```
AN ARCHITECTURAL COMPARISON OF CONTEMPORARY
    APPROACHES AND PRODUCTS FOR INTEGRATING
        HETEROGENEOUS INFORMATION SYSTEMS
Principal Investigator: Dr. Amar Gupta
Technical Advisor: Prof. Stuart E. Madnick
Researchers: Teresa Wingfield and
                        Christopher Poulsen
                    Working Paper #3084-89
            November 1989
Comments and suggestions should be directed to:
    Dr. Amar Gupta
    Principal Research Associate
    Sloan School of Management
    MIT ROOM E40-265
    Cambridge, MA 02139
    Telephone: (617) 253-8906
``` reserved. Contents of this working paper cannot be photocopied or quoted without advance written approval from Principal Investigator.

\section*{TABLE OF CONTENTS}

\section*{ABSTRACT}
SECTION 1.0 INTRODUCTION
1.1. Background 1-1
1.2. Functional Deficiencies 1-2
1.3. Levels of Integration 1-4
1.4. Constraints 1-7
1.5. Models and Schemata 1-8
1.6. Languages 1-12
1.7. General Directions 1-13
SECTION 2.0 HIGHLIGHTS OF PRINCIPAL PRODUCTS AND APPROACHES
2.1. BBN Systems and Technologies: Cronus 2-2
2.2. Booz Allen: IDIMS 2-4
2.3. Cambridge Technology Group: SURROUND 2-6
2.4. Cincom: SUPRA 2-8
2.5. Cognos Corporation: POWERHOUSE 2-10
2.6. Control Data Corporation: ASCENT 2-12
2.7. Control Data Corporation: CDM*PLUS 2-15
2.8. Data Integration, Inc.: Mermaid 2-17
2.9. Digital Equipment Corp.: Rdb/VMS, DBMS 2-20
2.10.Gupta Technologies, Inc.: SQL System. 2-22
2.11.Honeywell Federal Systems, Inc.: Distributed Database Testbed System 2-24
2.12.IBM: DB2, SQL/DS, SAA, and others 2-27
2.13.Information Builders, Inc.: FOCNET 2-30
2.14.Interbase Software Corporation: INTERBASE 2-32
2.15.Massachusetts Institute of Technology: Composite Information Systems 2-34
2.16.Metaphor Computer Systems, Inc.: DIS 2-38
2.17.On-Line Software International, Inc.:
RAMIS Information System. 2-40
2.18.Oracle Corporation: ORACLE 2-42
2.19.Relational Technology, Inc.: INGRES 2-44
2.20.Software AG: ADABAS 2-46
2.21.Sybase, Inc.: SYBASE 2-48
2.22.Tandem Computers Incorporated: NonStop SQL 2-51
2.23.TRW: TDIE 2-52
2.24.Xerox Advanced Information Technology: Multibase 2-54
SECTION 3.0. DISCUSSION AND CONCLUSION
3.1. Unintrusive Integration 3-1
3.2. Intrusive Integration 3-3
3.3. Interfacing with Controlled Redundancy 3-4
3.4. Interfacing with Transaction Transfer 3-5
3.5. Additional Evaluation Criteria 3-6
3.6. Conclusion 3-9
REFERENCES R-2
BIBLIOGRAPHY B-1, B-2

\section*{ABSTRACT}

Virtually all large organizations are faced with the problem of intelligently accessing and integrating information maintained in islands of disparate computer-based systems. Since a number of vendors claim that their respective products and services can overcome the problem of integration, a comprehensive study was made into the technical characteristics of all these products and services, as well as additional ones identified through other means. This report documents the results of this study in terms of a new taxonomy for classifying various approaches for integrating heterogeneous information systems. In addition, the principal concepts and issues pertaining to this field are also presented in this report.

\section*{SECTION ONE: INTRODUCTION}

\subsection*{1.1. Background}

Most organizations today depend on a portfolio of information processing machines, ranging from mainframes to microcomputers and from general purpose workstations to very specialized systems, to meet their computational requirements. While the individual hardware and software components in the growing array of computer systems may meet the objectives for which each was initially designed, their heterogeneity presents a major obstacle to ready access and assimilation of information. It requires tremendous amounts of time and effort to retrieve information from multiple systems today, and in many situations, it is simply not feasible to obtain integrated responses in desired timeframes.

As compared to the intra-organizational situation discussed above, the issues involved in integrating information on interorganizational basis are even more complex. First, there is greater heterogeneity in technical capabilities across organizations as compared to a single organization. Second, there is less likelihood of reaching consensus on common goals and standards. Third, non-technical issues, such as access rights and sharing of costs, acquire added importance when multiple organizations are involved. Integration of relevant information from various computer-based systems is indeed a challenging task.

\subsection*{1.2. Functional Deficiencies}

The problem of inefficient, incomplete, and time-consuming access to information can be traced, from a technical viewpoint, to functional deficiencies at several levels as described below:

\section*{Structured and Unstructured Applications}

Conventional and computer-based information systems have been designed with specific applications in view. These systems are efficient for performing the originally intended application, but they are inefficient in dealing with ad hoc queries or new unanticipated applications.

\section*{Information versus Knowledge}

Traditional database systems focus on retrieval of data, and on performing elementary operations (e.g., sorting and merging). Such systems cannot use both data and programs to respond intelligently to queries like "How many vehicles can be made available to evacuate personnel from the vicinity of a disaster site within a specified period of time?" which require analysis of many factors.

\section*{Diverse types of Information}

Different types of information (numerical, graphic,

\begin{abstract}
pictorial, speech, and video) are referenced in very different ways. During the sixties, computers were designed to manipulate, store, and retrieve numerical information. During the seventies, the focus was on textual information. Relatively less effort has so far been directed towards efficient storage and retrieval of pictorial information and its combination with numerical and textual information.
\end{abstract}

\section*{Communications}

In spite of continuing effort by a number of national and international institutions, it is still difficult to transfer complex information across computers of dissimilar architectures.

\section*{Granularity}

It is difficult to judge what volume of information should be made available, and how it should be arranged and tailored to meet the needs of the person requesting the information.

\section*{Security}

It is necessary to determine who can access the information, and what each person is permitted to modify.

This aspect is especially important for applications involving more than one organization.

\section*{Semantics}

It is difficult to specify exactly the subset of information desired without knowing details of the systems being accessed. Further, a particular piece of information may possess different connotations on various systems. Conversely, the same item (such as a particular spare part) may be specified by different numbers on various systems. The above list describes a few of the key technical problems.

In addition, there are major non-technical impediments that restrict integration. Because of the large number of issues and variables, a global solution to the problem of integrating distributed information systems has remained an elusive dream. Partial solutions are becoming available, however, and these solutions are identified and analyzed in later sections of this report.

\subsection*{1.3. Levels of Integration}

Integration of information resources can be visualized at different levels. At the least complex end of the spectrum, information can be exchanged across a network using basic facilities such as remote
procedure call [13] and message passing. At the next higher level, a new layer of software can be created to insulate users from idiosyncrasies of different host machines. This layer can provide uniformity at the level of logically centralized file servers as in the case of Andrew at CMU [2], or at the level of application programs as in the case of Project Athena at MIT [3].

The approaches described in the preceding paragraph require significant degree of user involvement. Also, they represent instances of integration of information. The focus of this report is, however, on integration of information systems. Further, the emphasis is on systems "dissimilar" from each other in terms of:
*Hardware, for example, one information system using an IBM mainframe and a second system functioning on Unisys hardware;
*Operating systems, for example, one information system using OS/MVS, and other using UNIX;
*Data models, for example, one system using network data models, and the other using relational data models;
*Database management systems, for example, one using INGRES, and the other using ORACLE database management systems, respectively.

Apart from the above differences arising from dissimilarities in hardware and software, different information systems use different sets of design decisions and underlying assumptions. for example, one system may be using annual salary of personnel while another may be using monthly salary; further, the salary in one case may be gross salary (typical of budgeting systems), whereas in the second case, it may be net salary (typical of systems used for printing checks). Similarly, a particular spare part may be
specified by one part number in one system and by a different part number in a second system. All these differences must be reconciled when attempting to integrate dissimilar information systems.

There are two facets to integration--physical integration and logical integration. Physical integration, accomplished through physical connectivity, refers to the process of establishing actual communication links among disparate systems. Logical integration refers to the process of accessing disparate systems in concert for generating integrated responses. This involves reconciliation of different assumptions and perspectives embedded in the systems being integrated. At the logical level, the integration system must:
```

*Know where all the information is stored, along with
the data formats and the query languages of the
local systems;
*Decompose the query into subqueries that can be
executed by local systems;
*Accumulate the results from all the subqueries;
*Reconcile differences among the results accumulated;
and
*Formulate integrated answers.

```

All the above tasks must ideally be carried out with no modification to existing systems. However, many products discussed later in this report require significant changes to existing information systems.

Based on the level of integration achieved, and some additional
characteristics, various types of integration approaches can be distinguished. These approaches, using the terminology of different researchers who have used dissimilar terms to refer to same or similar ideas, include the following:
*Cooperation System for Heterogeneous Data Base Management System [4].
*Federated Database [5,9].
*Composite Information System [6].
*Knowledge Based Integrated Information System [7,11].
*Multidatabase [8,10].
*Superdatabase [12].
Instead of attempting to cover all the views expressed by the individuals who coined these terms and phrases, the endeavor in this report is to encapsulate the main concepts and the emerging technologies and products that enable integration of dissimilar information systems.
1.4. Constraints

The design of an integrated information system is constrained by the following facts:
(a) The new system must integrate existing information systems, each of which was designed independently with little premonition, if any, that the system would form part of a larger system at a future date.
(b) Each existing information system must be fully understood in order to comprehend all underlying assumptions and semantics. Rarely are these systems fully and accurately
documented.
(c) The design must allow flexibility to add or remove individual systems into the integrated configuration. As such, it requires detailed knowledge of both immediate and long-term constituents of the integrated system.
(d) The design must involve the least amount of changes to existing systems. Transactions, irrespective of whether they are queries or updates, involve retrieval or manipulation of information maintained in individual systems, each of which imposes its own set of requirements and standards which must be reconciled by the new system.

The goal is to mitigate all the above-mentioned problems in an efficient and effective manner.
1.5. Models and Schemata

A Distributed Heterogeneous Database Management System attempts to meet the above goal by providing the facilities to access, to aggregate, and to update information maintained in multiple, distributed, heterogeneous systems. A typical distributed heterogeneous approach is characterized by the following:
a) The use of a common data model, with appropriate mapping to data models of participating systems;
(b) The support of a standard user language for retrieving data on a global basis in all cases, and also for storing data in some cases;
(c) The ability to decompose a user request into an equivalent set of subqueries expressed in the format and manner required by participating systems;
(d) The capability to resolve incompatibilities in semantics, data structures, and other parameters;
(e) The mechanism to take the individual pieces of information provided by participating systems and to integrate them in order to provide a cohesive response to the original user request.

In addition to the above, some approaches facilitate implementation of sophisticated features such as authorization control and the ability to draw inferences in situations involving missing or conflicting data.

When data need to be retrieved from a single file, it is sufficient to simply know the file design including the keys for accessing records. One single view or schema of the file design meets the requirements of the systems analyst and the user. However, when there are several disparate information systems and there are many users from different disciplines, each user tends to look at the information from his or her perspective. By having more than one schema, it is feasible to handle complex problems, as well as to achieve data independence.

Most experts recognize the requirement for three types of schema. This notion of a three-schema architecture originated in 1977, when the Study Planning and Requirements Committee (SPARC) of the

American National Standards Institute (ANSI) published a report on this subject [14]. The three types of schema are as follows:
(a) Global conceptual schema: This schema is intended as a blueprint that shows the existence of all the information maintained in all the information systems. To enable intelligent access and integration, the conceptual schema must be designed to incorporate the semantics of all stored data. For this reason, it is sometimes referred to as logical schema. There is only one global schema for the entire enterprise.
(b) Local or internal schema: This schema covers the data in an individual information system, that may itself be hosted on one or more computers. Since there is one internal schema for each information system, a complex environment necessarily implies a large number of such local data models. The collection of such local models is referred to as a local schemata.
(c) External or application schema: This schema describes the user or the application view of the distributed data. Since each class of users or applications will view the data in a different manner, more than one external schema is required. This collection is referred to as external schemata.

The strategy used to map information between these three types of schemata determines the overall capability to mediate across dissimilar architectures, to maintain integrity of data, and to meet user expectations. Transformation of information between the
three schemata is ideally managed via a three-schema data dictionary. Use of very powerful data definition language is critical in defining the global schema in terms of objects, events, and integrity constraints [15].

It is important to emphasize that many commercial products and approaches do not support the concept of a global schema. Instead, a relational table or matrix is established between the required external schemata and the available internal schemata. Such a twoschema approach, referred to as the interfacing approach, offers no technological control over data integrity [15]. Data are exchanged either through transaction passing or by controlled redundancy. In the former case, all transactions are transmitted from the source database to the destination database, where they are transformed to adhere to the requirements of the external schemata. In controlled redundancy, instantaneous copies of the source database are stored at multiple nodes of the network, and these copies are replaced by new versions at periodic intervals. Both alternatives of the interfacing approach attempt to meet new user and application needs in an ad hoc manner, without any consistent set of rules governing the overall computational environment.

To overcome the above problems, it is necessary to use a threeschema approach, especially in applications of a critical or a strategic nature. All the major research programs funded by the U.S. Government, such as Multibase, Integrated Information Support

System, and Integrated Manufacturing Distributed Database Administration System, adopted the three-schema approach. Comparative evaluation of eight major initiatives in this area appears in [16,17]. To maintain adequate integrity of shared data of critical and strategic importance, the need for utilizing a three-schema approach cannot be overemphasized. This aspect acquires added importance when an application needs to access data from various DBMS-based information systems, as well as from earlier file systems that contain no notion of DBMS.

\subsection*{1.6. Languages}

The only database language that has gained endorsement from major computer manufacturers, and from standards establishing organizations such as ANSI and ISO, is SQL. SQL statements can be used to create tabular views that approximate the notion of an external schema. Further, it can be used to create a conceptual schema, although a semantically weak one [18]. Intended to be used for queries, \(S Q L\) has no internal schema.

There are several flavors of \(S Q L\) in existence. A number of vendors claim to offer support for multiple versions of SQL. Further, some SQL based integration approaches can deal with legacy systems that offer no support for \(S Q L\). In such cases user queries expressed in SQL are converted into the native languages of the participating information systems.

There is a recent trend towards using graphics techniques to select databases, files, and tables. From a user perspective, these iconoriented approaches are far friendlier than traditional language oriented techniques. However, there is still no common graphics interface that has been endorsed by a critical mass of vendors. Even with a proprietary graphics interface, navigation with icons may be especially relevant for users at the top echelons of the organization.

\subsection*{1.7. General Direction}

The basic concepts outlined above have been used in evaluating the principal products and approaches that are commercially sold. The list of vendors contacted is placed at Appendix \(A\), and detailed specifications are tabulated in Appendix B. For the subset of products and approaches that hold some degree of relevance, a brief write-up was generated on each product. These write-ups are presented in section 2 of this report. In section 3, a new taxonomy is created for classifying different approaches to integration, and recommendations are made for selecting an appropriate set of technologies.

\section*{SECTION TWO: HIGHLIGHTS OF PRINCIPAL PRODUCTS AND APPROACHES}

In Section 1, the fundamental principles of integrating dissimilar information systems were presented. In this section, principal products and approaches are discussed and analyzed using these fundamental principles.

The products and approaches described in this section were derived from numerous sources, including articles in computer journals and magazines, proceedings of relevant conferences, lists of conference participants, and personal discussions with representatives in various companies. From the initial list generated, the systems previously covered in References [1] and [16] were deleted, unless the complexion of the system had changed significantly during the intervening period. The material presented in this section is not an exhaustive survey of all issues, but rather a discussion that covers the whole field taking all significant design approaches in view. It should be emphasized that some companies offer customized services, rather than a product, making it difficult to evaluate them in detail. In this section, each product is described by an introduction, its functional architecture, and its salient features. Additional details are tabulated in Appendix \(B\).

