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Abstract

Semantic reconciliation is an important step in determining logical connectivity between a
data source (database) and a data receiver (application). Semantic reconciliation is used to
determine if the semantics of the data provided by the source is meaningful to the receiver. In
this paper we describe an automatic method to establish such semantic agreement through the
use of metadata. This work examines the effect of changing data semantics, these changes may
occur at the source of the data or they may be changes in the data semantic specifications of
the application. Methods are described for detecting these changes and for determining if the
database can supply meaningful data to the application. These methods also can be used for
semantic reconciliation where an application depends on multiple data sources and for schema
integration in heterogeneous database systems.

1 Introduction

With the development of more complex systems, the need for the integration of heterogeneous
information systems, and the availability of numerous online computer data sources, it has become
increasingly important that methods be developed that consider the meaning of the data used
in these systems. For example, it is important that an application requiring financial data in
francs does not receive data from a source that reports in another currency. This problem is
further complicated by the fact that the source meaning may change at any time; a source that
once supplied financial data in francs might decide to change to reporting that data in European
Currency Units (ECU).

To deal with this problem, these systems must have the ability to represent data semantics and
detect and automatically resolve conflicts in data semantics. At best, present systems permit an
application to examine the data type definitions in the database schema; thus allowing for type
checking within the application. But this limited capability does not allow a system to represent
and examine detailed data semantics nor handle changing semantics.

McCarthy [McC82,McC84] describes the importance of detailed data description or metadata
systems for use in large statistical databases. Another system, the Information Resource Dic-
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tionary System (IRDS) [GK88,Law88], allows a user to develop a metadata dictionary using an
entity-relationship model. These systems provide the ability to access and manipulate metadata
in a manner similar to that used for data. However, these systems do not include a well-defined
methodology for utilizing metadata for semantic reconciliation.

This paper begins by examining the specification and use of metadata in a simple source-receiver
model. The source (database) supplies data used by the receiver (application). The source and
receiver may be at the same physical location, as in a local database management system accessed
by an application program, or the source may be in a different location, such as an online data
service. Later, we describe how metadata can be used to simplify schema integration and semantic
reconciliation among multiple, possibly disparate, databases systems.

The methods proposed for semantic reconciliation allow for changes in data semantics in the
database or for changes in the application's data semantic specifications. These methods can be
used to automatically track these changes and determine, as a result of any changes, if the database
can still supply meaningful data. Additionally, we show that in some instances metadata can be
used to resolve data semantic conflicts between the database and the receiver; thus allowing the
database to supply meaningful data.

This paper is organized as follows. In the next section we examine related work in the area of
metadata representation. Then in Section 3 we present examples of the problems that can occur in
the source-receiver model when methods for semantic reconciliation are not available. We describe
a general model for the representation of data semantics and provide a sample specification for a
financial application. In Section 4 we describe the use of metadata in semantic reconciliation. We
define an architecture for a system that can represent and manipulate data semantics and describe
an algorithm that can be used to automatically determine if a database can provide an application
data with meaningful data. Additionally, we describe how the application or the database can
provide methods for resolving conflicts over data semantics. Then in Section 5 we examine how
these methods can be applied to a more general representation. In Section 6 we show how methods
used for semantic reconciliation in the source-receiver model can be used in multidatabase systems.
Finally, we present our conclusions and a discussion of future research directions.

2 Metadata

Metadata refers to data about the meaning, content, organization, or purpose of data. Metadata
may be as simple as a relational schema or as complicated as information describing the source,
derivation, units, accuracy, and history of individual data items.

In [McC82], McCarthy describes a metadata representation and manipulation language where
the metadata is part of the data files. The representation allows for the inclusion of a wide range
of metadata accessible through a set of specially defined operators. In [McC87] he demonstrates
the use of metadata in a Material Properties Database.

The development of a National Bureau of Standard's Information Resource Dictionary System
(IRDS) for handling metadata is described in [GK88,Law88]. The IRDS allows the user to develop
an entity-relationship model description of the metadata. The IRDS includes a set of primitive en-
tities and relationships, and a set of operations to build new entities and relationships for describing
metadata.

Both the IRDS and the system described in McCarthy's work provide the flexibility to represent
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most types of metadata. However these approaches do not include a well-defined methodology for
utilizing this metadata for semantic reconciliation between two systems.

