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Abstract

This report describes the use of metadata in the development and maintenance of a
global schema interface to heterogeneous databases. First, we define metadata in terms
of abstract data types and operators. Then, we show how metadata can be used in the
interface between a database and an application. We generalize this use of metadata to
simplify schema integration and semantic reconciliation between a global schema and an
application. Metadata is also used to determine if changes in data semantics affect the
data requirements of an application. In & heterogeneous system, metadata can be used
to determine if an application is affected by changes in the semantics of the underlying
databases. Finally, we show that, in some instances, when the global schema and the
application are not semantically consistent, metadata can be used to modify the data
so that it will be meaningful to the application.
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1 Introduction

The Composite Information Systems Laboratory (CISL) at the MIT Sloan School of Man-
agement has designed and developed a prototype system for access to multiple hetero-
geneous database systems, called the Composite Information System/Tool Kit (CIS/TK)
[11]. CIS/TK, like many other heterogeneous database systems [1,3,10], presents the user
with a global schema representing the integration of a set of local databases. Designers of
these systems have examined schema integration in the presence local databases with static
structure and semantics. However, to allow for greater local database autonomy, schema
integration must be considered a dynamic problem. The global schema must be able to
evolve to reflect changes in the structure and meaning of the underlying databases. If an
application is affected by these changes, it must be alerted.

In this report we describe the use of metadata in the development and maintenance of
the global schema. We describe how metadata can be used to simplify schema integration
and semantic reconciliation between the global schema and an application. Semantic recon-

ciliation is an important step in determining logical connectivity in a heterogeneous system _

[9]. Metadata can also be used to determine if an application running off the global schema
is affected by changes in the semantics of the underlying databases. If the database and the

[

application are not semantically consistent then metadata can, in some instances, be used

to modify the data so that it will be meaningful to the application.

The use of metadata in large statistical databases has been described by McCarthy
and others [2,4,5,6,7]. These implementations provide the ability to access and manipulate
semantic information not stored in the database. Unlike these authors, we examine the use
of data abstraction and encapsulation in metadata representation. Specifically, we describe
a representation of metadata using abstract data types (ADTs) and operators. We show how
this representation can be used to simplify schema integration in heterogeneous database
systems.

We begin by describing the use of metadata in a simplified architecture we call the
source-recetver model. As shown in Figure 1, the database (source) supplies data used
by the application (receiver). The uses for metadata in the interface between a database
and application are identical to the uses for metadata in the interface between a global
schema representing a set of heterogeneous databases and an application. In Section 2
we describe the use of abstract data types and operators as metadata for the interface
between an application and a database. Then in Section 3 we show how metadata across
this interface can be used for semantic reconciliation between the application the data
source. In Section 4 we describe how metadata is used in the interface between the local
databases and the global schema to simplify schema integration. This interface permits
some local database autonomy while allowing the global schema to provide an application
with a meaningful data set. Finally, we present our conclusions and describe plans for future
research.
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Figure 1: Systems Architecture Using Metadata

2 Abstract Data Types As Metadata

In this section we describe the use of abstract data types to detect and resolve problems
associated with changing database semantics in a source-receiver model. Generally, detailed
data semantics are provided in printed documents or manuals. These manuals assist the
analyst in understanding the data and developing meaningful applications. However, the
meaning of the data may change over time; the analyst cannot always be aware of and
account for these changes. As the semantics of the data change, the data may no longer be -
meaningful to the application. For example, an application that uses the unemployment rate
to estimate interest rates may have been adversely affected when the government decided
to change the unemployment rate calculation to include military personnel.

As an example, consider a data source that provides the trade price for a variety of
financial instruments. The schema of the relation containing this data is shown in Figure 2
along with a few sample records. Each record contains the name and type of the instrument
being traded, the exchange that the instrument was traded on, and the price of the trade.

Instrument_Type | Instrument Name | Exchange | Trade Price
Equity IBM NYSE 115.25
Equity Telecom SP Madrid SE | 1107.25

Figure 2: The FINANCE Relation

A query that requests the price of Telecom SP will return the value 1107.25. Even in
this simple relation, the ratural interpretation of this value might not provide a complete
understanding of the data. For example, this relation does not report all trade prices in
US currency. Rather, prices are given in the currency of the exchange. The trade price
for most equities represents the latest price except for equities traded on the Madrid Stock
Exchange where trade price represents the latest nominal price. Because of these semantic
complications, the system should provide a means for representation and access to both the
trade price value and its associated metadata.