Cronus is an environment designed to support coherent integration of heterogeneous computer systems. The objectives of Cronus are: to provide an effective, general-purpose, distributed computing environment composed of hosts with differing hardware and operating systems; to support an integrated computing environment consisting of both the native operating system environment and the cronus environment; and to provide comprehensive support for development of large-scale distributed applications. Cronus began as a research project funded by the Rome Air Development Center and the Naval Ocean Systems Center in 1981. The project was a two-year joint effort between BBN Systems and Technologies Corporation and Xerox Advanced Information Technology, both of Cambridge, Mass. The first prototype from this project became operational in 1984.

Cronus supports both object-oriented and relational local data models. Global updates may be performed on an object by object basis. Update operators for insertion, deletion, and modification are in algebraic form and operate associatively on sets of tuples. Stored update procedures may include conditional statements and expressions.

\section*{FUNCTIONAL ARCHITECTURE}

Cronus runs on top of existing operating systems on various hardware platforms. The Global Schema definition is supported for object-oriented data storage and retrieval. Every system resource
is an object and is accessed through operations defined by the type of the object. Cronus supports heterogeneity by serving as a bypassable layer of abstraction between applications programs and native operating systems. Through this approach, both conventional access to native operating systems resources and services and access to a coherent, uniform (object-oriented) system interface, regardless of computer system base, are supported.

Distributed query processing and update capabilities require translation of high-level requests into sequences of algebraic operations on data stored at possibly different sites. The algebraic approach defines a collection of "physical" operators on tuples and takes into account the sort order, the presence of indexes, and the physical location. Transformation rules determine when two algebraic expressions are equivalent, and optimization rules specify when it is profitable to transform an expression into another equivalent one.

\section*{Salient Features}

Cronus incorporates an evolutionary approach in its design. Cronus claims that its Open Architecture approach makes it possible to upgrade or replace components or technology with little or no impact on the rest of the system. There is uniformity across diverse operating systems, hardware platforms, and applications.

\subsection*{2.2. Booz Allen: IDIMS}

IDIMS is an expert system oriented approach designed by Booz Allen to provide automated data access. The user obtains access throughout the distributed data environment with a single global manipulation language and a user-friendly, intelligent interface. Upon receipt of a query, IDIMS decomposes the query into a set of database calls and function applications; determines security violations on databases; formulates queries in appropriate languages and queries databases; applies functions to retrieve data and finally displays the data via a state of the art graphic interface, in a style appropriate to the type and the number of data elements to be displayed.

It is important to note that IDIMS is not a commercial "off the shelf" product, but instead a conceptual framework used by Booz Allen to achieve automated data access. Although a complete production system has not yet been implemented, Booz Allen claims that it has built systems which relate to each functional component of IDIMS.

\section*{FUNCTIONAL ARCHITECTURE}

The IDIMS system consists of a Query Processor, a Knowledge base for database models and function models, a Query Language Generator, and a Natural Language Processor.

The Query Processor translates a global data manipulation language
query into a series of data and function calls using the database and function models knowledge bases. In doing so, it plans the appropriate databases and functions to apply, chooses between plans using query optimization and time consideration techniques, and executes plans by calling the Query Language Generator to retrieve data. In addition, it determines whether there are potential security violations for the local databases queried.

The Data Base Models Knowledge Base is a structure which maintains data models for each of the distributed local databases. These models contain information and rules on security consideration, representative query language, data, data type, and host computer.

The Function Models Knowledge Base is a structure which maintains knowledge about the available procedures to alter or determine data attributes. Each function model provides for a specific logical data linking procedure such as correlate, sum, and join, and describes domain, range, and process definition. The Query Processor uses the Function Models Knowledge Base to determine which functions satisfy given constraints.

The Query Language Generator translates the global manipulation language into the appropriate local database query language. It then makes these queries and retrieves the data. Accordingly, the Query Language Generator maintains translations for each local database language and procedures to send queries to each computer on the network.

The Natural Language processor provides an additional interface through which individuals can use limited natural language capabilities to query databases. This processor then translates the natural language into the IDIMS global manipulation language using conceptual dependency and case grammar.

\section*{SALIENT FEATURES}

IDIMS is not a product, but an approach that eliminates the need for the user to know multiple query languages, locations of data, database paradigms, and manipulation schemata. A high-level, iconic, global query language is supported; however, updates are not supported.

\subsection*{2.3. Cambridge Technology Group: SURROUND}

The Cambridge Technology Group (CTG) of Cambridge, Mass., specializes in providing customized distributed heterogeneous data integration within short time frames. A small group of users and managers from the client company interface with SURROUND developers at CTG to implement software interfaces as well as a rapid prototype of a functional application within a one week period. The goal of CTG is to construct a user-friendly system which focuses on one particular strategic application.

CTG applications support queries and updates. Local data models are supported via SURROUND interface and coordination tools. Complete data transparency is provided for geographically dispersed
locations via dialup ASCII modems.

\section*{FUNCTIONAL ARCHITECTURE}

The UNIX operating system is used as a major part of the SURROUND service to resolve incompatibilities of different systems. Software tools access various distributed environments, extract information from individual programs, and then transfer data to the UNIX environment where the information is joined together. Talk Tools are communication tools which imitate the code that the host computer understands. The host computer accepts commands from the Talk Tool and sends results back to the same Talk Tool in the UNIX environment. There are also a variety of tools for attaining connectivity, security, network management, and for gauging performance.

The construction of the global schema is tailored to the needs of the application. SURROUND does not define a data manipulation language; it supports the interface currently used by the user. SQL formatted files are accessed with modified versions of SQL Data Handler and communication tools on remote system perform global updates. Commander, a proprietary tool, handles transaction management functions.

\section*{SALIENT FEATURES}

Rapid prototype systems have been developed for TRANSCOM, General Electric, and other organizations within one week spans of time.

CTG claims that it can provide production software in as little as three months. Record structures can be changed easily and new databases can be added quickly, making the SURROUND environment flexible.

\subsection*{2.4. Cincom: SUPRA}

SUPRA, a product of Cincom, provides a commercial implementation of the ANSI/SPARC Three Schema Architecture. Such an architecture, described in Section 1.5, insulates applications from changes in the physical storage and conceptual database, reduces development and maintenance costs, and increases the useful life of applications.

FUNCTIONAL ARCHITECTURE

The SUPRA system integrates distributed heterogeneous databases and manages distributed processing by having a SUPRA kernel reside locally within each host machine or database. This has the effect of making the hosts aware of the integrated database network and in essence creates a "standard protocol" through which the databases can communicate.

The SUPRA kernel consists of two basic engine components, the Distributed Relational Data Manager (DRDM), and the Heterogeneous Data Management Processor (HDMP), along with a portion of the Global Directory. Using the kernel on each local host, the requesting node coordinates the entire unit of work, including the
decomposition of the query into separate neutral protocol requests and the determination of where to send them. The local/receiving nodes, each with its own kernel, translate the request into the appropriate local data manipulation language, gather the data, perform calculations, and return the result to the requesting node.

In this decentralized structure, each node is intelligent and has the ability to coordinate with each other via knowledge of the network in the resident Global Directory. This approach to distributed database and processing management assumes that most of the data accessed by any given node reside locally and that an "independent" node, with the ability to process locally, has significant speed and reliability advantages. In those instances where the data are not local, the Global Directory contains the information to tell the DRDM where to get them. As such, the network is not dependent on the reliability of a central Global Directory or engine. If any one node goes down, only the data residing at that node become inaccessible, not the whole system. Additionally, by distributing the necessary processing information, every transaction need not access a central directory, thus eliminating a potential bottleneck. However, with more than one copy of the Global Directory, the SUPRA approach implies more maintenance and overhead compared to a single copy approach. Every time the Global Directory is updated at one node, the update must be reflected across the entire network creating a "cascade" of transactions throughout the network.

\section*{SALIENT FEATURES}

SUPRA currently provides for the use of synonyms and the resolution of scale conflicts. The decentralized approach allows a synonym table oriented to each user's particular application and working language. The Global Directory contains the ability to retain rules for performing scale translation and calculation before data integration. A unique feature called "triggers", alerts the user to the possibility of a data conflict. For example, a trigger could be established to ensure that two numbers, before they are combined together, be within a certain percentage of each other. At execution time, when a user wishes to combine the two numbers, a violation of this requirement would lead to an interrupt, and the user to be prompted about the problem.

SUPRA utilizes a two phase commit procedure which provides good concurrency control. While assuring secure updates for SUPRA or other database management systems which support two phase commits, the product currently only allows updates from join views to distributed databases which use SQL.

\subsection*{2.5. Cognos Corporation: POWERHOUSE}

PowerHouse consists of four components: Powerhouse 4GL, Powertouse StarBase, StarNet and StarGate. PowerHouse 4GL is a fourthgeneration language; PowerHouse StarBase is a relational database management system; StarNet is network routing software; and Stargate is a gateway provider to other supported local
database management systems. The PowerHouse 4GL was developed by Cognos Corporation, Ottowa, Ontario while the remaining components were developed by InterBase Software Corporation, Bedford, MA. Cognos began to market the Relational DBMS of InterBase and its distributed technology in conjunction with the powerHouse application development language in 1988.

\section*{FUNCTIONAL ARCHITECTURE}

In this approach, there is no concept of a single global schema. Instead, multiple relational schemata may be referenced, even from within the same program. Relational operators are utilized to selectively access and merge pieces of data. Research on a distributed query engine is currently in progress.

A discussion of the capabilities of InterBase components is provided later under its own prototype overview. The main difference between PowerHouse and InterBase is global data manipulation language supported. Both products support SQL and Groton Data Manipulation Language, but the stand-alone PowerHouse 4GL is unique to PowerHouse.

One of the benefits of the PowerHouse 4 GL is that it provides access to relative Record Management Service files and network databases in addition to sequential and indexed Record Management Service files and relational databases supported by InterBase. The Open Systems Relational Interface (OSRI) is a relational database protocol. PowerHouse 4GL elements for transaction 2-11
processing, report generation and batch updating use a relational access approach which makes it possible to embed OSRI calls into the elements. This means that as more local data models are added to the configuration, it is possible to develop applications which access them using PowerHouse.

The Power House 4GL product set includes PhD master data dictionary. Using PhD, it is possible to treat all meta-data as if they were resident in a single logical dictionary. Thus, one need not redefine meta-data in the PhD dictionary.

\section*{SALIENT FEATURES}

The salient features listed in the description of the InterBase prototype also apply here. Cognos is attempting to incorporate expert systems and object-oriented techniques in the powerHouse product.

\subsection*{2.6. Control Data Corporation: ASCENT}

ASCENT is derived from the Technology Information System (TIS) developed by Lawrence Livermore National Labs (LLNL). Work on this system originally commenced in the early seventies. CDC has a technology transfer license with LLNL (actually with the University of California) to support this technology, and to take it into production.

ASCENT is a suite of software products that provides
communications, networking, office automation, and database services within an interactive environment that is common to all users. The *gateway portion of ASCENT supports a powerful interpretive scripting language that can simulate an interactive user when connected to a heterogeneous remote computer. This gateway serves as a tool that can be programmed with the scripting language to \(\log\) into databases and to extract data from a broad range of remote systems.

\section*{FUNCTIONAL ARCHITECTURE}

A collection of software modules, known as the Intelligent Gateway Processor (IGP), use a UNIX system as the link between menu type front-end systems and geographically and technically disparate mainframes. The IGP front-end program, Integrated Information System (IIS), offers menus composed of descriptor files which might consist of classes of information resources, specific connections to remote hosts, local database options, or available system utilities. In addition to menus, IIS understands a command set that overlaps with the UNIX Shell command set. As IIS is implemented in a script-driven interpreter, UNIX commands can be recognized even without arguments, and prompts can be enabled for arguments or options.

The Network Access Machine (NAM), an extended implementation of the specifications published by the National Institute of Standards and Technology, utilizes a variety of communication methods to provide access to other computer systems. Currently NAM can
interface with direct asynchronous connections between two hosts, most autodial modems, TCP/IP networks and X .24 networks. NAM uses an interpreted communication language to specify the logic necessary to establish connections and conduct dialogues with remote systems. This language includes structured constructs, extensive pattern matching capabilities and capabilities to insert "filters" in an existing connection. These filters are specialized programs written to modify the appearance of the data.

In a heterogeneous environment, ASCENT*gateway must be driven by the "host UNIX system" database management system to extract specific data elements from their remote computers under script language control. The DHDBMS places these data elements into the proper place in the "logical record" requested by the user. This approach requires no software to be added to any of the remote systems since each system feels that the scripting language interactions with other remote systems are identical in appearance to interactions with its own users.

\section*{SALIENT FEATURES}

ASCENT*gateway allows automated access and connectivity to local or remote computing resources. ASCENT*mail provides complete electronic mail and message services within a computer network including addressing, forwarding, and mail file management functions. A menu-driven user interface is available to access integrated software applications, utilities, and system administration tools.

\subsection*{2.7. Control Data Corporation: CDM*PLUS}

The concept of CDM*plus was developed and prototyped with direction and funding from the Integrated Information Support System (IISS, pronounced \(I^{2} S^{2}\)) initiative of the U.S. Air Force. CDM*plus defines and categorizes data using the ANSI/SPARC Three Schema Architecture discussed in Section 1.5.

\section*{FUNCTIONAL ARCHITECTURE}

The CDM*plus dictionary/directory is loaded and maintained via the Neutral Data Definition Language (NDDL) which describes all metadata to the ANSI/SPARC based three schema structure. NDDL is SQL based and describes objects with verbs such as create, define, alter, and drop. Each schema has unique commands. For example, in the internal schema, the NDDL can describe the three basic types of database models. NDDL provides inter-schema mappings using the conceptual schema or the data model as the base. NDDL is a human and machine readable language that can be used in either in interactive mode or in batch mode, as well as on forms.

The mapping strategy between the schema allows data to be accessed without regard to the location or the storage mechanism. For example, an application can join two relational user views from the external schema that each map to two entities. These entities in turn can be mapped to multiple databases and database types on multiple computers without burdening the user or developer with all of the details of the actual conversions, translations or mappings.

This independence is critical to provide a buffer for life cycle maintenance as applications and storage structures change, and to provide the capability for full relational operation (including outer joins and referential integrity) between heterogeneous databases.

Queries can be embedded into current applications written in Cobol, \(C\), or Fortran. These queries are precompiled by CDM*plus using the external schema view and transformed into actual database queries. All code necessary to access the databases is generated including DBMS precompilations. Since the base schema is the conceptual schema or data model, domain constraint checking and referential integrity checking can be automatically enforced based on the conceptual schema. After the code is generated, it is transferred by the Code Manager to the appropriate computers where local compiles, DBMS precompiles, and links are accomplished.

All query processing is controlled by two CDM*plus components: the Network Transaction Manager (NTM), which controls unique process to process communication capabilities that are necessary in the distributed environment, and the CDM*plus Distributed Request Supervisor (DRS), which controls the actual queries on each host and formulates the messages sent to the NTM. This approach allows serial or parallel processing of queries. In the serial process, one query produces input for other queries.

Each local node contains an NTM and multiple CDM*plus runtime (CDMR) modules to facilitate distributed processing. The CDMR 2-16

\begin{abstract}
incorporates DRS, Aggregators, File Utilities and Code Manager. Query modules in applications that attempt to integrate information from multiple heterogeneous databases can be replaced by NDML statements. This allows for easier maintenance of legacy applications because changes to the systems only require reprecompilation to generate all the necessary code.
\end{abstract}

\section*{SALIENT FEATURES}

CDM*plus requires the user to model his or her enterprise and to load that model into the CDM. The three schema architecture provides one global conceptual view of the complete data. In addition, it provides independence between the actual physical storage of the data, the users view of the data, and the conceptual view of the data. Modeling and integration of applications and databases with CDM*plus is done in an evolutionary manner, allowing for the implementation of one application at a time rather than a full rewrite of the entire system.
2.8. Data Integration, Inc.: Mermaid

Mermaid, a trademark of Unisys, is an integrated data access product marketed by Data. Integration, Inc. It allows users of multiple relational or network database management systems, running on different machines, to access and manipulate data using standard SQL, even when the participating systems don not support SQL. Integration may require translation of the data into a standard data type, translation of the units, combination or division of
fields, and encoding values. Only updates to a single database are presently supported. Updates to replicated and fragmented relations may cross databases, but the updates to all databases are not made concurrently.

