal design of computer systems and communication networks based on queueing

network models have been studied for several years (Kleinrock 76 chapter 5, Chandy et al 77,

Tantawi and Towsley 85). Emergence of flexible manufacturing systems has also motivated

developments in design of queueing networks (Buzacott and Yao 86b). Much of this work is

concerned with closed queueing networks. It is only recently that open queueing network models

have been proposed for designing job shops (Bitran and Tirupati 89a,b).

In section 2 we identified three classes of problems related to the design of manufacturing

systems - SPI, SP2, SP3. We now discuss developments in queueing networks that address similar

problems. The earliest result in design of open queueing networks is due to Kleinrock(64). This

problem is similar to problem SP2. 1. Hence we begin by describing procedures developed for SP2. 1,

which can be restated as follows:

Q2.

M

mi-

[mn] X i- 1 to M

where:
n : number of machines at station i
mi : processing rate of each machine at station i
gi(mi,n) - cost of equipping station i with capabilities (m,n,)
Li(m,...) : Expected numbers of jobs at station i as a function

of the processing capabilities
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We refer to this problem as Q2, to emphasis that it is based on a queueing network model

of a manufacturing facility. (Problem Q1 which corresponds to the first class of strategic problems

is formulated later in the paper.) The layout of the network, arrivals rates for different product

families, and the routing matrix are predetermined, and are not decision variables in Q2. The

decision variables are the processing capabilities of each station which are determined by the

number of servers (ni)s, and the processing rate of each server at a station (mi)s. Observe that m i

should be a vector with ni elements, however we assume that all servers are identical. Hence m i is

a scalar.

In section 2 we identified two basic procedures by which capacity is altered in manufacturing

systems - by purchasing machines, or by increasing the number of hours the facility is operated each

day. In queueing models capacity is primarily altered by either increasing the number of servers

or changing the processing rate. Adding servers at a station is clearly equivalent to acquiring

machines. However the correspondence between increasing the processing rate and adding extra

shifts is loose. If the entire facility is operated for an extra shift, then it has the effect of increasing

the number of jobs processed each day at a station. But if only some machine centers are operated

for extra time then it is not equivalent to increasing the processing rate of the corresponding station

in the queueing network model of the facility. However, Bitran and Tirupati(90) show that the

effect of operating a machine center extra hours can be closely approximated by altering the

processing rate at that station. Queueing models in which capacity is altered (continuously) by

changing the processing rate have also been justified as being approximations for the discrete

process of (a) determining the capability of the machine to be acquired or (b) adding more

machines. In some situations such as metal cutting operations, the processing rate can be altered
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almost continuously by changing the cutting speeds.

Several special cases of Q2 have been analyzed. We develop next a notation to identify

these models. The problems will be- denoted by Q2.TN.D.

- TN is the type of queueing network. For our purpose J (G) denotes a Jackson (General) network,

and S (M) will be used in conjunction with J (G) to denote that all stations have single (multiple)

servers. For example JS denotes a Jackson network with only single server stations, and GM

denotes a general open queueing network with multiple servers at one or more stations.

- D denotes the decision variable. There are two possible values for D, R and N. R (N) denotes

problems where the service rates (number of servers) are the decision variables.

Kleinrock(64) considered the problem of determining the processing rate (mi) at each node

in an open Jackson network so as to minimize the expected number of jobs at each station. He

assumed that all stations in the network are single server stations and that the cost of a machine

is proportional to the processing rate. We denote this problem as Q2.JS.R.

02.JS.R

M

mninE L,(m,)
i-l

L(m) - i i - 1 to M.(mi - )

,dm - D
mdn1 -D
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Edtm - D is the Budget constraint, where di is the unit cost of capacity at station i. The

optimal rates for this problem are: -

m(D -a d +a

- i - i1,M (11)

j-1

If the unit cost of capacity is the same at each station the solution above is equivalent to

first allocating just enough capacity to each station to satisfy the arrival rate, and then allocating the

excess capacity among stations in proportion to the square roots of their arrival rates. Observe that

the optimal allocations do not result in a system where all the server utilizations are equal.

Problem Q2.JS.R has an elegant solution because: (C1) the average number in the system

is a convex function of the processing rate, (C2) capacity addition at one station has no effect on

the expected queue length at other stations, (C3) processing rates (decision variables) are

continuous variables, (C4) Cost of the machines are convex (linear) functions of the rates, and (C5)

the sojourn time at each station can be expressed in closed form. Conditions C1 - C4 permit

marginal analysis, and C5 enables a closed form solution.