One way to represent this metadata is to extend the traditional database schema defi-
nition to include virtual fields. For example, the relation in Figure 2 could be extended to
include attributes such as Units of Currency and Trade Price Description. Values for these
fields could be assigned procedurally during data access. However, changing the database



Abstype trade _price w:th

get-astatus : trade_price— trade_price_status®
get-currency : trade_price—currency®

get-price : trade_price—real

times : trade_price#real—trade_price

update-status : trade_pricef#trade_price status® —trade_price
update-curr : trade_price#tcurrency® —trade_price
update-price : trade_price#real—trade_price

18

pack <trade_price_status®, currency®, real>

Aye<trade_price_status®, currency®, real>.<fst(y)>

Aye<trade_price_status®, currency®, real>.<snd(y)>

Aye<trade_price_status®, currency®, real>.<thd(y)>

A<y,z>e<trade_price_status®, currency®, real>#real. <fst(y), snd(y), thd(y) x 2>
A<y,z>e<trade_price_status®, currency®, real>#trade_price_status®.<s, snd(y), thd(y)>
A<y,z>e<trade_price_status®, currency”, real>#currency* .<fst(y), g, thd(y)>
A<iy,z>e<trade_price_status®, currency®, real>#real <fst{y), snd(y), >

Enumeration types
currency® = {dollar, pasetas, pounds,...}
trade_price_status® = {latest_price, latest_nominal_price,...}

Figure 3: Abstract Data Type - trade_price

schema to represent metadata in this way is awkward and does not simply allow for the use
of numerous types of metadata in both schema integration and data processing. Alterna-
tively, we can supplement the conventional schema with abstract data types and a set of
operations on those types.

As an example of this use of ADTs consider the semantics of the Trade Price attribute.
For this attribute we can define an abstract data type, trade_price, as shown in Figure 3.
This abstract type is defined using the SOL (8] syntax, where the list of names bound by the
declaration are separate from the definition of the data algebra. The expression beginning
with pack and running to the end of this example is the definition of the data algebra. This
ADT contains a number of operations on the type trade_price. Primitives fst, snd and
thd return the values in the first, second and third fields of an instance of the type. For
example, the operator get-currency returns a value of type currency*® when applied to a
value of type trade_price. The update operators are used to enter data into the fields of
an instance of type trade_price.

Next we define operators on a set of abstract data types. These operators assign meta-
data values to the abstract types. For example, Figure 4 contains the definition of the
Trade Price Operator (t_p_op). Operator t_p_op assigns metadata according to the se-
mantics described for the Trade Price attribute. Additional abstract types referenced by
this operator are shown in Figure 5. For simplicity, update operations on these types are
omitted.
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t_pop : instrument _type#exchange#trade_price — trade_price

A<x,y,z>¢instrument _typef#exchange#ttrade_price

(get-ins_type x)} = Equity
(get-ex_name y) = Madrid SE
.(update-status (update-curr ¢ “pesetas”) “latest_nominal_price”)

A<Xx,y,z>€instrument_type#exchange#trade_price
.(update-status (update-curr z (get-currency y)) “latest_price”)

Figure 4: Trade Price Operator

Operator t_p_op contains two operations. These operations form a hierarchy; the op-
erations with more specific preconditions are placed first in the definition of the operator.
Starting at the top of the operator definition, the operation applied is the first one whose °
preconditions are satisfied.

Operator t_p_op takes arguments of type instrument _type, exchange and trade_price
and returns a value of type trade_price. This operator assigns values of currency* and
trade_price status® to an instance of type trade_price.

3 Using Metadata for Semantic Reconciliation

In this section we demonstrate how ADTs and operators can be used for semantic reconcil-
iation between an application (receiver) and a database (source). Semantic reconciliation is
part of the process that ascertains logical connectivity between the database and the appli-
cation. More precisely, we would like to use this form of metadata to resolve the following
questions:

1. Does the database provide data that is semantically meaningful to the application?

2. If the database does not supply semantically meaningful data, then is there a set of
operators that can be applied to the existing data to supply data with the required
semantics?

3. Is the application affected by a change in the database semantics?

As an example of how metadata can be used to resolve the first question, let the set of
ADTs in the database metadata be those described in the previous section. Assume that an
application has an identical set of abstract data types, ! but the operator t_p_op is replaced
by the operator app.t_p_opl as shown in Figure 6. Determining if the database will supply

YThe set of ADTs define the type of metadata associated with each attribute. We make the simplifying
assumption that the ADTs are identical in both the database and the application so that we can concentrate
on the use of operators in semantic reconciliation.



