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Hotel Sales and Reservations Planning+

Gabriel R. Bitran* and Thin-Yin Leong**

Abstract

The profitability of a hotel depends largely on how well it uses its

capacity. However, managing this operation is immensely difficult.

Reservations and the other major sources of room demand--stay extensions

and walk-ins--have associated uncertainties. Hotel operators must determine

how to allocate rooms to guests who are willing to pay different rates and,

at the same time, manage a reservation operation with these uncertainties.

This study is motivated by the description of an actual hotel sales

and reservations planning problem. In our problem, stays are not limited to

single days and there are multiple room-types. We introduce the concept of

guest-classes. Each class corresponds to a market segment: people who want

a particular room-type, want to pay no more than a particular rate, and

have similar cancellation and show behaviors.

We study how hotels should plan reservations and manage sales under

fairly general conditions. The model can be used to support decision-making

by providing an analytical approach for setting targets and rates for rooms

occupancy, and marketing and sales planning.

*Sloan School of Management, Massachusetts Institute of Technology,
Cambridge, MA 02139.

**Sloan School of Management, and National University of Singapore,
Republic of Singapore

+This research was partially supported by "The Leaders for Manufacturing
Program".



Hotel Sales and Reservations Planning

Gabriel R. Bitran and Thin-Yin Leong

1. Introduction

Hotels take room reservations from a few months to one day in

advance. Prospective guests can cancel their reservations anytime before

the day the rooms are required; cancellations are made with no penalty.

Prospective guests, without informing the hotel, may even fail to show up

for their reservations. The number of cancellations and no-shows can be

highly variable. Though expected no-show rate is around 15%, Rothstein

[19743 quoted estimates from hotel executives that no-show rates in excess

of 25% are common, indicating the problem's magnitude and difficulty.

Other major sources of room demand are stayover and walk-in.

Occasionally, trips must be taken on short notice, forcing the traveler to

seek accommodations as a walk-in, a prospective guest with no reservation.

Even when a guest makes and honors a reservation, the estimated length of

stay may be inaccurate. A business executive who planned a three day visit,

for example, may take four days to settle her affairs, thus making it

necessary to extend the room occupation. Conversely, she may finish in two

days, permitting early departure. Therefore, these room demands are also

random.

Even though the major sources of demand are random, some types of

demand can be controlled. Reservation demand is controlled by limiting the

number of reservations to accept. Stayovers cannot exceed the number of

rooms currently occupied. This, in turn, depends on the number of

reservations previously accepted. Some hotels, in policy, honor all

requests for stay extension. But most hotels, depending on capacity

available, may or may not extend a stay beyond what was scheduled. (When

this general practice is resisted, hotels will usually back-off to avoid
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unnecessary negative publicity. Occurrences like these are rare and may be

neglected.) As such, the hotels have some control over stay extensions.

Similarly, walk-in demands can be selectively rejected when there is

insufficient capacity. Premature departures, on the other hand, cannot be

directly controlled. So as to get enough time to adapt, most operators set

rules on the amount of pre-checkout notice their guests must give.

In sharp contrast to the consumer's right of cancellation without

penalty, a hotel, on the other hand, is obligated to live up to its

reservation commitments. To remain competitive and profitable, it is

prudent that hotels plan how they run the reservation operation. We propose

that they plan the booking of reservations, to complement the other

demands. We aim towards maximizing expected profit subject to service

constraints for meeting the demand from booked reservations. We believe

that this is a novel formulation for the hotel problem.

The problem is related to the production planning problem with

stochastic yields. The number of reservations to accept corresponds to the

production lot size and no-shows correspond to rejects. Reservations

accepted and guests present are equivalents of stocking items. These stocks

"perish" when there are cancellations or premature departures. Unlike

manufacturing of products, services such as hotel room "rentals" cannot be

produced ahead of time and stocked in anticipation of seasonal demand.

Hence capacity not utilized is lost forever; pre-emptive production is not

possible. Furthermore, since there is no backordering, demands not met are

also lost forever. From this comparison, we see that the hotel reservation

problem is richer and more interesting than the production planning

problem.

This paper is organized as follows. We review in section 2 the

literature related to the hotel reservation problem. Section 3 describes
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the problem that we intend to solve. In section 4, we formulate the problem

as linear programs and present the main results. Additional comments and

extensions are given in section 5. We end the paper with a summary and

conclusions.

2. Literature Review

Rothstein [1974 claimed that he found no published model directed

specifically to the hotel problem and provided one. His model is an

extension of the airline overbooking problem examined previously by

Rothstein [1968, 1971a, 1971b]. He used the Markovian sequential decision

process to generate booking policies for hotels with one room-type and

single-day stays. This problem differs from the airline problem by allowing

double occupancy--more than one guest per room.