Providing the representation and functionality for all forms of metadata is beyond the scope
of this paper. We are interested in handling those forms of metadata that can be specified for
both the application and the database and can readily be used to simplify semantic reconciliation
between them. For simplicity, we begin by describing a restricted view of data semantics. Then, in
Section 5 we examine more general approaches to semantic reconciliation.

In the next section we examine an example database and application and consider the problems
that occur when the semantics of the data provided by the database are not the same as those
required by the application.

3 Providing Metadata for Semantic Reconciliation

Generally, detailed data semantics are recorded in printed documents or manuals. These manuals
can assist an analyst in understanding the data provided and for developing meaningful applications.
However, the meaning of the data may change over time especially if it is being provided by another
organization or is being used for multiple purposes. The analyst cannot always be aware of and
account for these changes. As the semantics of the data change, the data may no longer be
meaningful to an application. For example, an application that uses stock prices in a calculation is
likely to be adversely affected if the source of this data decides to change from reporting stock prices
in dollars to reporting them in francs. But the same application is unaffected if the data source
changes the currency used for reporting bond prices. Thus, certain changes in data semantics might
allow for an application to continue running correctly, while other changes will require modifications
to the application. Printed material describing changes to data semantics are of little use in deciding
automatically what should be done. Additionally, traditional manual approaches, besides being
error-prone, are rapidly becoming infeasible as the number of sources and frequency of changes
accelerate.' As an alternative, this work describes methods for representing and manipulating
data semantics in a manner that will allow for automatic determination of the effect of changing
data semantics. Additionally, these methods can be used to detect and respond to changes in an
application's data semantic specifications.

As a more detailed example showing the need for semantic reconciliation, consider a data source
that provides the trade price for a variety of financial instruments. The schema of the relation
containing this data is shown in Figure 1 along with two sample records. Each record contains the
type and name of the instrument being traded, the exchange that the instrument was traded on,
and the trade price. It should be noted that although we are using the notion of data source as a
database, the concepts apply equally well to a data stream such as a stock ticker, where records are
being continuously transmitted and the application selects those of interest to it.

A query that requests the trade price of Telecom SP will return the value 1107.25. Even in this
simple relation, the natural interpretation of this value might not provide a complete understanding
of the data. For example, this relation does not report all trade prices in US currency. Rather,
prices are given in the currency of the exchange. The trade price for most equities represents the
latest price except for equities traded on the Madrid Stock Exchange where trade price represents

'As an example of the number of sources, in the United States there are currently over 3000 online data sources
just for financial information [Cua87].
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Instrument-Type Instrument-Name Exchange Trade-Price
Equity IBM NYSE 115.25
Equity Telecom SP Madrid SE 1107.25

Figure 1: The FINANCE Relation

the latest nominal price. Because of these semantic complications, there should be a means for
representation of and access to both the trade price value and its associated metadata. Then,
given an application metadata specification, methods can be provided to determine if the semantics
associated with the data are those expected by the application.

One way to represent this metadata is to extend the traditional database schema definition to
include virtual fields. For example, the relation in Figure 1 could be extended to include attributes
such as Trade Price Status and Currency. However, changing the database schema to represent
metadata in this way is awkward and does not simply allow for the representation of numerous types
of metadata. Furthermore, this approach is intrusive in the sense that it requires the data source
to be changed which may not be feasible especially if the data source is a separate organization.

Alternatively, we suggest that a metadata management system can use simple procedures to
associate metadata with a given attribute or data type. In the next section we describe a repre-
sentation model for data semantics and introduce examples from the financial domain.

3.1 A Model for Data Semantics

By providing a model for the representation of data semantics we are able to define the range of
applicability of our methods for semantic reconciliation. Additionally, we provide a language for
representing these semantics.

We begin by defining the semantic domain of an attribute (or data type) T as the set of
attributes (or data types) used to define the semantics of T and note this as

sem(T) = <X 1,X 2,X 3 ,...,Xn> where each Xi is an attribute.

For each value t in the domain of T the semantics of that value can be defined in terms of the
semantic domain as

sem(t) = <X1,X2,X3,...xn> where xiedomain(Xi).