Q2.JM.R is the equivalent of Q2.JS.R obtained by permitting multiple server stations in the

network. Note that the decision variables in Q2.JM.R are the processing rates and not the number

of servers at each station. Harel and Zipkin (87) have established that in an M/M/m queue the
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expected sojourn time is a convex function of the service rate. As a result Q2.JM.R enjoys

properties C1 through C4; hence it is a convex program that can be solved via marginal analysis (

eg. Avriel 76, and Bertsekas 82).

Q2.JM.N is a variant of Q2.JM.R in which the decision variables are the number of servers

(ni) at each station. Hence the budget constraint has to be modified to E dni - D . In this case

condition C2 continues to be valid, and condition C1 is valid because the average sojourn time in

an M/M/c queue is a convex function of c (Dyer and Proll 77). However, since the decision

variables are no longer continuous, marginal analysis will not yield the optimal solution. Q2.JM.N

has the structure of the Knapsack problem and can be solved by any algorithm proposed for such

problems (Nemhauser and Wolsey 88)

In general networks conditions C1 and C2 do not apply and we are left with difficult non-

linear optimization problems. As a result approximations have been proposed. In all the

approximation procedures that are described in this section (for problems Q1 defined below, and

Q2), the non-convex program is approximated by a convex program. In order to do this, the

equilibrium queue length distributions are first approximated by a product form distribution. As a

result of this approximation condition C2 holds. Next the approximation formulae for the expected

queue lengths are shown to be convex functions of the processing rate (the decision variable).

Consequently all 5 conditions are met by the approximating convex program.

Harrison and Williams (87) have shown that in networks in which the utilization of each

station is between 0.9 and 1.0, the stationary distribution of the number in queue can be
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approximated by a product form distribution. Under this approximation scheme the expected

number of customers at station i is given by:

2

a1 (12)
2(m, - a.)

M
where, o2 - aaco + a, + a.f.u(csfr + 1 - r) (13)

i-i

Observe that the formula for the average number at the station is convex in m i, and capacity

addition at one station has no effect on the average queue length at other stations. Wein(90)

employs these heavy traffic approximations to develop a solution for Q2.GS.R. Under this

approximation scheme all 5 conditions are valid and the following solution is readily obtained:

A- 
m i' - a. + for i(D - 1,M (14)

M di

j-1

The allocations made under this procedure (eq 14) reduces to that due to Kleinrock (eq 11)

if the network is a Jackson network. Observe that equation 14 compensates for the variability (oi)

at a station.

Let us now turn to the first class of strategic problems identified in section 2. Recall that

problem class SP1 deals with designing a least cost facility to achieve specified performance

characteristics. Queueing problem Q1, which corresponds to problem SP1.1 is formulated below.
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The objective of SP1.1 is to design a least cost facility, given an upper bound on the expected

number of jobs in the system.

Q1.

min gi(m,n,)

M
Li(m,n,;m 2 ,n2 ; ... mn,) U

1-1

(mi,n i) E Xi i - 1,M

where U: is an upper bound on
expected numbers of jobs in the system

Below we formulate a special case of Q1 for Jackson networks with single server stations,

with processing rates as the decision variables. We continue to use the notation described above,

so we denote this problem as Q1.JS.R:

Q1.JS.R.

M

min d,m

vLi V u

a.

mi - a'

m 0 i - 1,M

where v : weighting factor

The objective function, and Li are convex in mi . Observe that conditions C1 - C4 hold,

therefore Q1.JS.R is a convex program and can be solved through marginal analysis. For the same
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reasons, Q1.JM.R is also a convex program. In general conditions C1 - C2 do not hold. Therefore

approximations are needed for Q1.GS.R, Q1.GM.R, and Q1.GM.N.

Bitran and Tirupati (89b) employ the parametric decomposition scheme to provide an

approximate solution for Q2.GS.R. Recall that in PDA each node is approximated by a GI/G/c

queue, and the queue length at each station is estimated based on the two moments of the inter-

arrival and service times. Bitran and Tirupati first assume that altering the processing rate (mi)

does not effect the scv of the service process. This is equivalent to assuming that the machine

operates faster.

For networks which process a large number of products, Bitran and Tirupati provide

experimental evidence that the scvs of the departures from a station (cL)changes very little even if

the processing rate at the station is changed. Hence they assume that the scv of the departure

process is unaffected by the processing rate. This assumption enables condition C1.