The Mermaid system is designed for an environment in which there are many databases that are independently administered and where it is not feasible to standardize on one DBMS. With Mermaid, new applications may be developed either at the global level when distributed access is required, or above an existing old database. Local administrators grant access permissions to users of Mermaid and then Mermaid adds an additional level of access control.

\section*{FUNCTIONAL ARCHITECTURE}

The major processes are: User Interface Process, Distributor Process, DBMS Driver Process, and Data Dictionary/Directory (DD/D). The User Interface Process contains the \(S Q L\) parser, the query validator, the query library, and the report generator. The Distributor Process contains the optimizer and the controller. The optimizer plans query execution and the controller starts processes and coordinates execution. There is one DBMS Driver process for each database to be accessed. It contains the schema translation, the language translation, and the DBMS interface. The Data Dictionary/Directory (DD/D) is a database that contains information about the schemata, users, host computers, and network. It supports three layers of schema definition.

A user input is either a command to execute within the user interface or an \(S Q L\) query. The \(S Q L\) query is parsed, validated, translated into Distributed Intermediate Language (DIL), and sent to the distributor process which performs the Distributed Execution Monitor function. The optimizer plans the execution by consulting the DD/D for the location of the relations. It sends commands and subqueries to the controller for transmission to the DBMS drivers. The driver reads a message which may be a command to initialize, terminate, execute schema and data of the query from the global form into the local form and then translates it from DIL into the local DBMS language. The first time that a relation is retrieved, the data are translated into the global form.

\section*{SALIENT FEATURES}

Mermaid treats files as large objects. Qualification is done on structured data. The user selects qualified objects to view. The system then starts a retrieval process and a display process that are customized for the file type.

Communication between processes is done using standard protocols. The main processes use \(T C P / I P\) on an Ethernet. If \(T C P / I P\) is not available on the computer with the DBMS, another protocol may be used to communicate between the controller and the driver or between the driver and the DBMS.

Mermaid is written as a set of processes with well defined interfaces so that it can be customized for different environments.

It can also be embedded in or called by other products and it can use other products to process the output.

\subsection*{2.9. Digital Equipment Corp.: Rdb/VMS,DBMS}

Digital Equipment Corp. (DEC) offers two alternative methods for distributed data management in the VAX/VMS environment. One method is geared towards a decentralized environment with users having their own processing resources and connected through a Local Area Network. The other method is directed towards centralized distributed processing with a VAX cluster comprising two or more VAX processors, and the database located on a common disk. Each of these methods can be used with either of the two DEC data management systems: Rdb/VMS is a relational DBMS while Digital's Database Management System (DBMS) uses a hierarchical/network model. Further, VAXlink Client is a layered VMS software product that provides unidirectional IBM mainframe database access and extract capabilities; it works in conjunction with vaxlink Answer/DB Extractor to access IMS and VSAM data structures and to transfer extracted data to Rdb/VMS databases.

\section*{FUNCTIONAL ARCHITECTURE}

VAX SQL is Digital's version of \(A N S I\) SQL and is used as an interactive and software development interface for relational databases that conform to Digital Standard Relational Interface (DSRI). Used to define, access, and update relational databases, it is characterized by an interactive data manipulation language,
a data definition language utility, preprocessors and dynamic SQL for COBOL, FORTRAN, C, and PL/I. DEC's Database Management System uses the Network Manipulation Language (NML), a standard for network models.

A Database Control System (DBCS) provides the connections between the application program and the database locations for the Data Base Management System. Application programs transmit information to the DBCS. The DBCS transfers all information requested by a call for data to the User Work Area (UWA). Information in the UWA is then used to update the database.

The VAX Distributor distributes data from any Rdb/VMS, VIDA (an access tool for \(I B M\) databases), or any other database conforming to DSRI. The commands of the VAX Data Distributor allow the user to specify the data to be distributed, the type of copy to be made, the target node, and the transfer and update schedules. Three kinds of copies are permitted by this tool: extractions, extraction rollups, and replications. These copies effect only the target database.

Digital's distributed, active, open-architecture dictionary is the VAX Common Data Dictionary/Plus (CDD/Plus). VAX CDD/Plus provides one logical dictionary system that is physically dispersed, thus eliminating the need to develop separate dictionaries to support proprietary tools or applications.

\section*{SALIENT FEATURES}

Digital claims to provide one of the best relational database management systems for the VAX/VMS environment. VMS is a widely used operating system for development and execution of a wide range of applications. Apart from the above products marketed directly by DEC, a number of other vendors have opted to select VAX hardware as the host system for reconciling the idiosyncracies of individual components in a distributed, heterogeneous environment.

\subsection*{2.10. Gupta Technologies, Inc.: SOL SYSTEM}

Gupta Technologies, Inc. of Menlo Park, Calif., supports relational database networking. The SQL SYSTEM allows applications running on a PC to use data residing on minis, micros, and mainframes. The primary elements of the \(S Q L\) SYSTEM are: SQLBase, SQLWindows, SQLTalk and SQLNetwork.

SQLBase is a distributed relational DBMS for PC networks. It can be used as a standalone DBMS, as a database server for personal computer based workstations on a network, and as a gateway to mainframe database management systems. The SQL language syntax of SQLBase is fully compatible with those of IBM's DB2 and SQL/DS. Gupta Technologies claims to be the first company to offer advanced concurrency, automatic consistency, and dynamic recovery for a distributed relational DBMS on a personal computer.

SQLWindows and SQLTalk allow the programmer or user to utilize SQL 2-22
without having to develop and compile programs. SQLWindows is an advanced applications generator which supports graphics, menus, dialogue and help boxes and mouse pointing devices. It contains a complete procedural language and provides exits to other programs. SQLTalk is an interactive data management program for accessing SQLBase via the SQL language.

\section*{FUNCTIONAL ARCHITECTURE}

The SQLNetwork components enable mini, micro and mainframe SQL database management systems to appear like distributed database servers on the same network. The three components comprising the SQLNetwork are: the SQLRouter, the SQLGateway, and the SQLHost.

Requests for data are handled differently based on the location of the databases. The SQLRouter is the software that directs \(S Q L\) requests to databases within the PC network. SQLRouter must reside on each PC and requires NetBIOS on each workstation. The SQLGateway routes \(S Q L\) requests to databases outside of a single PC network. It runs as a memory resident program on the PC/AT and accesses a file containing the databases to which it can establish a connection at load time. This file also contains the physical node location of these databases.

SQLHost software resides on the host computer and transforms the host DBMS into a database server that accepts SQL requests routed to it by SQLGateway. It translates \(S Q L\) commands into a format acceptable to the host DBMS and forwards the information for 2-23
processing. The results are then sent back to the network. A different version of SQLHost is necessary for each different SQL DBMS because of variations in \(S Q L\) and application program interfaces.

\section*{SALIENT FEATURES}

SQLNetwork was designed to allow applications to take advantage of the capabilities of a personal computer, to transparently access databases that reside on diverse servers, and to serve many users with a large amount of data. The user is provided with full cooperative processing capabilities in DOS, OS/2 and UNIX environments. SQLNetwork provides access to DB2 and development is underway for SQLHost Software to support SQL/DS, oracle, Ingress, and Sybase.

\subsection*{2.11. Honeywell Federal Systems. Inc.: Distributed Database Testbed System}

DDTS is a testbed emphasizing modularity and flexibility for distributed heterogeneous database management. The project began at Computer Sciences Center (CSC) of Honeywell with the aim of designing and building a system that could be utilized for evaluating alternate approaches and algorithms for managing data stored in several databases on different platforms. Although DDTS is not a product, Honeywell utilizes this technology in specific contracts.

DDTS supports a five-schema architecture. The internal schema is divided into the global representation schema, the local representation schema and the local internal schema. In addition, there is an external schema and a conceptual schema which follow the terminology of Section 1.5. A bottom-up approach is used to design a global schema for multiple databases. First, a local representational schema is built from the description of the local database. Next, all local representational schemata are integrated to form the global representation schema. Finally, the conceptual schema describing semantic integrity constraints to be enforced by DDTS is constructed.

The DDTS system architecture is based on a model of distributed computing in which a set of abstract processors execute sets of concurrent processes. Local and remote processes communicate via message exchange. DDTS consists of a set of Application Processors (APs) which control user interfaces and manage transactions, and Data Processors (DPs) which manage data.

The GORDAS Command Interface (GCI) enables multiple retrieval and update requests expressed in GORDAS, a high-level query language. Before a GORDAS transaction is executed, the GORDAS requests are translated to an internal representation for processing by the Translation and Integrity Control (TIC) module. The internal representation possesses features of relational algebra and relational calculus, and is similar to an internal representation
of SQL.

Materialization and access planning (MAP) result in a strategy for processing distributed queries, updates and transactions. The response time (the time elapsed between the start of the first transmission and the time at which the result arrives at the required computer) and the total time (the sum of the time of all transmissions) are minimized with MAP.

The Distributed Execution Monitor (DEM) performs distributed execution of a transaction as directed by MAP. Based on status information returned by the Local Execution Monitors (LEMs) during execution, the DEM decides to commit or abort a transaction. DDTS uses a two-phase commit protocol during transaction execution. To resolve concurrency control conflicts, the transaction is rolled back and then restarted.

The Local Operations Module (LOM) of each DP acts as an interface between the LEM and the local DBMS. LOM provides local translation and optimization of subtransactions that have been assigned to the \(D P\) by MAP. The LOM translates subtransaction requests in the internal representation to data manipulation requests in the language of the local DBMS.

\section*{SALIENT FEATURES}

DDTS is a useful tool for evaluating approaches to the various problems associated with distributed, heterogeneous database
management.
2.12. IBM: DB2, SOL/DS. SAA, and others

IBM faces a challenge in developing its integrating approach. It commands a major presence in the mainframe computer market and in the personal computer market. It can either come up with design approaches that enable integration of information hosted on its own systems, or it can develop approaches that encompass non-IBM architectures as well. So far, the emphasis has been on the former alternative.

The IBM System Application Architecture (SAA) serves as a framework for developing consistent applications across three IBM computing environments: System/370, AS/400 and PS/2. SAA is a collection of software interfaces, conventions, and protocols, and includes support for distributed files and distributed databases that are resident within one of these environments, and conform to certain design guidelines.

IBM is developing a new relational Unix oriented approach that would integrate their AIX line (System/370, RT, and PS/2) as well as communicate with their SAA database line (System/370, AS/400, and PS/2)). Details of this approach have not yet been released by IBM.

At a lower level, \(I B M\) provides support for linking information from distributed relational (SQL/DS) and hierarchical (IMS) local
database management systems. In addition, its Data Extract product (DXT) can extract data from DB2 tables, SQL/DS tables, DL/I data sets, VSAM data sets, and physical sequential data sets, and convert them for loading into other DB2 tables, physical sequential data sets, and CMS files. DXT users can also write generic data interfaces for accessing non-IBM (OEM) databases on MVS.

In October 1988, IBM upgraded DB2 and SQL for distributed environments. The new DB2 and SQL (called SQL/DS) use relational concepts to integrate information. In either case, because a central DBMS is not assumed, each location has all the capabilities offered by a local relational DBMS and may participate in an overall distributed network as well. Local functions are not affected by the role of the system in distributed processing. Flexibility is provided for deciding how data will be distributed and processed. The \(S Q L\) data manipulation language can access remote tables or a user may work with a local copy. Also, data may be stored in one large table or split into several parts to accommodate data which may be accessed and updated only at certain local locations. Extracts, snapshots, and data replication are various types of copies which enhance retrievals and updates.

A user may extract a copy of one database table and load it into another database. Extracts are useful for migrating data from one data format to another and for maintaining read-only copies of a subset of data that rarely changes. Snapshots are read-only copies of tables that are automatically made by the system on a periodic basis specified by the user. These are useful for locations that
need an automated process for receiving updated information on an occasional basis. With the data replication support, any location may update any copy of a table, and these updates are sent to other locations automatically. This is effective for situations that require high reliability and quick data retrieval with few updates.

\section*{FUNCTIONAL ARCHITECTURE}

Distributed relational data are accessed either on a remote unit of work or on a distributed unit of work. Remote unit of work permits access to a single, remote relational DBMS within a unit of work. A unit of work is a set of one or more related requests which must all complete successfully or not at all. An application program can query and update data from any number of tables residing in a single DBMS within a unit of work. In addition, application programs can access data in multiple database management systems one at a time, in separate units of work. SQL/DS and DB2 have remote unit-of-work capability as well as support for single \(S Q L\) requests.

Distributed unit of work provides access to multiple relational database management systems within a single unit of work. An application program can read and update data from any number of database management systems within a single unit of work. However, a single SQL statement must refer to data from a single DBMS. Key features of distributed unit of work are: complete location transparency, coordinated system security mechanisms to determine whether the application is authorized to access the remote systems
and data, and the two-phase commit protocol to ensure termination consistency. DB2 supports distributed unit-of-work.

\section*{SALIENT FEATURES}

IBM states that its leadership in stand-alone database management products resulted from its advanced data security, data integrity, and data recovery capabilities. Its objective is to apply this expertise to the implementation of its distributed relational products. DB2 and SQL/DS have referential integrity which ensures the consistency of data values between related columns of two different tables.

\subsection*{2.13. Information Builders, Inc.: FOCNET}

FOCNET, derived from FOCUS Network Products, is marketed by Information Builders, Inc., headquartered in New York City. Its nonprocedural language and DBMS is called FOCUS. Various FOCUS interfaces provide logical access to data in hierarchical, relational, and network models on remote machines.

FOCNET permits multiple individuals to update a database simultaneously. A change/verify protocol confirms that the record has not been updated by another user before it modifies the record. In cases where the record has been changed, the update is reapplied against the updated version. Also, this approach allows a user to define commit and rollback specifications for transactions.

\section*{FUNCTIONAL ARCHITECTURE}

A client/server model layer is inserted on top of the operating system and the access-method architecture of each participating node. Its three components are client software, interfaces to network transport software and server software. This approach reduces network traffic and takes full advantage of available CPU resources.

Most local databases must have a Master File Description (MFD). All files must be described in the FOCUS Master Dictionary before FOCUS can access their data. The master dictionary provides much more than conventional file and data information. FOCUS file descriptions can also contain security restrictions, field aliases, data validation criteria, predefined relational join operations, and multiline column titles for use in reports.

FOCUS supports 4GL FOCUS, third generation languages, and ANSI SQL global data manipulation languages. Read/write interfaces generate the appropriate dialect of \(S Q L\) for many well-known relational database engines which use variations from this standard data manipulation language.

Dynamic relational join operations permit linkage to up to 16 different tables and databases at one time. Processing is optimized by including record-by-record operations and set processing based on the functionality of the database. In addition, balance tree indexing accelerates the speed of data
retrieval and online updates of large databases. Users can logically invert \(F\) OCUS databases to further optimize retrievals.

\section*{SALIENT FEATURES}

FOCNET runs on many platforms under a variety of operating systems. The list of local database management systems supported is impressive as is the list of supported network services. FOCUS is the most widely used \(4 G L\) in the world. It is suited for developing software and provides for automated application development and maintenance.

\subsection*{2.14. Interbase Software Corporation: INTERBASE}

Interbase is a product of Interbase Software Corporation, Bedford, Mass. Although Interbase operates in a variety of software and hardware environments, its Digital Standard Relational Interface (DSRI) compatibility makes it most suited for use with other DEC DSRI-compatible tools. Relational local data models, indexed and sequential Record Management Service files, and UNIX stream files are supported by Interbase.

Global updates to databases can be performed in the same interactive session, as Interbase allows multiple simultaneous transactions per process and provides for two-phase commits. These two features can be used to ensure that a transaction which updates more than one database will complete correctly or not at all. Partial commits and partial rollbacks are possible as well.

Interbase uses multigenerational data structures for data storage. Records are never updated, but only added. Old versions of the record are deleted by the next transaction which accesses the record. This means that update access to data being processed by another user is allowed. On actual update, Interbase will impose the record it originally retrieved with the record it is trying to update. If they are different, the transaction is rolled back and the user is informed of this fact.

Changes required to local databases are minimal. The Rdb database of DEC permits access to Interbase files through VMS. The ORACLE gateway requires an additional table to be defined on the database, access to tables in the data dictionary, and two servers to be started on the target node.