Ladany [1976] extended Rothstein's airline work to provide a hotel

model where there are two room-types: single and double rooms. Stay

durations are still limited to single-days only. The author claimed that

the model may be extended for many room-types and multiple-day stays. The

state space for this dynamic program will be huge. One study that

explicitly model stays of more than one period is [Kinberg, Rao, and Sudit

1980]. In this model, there are two categories of demand: package

(subscription) and spot. The model determines how the fixed resource

capacity should be allocated to the two demand categories. Subscriptions

are sold with price discounts, but are paid in advance; the trade-off is

between degree of demand uncertainty and expected total revenue. The

problem is fundamentally different from ours in that tickets sold are paid;

no-shows do not create problems. Glover et al. [1982] and Pfeifer [1989]

studied how airlines should allocate capacity to different fare classes.

Again, these problems do not consider cancellations and show uncertainties.
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Liberman and Yechiali [1978 allow hotels to cancel confirmed

reservations or acquire additional reservations. Both are done with

penalties to the hotel. With identical rooms and focusing on a single

target date, they showed that the optimal policy consists of 3 regions

demarcated by 2 threshold numbers. The regions are where the options--(a)

accept all new requests and acquire additional reservations, (b) do

nothing, and (c) cancel some confirmed reservations--are appropriate. This

model is essentially an extension of the well-known newsvendor problem.

Buying and selling of reservations may be viewed as an indirect approach of

incorporating the multiple room-types feature in a one room-type model.

William's [1977] model is the most complete, considering practically

all the major sources of demand. However, his model assumes that there is

only one type of room. He evaluated the problem on three separate criteria:

expected cost, expected underbook and number of walks, and expected

occupancy rate and number of walks. Walks are people who have made

reservations but cannot check-in because of room shortages; they walk away

dissatisfied. The most interesting outcome from William's work is a set of

histograms and smoothed approximations constructed from data obtained from

two hotels. He showed that reservations, scheduled stayovers, and

unscheduled stayovers show-rates can be approximated by Beta distributions;

and walk-ins follow the Gamma distribution. Scheduled stayover show-rate is

one minus premature departure rate.

Even though the works mentioned studied service operations, they and

most others do not incorporate explicit measures on service performance.

Exceptions include the work by Thompson [19611, Taylor [1962], Shlifer and

Vardi [19751, and Jennings [1981]. Thompson, who initiated the approach,

studied control issues in airline reservations. He provides feasible

solutions to the problem with two seat-classes that has constraints on the
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risk of exceeding capacity. No cost parameter or objective function is

present in this problem or in the problems in the other papers mentioned in

this paragraph. Single flight-leg problems, in these papers, are similar to

one period hotel problems; multiple flight-legs problems are similar to

multiple periods problems.

In general, the airline problem has a lot of features in common with

the hotel problem. The interested reader should refer to [Rothstein 1985]

for a rviw f that problem. Other related problems include hospital

admissions and bed allocations ([Kao and Tung 1981)), clinic appointment

systems ([Rising, Baron and Averill 1973]), and car or equipment rentals

([Tainter 1964] and [Whisler 1967]).

In this paper, we draw upon the parallel between the hotel problem

and the manufacturing problem solved in [Bitran and Leong 1989]. The

problem considered in that paper has random production yield and

substitutable product demand. Unlike previous hotel reservation studies,

the formulation we provide has multiple periods, room-types, and guest-

classes. New features addressed, not found in the manufacturing problem,

include perishability of inventory, no pre-emptive production, and multiple

recourse opportunities. Also, in manufacturing terminology, the related

production model backorders when there are shortages whereas hotels has

lost-sales.

We alluded to the first two features in the introduction. We now

mention briefly what multiple recourse opportunities mean. Reservations,

made in advance, may be cancelled by the guest before the required day.

However, as long as that day is still in the future, additional

reservations can be accepted, to make up for those cancelled. So the hotel

model, unlike the manufacturing analogue we mentioned, has multiple

opportunities to respond to a demand--room-type for a certain day.
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3. Problem description

Hotel rooms are frequently classified into types: suite, deluxe, and

standard rooms, to suit different lifestyles and budgets. When a

prospective guest with reservation, arriving in good time, finds no

available room in the hotel, an oversale is said to have taken place.

Oversale occurs because hotels sometimes overbook reservations to keep

occupancy levels high. When oversale of a particular room-type occurs,

hotel operators can choose between turning away the prospective guest or

giving her, at no additional cost, a better room. The first option must be

mitigated with an offer of alternative accommodation--at a competing hotel-

-and freebies, for example, a free dinner at the hotel's restaurant. In

addition to loss of revenue and extra costs, the fear of goodwill loss

makes hotel management desire to see this happen as rarely as possible.

"Downgrading" a room, on the other hand, adds a contribution to profit

though smaller than what it is potentially capable of. Nevertheless, the

downgraded room may have remained vacant and contributed nothing.

We classify hotel rooms into ordered types s e {1,..,m} where 1 is

the most luxurious and m the least. A room from each room-type may be

offered at more than one rate. The rates are different because of the

nature of occupancy (single/double/with children), discounts, commissions,

and costs of extra promotion. We also classify the market into ordered

classes i e {1,..,n). Now, we let a(s), s=l,..,m, be the indices of classes

such that 1=a(1) < a(2),.., < a(m) < n and guests in classes

a(s),..,a(s+1)-1 request room-type s.