Next, they show that the modified Kraemer and Langenbach-Belz formula (given below)

employed for estimating the expected number at each station is convex in the processing rate.

Li(KLB) - pi + p (C. + CS) g (p ,c.,css)
2(1 - p1)

g(P Fc.cs ) -if 1 (15)
3(c.1 o + ewse) P

-1 otherwise
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Thus Q2.GS.R is approximated by the following convex program:

Q2.GS.R*

M

min ,d,m i
i-I

vLi(KLB) U
i-I

Although Bitran and Tirupati(89b) assume that the scv of the flows between stations are

unaffected by changes in processing rates, in order to solve Q2.GS.R*, estimates of c. i are needed.

Bitran and Tirupati assume that a facility is being redesigned and employ the existing utilizations

to compute the c is. Bitran and Sarkar(90) refine this procedure by relaxing the assumption of

unchanging c. is in the following manner: (i) As in Bitran and Tirupati (89b), they assume a facility

is being redesigned, and hence initially compute the c i values based on the existing utilizations; (ii)

They then solve Q2.GS.R* assuming that c is are unaffected by changes in processing rates; (iii)

using the new processing rates obtained in step ii they recompute values of c is (i.e, they update the

scv values to take into account the modified processing rates); and (iv) with the modified scv values

they repeat step ii. This process is repeated until the procedure converges. If the scvs of the

arrivals at each station are allowed to vary, then Q2.GS.R* is no longer a convex program, hence

even if Bitran and Sarkar's procedure converges it need not converge to the optimal solution. In

fact the procedure need not converge at all. However Bitran and Sarkar provide conditions on the

network data, under which their procedure is guaranteed to converge.

In a paper that closely parallels that of Bitran and Tirupati (89b), Boxma, Rinnooy Kan and
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van Vliet (90) provide an approximate solution for Q1.GM.N. Once again Q1.GM.N is

approximated by a convex program by assuming that conditions C1 and C2 hold. It is interesting

to note that although in a GI/G/c system the expected queue length is not a convex function of the

processing rate, the approximation formula due to Kraemer Langenbach-Belz is convex in the

processing rates.

The work of Bitran and Tirupati (89a,b), Wein (90a), and Boxma, Rinnooy Kan and van

Vliet(90) suggests that fairly general queueing networks behave as if conditions C1 and C2 are valid.

This is very encouraging because it enables us to approximate by convex programs, optimization

problems where

(i) the decision variables are either processing rates or number of servers at each station,

(ii) the objective function is a non-decreasing convex functions of the expected queue lengths, and

(iii) the constraints are upper bounds on a non-decreasing convex function of the queue lengths.

Design of a manufacturing system must take into account several, often conflicting factors.

Hence solving problems Q1 or Q2 to optimality is not sufficient for selecting a design. It is useful

to develop curves that for a given product mix, throughput and technology, describe the trade-off

between the cost of machines (fixed capital costs) and work-in-process costs that are proportional

to the number of jobs in the system. These curves can be developed by parametrically solving Q2

for different values of D, the available budget. Bitran and Tirupati (89b) describe a greedy heuristic

that can also be employed for developing these curves.

Figure 1 illustrates the usage of these curves. In this figure we have two curves AA and BB

each corresponding to a different technology, which we denote as technology TA and TB,
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The tradeoff curves illustrate, as an example, the choices presented by two different
technologies A and B. The figure indicates that A is better than B for low capacity
investment while B is more desirable for horter lead times.

Figure 1: An mllustration of Tradeoff Curves.
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respectively. A firm competing on the basis short lead times may choose technology TB, and

operate at point B. Where as a firm competing on the basis of lower costs may choose technology

TA and operate at point A.

V.2 OPTIMAL CONTROL OF QUEUEING NETWORKS

We now turn our attention to the second class of optimization problems that determine

control rules for a predetermined system. Here the network layout, the product mix, throughputs,

and capacities are predetermined. The objective of the optimization problem is to control the flow

of jobs or customers through the system. Under the hierarchical framework developed in section

III, the class of queueing problems discussed in this sub-section address operational problems.

There is a large body literature concerning the optimal scheduling of multiclass queueing

systems, where the scheduling decisions are to dynamically decide which class of customers to serve

(eg. Sobel 79, Federgruen and Groenevelt 88). Although the theory for single-station systems is well

developed, no papers exist on the optimal scheduling of a multiclass queueing network, which

appears to be mathematically intractable by the standard semi-Markov decision process approach.