\section*{FUNCTIONAL ARCHITECTURE}

Interbase supports two global data manipulation languages: SQL and the Groton Data Manipulation Language. These two languages may be used in precompiled third-generation language source programs or in the Query Language Interpreter (QLI). The QLI translates either language into BLR, a lower level language based on the DSRI, which may be generated and read by programs.

Although InterBase has no global conceptual schema, it provides a navigation path to distributed local database management systems through a database handler which defines node names for multiple databases. A program called Y-valve determines if requested data
are on a local node or a remote node. In the case of remote data, the request is routed through the network and the remote data dictionary is accessed.

Interbase or \(R D B\) data requests are left in the \(B L R\) lower level language. With ORACLE, \(B L R\) is restricted to \(S Q L\) through the gateway and passed to the ORACLE access method. Data format incompatibility between heterogeneous systems is transparently handled by a XDR layer.

\section*{SALIENT FEATURES}

Interbase is designed to handle on-line complex applications (OLCP). It supports: multi-user, concurrent update; automatic transactions; serializable and high concurrency levels; two-phase commit; multiple database transactions; and multiple parallel transactions per process. These features provide excellent concurrency control capability.

\subsection*{2.15. Massachusetts Institute of Technology: Composite Information Systems}

The concept of Composite Information Systems (CIS) has evolved at the Sloan School of Management of Massachusetts Institute of Technology. The first paper on this technique was published in 1978, and significant enhancements to the original concept have been made during the intervening years. While all other approaches discussed in this report tend to focus exclusively on technical issues, the CIS approach emphasizes that it is necessary to address
a number of inter-related strategic, organizational and technical issues, in order to implement systems that can effectively span applications, functional areas, organizational boundaries, and geographic separations.

Strategic issues include motivating cooperation between multiple organizations, each with its own goals, priorities, and security needs. One critical factor for such cooperation is participant consensus on the issue of access to each others' technical and nontechnical information. Issues such as domains of shared information, benefits to each participating group, and the role and the responsibility of each constituent must be resolved in advance, for the final system to succeed in a real world environment.

Organizational issues include the process of making controlled changes in complex organizational environments. The latest results from the realm of inter-organizational networks have been utilized to explain the multiple forces that modulate behavior of individuals, groups, and organizations. Also, the notion of focused standards has been conceived to serve as the foundation for neutral representation as well as for the delineation of more elaborated standards.

Technical issues relate to connectivity at both physical and logical levels. Physical connectivity refers to the process of actual communication among disparate systems, and covers aspects as bandwidths, security, availability, reliability, and inter-
network protocol conversions. Logical connectivity refers to the process of accessing disparate systems in concert for composite answers. One of the major challenges in logical connectivity is to reconcile the different assumptions and perspectives in the systems being integrated.

FUNCTIONAL ARCHITECTURE

The operational prototype of CIS is called CIS/TK, which is abbreviated from CIS Tool Kit. This prototype is based on the three-schema approach, with one integrated global schema, multiple local schemata, and multiple application schemata. The CIS/TK architecture includes multiple Application Query Processors (AQPs), one Global Query Processor (GQP), and multiple Local Query Processors (LQPs). There is one \(A Q P\) for each application, and this \(A Q P\) converts an application model query, defined by an application developer, into a sequence of global schema queries, passes them to the GQP, and receives the results. Similarly, a Local Query Processor (LQP) interfaces between the global data processor and an individual query command processor (e.g., a DBMS).

The primary query processor is the GQP. It converts a global schema query into abstract local queries, transmits them to the appropriate LQPs, and joins the results before passing them back to the AQP. The GQP must know how to get the data, how to map global schema attribute names to the column names, and how to join results from different tables. This is done with the aid of concept agents. Conceptually, each concept agent is composed of 2-36
three functional components, as follows:
(a) A concept definition which defines the rules and data, given the global schema and an application model;
(b) A concept processor which pursues the goal of the concept agent, given its rules and data; and
(c) A message handler which sends and receives messages on behalf of the concept agent.

The notion of concept agents is used to perform concept inferencing, in situations involving missing and conflicting information.

CIS/TK utilizes an object-oriented approach. Physical communication details and database idiosyncracies are encapsulated within the object. The object-oriented language utilized by CIS/TK is based on an enhanced version of Knowledge-Object Representation Language. CIS/TK is currently providing integrated access to several databases at MIT, and others outside MIT. External databases include Reuter's Textline and Dataline and I.P. Sharp's Disclosure.

\section*{SALIENT FEATURES}

CIS is an integrated methodology that attempts to systematically deal with strategic problems, organizational problems, and technical problems that are inherent in any endeavor aimed at integrating islands of disparate information systems. CIS/TK is an operational prototype that utilizes innovative concepts to perform logical connectivity in an effective manner.

\subsection*{2.16. Metaphor Computer Systems, Inc.: DIS}

DIS is a product of Metaphor Computer Systems, Inc. of Mountain View, California. Through the combination of a graphical interface and relational database technology, DIS lets users access data from multiple databases, perform analysis, and construct their own applications without programming. Designed for business professionals, DIS provides tools for strategic use of data from multiple sources; database query tools and report writers for direct and easy access to data; spreadsheets to analyze data; plot tools to view data graphically; and text processing tools to add commentary to the analysis.

Currently, DIS only provides for data access to SQL relational databases and to some flat files after they are converted to relational format used by DIS. There is no plan to provide direct access to non-SQL environments. However, to the extent local SQL database management systems can translate other databases into their own relational data model (e.g., Ingres), DIS can access them.

There is no logical schema which encompasses all database management systems in the network. However, a local schema of one or several databases is graphically depicted for the user. This provides the ability to "click" on each database and instantly see a list of its tables. DIS can be used to query multiple physical database management systems concurrently through multiple windows, and to combine and manipulate such data using the spreadsheet tool.

DIS is a network of workstations (soon to include \(P S / 2^{\prime} s\) and \(P C^{\prime} s\)) and servers that interact with relational databases. Databases can reside on Metaphor database servers as well as on non-Metaphor host machines. Metaphor files and communication servers can provide electronic mail and print services, plus access to a wide range of multi-vendor environments.

The main data access tool is the Query tool. When it is selected, the appropriate database is connected and each of its tables and its columns are displayed in a window. As the user chooses columns with the mouse, the Query tool draws a picture showing how the database tables will be joined to retrieve the data. Then it translates the graphic query into \(S Q L\) and sends it to the database.

If data are not directly accessible to DIS via a gateway, they can be downloaded to a Metaphor database server. Host resident "formatters" are available for converting flat data files into the relational format used by DIS.

\section*{SALIENT FEATURES}

This product claims to provide a true user friendly data access. Querying can be done without ever touching the keyboard. All tables and columns within a physical database are graphically provided to the user. The spreadsheet, the plotting facility, and the word processing tools are very practical features. The list of
government and commercial customers attests to the ability of this product to provide management with easy access to information. IBM has invested in Metaphor Computer Systems, Inc. and is currently working with it to provide a similar interface for IBM mainframes.

\subsection*{2.17. On-Line Software International. Inc.: RAMIS Information System}

RAMIS Information System from On-Line Software International, Inc., headquartered in fort Lee, New Jersey, is used primarily for developing and running end-user applications. The system consists of many diverse components such as: a centralized database, a data dictionary, reporting and graphics facilities, links to external database management systems, data manipulation tools, a procedural language for application development, menu architecture development facilities, micro-to-mainframe communications, and data transfer facilities.

The RAMIS database may be comprised of both RAMIS and non-RAMIS files or databases. Most non-RAMIS files and databases may be accessed in a read-only mode. However, DB2 and SQL/DS relational databases may be queried and updated from within the RAMIS environment.

\section*{FUNCTIONAL ARCHITECTURE}

RELATE is a facility to combine data from multiple files by operating on them as if they were flat relational tables. RELATE
provides relational capabilities regardless of the organization of the source of the data. The user must specify the database or the file, the data to be retrieved, the record selection criteria and how the data are to be associated.

The RAMIS Database Manager reads and updates RAMIS, DB2, and SQL/DS files. It allows multiple physical files to be logically interconnected to from a single data view. A user is presented with one relational view of the data. In the same way, multiple physical databases may be treated as one logical database. Specialized interfaces are required for accessing other non-RAMIS files and databases.

RAMIS has a totally integrated, menu-based architecture front end to all components of the system. Application developers can utilize the menu interface, use a command language, and construct their own customized menu interfaces.

\section*{SALIENT FEATURES}

The RAMIS Information System operates on various IBM platforms under diverse operating systems. It provides a flexible environment for managing, retrieving, manipulating and reporting data stored both in RAMIS format and in external databases and files. Direct interfaces within RAMIS allow users to read nonRAMIS files and databases using RAMIS language facilities. It is not necessary to convert external files into a RAMIS file to access the data.

\subsection*{2.18. Oracle Corporation: ORACLE}

ORACLE was developed by Oracle Corporation, Belmont, California, to serve as a general purpose tool for providing a uniform, integrated interface for retrieving data from several existing database management systems. ORACLE connects with SQL/DS, DB2 and DBase III relational databases. There is also an ORACLE utility for 123.

ORACLE is constantly evolving to meet System \(R^{*}\) specifications which IBM determined in the 1970 s to define the "ideal" database management system. The influence of IBM is further seen in the global data manipulation language which is a superset of SQL, the IBM developed Standard Query Language. ORACLE is a widelyinstalled DBMS in the VMS environment.

Both distributed query and single-node transactions are supported by ORACLE. For updates at multiple nodes, there is no assurance that transactions will either be committed or rolled back together. Data loss can only be prevented by application programming techniques. Global updates and the two-phase commit procedure will be supported in the next product release.

\section*{FUNCTIONAL ARCHITECTURE}

The Open Systems Architecture of ORACLE for distributed processing and distributed database management is SQL*Star. It is comprised of three ORACLE products: SQL*Net, Distributed ORACLE relational 2-42

DBMS, and SQL*Connect.

SqL*Net provides distributed processing capability, and the application software can run on a different machine from the ORACLE kernel. Users can interface SQL*Net to arbitrary network environments. SQL*Net is communications protocol independent. It consists of a generic layer which is common to all protocols and environments, and a custom layer which is specific to each protocol and operating system.

The Distributed ORACLE relational DBMS supports location transparency, single site transactions, multi-site updates in multiple transactions and site autonomy. To meet system \(R^{*}\) specifications, ORACLE is planning multi-site updates in a single transaction, replication and table partitioning for future releases. Distributed data dictionaries contain information about local data and how to get access to global data.

SQL*Connect allows ORACLE to communicate with non-ORACLE database management systems. Plans for broadening access to other database management systems, as well as to non-database file systems (VSAM, Record Management Service) are continuing. Query optimization is achieved by using an array interface to transfer data in batches. This insures that the network is used efficiently.

\section*{SALIENT FEATURES}

ORACLE products run on an impressive range of mainframes, minis,
workstations and personal computers (over 90 hardware platforms), and support a large number of operating systems and a wide variety of network services. The designers intend to encrypt usernames, passwords, and SQL data. Approaches for meeting B1 and C2 National Computer Security Center (NCSC) security requirements are under development.
2.19. Relational Technology. Inc.: INGRES

INGRES is marketed by Relational Technology, Inc. of Alameda, California. Products of this company are used extensively around the world. Approaches originally designed for homogeneous environments have been extended to cater to heterogeneous situations.

FUNCTIONAL ARCHITECTURE

The INGRES approach consists of: INGRES/NET Network Protocol Support, INGRES/STAR Distributed Data Manager, and INGRES Database Gateways. INGRES/NET is a transparent software layer that provides INGRES protocol support for DECnet, TCP/IP, SNA and ASYNC communications. This software allows access to databases across a network and performs automatic data conversion. With the INGRES/STAR Distributed Data Manager, simultaneous access to distributed databases across a network is possible. INGRES/STAR provides complete location transparency and local autonomy. INGRES Database Gateways enable other types of databases and file systems to be included in a distributed database. The appropriate gateway
\[
2-44
\]
module must reside on the local host. Relational, hierarchical, and network local data models are supported.

A two-phase commit protocol is used for distributed transaction processing. If a site involved in a transaction is inaccessible, other sites are automatically rolled back. When a system crashes, INGRES backs out all pending transactions and returns the database to a consistent state without operator intervention.

The global data manipulation language of INGRES is ANSI SQL. After receiving a SQL query from an application, INGRES/STAR breaks it into subqueries and directs them to the appropriate local data managers and gateways. Next, each local data manager executes its respective subquery and the data are transferred to INGRES. Data can be transparently joined and combined with INGRES SQL end-user interfaces or application development tools.

The INGRES/STAR Distributed Data Manager combines distributed query optimization with parallel processing. The distributed optimizer selects the best route for satisfying a multicomputer request. This approach reduces network traffic and improves performance. With this open, multi-server architecture, system administrators can customize their environment by assigning various servers with dissimilar priorities for different tasks, and by connecting transaction applications to a high priority server and batch report-oriented applications to a lower-priority server.

INGRES allows dynamic control of parameters to adjust the
concurrency of the system to the needs of the application set. Transaction and decision support applications may be executed at the same time. Also, the multi-server architecture allows systemwide monitoring and control of database sessions for real-time system management. A virtually infinite number of simultaneous users is possible.

The INGRES data dictionary stores all performance related information-table structures and sizes, available indexes, and data distribution statistics. The more information is provided in the dictionary, the more intelligent is the Query Optimizer. The Query Optimizer produces query execution plans which can be examined to determine the effects of adding indexes, selecting different storage structures, and adding data distribution statistics.

\section*{SALIENT FEATURES}

INGRES incorporates many of the features required for distributed transaction applications including two-phase commit, automatic recovery, and table fragmentation. Distributed query optimization strategies and full parallel query execution capabilities enhance its distributed on-line transaction processing capability.
2.20. Software AG: ADABAS

The ADABAS DBMS, developed by Software AG of West Germany, is a part of an open Integrated Software Architecture (ISA). Used in conjunction with NET-WORK (for distributed processing) and ADA-
\[
2-46
\]

NET (for distributed databases), ADABAS can support heterogeneous networks involving IBM, SIEMENS, DEC-VAX and WANG computers. The ADABAS DBMS supports relational, hierarchical, and network local data models.

ADABAS is designed for production, development, and information center environments. It claims to handle both high transaction volumes and complex ad hoc queries operating against large volumes of data. Distributed transactions can be in the form of a series of updates to different databases which might involve more than one network node.

\section*{FUNCTIONAL ARCHITECTURE}

ADABAS uses either SQL embedded in COBOL, FORTRAN or PLI or NATURAL as its global data manipulation language. NATURAL is a fourth generation language based on a Communication Interface and standard protocols. NATURAL applications may be ported without modification across a wide range of system environments and hardware architectures.

The ADANET product of Software AG allows a user level logical ADABAS call to be translated into one or more physical calls in a transparent manner. A dynamically maintained ADANET translation table defines logical databases and their corresponding physical database representations. Three logical file structures are supported by ADANET: replicated, distributed and isolated files.

PREDICT is the centralized integrated active data dictionary. The structure of the metadata in PREDICT describes the logical and physical interconnections of all data and programs to be managed. PREDICT offers a user-friendly, menu-driven user interface for the management of data and application information.

\section*{SALIENT FEATURES}

The Open Integrated Software Architecture (ISA) provides a high level of functionality in areas such as end user access, application solutions, application development and database management. It also provides software independence across multiple hardware and operating platforms without requiring any change in local databases. Global update processing is supported for relational, network and hierarchical local data models. The global data manipulation language of ADABAS reduces dependencies on third generation languages and is highly portable.

\subsection*{2.21. Sybase, Inc.: SYBASE}

SYBASE is marketed by Sybase, Inc. of Emeryville, California. It can handle data in either hierarchical form or relational form. Data in a network DBMS are accessed via a relational interface.

FUNCTIONAL ARCHITECTURE

The Sybase Distributed System is comprised of three major components: the Sybase Data Server, the Sybase Openserver, and
the Sybase StarServer. The Sybase DataServer allows remote queries and distributed transactions across multiple DataServers while the Sybase OpenServer extends this capability to other applications or DBMS Servers, including non-SQL systems. The star Server adds the functionality of site transparency, including cross-site joins and views, and the Distributed Data Dictionary. The SYBASE OpenServer is in the final stage of beta testing; the DataServer and the StarServer are commercially available.