Class i guests pay ci per room for each night of occupancy. The

guest-classes for the same room-type are labeled in descending order of the

rates charged; guests for room-type s may be charged any of the rates ci, i
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E {a(s),..,a(s+1)-l}. The highest rate for each room-type is often referred

to as the rack rate for that room-type. We assume that guests of more

luxurious rooms always pay more for their rooms than guests of less

luxurious rooms; that is, ci cj if i < i.

The reader should note that classes are not necessarily defined

according to rates alone: market segments that compete for the same room-

type and pay the same rates may be classified as different classes. The

classes defined, however, must not be disciminatory against individuals

and, at the time of receiving a reservation request, the hotel operator

should be able to distinguish which class the request belongs to. For

example, Shlifer and Vardi [1975) mention that, because of the significant

differences in their cancellation and show behaviors, reservations from

different geographical origins have been classified into different classes.

Figure 1 demonstrates, with an example, the relationship among the

room-types and guest-classes. Each vertex represents a guest-class. A

directed edge leading from vertex i to vertex i represents the possibility

that a room allocated to class i can be offered to class j. By virtue of

the labeling order of room-types and guest-classes, there is a directed

edge from every class i to i+1. That is, a class i guest paying class j

rate, but offered a room that is acceptable to class i guests will not be

dissatisfied if i < i.

Figure 1. Room-types and Guest-classes--An example
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Set aside for prospective class i guests are Nit, i=l,..,n t=l,..,T,

number of reservations for period t at the start of period t. T is the

length of the planning horizon. The number of class i guests who will show

up in period t is qit Nit where qit is the class i reservation show-rate

for period t. Show-rate qit [0,1] is a continuous random variable. The

yield or show size is given as a product of the show-rate and the size of

the reservation. This assumes that the yield rate distribution is

independent of the reservation ize. Liberman and Yechiali [1978] made the

same assumption and William [1977] provided empirical evidence that this

assumption is reasonable. We will also assume that reservation and show

sizes are sufficiently large that the requirement for the decision

variables to be integers may be relaxed.

4. Model

The purpose of our model is to assist in the planning for the optimal

level of reservations and in appropriating the hotel's capacity to market

segments. These decisions support both the sales and operations functions.

We propose to solve the problem in two stages: (a) reservations planning,

and (b) walk-in control. We end this section with additional guidelines for

managing sales and setting room rates.

RESERVATIONS PLANNING

For a given horizon, we first work toward getting the optimal

reservation target levels. Operators are then "authorized" to accept

reservations up to these levels. The target levels suggest how the capacity

of the hotel should be allocated to the guest-classes; the reservations

targets are attainable only when there is sufficient demand. We do not

consider any specific assignment of rooms to the reservations since the

reservations may be cancelled or may not show. By default, the capacity

8

III



remaining is for walk-in guests. Walk-in guests, usually charged rack

rates, may have a significant portion of the rooms set aside for them.

Unlike the airline reservations problem, hotels do not always need to

overbook reservations because the walk-in demand, fetching high returns,

can be substantial.

In figures 1 and 2 of his paper, William [1977] fitted Beta

distributions to reservations and scheduled stayover show-rate data and

showed that the fits are excellent. The mean and coefficient of variation

of the fitted reservations show-rate distribution are 0.83 and 0.083

respectively. The corresponding statistics for scheduled stayover show-rate

are 0.86 and 0.083. It is reasonable to assume that the two show-rates are

statistically independent. These evidences suggest that scheduled stayovers

and reservations have show-rate probability distributions that are

practically identical.

As such, when a prospective guests make reservations for period t, to

stay for s days (s 1), we record the reservation as s separate individual

reservations for periods t,..,t+s-1. When a guest with multiple-days

booking does not show on the first day of the intended stay or cuts short

the scheduled stay, the bookings for the remaining days are considered

cancelled. For the rest of this paper, we refer to the combined show-rate

distribution of reservations and scheduled stayovers as simply the show-

rate distribution.

Booked reservations, being commitments, are given the highest

priority when conflict arises. The second priority goes to walk-ins. Stay

extensions have the lowest priority: hotels are not bound to satisfy stay

extension requests. No service performance limits are set for meeting stay

extension requests; stay extension inquiries will be treated as if they are

new reservation requests. When stay extension "reservations" requests have
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show behaviors that are different from the normal reservations requests, we

create new guest classes for them.

We define MUst as the number of type s rooms available in period t

and Mit to be the number of rooms initially allocated to guest-class i for

period t. We set Mit = MUst for i = a(s) and Mit = 0 otherwise, s=,..,m,

t=l,..,T. In this way, we allocate the rooms to the highest guest-class

possible and we make the rooms available indirectly to the other classes

through Wit, the n'wl1e~i of rooms from those allocated to class i to

downgrade to class i+1 during period t.

We define NSit as the random variable for the demand of guest-class

i reservations in period t and YSit as the number of class i prospective

guests that will walk into the hotel during period t without reservations.

NSit and YSit, i=l,..,n and t=l,..,T, have finite mean and variance, and

are random variables in [0,o). Figure 2 shows the sources of demand by

class i prospects for rooms in period t.

Figure 2. Demand by class i prospects for rooms in period t.