Abstype exchange with

get-ez_name : exchange—exchange*
get-country : exchange—country”

get-currency : exchange—currency*®
1s

pack <exchange®, country®, currency® >
Aye<exchange®, country®, currency® >. <fst(y)>
Aye<exchange®, country®, currency®>. <snd(y)>
Aye<exchange®, country®, currency®>. <thd(y)>

Abstype instrument_type with
get-sns_type : instrument._type-—instrument_type®
18
pack <instrument_type®>
Aye<instrument.type®>. <fst(y)>

Enumeration types
exchange® = {NYSE, Madrid SE, London SE,...}
country”® = {US, Spain, England,...}
instrument_type* = {Equity, Future, Bond,...}

Figure 5: :Additional Abstract Types

meaningful data involves comparing these operators. If, under the preconditions defined
for the operations in app_t_p_opl, the database operator would make assignments to the
trade_price ADT identical to those made by the application operator then we say that the
database operator subsumes the application operator. If the set of database operators sub-
sume the set of application operators, then the metadata establishes semantic consistency
between the application and the database (i.e., the database will supply meaningful data).

In this example, the trade price values supplied by the database will be meaningful if the
database operator t_p_op subsumes the application operator app_t_p_opl. If we restrict
the domain of operator t_p_op to the preconditions found in operator app_t_p_op1l then
we consider only the operation for equities traded on the Madrid Stock Exchange. We can
see that under these preconditions the database operator will assign the same metadata
values as the application.

There is a different result if the application operator for trade price is that shown in
Figure 7 (app.t_p.op2). As represented in the operator t_p_op, the database supplies
trade price in pounds for equities traded on the London Exchange (i.e., the local currency
for that exchange). However, the application expects trade price for these equities to be
in dollars. The database operator does not subsume this application operator. Unless the
semantics of the data can be changed, the application must be alerted that the database
cannot supply meaningful data.

The database metadata can contain conversion operators. If the set of database opera-
tors does not subsume the set of application operators, then it is possible for the database



app-t_p.opl : instrument_type#exchange#trade_price — trade_price

A<x,y,z>einstrument _type#exchange#trade_price

(get-ins_type x) = Equity
(get-ex_name y) = Madrid SE
.{update-status (update-curr ¢ “pesetas”) “latest_nominal_price”)

Figure 6: Application Trade Price Operator

app.t_p_op2 : instrument_type#exchange#trade _price — trade_price

A<x,y,g>einstrument type#exchange#trade_price
(get-ins_type x) = Equity
{get-ex_name y) = London SE
.(update-status (update-curr £ “dollars”) “latest_nominal_price”)

Figure.7: Application Trade Price Operator - Conflict

to use these conversion operators to supply meaningful data. Such an operator is shown in
Figure 8. This operator takes a value of type trade_price and a value of type currency*
and returns a value of type trade_price with the value of currency*® in the second field
and the price converted to that currency. The function ezchange-rate supplies the currency
conversion factor.

Though the operator t_p_op does not subsume the operator app_-t_p_op2 shown in
Figure 7, the operator convert_currency_op can be used to convert the currency of the
trade price in the database to the currency desired by the application. Together operators
t_p.op and convert _currency_op can be used to provide the application with meaningful
data. A database metadata manager is needed to identify combinations of operators that can
be used to provide the correct data semantics. The application of operators is controlled
by the type specifications for the operator. The combination of operators selected for a
conversion not only do type conversion but also define routines that can be used to convert
the data.

These solutions for determining semantic consistency can also be used in a system where
the database (or application) semantics are allowed to change. In such an environment
we would like to determine if the application can continue to run in the presence of these
changes. For example, the database may change the currency used to report equities traded
on the London Exchange from local currency to dollars. For the application metadata shown
in Figure 6, this change in the database metadata does not affect the application. Operator
subsumption still holds. The application can run unaffected by the change in the database.



convert currency op : trade_pricefcurrency® — trade_price

A<y,z>etrade_price#currency®
.(times < <fst(y),2, thd(y)> exchange-rate(snd(y), z) > )

Figure 8: Currency Conversion

Even if changes are made in data semantics, metadata operators can be used to determine
if the application is receiving meaningful data.