As an example we may think of the semantic domain of the TradePrice attribute in terms of the
status and currency of the trade price. The semantic domain is then defined as

sem(TradePrice) = <TradeSriceStatus, Currency>

and the semantics of a particular trade price may be defined as

sem(115.25) = < latest-price, us-dollars>
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where the value 115.25 is a represents the latest price in US dollars.
The basis for our model of data semantics is the assignability of values to the semantic domain.

An attribute is semantically assignable if there is some function that can determine sem(t) for each
tedomain(T). The assignment domain of attribute T is defined as

assign(T) = <Y,Y2,Y3,...,Yn>

The assignment domain for a particular value t in the domain of T is defined as

assign(t) = <Y1,Y2,Y3,...Yn> and ydomain(Y).

Using the semantic and assignment domains we can define semantic assignability as the existence
of some procedure F that can be used to determine values in the semantic domain for values t T.

As an example of this definition consider the following assignment and semantic domains:

sem(TradePrice) = <TradeSPriceStatus, Currency>

assign(TradePrice) = <InstrumentType, Exchange>

F(assign(Trade_Price)) = sem(TradePrice)

For a given trade price, the instrument type being traded and the exchange that it is trade
on are used to determine the currency and status of the trade price. A procedure for assigning
values to the semantic domain may simply be a set of rules where the antecedent of a rules contains
constraints on the assignment domain and the consequent of the rule assigns values to the semantic
domain.

An attribute T is trivially assignable if T is semantically assignable over some procedure F
such that for each tedomain(T), sem(t) is constant. That is the assignment domain is not material
in determining the semantic domain, only the value t has any effect on the semantic domain.
We say that the attribute T is primitive if T is trivially assignable and for all Xesem(T) X is
primitive. Examples of primitive attributes might include InstrumentType, Exchange, Currency
and Trade-PriceStatus. For example, the Currency attribute may have an empty assignment
and semantic domain; thus the value of Currency, say, usdollars, is a complete description of the
Currency value.

The existence of primitive attributes provides a common language by which the semantics of
other attributes can be defined. WVe say that attribute T is semantically definable if it is semantically
assignable and either it is primitive or for all Yeassign(T), Y is semantically definable and for all
Xesem(T), X is semantically definable. An attribute T as semantically simple if it is primitive or T
is assignable and for all Yeassign(T), Y is primitive and for all Xesem(T), X is primitive. All simple
attributes are semantically definable. Procedures defining the semantics of simple attributes do not
require access to the assignment procedures of other semantically definable attributes. Other se-
mantically definable attributes might require access to the procedures for determining the semantics
of the attributes in the assignment domain.

As examples of semantic assignment consider the list of primitive attributes in Figure 2. In each
case the semantic and assignment domain is empty therefore only the domain of the the attribute
is defined. In Figure 3 Trade-Price is presented as a semantically definable (and simple) attribute.
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domain(InstrumentType) = <equity, future>.
domain(Exchange) = <nyse, madrid>.
domain(Currency) = <us-dollars, frenchfrancs, pesetas>.
domain(TradePriceStatus) = <latest-price, latestmnominal-price>.

Figure 2: Examples of Primitive Attribute Domains

This procedure contains a case statement that is used to define rules for determining the meaning of
data. For example, based on the knowledge that an instrument is an equity traded on the Madrid
Stock Exchange this procedure determines the meaning of the trade price as the latest trade price
in pesetas. For all equities not traded on the Madrid Stock Exchange the procedure determines that
the trade price is reported as the latest price in the currency of the exchange. These procedures
are simply a packaging of rules that describe the data semantics.

assign(TradePrice) = <InstrumentType, Exchange>
sem(TradePrice) = < TradePriceStatus, Currency>.

case Instrument-Type of
'equity': case Exchange of

'madrid': TradePriceStatus := 'latest nominalprice'
Currency := 'pesetas'

otherwise: TradePrice.Status := 'latest-price'
Currency := (currency-of Exchange)

endcase
otherwise: TradePriceStatus := 'latest-price'

Currency := (currency-of Exchange)
endcase

Figure 3: TradePrice as a Semantically Definable Attribute

In the next section we show how this model for metadata representation can be used in deter-
mining semantic reconciliation.