For simplicity of presentation, we let A(s) = a(s),..,a(s+1)-1} and

AU(s) = ({,..,a(s+l)-l}, s=l,..,m. A(s) is the set of all guest classes for

type s rooms and AU(s) is the set of all guest-classes that can be offered

type s rooms. We present, below, a stochastic linear programming

formulation of the reservations problem.
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(SPa)

In the reservations problem (SPa), we optimize the total expected revenue,

by allocating rooms among reservation and walk-in prospects. This is

subjected to service constraints to ensure that revenues are not increased

by making reservation promises that the hotel cannot usually keep.

The first term in the objective function, (1), is obtained as

follows: the revenue from class i guests in period t equals cit qit Nit

when Jit 0, and cit (Mit + Wi-l,t - Wit) when Jit < 0; with some

algebraic manipulation and taking expectation results in (1). We call (2)

to (4), the sub-problem in (SPa), (RPa): (RPa) is the walk-in recourse

problem. Constraint (3) states that walk-ins accepted cannot exceed walk-in

11

ZSPa = Max Eq[ENS[Eni=IETt= cit (Mit + Wi-,t - Wit - Jit+)] (1)

+ Max ni=lETt=l cit Eys[Yit]] (2)

subject to

Yit < YSit i=l,..,n, t=l,..,T, (3)

0 < Yit < Jit'+ i=l,..,n, t=l,..,T } (4)

subject to

Nit < NSit, i=l, .,n, t=l,..,T, (5)

Prob(Jit > 0, i=l,..,n) 2 a, t=l,..,T, (6)

Wit, Nit > 0, i=,..,n, t=l,..,T, (7)

where Ex[.] is the expectation function over the random vector x; and q,

NS, YS are the vectors of random variables qit, NSit, YSit respectively.

Also, Wt = 0, t=l,..,T,

Jit = Mit + Wi-l,t - Wit - iNit, i=l,..,n, t=l,..,T, (8)

and

Jit+ = Max(O, Jit), i=l,..,n, t=l,..,T. (9)
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requests. Constraint (4) ensures the capacity of the hotel is not exceeded

and walk-ins cannot take negative values. Constraint (5) makes certain that

the reservations booked cannot exceed reservations requested. The service

constraint, (6), guarantees that oversale occurs with less than 100(1-a)%

probability. a e [0,1] is the service performance target for booked

reservations and, set according to management policy, should be close to 1.

Constraint (7) are non-negativity constraints for the decision variables in

the main problem. The other equations, self-explanatoiy, are introduced to

simplify the presentation.

Notice that constraints (3) and (5) have stochastic right-hand-side

terms that must not be violated. Therefore, other than the trivial zero

reservations and zero walk-ins solution, there is no other feasible

solution to (SPa). As such problem (SPa) has no meaningful solutions; we

will reformulate the problem slightly. Before proceeding further, we

present some important results of the reservations planning problem.

Theorem I[Time period separation]: Problems (SPa) separates into T one-

period problems. *

This theorem suggests that reservations planning can be executed by

focussing on one period at a time. In view of this, the results of earlier

papers that focus on single-period problems may be valid. Therefore, by

theorem 1, we drop the period index, t, and focus on a particular period of

interest--referred to, from here on, as the target period. All subsequent

reference to equations will be made as if index t does not exist.

Tbho3_n~ [Joint chance constraint separation]: Constraint (6) is

equivalent to Prob(Eij=l qj Nj ij=l Mj) a, i=l,..,n.

PrQeQ_tgrem 2: Constraint (6) => Prob(Eij=l Jj > 0) a, i=l,..,n. By

equation (8), Prob(Eij=l (Mj - Wj - qj Nj) 0) a, i=l,..,n. By the non-
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negativity constraint (7), Wi 0. Hence the result. The converse is true

using similar arguments and downgrading when necessary. 

Theorem 2 provides an alternative way of expressing the service constraint.

The resulting separation of the original joint chance constraint into

individual chance constraints makes the problem more tractable.

We now reformulate the problem by incorporating constraints (3) and

(5) into the objective function but first we introduce more notation. We

define f(x:y) and F(x;y) to be the value of the probability density and the

cumulative density functions respectively for any random variable x

evaluated at y. We let YSi(y) = YSi for YSi y and YSi(y) = y otherwise,

i=l,..,n. Therefore, YSi(y), i=l,..,n, are random variables which are the

same as YSi, i=l,..,n, except that all its densities beyond y is

concentrated at y. Using this new variable, we can insert (3) into the

Eys[Yi] term in the objective function of (RPa) to give (RPb).

(RPb)

ZRPb = Max ni=1 ci Eys[YSi(Yi)] (2a)

subject to

o 0 Yi < Ji+ i=, ..,n. (a)

rTh-E_-Or3: Eys[YSi(y)], i=l,..,n, is non-decreasing, concave in y.

Proof of thDe. m_ 3: The first derivative of E[YSi(y)] = 1 - F(YSi;Y) 0.

Also, the second derivative of E[YSi(y)] - f(YSi;y) < 0. Therefore,

E[YSi(y)], s=l,..,m, is non-decreasing and concave in y. ·

Tbheorem_4: (RPb) separates into m sub-problems, one for each guest-class i,

and it has the optimal solution Yi = Max(O, Ji) Ji+, i=,..,n. 