The SYBASE DataServer allows multi-site update transactions, while ensuring the logical consistency of the data via a two-phase commit protocol. A'commit service' running at a designated site logs the progress of a transaction. The commit service logs notes about when all sites will be prepared. If the transaction fails before that point, it will be backed out; if it fails after that point, it will be rolled forward.

With its multithreaded client/server architecture, SYBASE assumes many of the functions of an operating system. SYBASE avoids the overhead of process swapping by scheduling and activating users. Multiple users share a single copy of the SYBASE image, data and procedure cache, and transaction log. Because each additional user requires only 30 KBytes of memory, hundreds of users can simultaneously access and update data on any node in a distributed network, according to sybase.

A Virtual Server Architecture (VSA) for Symmetric Multiprocessor Systems is scheduled for beta testing. The VSA treats processors
as resources to be allocated on an as-needed basis. An application or a user is not restricted to a specific processor; instead applications may run on various processors at different points in time depending on the number of blocks for \(I / O\) requests or other reasons. Four key features of VSA are: synchronization control, automatic load balancing, optimal resource utilization, and dynamic configuration.

SYBASE uses a Distributed Data Dictionary, consisting of synonyms which are used to locate objects, and Remote Object Catalogs which contain information about the characteristics of those objects. With this approach, users and applications need not be concerned with changes in the physical location of an object.

\section*{SALIENT FEATURES}

Sybase is a leader in secure database management systems. The SYBASE Secure \(S Q L\) Server meets Division \(B\) security requirements defined by the National Computer Security Center. In compliance with Division B specifications, SYBASE offers the ability to store data of multiple security classifications in a single database.

Because networking was built as a key part of SYBASE, rather than as an add-on, network usage is optimized. The network is used more efficiently by sending a single 'execute procedure' command, instead of an individual \(S Q L\) statement.

SYBASE allows server-to-server communications. Multiple users may
share the communication link between servers, thus eliminating the overhead of opening and closing a linkage for each user.
2.22. Tandem Computers Incorporated: Nonstop SQL

Tandem Computers Incorporated, headquartered in Cupertino, California, offers software and network compatible systems ranging from mainframes to low-cost network nodes. Because all Tandem processors use the same operating system and distributed database, as many as 255 systems with a maximum of 4,080 processors can be linked to form a geographically dispersed network. An individual system can support hundreds of terminals and a database with billions of bytes of data.

\section*{FUNCTIONAL ARCHITECTURE}

GUARDIAN 90, a message based operating system, supports the parallel architecture of Tandem NonStop systems. Key features of GUARDIAN 90 are: fault tolerance, distributed data processing capabilities, high transaction throughput, linear expandability, security, data integrity, and the ability to link systems, resources, and devices.

GUARDIAN 90 supports fault tolerant process pairs. In the case where a system software error causes a process to fail, its backup process takes over in another processor. In addition, GUARDIAN 90 manages communication between processors. Database availability is always ensured. Mirrored volumes of data are stored on a pair
of physically independent disk drives. When a failed drive is operational again, the system automatically brings it up to date. The systems resume normal mirrored operation after the restored disk is fully updated. via its message system, GUARDIAN 90 coordinates all distributed activity in a fashion that makes all data accesses transparent to the user. An application can read, write, and update data regardless of the physical location of the data. A built-in password security system is used to control file, device and process availability. Tandem offers integrated security and encryption products to protect information from unauthorized access.

\section*{SALIENT FEATURES}

The multiple parallel processing capability, the fault tolerance capability, and the expandability feature make NonStop SQL a good product for on-line transaction processing (OLTP).

Tandem Corp. has signed integration agreements with Oracle Corp, Sybase, Inc., Relational Technology, Inc. (Ingres), and Information Builders, Inc. (FOCUS) to port their front-end tools to Tandem Systems. Details of the approaches used by these companies are presented in their respective subsections.
2.23. TRW: TDIE

TDIE is a data integration engine developed by TRW, Redondo Beach, California. Unlike conventional efforts which use a gateway with
query language mapping, TDIE has no global data manipulation language. A local DBMS is used and a connection to a remote DBMS is triggered when a user issues a demand requiring data integration.

TDIE is not oriented towards any particular environment. No change is required in existing applications. Additional local database management systems may be added to the system configuration and more than one global schema is permitted:

An integrated scheme performs uniform query and updates for hierarchical, relational and network data models. Automatic updating is performed by polling the potential source files at a rate suitable for a given data category. Types of data that are frequently accessed and must be current are polled at short intervals. This approach eliminates unnecessary activity and avoids unnecessary copying of bulk data by transferring only the changes in data.

\section*{FUNCTIONAL ARCHITECTURE}

The TDIE is comprised of the Data Transform Manager and the Host Interface Manager. These may reside on one processor or they may be partitioned across multiple processors.

The Data Transform Manager contains the centralized dictionary which defines the global conceptual schema. This knowledge-based dictionary supplies scripts, translation software, and data
locations for full data integration. Scripts are instructions for data transfer, which are sent to the Host Interface Manager, while the translation software contains the translation of one query language to another.

To add another local DBMS, translators and scripts must be added to the dictionary. TRW provides a front end tool called the Integration Advisor for interactive construction of a global integrating schema.

The Host Interface Manager is the bridge to the host applications. It provides for automatic updating and data retrieval. Timecritical applications in transaction processing or real-time control are not supported. Also, because TDIE is not a distributed heterogeneous DBMS, concurrency control is an important issue.

\section*{SALIENT FEATURES}

TDIE supports global updates and enables the integration of hierarchical, relational, and network data models. It is layered on top of the existing systems and does not require any change to them. New systems can be added as requirements change. Also, the TDIE can be implemented in increments as desired.
2.24. Xerox Advanced Information Technology: Multibase

Multibase was developed by Research and Systems Division of Computer Corporation of America. This division was acquired by

Xerox and is now called Xerox Advanced Information Technology (Xerox AIT). Although Multibase is a prototype and not a product, Xerox AIT utilizes this technology for providing customized distributed heterogeneous database management systems for its clients.

Multibase provides a uniform, integrated interface for retrieving data from several existing database management systems. It allows a user to reference data in heterogeneous databases, through a common query language, using a single conceptual schema. Multibase is designed to serve as a general tool, without specific orientation towards any particular application area. It allows existing applications to operate without change and also permits new local systems to be included in an existing multibase system configuration.

The integrated access available through Multibase does not provide either the capability to update data in local databases or the ability to synchronize read operations across several sites. In order to process user queries, the system must request and control specific services offered by the local systems (e.g., locking local items).

FUNCTIONAL ARCHITECTURE

Multibase uses the language DAPLEX as its global data manipulation language. DAPLEX provides constructs that allow users to model real world situations in an efficient manner. A three level schema
of definitions is employed as discussed in section 1.5. The process of global information retrieval involves two main components. These are: Global Data Manager (GDM), and Local Database Interface (LDI). The GDM performs tasks of Command Processor, Decomposer, Merger and Distributed Execution Monitor. The LDI design of Multibase is based on the needs of a local DBMS, for example, a more sophisticated LDI is designed to support a file system as compared to the one that supports a DBMS.

\section*{SALIENT FEATURES}

Multibase provides an integrated scheme for uniform query access to dissimilar systems including hierarchical, relational, and network local data models, and File Systems. Global query optimization is performed in Multibase.

The first section of this report explained the basic principles of integrating disparate information systems. In the next section, a broad spectrum of commercially-marketed products and approaches were discussed. Based on the material covered so far, this section develops a set of recommendations for selecting the optimal product or products. In particular, the information presented in Section 2 and Appendix \(B\) is utilized to develop a taxonomy for classifying all the alternative approaches.

In Section 1.4, it was emphasized that changes to existing information systems should be as little as possible; in the ideal case, no change should be required. Subsequently, in Section 1.5 , the importance of a single global conceptual schema was emphasized. Many products and approaches tabulated in Appendix B indicate that multiple global schemata can be created to suit the needs of various users. From a technical viewpoint, these are external schemata, not global schemata. These are some of the considerations that were examined while developing the broad categories described in the succeeding subsections.
3.1. Unintrusive Integration

This is the most elegant form of integrating information systems. The word "unintrusive" connotes that the integration methodology does not demand that specific modules be resident in each
participating information system (see Figure 1). There is a definite assumption in products belonging to this category that existing information systems cannot, and should not, be tampered with. On top of these systems, a single global conceptual schema is introduced.

Use of this approach in a multiorganization or a multidivision environment implies that the existing information systems of various divisions and organizations will not require any modification. These systems will be accessed by a central system that holds a global schema with names and locations of all data items in participating systems. A user will access the central system, which will retrieve information from appropriate sources. The use of a central system and a single global schema offers appropriate controls on data integrity, access rights, and the feasibility of developing a new information system over time.

The main disadvantage of this approach is that is difficult to make global updates to multiple systems as there is no control over the capabilities of individual information systems. The application program must, therefore, be designed to safeguard the integrity of the updates.

Notable products in this category are: Multibase (developed by Computer Corporation of America and now marketed by xerox); Mermaid (developed by Unisys and now marketed by Data Integration, Inc.); and CDM*Plus (developed under the IISS initiative of U.S.

Air Force and now marketed by Control Data Corporation). The development of all these three products involved huge sums of money, and the acceptance of these products is still not commensurate with the investment. Defense organizations have been in the forefront in evaluating and field-testing these products.

\subsection*{3.2. Intrusive Integration}

Approaches in this category require some modification of existing information systems or the location of specific modules within these systems. These modules are typically utilized to perform network services, to store information on location of specific files, or to initiate secondary processes in case some information resources are not operational or unusually slow in responding to requests (see Figure 2). If these modules are designed and implemented properly, and if the existing information systems offer the flexibility to accept these modules from technical and organizational considerations, then this approach can offer significant performance improvements over the approach outlined in Section 3.1. The main drawback, however, lies in the fact that existing information systems frequently use older technologies, employ outdated programming practices, offer little good documentation, and can only be modified after prolonged effort.

Notable products in this category include SUPRA (original technology developed in West Germany and now marketed by CINCOM), INGRES (from Relational Technology Inc.), and Sybase (from Sybase).

In the case of Sybase, it appears that the present family of products support \(S Q L\) databases only, and support for non-SQL based databases and file systems is still being tested. There are some restrictions on the types of data models and data formats supported by these three products. For example, Supra requires data to be in first normalized form and keys to be in ascending or descending order. CINCOM is interested in developing a common protocol for integrating heterogeneous databases, that could be utilized by multiple companies. Because of these reasons, it is important to analyze potential applications carefully to determine which of these products, if any, is appropriate in the short-term and in the long-term.

\subsection*{3.3. Interfacing with controlled Redundancy}

In this approach, no effort is made to create a global conceptual schema. Instead, based on the perceived needs of the user, strategies are designed to get the necessary pieces of information on a "just-in-time" basis (see Figure 3). As an example, consider a hypothetical application which requires that information on 100,000 items (which could be key customers, spare parts, or inventory levels) be available every morning. Assume that the existing information systems that are used to track the position of these items are updated with different periodicity: very few on a yearly basis, some on a monthly basis, a large percentage on a weekly basis, another large percentage on a daily basis, and the rest on a six-hourly basis. In such a situation, information can

be obtained in advance; further, to fulfil anticipated requests one can get information only for the items that have changed since the previous status report.

One product that exemplifies this approach is Data Integration Engine from TRW. In this patented approach, when a change in the status of a source information system occurs, this change is transmitted to the destination application with a priority that would allow it to reach the destination before the next scheduled time of retrieval. The software to accomplish this task and other related tasks is comprised of two types of material: a basic data engine, which is site independent, and additional material which must be customized to each site. The basic data engine is written in \(C\) and can operate in \(a \operatorname{UNIX}\) or a VAX environment. The additional material can be generated with an expert system called Integration Advisor, which was originally written in LISP and has recently been converted to \(C\). According to a technical representative of \(T R W\), the ratio of the size of the basic data engine to the size of the additional material is \(5: 1\). Incidentally, TRW has recently been awarded a multiyear contract by the U.S. Department of Defense.

\subsection*{3.4. Interfacing with Transaction Transfer}

This is the simplest technique for managing transactions in a heterogeneous information system environment. Instead of creating a global schema or prestaging data to meet expected needs, this
approach implies that action begins after a user enters a command. Unless the user is willing to tolerate long delays, this approach is good only in situations where only a small number of information systems need to be accessed in response to the user query (see Figure 4).

Among the notable products in this category, the one that deserves mention here is DIS from Metaphor Computer Systems, Inc. DIS possesses two unique characteristics. First, it is completely icon-driven and as such it is very easy to learn and use. Second, IBM has invested in Metaphor Computer Systems Inc. and they are working together to provide a similar interface for IBM mainframes. As such, the DIS interface has the potential of becoming a commonly used standard for dealing with multiple information systems.

\subsection*{3.5. Additional Evaluation Criteria}

In addition to determining which of the four distinct approaches described in Sections 3.1-3.4 above may be most appropriate for a particular application, it is necessary to examine a number of other technical and non-technical issues before embarking on a specific implementation strategy. These issues are delineated in the following paragraphs.
3.5.1. Composition of Transactions

Transactions are of two types: queries and updates. In our
Flgure 4:/
Interfacing with Transaction Transfer

context, a query involves reading of data in multiple computerbased systems, manipulating the data retrieved to make them consistent, and then presenting the result to the user. The original data in source computer-based systems remain unaltered by a query. An update, however, results in modification of data in various information systems. It is much more difficult to deal with updates than with queries. If an application involves updates, then a significant number of the alternative approaches discussed in Section 2 should be deleted from consideration. The ones to be deleted can be readily identified from Appendix \(B\), which contains a specific question on how update transactions are managed.

\subsection*{3.5.2. Security Considerations}

When one makes it easier to automatically access relevant pieces of information in disparate systems, the same capabilities become available to any unauthorized user of the system. Any integrated set of systems is more vulnerable to security violations than a single information system.

None of the vendors was specifically asked to comment on this issue, although a few of them have provided information on their compliance level with security requirements defined by the National Computer Security Center. This issue may hold significant weightage in the case of large defense, banking, and insurance applications.

\subsection*{3.5.3. Corporate Expertise}

Most large computer corporations have tended to concentrate on integrating systems of their respective makes only. For example, in Section 2, there was a discussion of IBM and DEC suggesting solutions pertaining to their respective families of products. Frequently, smaller companies come up with non-traditional concepts, and larger companies tend to endorse them after these concepts have attained some degree of maturity and acceptance by the market.

The fact that the companies who developed good prototypes such as Multibase and Mermaid later spun off their development groups must be viewed with caution. This is an evolving field, and user organizations must be careful about selecting only the set of products and services that are likely to be supported by more than one company.

\subsection*{3.5.4. Applications and Development Strategy}

In the current business environment of increasing globalization and corporate reorganizations, applications and functions are apt to change in relatively short periods of time. The present technical report has been written without any specific application in view. As an organization determines which applications are important in the short-term and the long-term, it would become feasible to make more specific comments about the relevance of
different products and approaches.

It is important to note that any endeavor towards integration has ramifications for future integration initiatives. The selected approach must offer the flexibility to be enhanced in a modular fashion. Further, public-domain approaches should be preferred over proprietary ones. Based on these considerations, a development strategy can be delineated.

\subsection*{3.6. Conclusion}

The integration of existing information systems involves a careful analysis of many technical, organizational, and strategic issues, and the surmounting of many technical and nontechnical barriers. This technical report has focused on products and their capabilities related to logical access to relevant pieces of information. For discussion of other approaches and issues, the reader may wish to refer to Ref. [2] and the set of eight books on Knowledge Based Integrated Information Systems Engineering published by M.I.T.

The problem of heterogeneity can be overcome either by integration or by interfacing. To decide which option to select, it is worthwhile to look back to the stage when the concept of database management system originated. If one wanted to deal with a single clearly-defined application, it was better to write a customized program to do so; however, if there were many users with diverse
needs, it became increasingly attractive to use the concept of a database management system, even though it involved a larger investment at the initial stage. The same considerations apply at the metalevel today. If access to multiple information systems is needed exclusively for a small set of clearly-defined applications, the interfacing alternative should suffice. However, if there is likely to be an array of broad applications, it appears preferable to take the integration alternative. Remember that "just as the evolution of integrated database management technology displaced conventional piecemeal programming approaches in the 1960s, similarly the new information integration approaches will lead to a significantly different computational environment by the year 2000 A.D.!" [1].