However, Harrison (88) has shown how to approximate a queuing network scheduling problem by

a dynamic control problem for Brownian motion. This heavy traffic approximation assumes that

each station in the network is busy the great majority of the time, and thus focuses on the

bottleneck, or most heavily loaded stations in the network. Fortunately, this is where most of the

congestion and queueing occurs, and where scheduling can have its biggest impact.

Effective scheduling heuristics have been derived for a variety of problems by obtaining an
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optimal solution to the Brownian control problem and interpreting this solution in terms of the

original queueing system. Harrison and Wein (90a) and Laws and Louth (89) have each found

policies for minimizing the long run expected average number of customers in the system for

specific open network problems, and have shown that the performance of the proposed policy is

very close to a lower bound on the best achievable performance. Harrison and Wein (90b) have

developed an effective static scheduling policy for maximizing the average throughput rate of a two-

station queueing network (where the customer population size is held fixed), and have derived an

analytic comparison between the proposed policy and that of any static policy, such as the shortest

expected processing time rule and the shortest expected remaining processing time rule. If Pi is the

relative traffic intensity at station i and RW, is the expected remaining amount of work that station

i needs to devote to a class k customer before it exits, then the policy ranks all classes by the index

P2RWlk - plRW2 k, and awards higher priority at station 1 (respectively, station 2) to classes with

smaller (respectively, larger) values of this index. Thus, each station feeds the other station as much

work as it can, and in this way the overall idleness of the two servers is minimized.

Wein (90a,b) also considers the problem of releasing customers into the network (from an

infinite buffer and subject to a specified class mix) and scheduling the customers at each station of

a two-station network. The objective is to minimize the mean number of customers in the network

subject to a lower bound constraint on the mean throughput rate. The proposed scheduling policy,

called a workload balancing policy, is a dynamic index policy, where the indices are dynamic reduced

costs derived from a linear program. If we let Wi(t) be the total expected amount of work anywhere

in the network for station i at time t, then the customer release policy, called a workload regulating

policy, injects a customer into the system whenever the workload process (W 1(t), W2(t)) enters a

particular region in the nonnegative orthant of R2. This analysis was generalized to the multistation
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setting by Wein (90c), but the derivation of the release region becomes quite tedious.

All of the papers employing the Brownian analysis contain simulation experiments

demonstrating the effectiveness (with respect to traditional policies) of the proposed customer

release and priority scheduling policies. Thus, this approximation procedure has made progress in

this difficult problem area.

VI CONCLUSIONS

In this paper we reviewed manufacturing problems that can be modelled as open queueing

networks. Over the last decade three major developments have occurred in this area : (i)

approximation techniques that provide good estimates of the performance of open queueing

networks with general service times and deterministic routings, (ii) empirical discovery that some

of the optimal network design problems can be closely approximated by convex programs, and (iii)

identification of near optimal rules for control of flows through networks using Brownian control

models.

Although these developments are of significant practical interest, there are still many other

features, encountered in manufacturing settings that are not incorporated into the existing queueing

network models. These features include:

(i) Arrival of Jobs to the Shop: All the queueing models assume that the arrival process is time

homogenous and evaluate the equilibrium performance of the system. However in practice the

arrival rates of jobs is likely to vary due to factors such as seasonality in demand, introduction of

new products and elimination of old (obsolete) products. Also the correlation between the demands
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for different products is ignored. Correlation may be induced, for instance, if customers typically

order a set of products from the facility.

(ii) Priority Rules: Performance measures of the queueing network are estimated assuming a FCFS

queue discipline, and ignore control rules for regulating the flow into and through the facility.

(iii) Equilibrium Analysis: Even in absence of seasonality in the demands the arrival pattern

changes over time, thus the utility of equilibrium analysis has to be evaluated. This assumption

requires empirical testing to identify when it is not appropriate.

(iv) Performance measures: The existing models concentrate on the first moment of the queue

length. However, the second moment of the time spent in the shop, as an example of other

measures, can be of great help in design and management of manufacturing systems that behave

like open queueing networks.

Hence, although significant progress has been achieved in solving complex manufacturing

problems, more research needs to be done to allow for the incorporation of features of practical

importance and to validate many of the models proposed trough theory and empirical studies.

Acknowledgements: The authors thank Dr. D. Sarkar and Professors P.Kouvelis, G.Shirley, D.