Using the results of the theorems above, we re-write (SPa) to give

(SPb).
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(SPb)

ZSPb=Max Eq[ENS[Eni=l ci(Mi+Wi-l-Wi-Ji+)] + ni=l1 ci E[YSi(Ji+)]] (la)

subject to

N i NSi, i=l,..,n, (5a)

Prob(Eij= 1 qi Nj < ij=1 Mj) a, i=l,..,n, (6a)

W i, Ni 2 O, i=l,..,n. (7)

We mentioned, in the first paragraph of section 3, that oversales are

usually mitigated with offers of alternative accommodations. Up to now, we

have not included the cost of oversales into the problem. This cost, except

for the more explicit components, is usually quite difficult to quantify.

We will assume, from here on, that the cost of oversale for each guest-

class is its room rate. This is an attempt to capture as much of the

quantifiable costs as possible. Of course, we already have constraints to

ensure that the service goals are met--an indirect way of acknowledging the

more esoteric costs. The resulting program differs from (SPb) by the

absence of the (.)+ function for the second term in the objective function.

We also repeat the approach used to reformulate (RPa) to incorporate

constraint (5) into the objective function. We present the final

formulation as (SPc).

14

III



(SPc)

ZSPc=Max Eq[ENS[Eni=l ci(Mi+Wi-l-Wi-Ji(Ni)+)] + ni=1 ci E[YSi(Ji)3 (lb)

subject to

Prob(Eij=l qj Nj < Eij=1 Mj) > a, i=l,..,n, (6a)

W i, Ni 0, i=l,..,n, (7a)

where NSi(y) = NSi for NSi y and NSi(y) = y otherwise, i=l,..,n, (10)

Ji(Y ) = Mi + Wi-1 - Wi - qi NSi(y), i=l,..,n, (11)

and

Ji(y)+ = Max(O, Ji(y)), i=l,..,n. (12)

APPROXIMATIONS

We propose two approximations: stochastic and deterministic. Each

approximation leads us progressively towards a tractable problem. (SP), the

stochastic program, approximates (SPc) by linearizing the feasible region

of (SPc). The user chooses how accurate the approximation should be. At the

expense of doing an infinite amount of work, (SP) becomes (SPc). In our

experience, a simple approximation like the one we are presenting has small

relative errors. The deterministic approximation (DP1) approximates (SP) by

simplifying the objective function. An upper bound on the relative error

between (SP) and (DP1) is presented in theorem 6. Lastly, we linearize the

separable convex program (DP1) into deterministic linear program (DP2).

To construct (SP), we replace, for each i, the service constraint

(6a) by a set of linear constraints. This set of linear constraints is

uniformly tighter than the original constraint it replaces; any solution

feasible to the set of linear constraints is also feasible to the original

constraint. The detail of this inner-linearization approach is discussed in

[Bitran and Leong 1989]. The approach is as follows: We define (al,..,an)

= F-l(Eni=l ai qi; a) where ai 0, i=l,..,n and unit vector u i

15



(al,..,an) where aj = 1 for i = i and aj = 0 otherwise. We let vector

[Qlk,..,Qnk] be such that Qik = 4(Enj=l uj) - (Enj= 1 (uj) - (Uk)) for i

= k and Qik = (Ui) otherwise, i = 1,..,n, k = 1,..,Kl(i), and Kl(i) = n.

The vectors are the coefficients of the decision variables in the service

constraints. (SP) is presented below.

(SP)

Theorem 5: ENs[NSi(y)], i=l,..,n, is non-decreasing, concave in y.

5Proofof theorem 5: Same as in theorem 3. ·

For a sufficiently close to 1, by constraints (6), (6a), or (6b) and

the presence of a recourse problem, the capacity allocation guarantees that

oversale seldom happen: Ji 0 most of the time. As an approximation, we

will assume that Ji 0 for all i. Next, we remove the outer most

expectation function and take expectation of variable Ji.

(DP1)

ZDp1 = Max Eni=l ci (E[qi] ENS[NSi(Ni)] + EyS[YSi(Eq[Ji])] ) (Ic)

subject to

Elj=1 Qjk Nj Eij=1 Mj, k=l,..,Kl(i), i=l,..,n (6b)

W i, Ni 0, i=l,..,n (7a)

TjheriM _i 6 Upper bound on the relative error between the value of the

optimal solutions to (SP) and (DP1)]: Let vector N* be the optimal solution

to (DP1) and vector W be such that (N*,W*) is a feasible solution in (SP).

The relative error between the values of the optimal solutions to (DP1) and

16

ZSp=Max Eq[ENS[Eni=l ci (Mi+Wi-l-Wi-Ji(Ni)+)] + Eni=l ci E[YSi(Ji)]] (lb)

subject to

Elj=l Qjk Nj _< lj=l Mj, k=l,..,Kl(i), i=l,..,n (6b)

W i, N i > , i=l,..,n (?a)

III



(SP) is bounded from above by (ZDp1 - ZU(N*,W*))/ZU(N*,W*) where ZU(N*,W*)

is the value of (N*,W*) in (SP).