4 Using Metadata for Semantic Reconciliation

Semantic reconciliation is part of the process that ascertains logical connectivity [WM88] between
the database and the application. We intend to use metadata, as described in Section 3.1, for
semantic reconciliation; more precisely, we intend to use metadata to resolve the following questions
in the source-receiver model:

1. Can the database provide data that is semantically meaningful to the application?

2. Is the application affected by a change in the database semantics? (or a change in its own
data semantics requirements)

6
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I DATABASE I

DATABASE METADATA DICTIONARY (DMD)

APPLICATION METADATA SPECIFICATION (AMS)

APPLICATION

Figure 4: Systems Architecture Using Metadata

case Instrument-Type of
Equity: case Exchange of

'madrid': TradePriceStatus := 'latest-nominal-price'
Currency := 'pesetas'

endcase
endcase

Figure 5: Application Specification for Trade-Price

Figure 4 shows the proposed architecture for a system that uses metadata for semantic recon-
ciliation. The database metadata dictionary (DMD) defines the semantic and assignment domains
for each attribute and the set of procedures that define the semantic assignments for each of these
attributes. The application metadata specification (AMS) contains the applications definition of the
semantic and assignment domain and the set of assignment functions for the attributes required
by the application. The AMS can be thought of as an application's data semantics specifications
while the DMD defines the semantics of the data.

An example of an AMS is shown in Figure 5. The specification includes a precondition that
restricts the domain of the required data to equities traded on the Madrid Stock Exchange. For
data fitting this precondition, the application expects that the source will report the trade price as
the latest nominal price in pesetas.

To decide whether a database can supply meaningful data to an application we must determine
if the procedures in the DMD guarantee the data semantics specified by the AMS. That is, for
each attribute in the AMS the DMD procedure for that attribute must provide assignments to
the semantic domain that match those in the AMS. For example, given the specification shown in
Figure 5, does the procedure for TradePrice shown in Figure 3 provide the correct instantiations
of the semantic domain? If this is the case, then the DMD subsumes the AMS. More precisely,
the DMD subsumes the AMS if for every precondition of every attribute in the AMS the DMD
produces a set of instantiations of the semantic domain that matches the instantiations defined in
the specification. Matching instantiations between the specification and the DMD requires that
the instantiations be shown to be semantically equivalent; where semantic equivalence for each
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attribute is defined by the application. If the DMD subsumes the AMS then this establishes
semantic consistency between the application and the database (i.e., the database will supply
meaningful data). Methods for defining semantic equivalence are described in Section 4.2. In the
next section we describe an algorithm for determining subsumption.

4.1 Metadata Subsumption

Determining subsumption may appear to be similar to the known untractable problem of determin-
ing when two programs will produce the same output. However, given certain restrictions on the
DMD and the AMS we can provide a tractable algorithm for determining when the specifications
in the AMS are subsumed by the set of procedures in the DMD.

It is assumed that the procedures in the DMD and the specifications in the AMS are complete
and consistent. For simplicity, it is also assumed that the application and the database contain
at most one assignment procedure for each attribute and that these procedures are semantically
simple. It is important that the restriction in these procedures be on primitive data types so that
comparisons can be made between the values in these restrictions. Initially, we place the addi-
tional restriction that, for each attribute, the semantic and assignment domains for an application
specification are subsets of the semantic and assignment domains in the DMD. This is the most
restrictive of our assumptions, but we show later how more general specifications can be included
in the AMS.

Even though this representation is restrictive, we have found it to be very valuable for two
reasons. First, the restrictive representation allows us to develop a base methodology and a com-
putable algorithm for addressing semantic reconciliation. This base methodology can be generalized
(see Section 5) to deal with a wide range of semantic issues. Second, in our analysis of some ex-
isting databases, we have found that even this restricted representation is capable of capturing the
semantics of many types of data.

Based on this set of assumptions we describe an algorithm for determining subsumption. The
Subsume algorithm, defined in Figure 6, begins by constructing a graph representing the procedure
for an attribute found in the DMD. For example, Figure 7 illustrates the graph derived from the
procedure for TradePrice defined in Figure 3.2 The construction of this graph follows directly from
the structure of the case statement. The graph forms a tree structure where each level of the tree
represents a restriction on a different primitive data type identified by the node at that level. The
leaves of the tree contain the metadata instantiations for a given precondition as defined by the
path from the root node.