Tirupati, and L. Wein for their comments and suggestions.

REFERENCES

Ahmadi, R. and H. Matsuo (1990), " The line segmentation problem," Working paper, Anderson
Graduate School of Management, UCLA. to appear in Operations Research

Albin, S.L. (1981), "Approximating queues with superposition arrival processes, "PhD dissertation,
Dept of IE and OR, Columbia University, New York.

52



Albin, S.L. (1984), "Approximating a point process by a renewal process. II. Superposition arrival
processes to queues," Operations Research, 32, 1133-1162

Anthony, R.N. (1965), Planning and Control Systems: A Framework for Analysis, Graduate School
of Business Administration, Harvard University, Boston

Avriel, M. (1976) Nonlinear Programming, Analyses and Methods, Prentice Hall, Englewood Cliffs,
N.J.

Berman, M. and M. Westcott(1983), " On queueing systems with renewal departure processes,"
Advances in Applied Probability, 15, 657-673.

Bertsekas, D.P. (1982), Constrained Optimization and Lagrange Multiplier Methods. Academic
Press, New York.

Bertsimas, D. and D. Nakazato (1990), "The departure process from a GI/G/1 queue and its
application to the analysis of tandem queues," Working Paper, Sloan School of Management, M.I.T.

Bitran, G.R. and S. Dasu (1990a), "Approximating non-renewal processes by Markov chains,"
Working Paper, Anderson Graduate School of Management, UCLA.

Bitran, G.R. and S. Dasu (1990b), "Analysis of Phi/Ph/1 queues," Working Paper, Anderson
Graduate School of Management, UCLA.

Bitran, G.R. and D. Sarkar (1990), "Throughput analysis in manufacturing networks," Working
paper, Sloan School of Management, M.I.T.

Bitran, G.R. and D. Tirupati (1988), " Multiproduct queueing networks with deterministic routing:
Decomposition approach and the notion of interference," Management Science, 35, 851-878

Bitran, G.R. and D. Tirupati (1989a), "Capacity planning with discrete options in manufacturing
networks," Annals of Operations Research, 17, 119-136

Bitran, G.R. and D. Tirupati (1989b), "Trade-off curves, targeting and balancing in manufacturing
networks," Operations Research,37, 547 -564

Bitran, G.R. and D. Tirupati (1989c), "Approximations for product departures from a single server
station with batch processing in multi-product queues," Management Science, 35, 851-878

Bitran, G.R. and D. Tirupati (1990), "Approximations for network of queues with overtime, " to
appear in Management Science

Boxma, O.J., J.W. Cohen and N.Huffels (1979), "Approximations of the mean waiting time in an
M/G/s queueing system," Operations Research, 27, 1115-1127

Boxma, O.J., A.H.G. Rinnooy Kan, and M. van Vliet (1990), "Machine allocation algorithms for job
shop manufacturing," Econometric Institute Report 9014/A, Erasmus University, Rotterdam, The
Netherlands, To appear in Journal of Intelligent Manufacturing

53



Brandwajn, A. and Y.L. Jow (1988) "An approximation method for tandem queues with blocking",
Operations Research, 36,

Bugalak, A.A. and J.L. Sanders (1989), "Modelling and design optimization of asynchronous flexible
assembly systems with statistical process control and repair," Technical report, University of
Wisconsin - Madison

Burbidge, J.L. (1989), Production Flow Analysis for Planning Group Technology, Oxford University
Press, New York.

Buzacott, J.A,. and J.G. Shanthikumar (1985), "Approximate queueing models of dynamic job shops,"
Management Science, 31, 870-887.

Buzacott, J.A. and D.D. Yao (1986a) "On queueing network models of flexible manufacturing
systems," Queueing Systems 1, 1, 5-27

Buzacott, J.A. and D.D. Yao (1986b) "Flexible manufacturing systems: A review of analytic models,
"Management Science 32, 7, 890-905

Chen, H., J.M. Harrison, A. Mandelbaum, A.A. Ackere and L.M. Wein (1988), "Empirical
evaluation of a queueing network model for semiconductor wafer fabrication," 36, 202-215.

Conway, R.W., W.L. Maxwell, and W. Miller, (1967) Theory of Scheduling. Addison-Weseley,
Reading, Mass

Cosmetatos, G.P. (1975), "Approximate explicit formulae for the average queueing time in the
process (M/D/r) and (D/M/r)," INFOR, 13, 328-331

Denardo, E.V. and C.S. Tang (1989), "Bilinear control of Markov production systems, " Working
paper, Anderson School of Management, UCLA, to appear in Operations Research.