PvQpt of _ t thel m__: We call upon the convex properties of functions (.)+,

and theorems 3 and 5 to apply Jensen's inequality. ·

By theorems 3 and 5, using a standard approach in separable convex

programming, we linearize the objective function: (a) the first term in

(ic) is replaced by Eni=lEK 2(i)k=l dik Xik where dik, dil > .. > di,K2(i),

are new cost coefficients and xik, 0 < Xik < xuik, i=l,..,n, k=l,.,K2(i)

are the new variables; (b) the second term in (c) is replaced by

zni=lZK 3(i)k=l eik Yik where eik, eil > .. > ei,K3(i), are new cost

coefficients and Yik, 0 < Yik < yuik, i=l,..,n, k=1,..,K3(i) are the new

variables. Note that Ni = EK2(i)k=l xik and each xik is contained in a

given partition where the expected marginal return is approximately dik.

Similarly, E[Ji] = K3(i)k=1 ik and each ik is contained in a partition

where the expected marginal return is approximately eik. K2(i) and K 3(i)

are the number of piecewise-linear segments used to approximate each of the

corresponding functions. After making the approximations, we simplify and

present the new problem as (DP2).

(DP2)

17

ZDP2 = Max ni=l (K 2(i)k=l dik Xik + EK3(i)k=1 eik Yik) (Id)

subject to

Eij= 1 Q; Nj E'jl=l M, k=1,..,K1(i), i=l,..,n (6b)

EK2(i)k=1 xik = Ni, i=l,..,n (13)

0 < Xik < XUik, k=1,..,K2(i), i=l,..,,n (14)

Eij=1EK 3(j)k=l Yjk < ij=l (Mj - E[qj] Nj), i=l,..,n (15)

0 < Yik < YUik, k=1,..,K3(i), i=l,..,n (16)

Ni 0, i=l,..,n (17)
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In practice, hotels designate some capacity for walk-ins and then, basing

on the remaining capacity, estimate how many reservations to accept. (DP2)

does the same thing but achieve it with an analytical approach,

Given the reservation targets, the desired operational response is to

control the external and stay-extension requests for reservations, by

reacting to cancellations. This aim of the exercise is to have the

reservation levels, for each day at the start of that day, hit their

respective targets. This is impossible when there are insufficient

requests. Even when there are enough requests, it is difficult to attain

these targets, using the approaches currently practiced, because the

cancellations are random. The approaches in use usually accept

reservations, for periods far into the future, up to some authorization

level. The authorization level is usually given as a fixed percentage above

available capacity. In reality because of cancellations, authorization

levels, rather than being flat over time, should be larger the further away

the current period is from the target period.

Accepting early bookings increases the certainty of getting enough

business. Examples of early booking sources are package tour operators and

convention organizers. These early bookings tend to fetch lower rates and,

therefore, hotels may refuse some of them in the hope of getting more

lucrative business later. The demand from the later market segments may be

very uncertain and hence the need to trade-off. To include this trade-off

into our model, so as to give better authorization levels, we broaden the

concept of show-rate.

Show-rate was defined in conjunction with the definition of Ni: it

was defined as the fraction of reservations still 'alive' at the start of

the target period that will show up by the end of that period. There are

two time-points of reference here: an end point and a start point. The end

18
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point is the end of the target period and the start point is the point the

reservation targets are set for. Since we are usually concerned about the

reservation targets for the beginning of the current period, we will call

the start time-point the current period.

The broader concept, the survival rate, introduced now, involves both

the cancellation and the show characteristics of reservations. We say a

reservation survived if it has not been cancelled or failed to show. For a

target period the survival-rate, qi, is the fraction cf reservations that

will survive from among the reservations that were "alive" now (at the

current period) plus those to be accepted from now until the target period.

With this amendment, the reservation targets obtained from the programs

will be the authorization levels for the current period--and not, as

previously defined, for the start of the target period. The earlier

definition is a special case of this extended definition.

WALK- ITN_ fCO] L

Walk-ins targets are not explicitly specified in the solution of our

problem. In this sub-section, to assist in the control of walk-in demand,

we present a decision rule. This rule helps hotel operators decide how to

allocate rooms to the requests by different class of walk-ins and, in

particular, suggests when rooms should be downgraded for walk-ins. Consider

the problem (C1).
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(Cl)

This problem considers the total expected return associated with accepting

walk-in requests for two guest-classes. We take first and second

derivatives to show that ZC1(Yi,Yj) is concave and has an optimal solution

such that ci [1-F(YSi;Yi)] = 'i and cj [1-F(YSj;Yj)] = j. For i < i, the

capacity allocated to class i can be downgraded to class i. So since we can

always downgrade--but not upgrade--we want to keep pi < j and hence we get

decision-rule (WALCON).

(WALCON)

20

ZCl(Yi,Yj)

= ci y f(YSi;Y)dy + ci Yi Jf(YSi;y)dy

+ cj y f(YSj;y)dy + cj Yj f(YSj;y)d y

+ i (LYi - Yi)

+ j (LYj - Yj)

where

i < j, j=2,..,n,

Yi is the number of rooms to offer to class i walk-ins, i=l,..,n,

LYi is the capacity available for class i walk-in, i=l,..,n,

and

vi is the associated dual (shadow) price, i=l,..,n.