These graphs will be used to determine the possible instantiations defined by the DMD based
on the preconditions found in the application. For a precondition selected in Step 2, the algorithm
collects all possible instantiations defined by the DMD. For each possible precondition the algorithm
requires that the instantiation in the specification be semantically equivalent to the instantiations
defined by the DMD. If this is true for all preconditions of all attribute specifications then the
algorithm succeeds, implying that the database can supply the application with meaningful data.
This algorithm will, for a given precondition and DMD procedure, find exactly the correct set of
instantiations [SM89a]. The subsumption algorithm is run for each attribute procedure found in

2 The otherwise part of the case statement is shorthand for the enumeration all values for that data type that do
not appear on edges leaving the node. For example, otherwise for case Exchange of in Figure 3 can be thought of as
all exchanges besides the Madrid Stock Exchange.
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1. For attribute MA in the AMS construct the graph of the procedure for the same attribute MD found
in the DMD.

2. Select a precondition in MA. Note the restrictions in this precondition and record the associated
metadata instantiation as IA.

3. For each data type defined by a level of the database graph mark all edges that match the value of a
restriction identified in (2). If there is no restriction on the data type then mark all edges.

4. Remove all unmarked edges. The leaves of the remaining paths (from the root) define the set of all
possible metadata instantiations, ID, for the precondition defined in (2).

5. If ID is semantically equivalent to IA then continue else fail.

6. Return to Step 2 for every precondition specified in the case statement for MA.

7. If no failure occurred, then succeed.

Figure 6: Subsumption Algorithm - Subsume

equity

s:- 'latest price'
icy-of Exchange)

Trade_PriceStatus:. 'latest nominal price'
Currency :- 'pesetas'

Trade Price Status:-'latest price'
Curreincy :=Tcurrency-of Exchange)

Figure 7: Graph of DMD Procedure for TradePrice
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IA is
TradePrice.Status := 'latest-nominalprice'
Currency := 'pesetas'

ID is
TradePrice.Status := 'latest-nominal-price'
Currency := 'pesetas'

Figure 8: Instantiations to be Tested for Semantic Equivalence (Step 5)

the AMS. If the algorithm succeeds for all attribute procedures found in the AMS then all data
provided by the database is meaningful to the application.

For the AMS defined in Figure 5 the algorithm begins by constructing the graph shown in
Figure 7 for the TradePrice attribute. Step 2 of the algorithm identifies the only precondition in
the specification. This precondition contains the following restrictions on primitive data types:

InstrumentType ='equity'
Exchange = 'madrid'

The instantiation, IA, associated with this precondition is identified in the top half of Figure 8.
Next, for each restriction on the assignment domain we mark the edge in the graph matching the
restriction. In this example the single edge labeled 'equity' and the single edge labeled 'madrid' are
marked. All unmarked edges are removed leaving a single path from the root to the leaf containing
the instantiation ID shown in the bottom of Figure 8. Step 5 of the subsumption algorithm requires
the instantiations IA and ID to be semantically equivalent. Methods used to define and determine
semantic equivalence are presented in the next section. Given that the instantiations are equivalent,
the algorithm continues by attempting to locate any other precondition in the specification. As
there are no other preconditions in this attribute procedure, the algorithm finishes without failure
and therefore subsumption holds for the TradePrice attribute.

Another example of this process is shown for the application specification in Figure 9. Here
the application requires that all instruments traded on the Madrid Stock Exchange be reported as
the latest nominal price in pesetas. According to this restriction we mark the single edge labeled
'madrid' and because there is no restriction on InstrumentType we mark all edges leaving the node
labeled with this data type. The resulting spanning tree is shown in Figure 10.

Subsumption for this example requires that the instantiations shown in Figure 11 be semanti-
cally equivalent. The function call (currency-of Exchange) is replaced by the function call (currency-
of 'madrid') as a result of the restriction on Exchange identified in the precondition. Semantic
equivalence for these instantiations are described in the next section.