Denning, PJ. and J.P. Buzen (1978), "The operational analysis of queueing network models,"
Computing Surveys, 10, 225-261

Disney, R.L. and D. Konig (1985), "Queueing networks: A survey of their random processes,"
SIAM review 27, 335 - 403

Dyer, M.E., and L.G. Proll (1977), "On the validity of marginal analysis for allocating servers in
M/M/c queues," Management Science, 23, 1019-1022

Erlang, A.K. (1917), "Solution of some problems in the theory of probabilities of some significance
in automatic telephone exchanges," Post Office Electrical Engineer's Journal, 10, 189 -197

Federgruen, A. and H. Groenevelt (1988), "M/G/c queueing systems with multiple customer classes:
characterization and control of achievable performance under nonpreemptive priority rules,"
Management Science, 34, 1121-1138

54



Friedman, H.D. (1965) "Reduction methods for tandem queueing systems," Operations Research,
13, 121-131

Garey, M.R., D.S. Johnson and R. Sethi (1976), "Complexity of flow shop and job shop scheduling
algorithms," Operations Research, 24, 117 - 129

Gershwin, S.B., and I.C. Schick (1983) " Modelling and analysis of three stage transfer lines, with
unreliable machines and finite buffers," Operations Research, 31, 354 -380

Graves S.C. (1981), "A review of production scheduling, " Operations Research, 29, 646 -675

Graves, S.C. (1986), " A tactical planning model for a job shop, " Operations Research, 34, 522 - 533

Harel, A. P.H. Zipkin (1987), "Strong Convexity results for queueing systems," Operations Research,
35, 405 - 418.

Harrison, J.M. (1988), "Brownian models of queueing networks with heterogeneous customer
populations," in W.Fleming and P.L. Lions (eds.), Stochastic Differential Systems, Stochastic Control
Theory and Applications, IMA vol 10, Springer-Verlag, New York, 147 -186.

Harrison, J.M. and R.J. Williams, (1987) "Brownian models of open queueing networks with
homogenous customer populations," to appear in Stochastics.

Harrison, J.M. and L.M. Wein (1990a), "Scheduling networks of queues: Heavy traffic analysis of
a simple open network," Queueing Systems, 5, 265-280.

Harrison, J.M. and L.M. Wein (1990b), " Scheduling Networks of queues: Heavy traffic analysis of
a two-station closed network," to appear in Operations Research.

Hax, A.C. and D. Candea (1984), Production and Inventory Management, Prentice-Hall, New Jersey

Hayes, R.H. and S.C. Wheelwright (1984), Restoring Our Competitive Edge; Competing Through
Manufacturing, John Wiley and sons, New York.

Jackson, J.R. (1957), " Networks of waiting lines," Operations Research, 5, 518 -521

Jackson, J.R. (1963), "Jobshop-like queueing systems, " Management Science, 10, 131-142

Karmarkar, U (1987), "Lot sizes, lead times and in-process inventories, " Management Science, 33,
409 - 418

Karmarkar, U., S. Kekre, and S. Kekre (1985), "Lotsizing in multi-item, multi-machine job shops,"
IIE Transactions, 17, 290-298

Kelly, F.P. (1975), "Networks of queues with customers of different types, " Journal of Applied
Probability, 12, 542-554.

Kelly, F.P. (1979), Reversibility and Stochastic Networks, John Wiley, New York

55



III

Kleinrock, L. (1964), Communication Nets: Stochastic Message Flow and Delay, Dover Publications,
New York.

Kleinrock, L. (1976), Queueing Systems, Vol II: Computer Applications, John Wiley and sons, New
York.

Kraemer, W. and M. Langenbach-Belz( 1976), "Approximate formulae for the delay in the queueing
system GI/G/1," Congressbook, Eighth Int. Teletraffic congress, Melbourne, 235- 1/8

Laws, C.N. and G.M. Louth, 1989, "Dynamic scheduling of four station network," Probability in the
Engr. and Inf. Sciences.