For i < , j=2,..,n, [1-F(YSi;YAi)]/[1-F(YSj;YAj)] < cj/c i

where

YSi is the random variable for the number of walk-in's for the time

remaining in the target period, i=l,..,n, and

YAi is the limit on the number of class i walk-ins to accept, i=l,..,n. a
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(WALCON) gives only limits on the relative sizes of walk-in request to

accept. The absolute limits depend on net quantity of rooms available for

walk-ins. This is deduced, with subjective judgements and given the service

performance requirements, from the total capacity available, the number of

booked reservations that remains on record, and the probability that they

will show.

SALES MANAGEMENT AN.DPRATES SETTING

We had assumed that the room rates are determined by competitive

market forces. This is often true only for rack rates. To increase

occupancy, hotels offer discounts to tour operators, convention organizers,

and others. The hotel operators, therefore, have some discretion in setting

the rates. The next rule provides some guidance on the relative value of

rates for the guest-classes. It points out that the important contributors

to rates differentials are the relative magnitudes of their reservation

demand and survival characteristics.

We assume that the survival-rate distributions are independent of the

demand distributions and consider the following problem.

(C2)
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ZC2(Ni,Nj)

= ci j jx N f(qi;x)f(NSi;N)dxdN + ci Ni I x f(qi;x)f(NSi;N)dxdN
O O Ni °

+ cj f Jx N f(qj;x)f(NSj;N)dxdN + cj Nj x f(qj;x)f(NSj;N)dxdN
O O NJ O

+ i(Li - E[qi]Ni) + j(Lj - E[qj]Nj)

where Li is a given allocation of capacity to guest-class i, i=l,..,n

and i is the dual (shadow) price associated with the allocation, i=l,..,n.



This problem gives the total expected return associated to allocating the

available capacities to two guest-classes. So we have a problem similar to

the one for walk-in control. By taking first and second derivatives, it is

easy to show that Zc2(Ni,Nj) is concave and has an optimal solution where

ci [1-F(NSi;Ni)] = ni and cj [1-F(NSj;Nj)] = j.

Theorem 7: In the optimal solution for (C2), i > J for i < j, i=l,..,n-1.

Prof o_f theorem 7: Suppose the theorem is false and i < nj for i < j.

Then, we downgrade rooms from those allocated to class i to class i and

gain an additional return of (j - ni) per unit downgraded. ·

By the result presented in theorem 7, we give below the decision-rule

for setting rates or granting discounts.

(RATESET)

For i = 2,..,n, ci+l Qi i

[1-F(NSi; Ni]
where Qi = ----- , i=l,,n----------

[1-F(NSi+I; Ni+l)]

Here, we assumed that the relative values of the reservation targets, Ni,

i=l,..,n are given. (RATESET) suggests how market segmentation should be

exploited: market should be segmented according to the strength of its

demand relative to the availability of rooms. It also gives limits that

will guide pricing negotiations with tour and convention groups. From

above, for i < i, ci is not always greater or equal to cj. However, by our

labelling convention, ci cj for i < i when classes i and i are for the

same room-type. But across room-types, guest classes in a room-type can

have rates lower than the rack rate of a less luxurious room-type.

5. Comments and Extensions

The creation of the guest-class concept helps hotels earn more

revenue by exploiting market segmentation. It does so by controlling spills
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and diversions. Glover et al. [1982] gave the definition of spill and

diversion for the airline context: "Spill is the movement of passengers to

other flights, either the same or competing carriers. Diversion occurs when

a passenger who would have stayed with the same carrier at the original

higher fare takes advantage of a discount fare which was offered to

stimulate increased occupancy, thus generating less revenue for the

carrier." Spill, in our problem, refers to walk-in or reservation requests

that the hotel has to turn away. We reduce spills from high-revenlie guest-

classes by controlling the number of low revenue requests to accept.

Diversions are managed through better understanding of the characteristics

of the market segments and applying to guests from these segments the

appropriate rates.

The Parker house hotel in Boston actually created "service product"

packages for different groups of customers that corresponds to what we have

called guest-classes. The hotel's sales department pursue and develop the

demand from these groups through direct contact. The capacity for tour

group reservations are allocated after the capacity targeted to the higher

paying groups have been accounted for, consistent with the outcome

suggested by our analysis. The marketing strategy of Parker house, as well

as many other hotels, requires that rooms are usually available for the

higher-paying walk-in guests. For these cases, additional service

constraints may be added to our formulation to ensure that most walk-ins

are accepted as guests. This extension can be done easily.

Airlines have been using authorization levels for reservations

booking. The methods they used to obtain the authorization level are

different from ours and they also do not account explicitly for downgrading

effects. The airline reservations problem also deviates fundamentally from

the hotel problem in that (except shuttle flights) it has fewer walk-ins.
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The alternatives available to the air-traveller are also restricted: the

air traveller cannot just change to another flight when it has an oversale-

-there are very few flights that have the same destination and take off

within a short time of each other. Simple extensions can be made to apply

our approach to the airline reservations problem.