4.2 Defining Semantic Equivalence

The definition of semantic equivalence is left to the application developer and is included as part
of the application metadata specification. A sample definition of semantic equivalence is shown

10
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case Exchange
'madrid':

endcase

of
TradePriceStatus := 'latest-nominal-price'
Currency := 'pesetas'

Figure 9: Application Specification for Trade-Price

equity wise

'iceStatus:- 'latest price
:. (currency-of Exchange)

Trade_Price_Status:- 'latest nominal price'
Currency :. 'pesetas'

Figure 10: Spanning Tree for the AMS in Figure 9

TradePriceStatus := 'latestnominal-price'
Currency := 'pesetas'

TradeSPriceStatus := 'latest-price'
Currency := (currency-of 'madrid')

TradePrice.Status := 'latest-nominal-price'
Currency := 'pesetas'

Figure 11: Instantiations to be Tested for Semantic Equivalence (Step 5)
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semD = < TradePriceStatuso, CurrencyD >
semA = < TradePriceStatusA, CurrencyA >

sem(Trade.PriceD) _ sem(TradePriceA) if
string- equivalent(TradePriceStatusD, TradeSriceStatusA)
string-equivalent(CurrencyD , CurrencyA)

Figure 12: Semantic Equivalence for Trade-Price

in Figure 12 where the application requires that the instantiations from the DMD and the AMS
be identical strings. Under this definition, the instantiations IA and ID shown in Figure 8 are
semantically equivalent.

For the same definition of semantic equivalence, the sets of instantiations shown in Figure 11
are not equivalent. The function currency-of must be evaluated before we can test for semantic
equivalence between currencies. This requires that the DMD evaluate the function and its argument
before the test for equivalence. Evaluation of the function, currency-of, can be done at "compile-
time"(i.e., schema design time) if it is assumed the results of the function do not change over time
(i.e., that exchanges do not change currencies). Otherwise, the evaluation of such functions and
the determination of semantic equivalence may have to be done at "run-time" (i.e., data access
time). Assuming that the currency for the Madrid Stock Exchange is pesetas, then the currency
values are semantically equivalent. However, the application requires the latest nominal price
while the database reports either the latest nominal price or the latest price. Because both of these
instantiations are not equivalent to the specifications of the application 3 the subsumption algorithm
fails; thus it cannot be guaranteed that the database will supply meaningful data to the application.
In the case of this example, the instantiations must be compared at run-time to determine if the
database is providing meaningful data. Thus the subsumption algorithm can be used at compile-
time to predict for each attribute whether the database will necessarily provide data with the
correct semantics or if it will never provide data with the correct semantics. For attributes whose
subsumption is not definable at compile-time, the algorithm can be used at run-time to determine
if the database is providing the correct semantics.

There are a number of advantages to allowing the application metadata specification to define
semantic equality. Most significant is that not all applications will have the same requirements for
data semantics. For example, an application may require that two trade prices are in the same
currency but may not be concerned about the trade price status of these trade prices. This appli-
cation could define semantic equivalence simply as the string-equivalence of the currencies. With
this definition the instantiations shown in Figure 11 are semantically equivalent and subsumption
follows.

3 The and condition between the two database instantiations in Figure 11 requires that both sets of instantiations
satisfy the application specifications.

12
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4.3 Conversion of Data Semantics

Allowing the application to specify the definition of semantic equivalence has another advantage;
methods defined by the application to convert the data semantics can be included in these defi-
nitions. Additionally, methods defined in the DMD for the conversion of data semantics can be
used by the application in the definition of semantic equivalence. For example, if the DMD con-
tains a method, convert-currency, that converts one currency to another, then the application can
define the semantic equivalence of values of currency as convert-currency(currencyD, currencyA).
Where there is equivalence between currencies if they are string equivalent or the currency defined
in the DMD can be converted into the currency of the AMS. More general definitions of semantic
equivalence can be defined using these types of conversion functions.

By including functions in the definition of semantic equivalence these definitions identify the
means for conversion of data semantics. For example, the function convert-currency must have an
implementation that provides the exchange rate for converting a trade price in one currency to a
trade price in another currency. Changes in data semantics, at the database or in the application
specification, can in some instances be offset by the use of such functions. For example, assume
a database were to suddenly decide to change to reporting all trade prices in US dollars. Then
an application, like the one specified in Figure 5 would be unaffected if semantic equivalence for
currencies is based on the use of a currency conversion function. This still requires that at run-time
a function exists to convert US dollars to pesetas.