\section*{REFERENCES}
[1] Gupta, Amar, Integration of Information Systems: Bridging Heterogeneous Databases, IEEE Press, New York, 1989.
[2] Morris, J.H., Satyanarayanan, M., Conner, M.H., Howard, J.H., Rosental, D.S.H., and Smith, F.D., "Andrew: A Distributed Personal Computer Environment," Commun. ACM, vol. 29, 3, March 1986, pp. 184-201.
[3] Balkovich, E., Lerman, S., and Parmelo, R.P., "Computing in Higher Education: The Athena Experience," Commun. ACM, Vol. 28, 11, Nov. 1985, pp. 209-215.
[4] Adiba, Michel, and Portal, Dominique, "A Cooperation System for Heterogeneous Data Base Management Systems," Inform. Systems, Vol. 3, 1978, pp. 209-215.
[5] McLeod, Dennis, and Heimbinger, Dennis, "A Federated Architecture for Database Systems, " in AFIPS Conf. Proc., vol. 49 (National Computer Conf., 1980), pp. 283-289.
[6] Lam, Chat Y. and Madnick, Stuart E., Composite Information Systems - A New Concept in Information System, Working Paper \#35, Center for Information Systems Research, Sloan School of Management, Massachusetts Institute of Technology, May 1978.
[7] Gupta, Amar, and Madnick, Stuart, Knowledge-Based Integrated Information Systems Engineering: Highlights and Bibliography, Massachusetts Institute of Technology, 1987. (NTIS/DTIC Accession \# A 195850).
[8] Litwin, Witold et al, "SIRIUS Systems for Distributed Data Management," in Distributed Databases, edited by: H. Schneider, North-Holland Publishing Co., 1982, pp. 311-366.
[9] Heimbinger, Dennis, and McLeod, Dennis, "A Federated Architecture for Information Management," ACM Transactions on Office Information Systems, Vol.3, No. 3, July 1985, pp. 253-278.
[10] Thompson, Glenn Ray, Multi-database Concurrency Control, Doctoral Dissertation, Oklahoma State University, Stillwater, Oklahoma; 1987.
[11] Madnick, Stuart E., and Wang, Y. Richard, "Integrating Disparate Databases for Composite Answers," in Proc. of the Twenty-first Annual Hawaii International Conference on System Sciences, Vol.II, January 1988, pp. 583-592.
[12] Pu, Carlton, Superdatabases for Composition of Heterogeneous Databases, Technical Paper No. CUCS-243-86, Columbia

University, New York, 1986.
[13] Gibbons, Phillip B., "A Stub Generator Multilanguage RPC in Heterogeneous Environments, IEEE Transactions on Software Engineeringe Vol. SE-13, No. 1, January 1987, pp. 77-87.
[14] The ANSI/XI SPARC DBMS Framework Report of the Study on Database Management Systems, AFIPS. 1977.
[15] Appleton, Daniel S., "The Technology of Data Integration," Datamation, November 1, 1985, pp. 106-116.
[16] Bhalla, S., Prasad, B.E., Gupta, A., and Madnick, S.E., "A Technical Comparison of Distributed Heterogeneous Database Management systems," in Integrating Distributed Homogeneous and Heterogeneous Databases: Prototypes, edited by Amar Gupta and Stuart Madnick, M.I.T., Cambidge, MA, 1987, pp. 161-218.
[17] Reddy, M.P., Prasad, B.E., and Reddy, P.G., "Query Processing In Heterogeneous Distributed Database Management Systems" in Reference [1] above, pp. 264-277.
[18] Thompson, Paul, "Reference Models for Information Engineering," in Reference [1] above, pp. 291-291.

\section*{BIBLIOGRAPHY}
[1] Gupta, Amar, and Madnick, Stuart, eds., KBIISE--Vol. 2: Knowledge-Based Integrated Information systems Development Methodologies Plan, M.I.T., Cambridge, MA, 1987 (NTIS/DTIC Accession \# A 195851).
[2] Gupta, Amar, and Madnick, Stuart, eds., KBIISE--Vol. 3: Integrating Distributed Homogeneous and Heterogeneous Databases: Prototypes, M.I.T., Cambridge, MA, 1987 (NTIS/DTIC Accession \# A 195853).
[3] Gupta, Amar, and Madnick, Stuart, eds., KBIISE--Vol. 4: Object-Oriented Approach to Integrating Database Semantics, M.I.T., Cambridge, MA, 1987 (NTIS/DTIC Accession \# A 195854).
[4] Gupta, Amar, and Madnick, Stuart, eds., KBIISE--Vol. 5: Integrating Images. Applications and Communications Networks, M.I.T., Cambridge, MA, 1987 (NTIS/DTIC Accession \# A 195854).
[5] Gupta, Amar, and Madnick, Stuart, eds., KBIISE--Vol. 6: Strategic, Organizational, and Standardization Aspects of Integrated Informations Systems, M.I.T., Cambridge, MA, 1987 (NTIS/DTIC Accession \# A 195855).
[6] Gupta, Amar, and Madnick, Stuart, eds., KBIISE Vol. 7: Integrating Information Stystems in a Major Decentralized International Organization, M.I.T., Cambridge, MA, 1987 (NTIS/DTIC Accession \# A 195856).
[7] Gupta, Amar, and Madnick, Stuart, eds., KBIISE--Vol. 8: Technical Opinions Regarding Knowledge-Based Integrated Information Systems Engineering, M.I.T., Cambridge, MA, 1987 (NTIS/DTIC Accession \# A 195857).
[8] Wang, Richard, and Madnick, Stuart, eds., Connectivity Among Information Systems, CIS Project, M.I.T., 1988 .
[9] Special Issue on Distributed Heterogeneous Systems, Proceedings of the IEEE, Volume 75, No. 5, May, 1987.
[10] Bachman, Charles \(W\)., and Ross, Ronald G., "Toward a More Complete Reference Model of Computer-Based Information Systems," Computers and Standards, Vol. 1, North-Holland Publishing Company, 1982, pp. 35-48.
[11] Cole, Robert, "A Method for Interconnecting Heterogeneous Computer Networks," Software-Practice and Experience, Vol. 17. No. 6, June 1987, pp. 387-397.
[12] Gavish, Bezalel, and Pirkul, Hason, "Computer and Database

Location in Distributed Computer Systems," IEEE Transactions on Computers, Vol. C-35, No. 7, July 1986, pp. 583-590.

\section*{Appendix A}

\section*{COMPANIES CONTACTED AND APPLICABILITY}
(C)

Massachusetts Institute of Technology, 1989. All rights reserved. Reproduction of tables or quotation form them prohibited. All requests for grant of permission should be directed to the principal investigator, Dr. Amar Gupta. Telephone (617) 253-8906.
APPENDIX A
COMPANIES CONTACTED \& APPLICABILITY
\begin{tabular}{|c|c|c|c|}
\hline COMPANY & \begin{tabular}{l}
CONTACT \\
PHONE \& ADDRESS
\end{tabular} & \begin{tabular}{l}
PRODUCT/ \\
SYSTEM
\end{tabular} & APPLICABILITY \\
\hline AT\&T & \begin{tabular}{l}
Doug Justice \\
Marketing \\
Interstate 85 at Mount Hope Church \\
Road \\
McLeansville, NC 27301 \\
Phone: (919) 279-3491 \\
FAX: (919) 279-3980
\end{tabular} & Rapid & Relevant. Upon completion of contract negotiations, AT\&T will provide more information. \\
\hline Advanced Computing Environments & \begin{tabular}{l}
Beverly \\
Phone: \\
(415) 941-3399
\end{tabular} & N/A & Not relevant. ACE is an educational institution with no product or R\&D. \\
\hline Amperif Corporation & \begin{tabular}{l}
Nardis Martinez RDB Product Manager 9232 Eton Avenue Chatsworth, CA 91311 Phone: \\
(818) 998-7666
\end{tabular} & RDM/2 & Not relevant. RDM/2 is a relational DBMS. Integration of other distributed databases is not currently within its capabilities. \\
\hline \begin{tabular}{l}
BBN \\
Systems and Technologies Corporation
\end{tabular} & \begin{tabular}{l}
Steve Vinter \\
Cronus Product Manager 10 Moulton St. \\
Cambridge, MA 02138 \\
Phone: (617) 873-2876 \\
FAX: (617) 873-3776
\end{tabular} & \begin{tabular}{l}
Cronus \\
Distributed \\
Computing \\
Environment
\end{tabular} & Relevant. Details included in document. \\
\hline
\end{tabular}
COMPANIES CONTACTED \& APPLICABILITY
\begin{tabular}{|c|c|c|c|}
\hline COMPANY & \begin{tabular}{l}
CONTACT \\
PHONE \& ADDRESS
\end{tabular} & PRODUCT/ SYSTEM & APPLICABILITY \\
\hline Booz Allen \& Hamilton, Inc. & \begin{tabular}{l}
David Subar \\
Senior Consultant Artificial Intelligence Practice 4330 East West Highway \\
Bethesda, MD 20814 \\
Phone: (301) 951-4580
\end{tabular} & IDIMS & Relevant. Details included in document. \\
\hline CRI, INC. & \begin{tabular}{l}
No Contact \\
Phone: (408) 980-7499
\end{tabular} & Relate/DB & Unknown. Answering Service takes calls but none returned. \\
\hline Cambridge Technology Group & \begin{tabular}{l}
Steven Schenefeld 219 Vassar Street Cambridge, MA 02139 Phone: (617) 876-2338 \\
FAX: (617) 499-1777
\end{tabular} & Surround & Relevant. Details included in document. \\
\hline Cincom & \begin{tabular}{l}
Ken Pagnotta \\
Regional Technical Manager 35 Braintree Hill Park \\
Suite 100 \\
Braintree, MA 02184 \\
Phone: (617) 849-1020 \\
FAX: (617) 849-1030
\end{tabular} & Supra & Relevant. Details included in document. \\
\hline
\end{tabular}
COMPANIES CONTACTED \& APPLICABILITY
\begin{tabular}{|c|c|c|c|}
\hline COMPANY & \begin{tabular}{l}
CONTACT \\
PHONE \& ADDRESS
\end{tabular} & \begin{tabular}{l}
PRODUCT/ \\
SYSTEM
\end{tabular} & APPLICABILITY \\
\hline Cognos Corporation & \begin{tabular}{l}
Judd Lowe \\
Senior Sales Representative \\
2 Corporate Place I-95 \\
Peabody, MA 01960 \\
Phone: (508) 535-7350 \\
FAX: (508) 535-8241
\end{tabular} & PowerHouse & Relevant. Details included in document. \\
\hline Computer Associates International Inc. & \begin{tabular}{l}
Jack Hadder \\
District Manager, Defense 8227 Old Court House Road Vienna, VA 27181 \\
Phone: (703) 356-7700 x635 \\
FAX: (703) 847-0290
\end{tabular} & Datacom/DB & Not relevant. Datacom/DB does not support heterogeneous database environments. \\
\hline Computer Corporation of America & \begin{tabular}{l}
Pete Goldman \\
Senior Technical Representative \\
1800 Diagonal Road \\
Alexandria, VA 22314 \\
Phone: (703) 836-5200 \\
FAX: (703) 836-6590
\end{tabular} & Multibase & The Research and Systems Division which developed Multibase has been sold to Xerox. See appropriate entry below. \\
\hline \begin{tabular}{l}
Consultants for \\
Management Decisions, Inc.
\end{tabular} & & N/A & Not relevant. Company builds custom software systems to serve complex information needs of large organizations. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
－पoţex6ә7 \\
－ut efep 7xoddns fou səop \\

\end{tabular} & 土e7s ssəコロサ & \begin{tabular}{l}
8Z\＆0－GEL（80も）：XVA \\
GもGL－GEL（80も）：əuoपd \\
LSOS6 \(\forall D \cdot{ }^{\prime}\) exets eques \\
IOL כ7ṭns •כnt uopaog 006Z \\
səles WGO xo7コəxta \\
иоләбxәg әyṭ
\end{tabular} & \\
\hline \begin{tabular}{l}
－XHת \(\operatorname{\partial y7}\) uo \(K\) tuo sund eseq －efed astiddazug pue axn7 \\
 sunx ySWal • ұuenə！əa 7on
\end{tabular} & \begin{tabular}{l}
əseqe7ed \\
 § USWGI
\end{tabular} & \begin{tabular}{l}
GSGi－TGG（008）：əuoчd \\
06020 甘W＇роом7ธəM \\
 \\
メəIITW UeI甘
\end{tabular} & 7วu¢โโnว \\
\hline －quaurnsop uṭ pa －pnixut 8iteqəa •quesə & （8Кемә7ер 7นə6！（（ә7uI） 7Uəอร์ & ILSE－866（EOL）：X甘ヨ GLSE－866（عOL）：əuoчd โIEてZ \(\forall \Lambda\)＇eṭapuexəry 000t a7ṭns －py Kxeuṭuas 75əM дәбоч & uotzexodios e7ed［0x7uoj \\
\hline & sntd Was & \begin{tabular}{l}
IO\＆9－Lても（عIG）：X甘ヨ \\
とてと9－しても（عIG）：əuoчd \\
ヵてEGも oṭ \\
 \\
 quəudoโəヘəd ssəuṭsng sntd waつ Kə́pexg wetifitm
\end{tabular} & uoţexodxos e7ed［0x7uos \\
\hline KLITIGYOITddY & \[
\begin{aligned}
& \text { WGLSXS } \\
& \text { / LDado\&d }
\end{aligned}
\] & SSGBady o anohd LDYLNOD & KNYdWOD \\
\hline & TIG＊DITdd＊ & \[
\begin{aligned}
& \text { QGIDELNOD SGINYdWOD } \\
& \text { RIGNGddZ }
\end{aligned}
\] & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
－68／6て／8 uo 7әәчs \\
 pxepuefs e ut tity of \\
 \\
 \\

\end{tabular} & suoṭ 7ent tdde pəu6тรวр －ய078nจ & \begin{tabular}{l}
GZEI－てもL（عOL）：XVヨ \\
GGGT－てもL（عOL）：əиоч丈 \\
ZLST－ZもL（EOL）：əu०чd \\
LLOZZ 甘 \\
əィṬメの Saヨ 009とโ \\
sגəБoy 6т̣ex
\end{tabular} & \[
\begin{array}{r}
\text { suə7sKs } \\
\text { e7eg } \\
\text { จب̣uox }
\end{array}
\] \\
\hline \begin{tabular}{l}
－quəumsop ut pə \\

\end{tabular} & \begin{tabular}{l}
SWga \\
＇SWA／qPy
\end{tabular} & \begin{tabular}{l}
8โ0E－TEL（TOE）：XYヨ ZŞ9－I66（もTE）：əu०чd \\
I千IE9 OW＇sṭnot •7S peoy uosxaug IZL \\
 \\

\end{tabular} & uotzexodxos 7uəud！̣nby โе7！̣โ̣a \\
\hline －7uəumsop uṭ pə －pniout siteqəa • ұuesə & ртеuxəW & \begin{tabular}{l}
LOGஏ－06\＆（عIZ）：əuочd 99006 甘J ‘səโə6uv sot ənuəィษ โехәрəョ દદてを 7uəp！̣səxd \\

\end{tabular} & \[
\begin{array}{r}
\cdot \text { suI } \\
\text { 'uotyexbə7uI } \\
\text { e7ed }
\end{array}
\] \\
\hline \begin{tabular}{l}
－səseqeqep pazn \\
－qtifstp ә7exbəqut of K7t \\
－ITqe әч7 әpṭィoxd 7ou səop 7nq＇SWGd［euotifetox e st 7刀прохd әч山 •7иелә！әх 70N
\end{tabular} & x & \begin{tabular}{l}
てT00－8をて（G0\＆）əuoud 98TEE TA＇țueth \\
－əлヲ Y76IT •M•S 00もT \\
 uṭuoxग •＇əuṭдәч7ея
\end{tabular} & \begin{tabular}{l}
uotzexodxos \\
ssəovy e7ed
\end{tabular} \\
\hline KLITIGUDITddV & WGLSKS ／LDaはO\＆d & SSGyady 9 gNOHd LOYLNOD & KNY \({ }^{\text {d }}\) \\
\hline & ITIGVDITdd甘 & \[
\frac{\text { VLNOD SGINVdWOD }}{\text { IddV }}
\] & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
－ұuəunจop ut pə \\