Lemoine, A.J. (1977), "Network of queues - A survey of equilibrium analysis," Management Science,
24, 464 -481

Lenstra, J.K., A.H.G. Rinnooy Kan and P. Brucker (1977), "Complexity of machine scheduling
problems," Annals of Discrete Mathematics, 1, 343-362

Lindley, D.V. (1952), "The theory of queues with a single server," Proc. Camb. phil. Soc. math. physc
Sci., 48, 277- 295

Marchal, W.G. (1976), "An approximate formula for waiting time in single server queues," A.I.I.E.
Transactions, 8, 473 - 486

Marshall, K.T. (1968), "Some inequalities in queueing," Operations Research, 16, 651-665.

Matsuo, H. and L. Gong (1990) "Smoothing production and stabilizing WIP in a production system
with yield loss, " Working paper, University of Texas, Austin.

Nemhauser, G.L. and L.A. Wolsey (1988), Integer and Combinatorial Optimization, John Wiley and
sons, New York.

Nuets, M.F. (1979), " A versatile Markovian point process," Journal of Applied Probability, 16, 764-
779.

Neuts, M.F.(1981), Matrix Geometric Solutions in Stochastic Models, Johns Hopkins Univ. Press,
Baltimore.

Page, E. (1972), Queueing Theory in O.R., Operational Research Series, Edited by K.B.Haley

Panwalker, S.S. and W. Iskander (1977), "A survey of scheduling rules," Operations Research, 25,
45 -61

Perros, H.G. and T. Altiok (eds.) (1989), Queueing Networks with Blocking, Elsevier Science
Publishers, New York

Ramaswami, V. (1980), " The N/G/1 queue and its detailed analysis," Advances in Applied
Probability, 12, 222- 261

56



Reich, E. (1957) "Waiting times when queues are in tandem, " Annals of Mathematical Statistics,
28, 768 -773

Reiser, M. and H. Kobayashi (1974), " Accuracy of diffusion approximations for some queueing
systems," IBM journal of Research and Development, 18, 110 -124

Reiser,M. and S.S. Lavenberg (1980) "Mean value analysis of closed multichain queueing networks,"
JACM, 27, 313-322

Rinnooy Kan, A.H.G. (1976), Machine Scheduling Problems: Classification, Complexity and
Computations. Nijoff, The Hague, Netherlands.

Rudemo, M. (1973), "Point processes generated by transitions of Markov chains," Advances in
Applied Probability, 5, 262 -286

Segal, M. and W. Whitt (1988)," A queueing network analyzer for manufacturing, " Proce. of 12th
int. Teletraffic Congress. Torine, Italy

Seidman, A., P.J. Schweitzer, and S. Shalev-Oren (1987), "Computerized closed queueing network
models of flexible manufacturing systems: A comparative evaluation, " Large scale systems, 12, 91-
107

Sevick, K.C. and I. Mitrani (1981), " The distribution of queueing network states at input and output
instants," JACM 28, 358-471

Sevick, K.C., A.I. Levy, S.K.Tripathi, and J.L. Zahorjan (1977), "Improving approximations of
aggreagated queueing network systems," Proc. Computer Performance, Modeling, Measurement and
Evaluation.

Shantikumar, J.G., and J.A. Buzacott (1980), " On the approximations to the single server queue,"
IJPR, 18, 761-773.

Shanthikumar, J.G. and J.A. Buzacott (1981), "Open queueing network models of dynamic job
shops," International Journal of Production Research, 19, 255-266

Skinner, W. (1974), " The focussed factory, " Harvard Business Review, May-June, 113 -121.

Sobel, M.J. (1979), "Optimal operation of queues," in Mathematical models in queueing theory,
Lecture Notes in Economical and Mathematical Systems, vol 98, Springer Verlag.

Tantawi A.N., and D. Towsley (1985), "Optimal static load balancing in distributed computer
systems," JACM, 32, 445-465

Wein, L.M. (1990a), " Capacity allocation in Generalized Jackson Networks," Operations Research
Letters, 8, 143-146.

Wein, L.M. (1990b), " Optimal control of a two-station brownian network," Mathematics of
Operations Research, 15, 215-242

57



III

Wein, L.M.(1990d), " Scheduling networks of queues: Heavy traffic analysis of a multistation
network with controllable input," to appear in Operations Research.

Wein, L.M. (1990c), " Scheduling networks of queues: heavy traffic analysis of a two-station network
with controllable inputs," to appear in Operations Research.

Whitt, W.(1979), "Approximating a point process by a renewal process: A general framework," Bell
Laboratories.

Whitt, W. (1982), "Approximating a point process by a renewal process: Two basic methods,"
Operations Research, 30, 125 -147.