4.4 Semantic Reconciliation and System Operation

The methods that have been described thus far can be used to identify semantic conflicts between
a data source and an application. In some instances these methods can be used to resolve semantic
conflicts. Additionally, these same methods can be used in a system where the source data semantics
or the application data semantic specifications are allowed to change. If the connectivity between
the application and the source are uneffected by these changes or if appropriate conversions can
be made then the application can continue; otherwise the application must be notified of the
incompatibility.

Ideally, semantic consistency between the database and application would be established when
the AMS and DMD are defined. However, the demands for checking semantic consistency may
require that the metadata be examined when individual data is retrieved. Additionally, the sub-
sumption algorithm must be executed whenever there are changes in the AMS or the DMD. The
coordination of the subsumption process requires that the system track which attributes are always
meaningful, which ar never meaningful, and which have to be checked at run-time. The part of
system operation is being carefully examined in the development of the system prototype.

The use of metadata for semantic reconciliation has been demonstrated in a restricted seman-
tic definition environment. In the next section we examine the impact of relaxing some these
restrictions.

5 More General Methods for Semantic Reconciliation

We have described methods for the use of metadata to identify and resolve semantic conflicts
between an application and a database. These methods have provided a framework for more general
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case InstrumentType of
'Equity': case Country of

'spain': TradePriceStatus := 'latest-nominalprice'
Currency := 'pesetas'

endcase
endcase

Figure 13: Application Specification Using Additional Attributes

representation schemes for data semantics. For example, metadata specifications defined by the
application can generalized by allowing the application to describe preconditions on attributes not
found in the assignment domain of the DMD procedure. If this additional attribute is independent of
attributes in the assignment domain in the DMD then the algorithm for subsumption is unchanged.
However, if the additional attribute in the specification is correlated with any of the attributes in
the assignment domain in the DMD then these correlations must be resolved. For example, consider
the specification shown in Figure 13. The precondition contains two restrictions, the instrument
must be an equity traded in Spain. Logically, this would mean any instrument traded on a Spanish
stock exchange. It is necessary to change the restriction on Country, found in the application
specification, into a restriction on Exchange. This change must be done by the DMD where it
determines which exchanges are found in Spain. Then the subsumption algorithm can be applied
to restrictions on the Exchange attribute. The algorithm for subsumption must include methods to
identify these correlations and, when appropriate, change instances of attributes in the specification
to instances of attributes found in the assignment domain of the procedure in the DMD.

A more rigorous definition of attributes defined as abstract data types [SM89b] can be used
to simplify the process of locating correlated data types. Locating correlated data types may
require inference rules to limit the possibility of unrestricted search for appropriate correlations.
The coercion of data type instances must be done at the DMD, based on its knowledge about the
relationship between data types (i.e., the DMD must use the database to evaluate this relationship).

The effect of relaxing assumptions in the representation model for data semantics is to increase
system complexity and require that more of the process of semantic reconciliation be done at run-
time. Restrictions on the complexity of the instantiations can improve system performance but may
limit the ability to include general procedures for metadata definition. A more general approach
to defining the DMD and AMS are considered as part of future research. In the next section we
examine how the methods developed for the source-receiver model can be used for establishing
semantic reconciliation in other models.

6 Semantic Reconciliation in Multidatabase Systems

Methods for semantic reconciliation using metadata have been presented for systems that conform
to the source-receiver model. These results can easily be extended so that they are useful in multi-
database systems. For example, an application might require data from a number of independent
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data sources, where each source provides a unique set of data. For such a system, the AMS must
identify which data source is expected to supply values of a given data type. The problem is then
viewed in the source-receiver model between the specification in the AMS and the DMD for the
database supplying instances of the data type. If we limit the systems to the conditions defined in
Section 4.1, then the Subsume algorithm can be used to evaluate semantic consistency between an
application and multiple data sources.

It is important to consider how these methods can be extended for semantic reconciliation in
complex multidatabase systems. These methods can be used to provide a semantic interface to a
loosely-coupled federated database system [JPL*88,LA86,She87]. A federated schema for such a
system is a view over schemas of the component databases. Methods for semantic reconciliation
can be used directly for the interface between an application and this federated schema. Each
component database provides a database metadata dictionary for use in defining the federated
database metadata dictionary in the federated schema. No schema integration is required in such
a system.