On the other extreme, restaurants, like those famous seafood places

in Boston, have so much demand that some do only walk-in business: they do

not typically accept reservations. It is not difficult to provide a

plausible explanation using the results of our analysis of the hotel

problem: assuming other things being equal, holding reservations runs the

additional risk of cancellations, late arrivals, and no-shows. Therefore,

not only would there be situations when walk-in customers wait in

frustration while tables lie idle, but the burden of management also

increases.

New variations in the circumstances surrounding the problems like the

penalty schemes to discourage no-shows: non-refundable sales, first day

deposits, etc. are appearing. These present new challenges for extending

our model which we leave for future research. Another area of future

research is to explore the possible use of heuristics to solve the hotel

problem. (DP2) has an interesting structure that suggests how one might

work: a "knapsack" filling approach where we increase the values of

decision variables that have the higher marginal returns first until the

constraints are binding.

Finally, we will mention briefly how hotels measure their performance

relative to each other. A common measure of operational efficiency for

hotels is percent occupancy. One way of achieving high occupancy is to give

large discounts and overbook excessively. Operating this way, the hotel

fills up easily but reaps low revenue and, in violation of good practice,
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leaves many prospective reserved guests without rooms. Therefore, the level

of occupancy does not fully reflect how well the hotel is managed.

Merliss and Lovelock 1980] highlighted an alternative performance

measure (being used by the Parker House) called the room sales efficiency

(RSE). RSE is the total room sales revenue over a period divided by the

potential revenue that might be obtained if, during the same period, all

available rooms were sold at rack rates. Maximizing expected return also

maximizes expect RSE. This is an excellent measure for comparing hotels of

different sizes and measuring how well they serve their market segments.

6. Summary and Conclusions

Previous studies consider the capacity allocation and the yield

management problems independently. In this paper, we show how they can be

coordinated. We also showed how the profitability of a hotel can be

optimized by careful utilization of its accommodation resources--not merely

by increasing occupancy. The model we provide allows us to solve hotel

reservations and sales planning problems that have multiple-day stays,

multiple room-types, multiple guest-classes, and service constraints. We

show that the problem can be separated into single-period problems. Using

inner-linearization approximations, we can obtain near-optimal solution for

the reservation targets. We also provide rules to assist in accepting walk-

ins and in setting room rates. The rules can be applied to aid sales

management and control discount offers. The model demonstrates, through the

use of guest-classes, how the market segmented effectively can increase

profits.
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APPENDIX

NOTATIONS

n,m,T: Number of guest-classes, number of room-types, and length of

planning horizon respectively.

a(s): Smallest guest-class label for room-type s, s=l,..,m.

A(s): Set of all guest classes for type s rooms. A(s) =

{a(s),..,a(s+1)-1}.

AU(s): Set of all guest-classes that can be offered type s rooms. AU(s)

= {l,..,a(s+)-1}, s=l,..,m.

cit: Rate, per room per period, charged for guest-class i, 1=l,..,n in

period t, t=l,..,T.

MUst: Number of type s rooms available in period t.

Mit: Number of rooms initially allocated to guest-class i for period t.

(Mit = MUst for i=a(s) and Mit = 0 otherwise, s=l,..,m,

t=1,..,T.)

Wit: Number of rooms from those allocated to class i to downgrade to

class i+1 during period t and Wt = 0, t=l,..,T.

qit: Class i reservation show-rate (or survival-rate) for period t.

Nit: Number of reservations for class i guest in period t.

NSit: Random variable for the demand of guest-class i reservations in

period t.
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NSit(y): NSit(y) = NSit for NSit < y and NSit(y) = y otherwise, i=l,..,n

and t=l,..,T.

YSit: Random variable for the number of class i prospective guests that

will walk into the hotel during period t without reservations.

Ysit e [O,-), i=l,..,n and t=l,..,T, have finite mean and

variance.

YSi(y): YSi(y) = YSi for YSi < y and YSi(y) = y otherwise, i=l,,.,n.

q-NS,YS: The vectors of random variables qit, NSit, YSit respectively.

f(x;y): Probability density function of any random variable x evaluated

at y.

F(x;y): Cumulative density function of any random variable x evaluated at

y.

Prob(.): Probability of the event argument.

Ex[.J]: Expectation over the random vector x.

a: Service performance target for booked reservations; probability

target for meeting reservation demand. (Typically, a e [0,1 is

close to 1.)

*(.): (al,..,an) = F-l(Eni=l ai qi; a) where ai > 0, i=l,..,n.

Jit: Jit = Mit + Wi-l,t - Wit - qit Nit, i=l,..,n and t=l,..,T.

Jit+: Jit + = Max(O, Jit), i=l,..,n and t=l,..,T.

Jit(Y): Jit(Y) = Mit + Wi-l,t - Wit qit NSit(y), i=l,..,n and t=l,..,T.

Jit(y)+: Jit(Y)+ = Max(O, Jit(Y)), i=l,..,n and t=l,..,T.

ui: Unit vector ui (al,..,an) where aj = 1 for i = i and aj = 0

otherwise.
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