Whitt, W. (1983a), "The queueing network analyzer," Bell Systems Technical Journal, 62, 2779-2843.

Whitt, W. (1983b), "Performance of the queueing network analyzer," Bell Systems Technical Journal,
63, 1911-1979.

Whitt, W. (1984), "Approximations for departure processes and queues in series," Naval Research
Logistics Quarterly, 31, 499 -521

Whitt, W. (1985a), "Approximations for the GI/G/m queue," to appear in Advances in Applied
Probability.

Whitt, W. (1985b) "Best order for queues in series," Management Science, 31, 745 -487

Whitt, W. (1988), " A light traffic approximation for single-class departures from multi-class queues,"
Management Science, 34, 1333-1346.

58



Appendix 1

Notation

c

p

ca

cs

Lq

L

Lq*

Whitt (1985)

= number of servers,

= station utilization,

= scv of interarrival time,

= scv of service time,

= mean number of jobs in queue (excluding jobs in service).

= mean number of jobs in the system (in queue and in service)

= mean number of jobs in queue in our M/M/c system with utilization p

Lq _ P2 (ca+cs) gp,ca,cs

~ = 2(1) 2- I
where g(p,ca,sc) - e4 2(1-) (-ca) cas,

- xf (-+p-)(cal) ], ca>l.
(l+p)(ca+cs2)

Shanthikumar and Buzacott (1980)

The table below corresponds to Table 2 of Shanthikumar and Buzacott (1980), and classifies

approximations for mean number of jobs in queue in GI/G/1 system
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csI ca [0,0.3] [ [0.3,0.7] [0.7,0.9] i[0.9,1.0] 
[0,0.1] L,(KL) Lq(KL) L(KL) L,(KL)

[0.1,0.3] Lq(KL) Lq(KL) Lq(MARC) Lq(MARC)

[0.3,0.7] L(KL) - Lq(MARC) Lq(MARC) Lq(MARC)

[0.7,0.9] Lq(KL) Lq(MARC) L (PAGE)

[0.9,1.0] Lq(PAGE) Lq(PAGE) Lq(PAGE) Lq(PAGE)



where

L (KL) - P2 (ca+cs) g(p,ca,cs),
(l-p) 2

g(p,ca,cs) - exp -2(1-p) (1-ca)2]

- exp -(l-p) (ca-1)t ca>l,
(ca+4cs) 

Lq(MARC) - p2(1+cs) (ca+p2cs) ),
(l+p2cs) 2

(2 (l) L-p)

GI/G/c System

Whitt (1985)

L - Lq+cp

Lq - t(p,ca,cs,c) 2 cacs Lq,

where 4(p,ca,cs,c)
- 4(ca-cs)# l(cp) + Cs e((ca+cs)/2,c,p), ca>cs

4ca-3cs 4ca-3cs
- (cs-cs)](2(ca+cs)) c3(c,p) + (cs+3ca)/(2(ca+cs)) O ((ca+cs)/2,c,p), ca:cs

0(a,c,p) - 1, >1
- (t4(c,p>))2( l- ), Osacl.
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8(c,p) - min({0.24,(1 - p)(c- 1)[(4+5c)O-21/(16cp) 
*l(c,p) - +6(c,p)
*2(c,p) - 1-46(c,p)
*

3 (c,p) - *2 (c,p)exp(- 2 (1-p)/(3 p))
4 4 (c,p) - min{(,(Ol(c,p)+o3(c,p))/2.

Appendix 2

Computation of mean and scv of modified service time

Let t, t and ct respectively denote process time, its mean and its scv,

g, g and cg respectively denote repair time, its mean and its scv,

s, s and cs respectively denote modified service time, its mean and its scv,

u expected time between successive failures, and

E() the expectation operator

Then the modified service time, s has the following characteristics

s - t with probability (l-p)
- t+g with probability p

where p = the probability that a job has a breakdown while in process

= t/u

Noting that E(t) - t, E(t 2) - (l+ct)t 2,
E(g) - g, ECg2) - (+cg)g- 2,

and E(t+g) - t+g, E((t+g) 2) - t-2(1+ct)+g-2(1+cg)+ig,

We obtain

Note that the procedure above can be modified to include different types of breakdowns with

associated repair characteristics.
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11

- E(s) - 8+pg It

E(s2) - (1-p)E(t2 ) + pE((t+g)2 )

- t2 (1+ct) + p[g'2(1+cg)+2tg],

an1 s 2Ct + pg2(1-p+cg)].
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