The need to represent and manipulate data semantics or metadata is particularly important in
tightly-coupled federated database systems where data is taken from multiple disparate sources.
Integration of multiple systems may require the definition of a global schema representing the
composition of the component database schemas [DK86,LR82,She87,Tem87]. Typically, schema
integration algorithms have been developed for component databases with static structure and
semantics [BLN86,CRE87,SG89]. However, to allow for greater local database autonomy, schema
integration must be considered a dynamic problem. The global schema must be able to evolve to
reflect changes in the structure [BMW86,McL88] and meaning of the underlying databases. If an
application is affected by these changes, it must be alerted.

The global schema is responsible for providing meaningful data to the application. The global
schema includes a global database metadata dictionary, GDMD, that represents the semantic inte-
gration of a set of component databases. Methods for semantic reconciliation can be used directly
between the application and the GDMD. The application sees the GDMD just as if it were a DMD
for a single database. But unlike changing the data semantics in the DMD, the GDMD must react
to changes in the semantics of a set of component databases as represented in the DMDs of these
databases. As a result of these changes, the GDMD may be modified which may then affect the
meaning of the data sent to the application. The GDMD can be defined by the integration of the
component database DMDs using the union of the semantics provided by each DMD. The selection
of a data source in this heterogeneous system will, in part, be determined by which source can
provide data with the appropriate semantics.

The GDMD must be able to react to changes in the meaning of the data in the component
databases assuring that the application can continue receiving meaningful data. In this way we
extend the methods defined for semantic reconciliation in the source-receiver model to assist in
the integration of multiple heterogeneous databases. Each component database will have a DMD
and the GDMD will define the semantic integration of these component databases. The application
specifications will play an active role in the selection of component databases, helping to dynamically
locate meaningful data sources and appropriate translation (i.e., conversion) routines.
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7 Summary

In this paper we describe methods for using metadata to automatically identify and resolve semantic
conflicts between a data source and a receiver. When semantic connectivity is established, the
receiver can be certain that the data supplied has the expected meaning. When data semantics
change at the source or data semantic requirements change at the receiver these methods can be
used to determine if the source can continue to supply meaningful data. In some instances, metadata
provides a means for converting data semantics so that the source can provide meaningful data.

We describe a model for representing information on data semantics and provide an architecture
for a system that uses this representation for semantic reconciliation. Our representation model is
general enough to define metadata for a variety of domains.

Using the representaion model for metadata, we show how an application can specify its require-
ments for data semantics. The definition of these semantic requirements is expressed as metadata
including application specific definitions for semantic equivalence. Allowing the application to
define semantic equivalence has the advantage that different applications can express different re-
quirements for data semantics. Additionally, applications can reference functions, defined in the
AMS or DMD, in these definitions. These function can be used to automatically convert data
semantics. Thus making it possible for the application to receive meaningful data from the source
when such data could not normally be provided.

More general methods for semantic reconciliation are likely to require a more expressive repre-
sentation, one that allows for data abstraction and encapsulation. Future work will consider.the
use of abstract data types [SM89b] as a means for generalizing these methods. This work will also
consider the development of query languages and processing techniques that permit user access to
both data and metadata.

The methods used for semantic reconciliation in the source-receiver model are also important in
systems with multiple data sources. In a loosely-coupled federated database system these methods
can be used to provide a single semantic interface to a federation of local databases. While in a
tightly-coupled federated database system these methods can be used to define a semantically inte-
grated global schema for multiple homogeneous or heterogeneous database systems. These methods
can be used directly in the interface between an application and the global schema. Metadata can
also be used in these systems to simplify schema integration among local databases. Changes that
occur in the semantics of the underlying database must be detected and reflected as changes in
the global schema. The semantic interface between the global schema and the local databases
represents a significant part of our present research effort.

The need to express and manipulate metadata is important in source-receiver and multidatabase
database systems. Previously, metadata has been used primarily for retrieval in large statistical
databases. This paper describes how metadata can be used in the development of intelligent systems
that can automatically react to changes in data semantics.
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