In this section we described the use of ADTs and operators for use in semantic recon-
ciliation between an application and a database. In some instances, the database meta-
data manager must identify conversion operators so that the database can adapt to the
application’s requirements. In the next section we describe how these methods apply to
heterogeneous database systems. :

4 Schema Integration Using Metadata

The source-receiver model was chosen because of its simplicity. The same model can be
used to represent the interaction between an application and a global schema representing
an integrated set of local databases. In this configuration, the global schema is responsible
for providing meaningful data to the application. Through the use of operators and abstract
data types the global schema can determine if semantic changes in the underlying database
will affect the application. In this section we describe how metadata descriptions for the
local databases are used in schema integration. We propose that operators and ADTs
describing the semantics of the local database be included in the local database interface
(LDI).

As an example of the use of metadata in the LDI assume the architecture shown in
Figure 1. Let the two local databases, LD1 and LD2, be described by the set of abstract
data types in Section 2 but let LD1 contain the operator shown in Figure 6 and LD2 contain
the operator shown in Figure 7. The integration of these two operators is shown in Figure 9
and represents an integrated view for trade price. Using this integrated view, applications
can be designed and additional operators can be included for use in data conversion.

Metadata for the interface between the local database and the global schema can be used
to resolve a number of domain mapping problems. For example, LD1 and LD2 contain trade
price data in a certain currency. However, if the operator shown in Figure 8 can be included
in the global metadata, then a change in the currency reported by the local database would
not affect an application. Using the currency conversion operator the global schema is
able to present the data in any currency. Similarly, if the value of trade price has an
associated scaling factor then it could be included in the definition of the abstract type
trade_price. Operator t_p_op could be rewritten to include the assignment of the scaling
factor. Then data with different scaling values can be normalized by accessing the scaling
factors for that data. In addition to these types of conversions, metadata can be used to
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app-t_p.op3 : instrument_type#exchange#trade_price — trade_price

A<x,y,z>€instrument _type#exchange#trade_price

(get-ins_type x) = Equity
(get-ex_name y} = Madrid SE
.(update-status (update-curr 3 “pesetas”) “latest_nominal_price”)

A<x,y,z>¢instrument type#exchange#trade_price

(get-ins_type x) = Equity
(get-ex_name y) = London SE
.(update-status (update-curr ¢ “pounds”) “latest_nominal_price”)

Figure 9: Global Integration of Local Database Operators

attach additional information about the data. For example, the operator shown in Figure 9
tags all prices from the Madrid Exchange as the latest nominal price and prices from the ~
London Exchange as the latest price. Then the global interface may contain rules for the
use of values with different tags (e.g., it may not be possible to sum two trade prices when
one has a latest_nominal_price tag and the other has a latest_price tag).

Metadata at the local database interface is used to simplify the integration process and
permits limited database autonomy. Metadata at the global interface simplifies semantic
reconciliation between the integrated database and the application. Finally, metadata at
the global level is useful in supplying a user with information about data semantics.

5 Summary

In this report we present a metadata facility for semantic reconciliation between a data
source and a receiver. When semantic connectivity is established, the receiver can be
certain that the data supplied has the expected meaning. Results from the use of this
model are directly applicable to the interface between an application and a global schema
representing the integration of set of local databases. Metadata between the application
and the global schema and between the global schema and the local databases provide a
means for determining if the application is affected by changes in the underlying databases.

Metadata is used to determine if changes in local database semantics affect the applica-
tion. If they do not, the application continues execution. If changes in the local databases
interfere with the expectations of the application, then the application must be alerted.
Conversion operators can be included in the global metadata. These operators allows the
global interface to supply meaningful data even when the basic set of operators can not.
These conversion operators help to add a level of autonomy for the local databases; the
application is further insulated from changes in the local database semantics.

As part of the CIS/TK implementation we are considering using an object-oriented
approach to schema integration using metadata. Objects provide the data abstraction and
encapsulation present in ADTs and operators, but further investigation is needed to extend



this work to an object-oriented implementation.

Additional work is needed to define the integration of ADTs, operators, and conventional

query languages. Query languages and processing techniques must be developed that permit
access to data and metadata.

The need to express and manipulate metadata is important in both homogeneous and

heterogeneous database systems. Previously, the use of metadata has been examined pri-
marily for retrieval in large statistical databases. This report describes how metadata can
be used in the development of intelligent systems that can automatically react to changes
in database semantics.
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