\end{tabular} & SLId & \begin{tabular}{l}
6ZLE－LZ8（EOL）：XVA \\
9LLE－LZ8（EOL）：әuочd \\
てOIZZ 甘 \\
ع09 dozs ruew \\
ənṭa भxed 7ธam \(006<\) \\

\end{tabular} & －suI＇swa7sKs โеләрәя โ！\(\ddagger\) мКәион \\
\hline \begin{tabular}{l}
－68／LI／8 uo ұәәчs \\
 pxepuefs e ut itty of рә7sәnbax sem ұวequoว әчป \\
 \\

\end{tabular} & suotzeot rdde pəu6т̣ョəр －wo7snป & \begin{tabular}{l}
sع9て－も8て（ع0L）：əuoud 60ZてZ 甘 \({ }^{\prime}\) uofbutixy \\
－paig uositm ocst әntg uчor
\end{tabular} & \begin{tabular}{l}
рдеягед \\
77ə【мән
\end{tabular} \\
\hline －quaunsop ut pa －pniout siṭeqad •quesə & แวารKS Tరऽ әч山 & \begin{tabular}{l}
89G0－も92（ع0L）：X甘オ \\
て006－ъ9て（ع0L）：əuочd \\
1602Z \(\forall \Lambda\) ‘uo7səy ənṭa Kə！ten əsṭuns 00Zてt хәโqшу ичог
\end{tabular} & səт̣боโоичコəむ eqdno \\
\hline \begin{tabular}{l}
－ 26 E 75 \\
 st 7onpoxd sṭy •7onpoxd โețoxəumos e uo sxopuən SWGd［exənəs pue sag प7TM \\

\end{tabular} & xatdezed & \begin{tabular}{l}
98£โ－986（عโ£）：əuoчd \\
0608t IW ‘uəxगeM \\
 бипчว ием－ит̣ч
\end{tabular} & \begin{tabular}{l}
səт̣ォo7exoqet \\
yэхеәзәу s．j070W โеләиə！
\end{tabular} \\
\hline KLITIG＊SITddY & WGLSXS
／ LDOaOyd & SSGyady 9 anOHd LIVLNOD & KN甘dWOJ \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
 －un әiqeitene əq zou IITM \\
 \\
－sWGd Leuoţferax e st 7onpoxd әч山 •quesə［әл 7oN
\end{tabular} & TOS x xuxxoful & \begin{tabular}{l}
99TG－ZZE（GIt）：əuoud \\
 әnța uouueyog 00โt \\
 хәмәля euиod
\end{tabular} & \[
\begin{array}{r}
\text { •oul } \\
\text { 'әxemzjos } \\
\text { xṭurojul }
\end{array}
\] \\
\hline \begin{tabular}{l}
－suә7sKs quәшәбеиеи aseqe7ep teuotitetox＇snozu \\
 \\
＇SWGd IPuoṭferax e 8！ 7onpoxd әч山 •quesəโәх 7oN
\end{tabular} & WO & \begin{tabular}{l}
GSTL－LZZ（LI9）：əuoud \\
tIIZO＊W ‘uozsog \\
008 ə7！̣品 \\
－7s profue7s 0s \\
suoqqụ6z7！̣．ə
\end{tabular} & ＇suoṭsuəurṭ noṭzewiojul \\
\hline －quәunsop ut pa －pniout siṭezəの •quenə & LTNSOA & \begin{tabular}{l}
90も9－L96（ZIZ）：XVA \\
 \\
TOOOT KN＇YJOX MON \\
Кемреохя 0Gzt \\
дә6euew 7onpodd LanDoa \\
рхемон โәечว！̣
\end{tabular} & \begin{tabular}{l}
－．oul \\
‘sxəpiṭng иоттешлојиI
\end{tabular} \\
\hline －ұuəumsop ut pa －pniout siṭeqəa •quenə & －sa／tos pue & \begin{tabular}{l}
G\＆LI－8モ9（ \(\angle 19):\) XVヨ \\
0८Lて－8E9（LI9）：əuoud \\
9IIZ0＊W ‘uo7sog \\
əวeโd Kəโdoう I \\
tDg／wgi \\
setiet exequeg
\end{tabular} & W¢ I \\
\hline KLITIG＊DITddy & WGLSXS ／LDnaoyd & SSayady 〕 anohd LDVLNOD & KNYdWOD \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline －ұuәunsop ut pa －pniput sitefad •quesəyәy & aTDexo & \begin{tabular}{l}
6ELZ－L06（TOE）：əuoपd \\
ヵI80Z वW＇epsəy7əg \\
00ヵt 27 Tns \\
дәұиәว охұәผ ерธәч7әя є \\
ләбеuew qunoss teotuquad \\
ч7ォомsโtg әт7sт̣чコ
\end{tabular} & uotzerodios
araejo \\
\hline －ұuәuñop ut pə －pnivut siṭ押 •quenə & \[
\begin{array}{r}
\text { wə7sKS } \\
\text { uotyeurojuI } \\
\text { s,uey }
\end{array}
\] & \begin{tabular}{l}
0988－6もあ（LI9）：əu०पd万6IZ0 甘W ‘ueчpəən әnuəлษ puoدəs SL \\

\end{tabular} & \\
\hline \begin{tabular}{l}
－68／ヵT／8 uo ұәәчs uoţeotifivads leotuyoal pxepuefs e ut itty of \\
 \\
 \\

\end{tabular} & peuron & \begin{tabular}{l}
8โ6L－9 88 （LI9）：XVヨ 0G6て－898（LT9）：əuoपd 8\＆โZ0 VW ‘əбpṭxqueว \\
 хә7รəчコ рт̣ィед
\end{tabular} & โеиотұеиләұи әлем7jos 7snw \\
\hline \begin{tabular}{l}
－ұuәunsop ut pa \\

\end{tabular} & SIO & \begin{tabular}{l}
 \\
0Z9を－6もL（ع0L）：əuoud \\
そOIZZ \(\forall \Lambda\)＇ueəIJつW \\
0IG \(\partial 7\) Tns \\
 \\
uţ7spios uoy
\end{tabular} & suə7s \(\mathrm{K}_{\mathrm{S}}\) xə7nduro лочdezəw \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
－Kiuo suraך \\
－sKs quәuәbeueu әseqeqep snoәuә6ошоч sәךех6әұut 7อnpoxd әч山 •ұиеләโәх 70N
\end{tabular} & әseqə．teчs & \begin{tabular}{l}
૪LLO－998（80も）：XVA \\
GLGL－8LE（80も）：əuочd 0ع0G6 \(\forall D\) ‘sozeg sot \\
－рлta xә7sәчจитм 009ャt \\
 sseg［ned
\end{tabular} & （әәт पо77！̣g Kโxəmxod） әseqәлечs \\
\hline －quəunsop ut pə －pntout siṭezad •ұuenəiəy & xe7s saxbul & \begin{tabular}{l}
SعIE－ZLZ（LI9）：XVA \\
090G－LZL（LT9）：əuoud ع08โ0 甘W＂uo76utixng \\
 snjKəda tiot
\end{tabular} & \begin{tabular}{l}
－JuI \\
－Кбоโоичフә」 ［euotizeray
\end{tabular} \\
\hline \begin{tabular}{l}
－sәseqe7ep reuotzerəx \\
＇snoəuә6ошоч эо иот̣廹 －ə7uṭ of pəұ！̣uṛi SWGd e st 7onpoxd әч山 •quesə！əx 70N
\end{tabular} & WİLU & \begin{tabular}{l}
9LLも－て6を（90Z）：əuoपd \\
LZ086 UM＇yenbessi \\
GIT \(\partial 7!\) ns \\
MN anuəny Y7ZT GLLT \\
дə6еuew 6uţəyxew \\
хә7Іон IIT日
\end{tabular} & \\
\hline \begin{tabular}{l}
－ешәуวs геqоโ́ \\
ou sәрт̣олd pue＇eұep ә7еโsuex do әұедбә7u！ 7ou səop＇SWGa e 7ou st 7onpoxd әч山－चиелә！әл 70N
\end{tabular} & sdunnw xṭun & & รәэтлхәs xə7ndwos G snid \\
\hline xLITIG＊DITddy & WGLSKS ／ LOn のOY & SSGyady x anohd LDYLNOD & KNYdWOJ \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
－7uәunจop ut pə \\

\end{tabular} & gIaL & \begin{tabular}{l}
IZ09－ZI8（EIZ）əuoud 8LZ06 vD ‘чフеәя ориорәч \\
 भxed ә．Deds әuo \\
 euxə7ew Kuod
\end{tabular} & M4J \\
\hline －quəunsop ut pa －pniput sitezəa •quesə & aseqKs & \begin{tabular}{l}
80عE－TZL（EOE）：əuoчd LEZ08 0د ‘xəлuəa \(00<\) ว7！̣ns \\
－7S xә7sโด ч7nos 009ヵ дәбеиен suexfoxd lexəpas xnot дәךәd
\end{tabular} & әseqKS \\
\hline －quəumsop ut pa －pnixut siṭezəの •ұuesə & Stagav & \begin{tabular}{l}
00โ0－0Z9（E0L）：əuoчd \\
1602Z \(\forall \Lambda\) ‘uozsəy \\
 \\
0 IZ วұ̣̣ns \\
－sul＇suratsks texəpəa \\
еуиerew tafed
\end{tabular} & －oul ‘eoțxəwy 47xON fo 9\％әxemzjos \\
\hline \begin{tabular}{l}
－səseqe7ep имо \\
87t дој Kโuo ұиәшәбеиеи \\
 7onpoxd әч山 •quesә！әл 70N
\end{tabular} & oxdozny & \begin{tabular}{l}
066t－દてZ（z0Z）：əuoчd \\
 IOG \(\partial 7\) Tns MN 7əəx7S Y GZLI メə！̣əら PG
\end{tabular} & \\
\hline KLITIGvoITddy & GLSXS naoyd & SSayday x gnohd LDYLNOD & KNYdWOD \\
\hline
\end{tabular}

\section*{Appendix B}

\section*{DETAILED CHARACTERISTICS OF}

PRODUCTS AND APPROACHES
(C) Massachusetts Institute of Technology, 1989. All rights reserved. Reproduction of tables or quotation form them prohibited. All requests for grant of permission should be directed to the principal investigator, Dr. Amar Gupta. Telephone (617) 253-8906.
COMPANIES CONTACTED \& APPLICABILITY
\begin{tabular}{|c|c|c|c|}
\hline COMPANY & \begin{tabular}{l}
CONTACT \\
PHONE \& ADDRESS
\end{tabular} & \begin{tabular}{l}
PRODUCT/ \\
SYSTEM
\end{tabular} & APPLICABILITY \\
\hline Tandem Computers, Inc. & \begin{tabular}{l}
Dave Magram \\
Mail Stop 219-44 \\
5300 Stevens Creek Blvd. \\
San Jose, CA 95129 \\
Phone: (408) 553-6757 \\
FAX: (408) 553-6960
\end{tabular} & Nonstop SQL & Relevant. Details included in document. \\
\hline Unify Corporation & \begin{tabular}{l}
Frank Verardi \\
3870 Rosin Court \\
Suite 100 \\
Sacremento, CA 95834 \\
Phone: (916) 920-9092
\end{tabular} & Accell/SQL & Not relevant. The product is a DBMS with a 4GL language, but does not integrate heterogeneous database management systems. \\
\hline Unisys & \begin{tabular}{l}
Anita Holmgren Deputy Dir. of Advanced Projects Network and Information Securities Division \\
5151 Camino Ruiz \\
Camarillo, CA 93010 \\
Phone: (805) 987-9300
\end{tabular} & Mermaid & Rights to Mermaid have been licensed to Data Integration, Inc. See appropriate entry above. \\
\hline \begin{tabular}{l}
Xerox \\
Corporation
\end{tabular} & \begin{tabular}{l}
Gene Kakalec \\
Adv. Information Technology Dept. \\
1800 Diagonal Rd. \\
Suite 300 \\
Alexandria, VA 22314 \\
Phone: (703) 836-1823
\end{tabular} & Multibase & Relevant. Details included in document. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline T\%S & \begin{tabular}{l}
 \\

\end{tabular} & \begin{tabular}{l}
- afeuddoadde j! ‘a6en6ue! [exn\}et quoddns of pappe aq \\
 \\
 \\

\end{tabular} & 7.8qns 9\%s & \begin{tabular}{l}
aben6ue7 volypindiuen \\

\end{tabular} \\
\hline - HESA PUE HOda Pydas & \begin{tabular}{l}
- roq punodans \\
 -Ls 'rimiojoi 'ә \\
 \\
Ife pae 'z80 ‘apoeao 'shai ‘shi
\end{tabular} & -sydenas azs & \begin{tabular}{l}
-aseqa pue \\
 - пวa !pajaddns Lizuarano ade \\
 \\
 \\

\end{tabular} & pzzioddns SHEO [PDOT \\
\hline & \begin{tabular}{l}
-sp007 voizeotprioos pue \\
 \\
 - дә!
\end{tabular} & \begin{tabular}{l}
-2889 \\
 ч6noxyz pazioddns วq ues 8pəpot \\
 \\

\end{tabular} & & pajaddns 8 87P0 [\({ }^{2009}\) \\
\hline & \begin{tabular}{l}
 \\
 pae 'sistun 'lafy 'mat 'was \\
 xina daza difemjịa of pazad \\
 - 「едәиая
\end{tabular} & -[ехวиวя & \begin{tabular}{l}
-pałxoddns \\
 \\
 \\
 \\
- I¢ mas vol \(0^{\circ} Z\) पכen \\
 \\
- [елวขวя
\end{tabular} & \\
\hline 200\% & วu0\% & рวұпq! & 2004 & told pandara «Luody \\
\hline & \begin{tabular}{l}
anooszas \\

\end{tabular} & SHIOI : 187775008 & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \(7 \% 5\) & TOXS Pue SYayos & \begin{tabular}{l}
－J 20j sәวejajuit \\
ara6odd voifeetydde pue＇rogos ISNY Joj dolidmoo－dxd＇xied \\

\end{tabular} & & a6enbuer notzerndiuen efed feqoio \\
\hline ／haI vo zad＇ha／haI vo sa／Ios & \begin{tabular}{l}
 \\

\end{tabular} & \begin{tabular}{l}
－by007 ezdng Iq parajadad ane sa／tos pue cran ；yjera 207 \\
 \\
 \\
 \\
e pue โroof e yzoq s！aseaios
\end{tabular} & －SWA／GPG PUP SHE0 & pazioddns Su80［820］ \\
\hline & & \begin{tabular}{l}
－paziod \\
 \\

\end{tabular} & \begin{tabular}{l}
「euol？ \\

\end{tabular} & pəzioddns sןวрон ezed［800］ \\
\hline ＇［елวขว9 & \begin{tabular}{l}
XINa！SOO \\
：85039 pue 00t－00h aotiefe －ไл ！88／SdO pue 9／SdO 8，日H－11ng －［едәаә9
\end{tabular} & \begin{tabular}{l}
 \\
 －гваидя
\end{tabular} & \begin{tabular}{l}
－SWA／XYA \\
－「елวиว9
\end{tabular} & \\
\hline \begin{tabular}{l}
 \\
 \\

\end{tabular} & \begin{tabular}{l}
т 278 SS \\

\end{tabular} & 2008 & วu0\％ & rodd pantial － 10 ODP \\
\hline so／IXs onv＇reo＇wus ：MEI & SLOO ：778M18 & \begin{tabular}{l}
Halsis 705 \\

\end{tabular} & \begin{tabular}{l}
SHGO＇Swa／Ppg \\

\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
 \\
 \\
 Ios eshad leuotiferad pafaoddns \\
 \\

\end{tabular} & \begin{tabular}{l}
－aбen6uer daənb \\

\end{tabular} & \begin{tabular}{l}
－saedboad \\
גq pead pue pazeazuab aq 07 раиб！̣8วр a6enбue！pajua！̣io a6es \\
 paepuezs［eqíb！a aqf uo paseq \\

\end{tabular} & & abenbuet votzejndiuen efed reqolo \\
\hline \begin{tabular}{l}
 a0dj P7ep a6aza of sjo07 o！u091 \\
－sad joydezan pue ool aseg －adeys＇วga e7epexa』＇rgo pue SO／Jos－hai＇qpe pue＇วseqds \\

\end{tabular} & \begin{tabular}{l}
－jabenguer dastap－purumos dieza －Tidoad）amnso［osto dieys＇a＇I \\
 au！pezea danqsatid \(\cdot\) Ibet wai uo \\
 \\

\end{tabular} & \begin{tabular}{l}
－SWA／qPy Z／SO＇d \\
＇HnS＇ollody＇xun vo ว8equatoi
\end{tabular} & \begin{tabular}{l}
－s．ayzo pue＇әseqaieys＇shy \\
 \\
 － OI ＇ \(\mathrm{y} / \mathrm{SHOI}\)＇SHOI＇SnJOd＇20A8dS \\
 ＇SWAO＇GO／WOJYLYO＇HYSI－כ＇SHAYOH
\end{tabular} & papaoddns SHED［PJOT］ \\
\hline \begin{tabular}{l}
－jasn ayz kq suoṭวe yว！ \\
 \\
payona！ade feqf s．07e［nwa \\
08L\＆pue＇OLZ\＆＇んLL y6noaq7 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
－dossว20．1d SIJ วप7 पо \\
 ［P00耳 e y6nody7 วu0p 8！SI2 pue aseqeap［ezole vaznzaq \\
 \\

\end{tabular} & －penompray & & pazaodnns spapor 87e0［800I \\
\hline \begin{tabular}{l}
＇2SO 10 \\
SOO Gutound 08 \＆OLW Z／Sd pue ＇S00 Gutuund 8jวpoi l／Sd zoon \\
 do＇ul＇is／วd jo 世o！zeutquos \\
 \\
－［ejauas
\end{tabular} & \begin{tabular}{l}
－2demzjos \\
pue arenpieq 2siantp oo Shad \\
 \＆IKD pue＇J＇dSII U！पวZ7！dm \\
－「едวuว9
\end{tabular} & \begin{tabular}{l}
＇2／s0 \\
pue＇dH＇olfody＇KIS＇SHA／XHA \\
 SHA PUE XINQ o！Buo！fejijdde \\
 pue dวұndsosịụ̣ paznq！uzs！a －［едวひәの
\end{tabular} & \begin{tabular}{l}
－sməzshs 6utpezado \\
pue sudomped dayzo snotien \\
＇XIKQ＇O6 aetpang＇（dB）IX adh \\
＇8／8dH＇SA／9KHM＇SHa／XHA \\
＇SAW／HEI＇HA／HEI＇SOO／Jd WAI \\
－［едวひว
\end{tabular} & （asenpleh par ademzjos） quamuadinad \\
\hline －mวzsas uo！fezaddazuI P7ed & & \begin{tabular}{l}
－aseqezep \\
pue mazsis бu！fedado＇วлепрлеч \\

\end{tabular} & －87anpodd ẏomzan Snjod & codd pan！dal חXuodoy \\
\hline
\end{tabular}
Laviood
：－JuI＇sagoitag noluvizodil
2Spagadil
：•d800 gyvuidos 8spagatuI
SI）： 19010 H月38
do guadissui sulasaiotssu
\begin{tabular}{c}
SIO \\
80 \\
\hline
\end{tabular}

\title{
M.I.T. Sloan School of Management
}

Working Paper Series

\section*{Papers by Stuart Madnick}
\begin{tabular}{lll}
Paper \# & Date & Title/Author(s) \\
1839 & \(11 / 86\) & \begin{tabular}{l}
"A Microcomputer-Based Image Database Management System," \\
Prasad, B., Gupta, A., Toong, H., and Madnick, S.,
\end{tabular} \\
1776 & \(4 / 86\) & \begin{tabular}{l}
"INFOPLEX: Research in a High-Performance Database Computer," \\
Madnick, S., and Hsu, M.
\end{tabular} \\
1685 & \(6 / 85\) & \begin{tabular}{l}
"Impact of Schedule Estimation on Software Project Behavior," Abdel- \\
Hamid, T., and Madnick, S.
\end{tabular} \\
1366 & \(10 / 82\) & \begin{tabular}{l}
"An Integrative Approach to Modeling the Software Management \\
Process: A Basis for Identifying Problems and Evaluating Tools and \\
Techniques," Adbel-Hamid, T.K., and Madnick, S.
\end{tabular} \\
1334 & \(5 / 82\) & \begin{tabular}{l}
"The Dynamics of Software Project Scheduling: A System Synamics \\
Perspective," Adbel-Hamid, T.K., and Madnick, S.
\end{tabular} \\
1047 & \(4 / 79\) & \begin{tabular}{l}
"A Model of Software Project Management Dynamics," Adbel-Hamid, \\
T.K., and Madnick, S.
\end{tabular} \\
"Properties or Storage Hierarchy Systems with Multiple Page Sizes \\
and Redundant Data," Lan, C.Y., and Madnick, S.
\end{tabular}

\title{
M.I.T. Sloan School of Management \\ Working Paper Series
}

Papers by Stuart Madnick
\begin{tabular}{lll}
Paper \# & Date & TittelAuthor(s) \\
776 & \(3 / 75\) & \begin{tabular}{l}
"An Application of a Generalized Management Information System to \\
Energy Policy and Decision Making: The User's View," Donovan, J.J., \\
Gutentag, L.M., Madnick, S., and Smith, G. N.
\end{tabular} \\
771 & \(3 / 75\) & \begin{tabular}{l}
"Data Security and Data Processing," Madnick, S.
\end{tabular} \\
770 & \(3 / 75\) & \begin{tabular}{l}
"Infoplex - Hierarchical Decomposition of a Large Information \\
Management System Using a Microprocessor Complex," Madnick, S.
\end{tabular} \\
769 & \(3 / 75\) & \begin{tabular}{l}
"Design of a General Hierarchical Storage System," Madnick, S.
\end{tabular} \\
723 & \(7 / 74\) & \begin{tabular}{l}
"Virtual Information in Data-Base Systems," Folinus, J.J., Madnick, S., \\
and Schutzman, H.B.
\end{tabular} \\
722 & \(5 / 74\) & \begin{tabular}{l}
"Application and Analysis of the Virtual Machine Approch to \\
Information System Security and Reliability," Madnick, S., and
\end{tabular} \\
648 & \(3 / 73\) & \begin{tabular}{l}
Donovan, J.J.
\end{tabular} \\
645 & \(2 / 73\) & \begin{tabular}{l}
"An Approach to Information System Isolation and Security in a \\
Shared Facility," Madnick, S., and Donovan, J.
\end{tabular} \\
"Recent Technical Advances in the Computer Industry and Their Future \\
Impact," Madnick, S.
\end{tabular}
M.I.T. Sloan School of Management Working Paper Series
Papers by Stuart Madnick
John Norris McGuire Professor of Information Technology
\begin{tabular}{|c|c|c|}
\hline Paper \# & Date & Title/Author's) \\
\hline 3157 & 6/90 & "The Composite Information Systems Laboratory (CSL) Project at MIT," Madnick, S., Siegel, M., and Wang, R. \\
\hline 3180 & 5/90 & "The Elusive Silver Lining: How We Fail to Learn from Failure in Software Development," Adbel-Hamid, T.K., and Madnick, S. \\
\hline 3119 & 2/90 & "A Polygen Model for Heterogeneous Database Systems: The Source Tagging Perspective," Wang, Y.R., and Madnick, S. \\
\hline 3120 & 12/89 & "Motivating Strategic Alliance for Composite Information Systems: The Case of a Major Regional Hospital," Osborn, C.S., Madnick, S., and Wang, Y.R. \\
\hline 3100 & 12/89 & "A Polygem Data Model for Data Source Tagging in Composite Information Systems," Wang, R., and Madnick, S. \\
\hline 3084 & 11/89 & "An Architectural Comparison of Contemporary Approaches and Products for Integrating Heterogeneous Information Systems," Gupta, A., and Madnick, S. \\
\hline 3092 & 10/89 & "Schema Integration Using Metadata," Siegel, M., and Madnick, S. \\
\hline 3091 & 10/89 & "CISL: Composing Answers from Disparate Information Systems," Madnick, S., Wang, Y. et al. \\
\hline 3061 & 8/89 & "Information Technology Platform for the 1990's," Madnick, S. \\
\hline 3015 & 5/89 & "A Global Query Processing in Composite Information Systems," Wang, Y.R., and Madnick, S. \\
\hline 2075 & 9/88 & "Software Productivity: Potential, Actual, and Perceived," AbdelHamid, T., and Madnick, S. \\
\hline 2061 & 8/88 & "Logical Connectivity: Applications, Requirments, and an Architecture," Madnick, S., and Wang, Y.R. \\
\hline 2031 & 6/88 & "Motivating Strategic Alliances for Composite Information Systems: The Case of a Major Regional Hospital," Osborn, C., Madnick, S., and Wang, Y.R. \\
\hline 2029 & 6/88 & "Inter-Database Instance Identification in Composite Information Systems," Wang, Y.R., Madnick, S., and Horton, D. \\
\hline 2025 & 6/88 & "Connectivity Among Information Systems," Wang, Y.R., and Madnick, S. \\
\hline
\end{tabular}

\title{
M.I.T. Sloan School of Management
}

Working Paper Series
Papers by Stuart Madnick

\begin{tabular}{|c|c|c|c|c|}
\hline & & & -pranbad uodn paqstuand & вวэขวдวјə \\
\hline \begin{tabular}{l}
-İuared \\
 6u!88ว001d ezpp paznq!az8!p \\
 \\

\end{tabular} & & \begin{tabular}{l}
 \\
 \\
วои в! очи дәвп-риа ач7 10ј \\
 \\
-Lixpinb pue ditisea suotpeo \\
-!!dde aseqeqep az!wozsno pue \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
- गदृ!teas \\
 \\
 d0I SWGO/T2t ロo!founj l|nJ e \\
 -әג pue 'notzeado uotperidde 'satit!ifn बxevoifo!p sәpinodd \\
 - [007 8лadoןəaәp e pue 'aben6 \\
 -de pa!!dm00 e 'גวұ! \\
 e 'Shad e sapniouy fonpodd \\

\end{tabular} & вұдепәд \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline -78วnbȧ aodn pəys!uand & \begin{tabular}{l}
 \\

\end{tabular} & \begin{tabular}{l}
ןепоен әэпәдәјวя \\
Gu!urasbord Tox dozsool 7папабетеи pue \\
 Tõ dozsuoy of ootionpodzu [е!
\end{tabular} & \begin{tabular}{l}
 puenion ג! poen \\

\end{tabular} & яวэхәхวјวя \\
\hline \begin{tabular}{l}
 \\

\end{tabular} & \begin{tabular}{l}
-7иว \\
 \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
 \\
 aq ues (entixea siosbzoodd \\

\end{tabular} & \begin{tabular}{l}
-saseqpepp \\
 \\
 \\

\end{tabular} & 8хдепวу \\
\hline ASvaiduar :1IV 1089 & \[
\begin{aligned}
& \text { 8IOL } \\
& : \text { MEd }
\end{aligned}
\] & Tōs dolsuoll :RAONTL & \[
\begin{gathered}
\text { aspais } \\
: \text { :aspars }
\end{gathered}
\] & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline -78ənbad oodn paysṭusnd & & -7banbad uodn paqsiunn & - Pranbad uodn paysṭund \(^{\text {a }}\) & 8วэиวдәวəу \\
\hline \begin{tabular}{l}
- 87onpodd \\
 pəzepdn/passәวدe aq Ler so IIOS pue zad mij efod -suioj \\
 -ar eqep 6aiflimiad janisnjora \\
 \\
 \\
 \\
 sanjen P7ep jo Louafsisuog วy7 \\

\end{tabular} & \begin{tabular}{l}
 azedodios jo ұכe of anp pase 8 1007 би! \\

\end{tabular} & \begin{tabular}{l}
 \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
- xqA 2प7 \\
 \\

\end{tabular} & 8yderad \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & & - 7 fanbad uodn pəystuand & -76วnbax vodn paystuand & вวэบวдวјวぬ \\
\hline \begin{tabular}{l}
-80077 \\
-royidde paseq pia pue дzznd - \\
 \\
 asequepep jo daqunu Lue jo \\
 \\
 \\
 \\
 \\
 әу7 а!ччт! әвеqедер дәчұоие \\
 ои вәввәв8од әвеqедер чогд
\end{tabular} & \begin{tabular}{l}
- spәәu \\
 \\
 \\
 \\
 \\
 \\
 -วqu! quodnns pue an!snaqu - पои aq of paubigap 8en sio
\end{tabular} & \begin{tabular}{l}
-8ұวпродd рวұロа! 10 \\
 \\
 -PH -әзеяедер ач7 јо вәлпұвај \\
 \\
 \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
 \\
 \\
 \\
 \\

\end{tabular} & 8ұдепгт \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline -7banbad vodn pays!̣und & -78วnbad vodn poysṭunnd & -7รวnbวa nodn pəystuand & -7ganbad oodn paysṭunnd & รวэขวдวјวฉ \\
\hline \begin{tabular}{l}
-novaij dq paziod \\
 \\
 \\
 sдориал дач70 notie of pays!i -qnd aq IIIT [000702d uado uy
\end{tabular} & \begin{tabular}{l}
-7PId smazsis wado ue vo วuop \\
 \\
 бu!periz "Lipridea sootpeo \\
 'ввәәолd абтвәр ау7 әкир \\

\end{tabular} & \begin{tabular}{l}
- Tajapid \\
алентjos/arenpsey Lue of pa! \\
 -ndiuer do soubipesed әseqpezep \\
 -पe [Lxanb nouy of azsn ayz \\

\end{tabular} & \begin{tabular}{l}
- ISSOM) \\
 \\
 \\

\end{tabular} & 8улепәу \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
 \\
 \\
 \\
- 1861 ' \(7 \mathrm{~d} \partial \mathrm{~S}\) \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
-EEtSt 0iY0 'gabdu \\
 \\
 \\
 :גəquni 7uarnood 'SSII 7วatord oadyo :8! SSII jo squavod \\
 \\
 \\
 \\
 \\

\end{tabular} & '78วnbax uodn paystuand & ' 7 bonbad nodn pays!uand & вววขวдวјวู \\
\hline \begin{tabular}{l}
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
-รว!ุ! \\
- Гivej 6uifuodəa antguazza seq \\
 -ndod of бuṭfpiaq pue ‘әбиечว \\
 \\
 ‘uo!tippe ai -sa!̣! !itqedeo sootzejụnamo 88ว201d-07 \\
 \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
 \\
 \\

\end{tabular} & \begin{tabular}{l}
 \\
 \\
 \\
 \\
 \\
 \\
 -8 - \\
 \\
 \\
 \\

\end{tabular} & 8удрпру \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
 \\
 \\
 \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
 \\
 е of safina pue speas asequepep \\
 \\
 \\
 \\
 \\
 \\
\(\cdot \operatorname{sod} \mathrm{A}_{7}\) \\
 -un jo łoddns [euolatppy - \\
- sวрои 2 ди70 \\
07 patdos вวтqе7 ә8еgezep jo \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
-6u! \(2 \boldsymbol{2 j} 10\) \\
 frod of ade suo!qoadip Lued - \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
воо!рәдд! \\
 suo!zpา!!! apeas zoamio
\end{tabular} \\
\hline \begin{tabular}{l}
-quedap pue satpuabe ool 4 \\
 \\
 \\
 \\
 ze paliezsu! difuadano ade sfonpoid 9y วapazios - Suee -dag 'fpeqsadea of adentjos je \\
 \\

\end{tabular} & & \begin{tabular}{l}
-suotpeotidde snodann doj \\
 \\
 \\
 әч7 и!
\end{tabular} & -8วzpas pation 2ч7 u! buotzet - [р7su! 009I Lizzemicoidde sey cofsis votpenaojui sink zud & \begin{tabular}{l}
suotzeग! ddy \(^{\text {pap }}\) \\
 quaran
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
HRLSIS MOLLTHYOUMI SINY

}

SPGYOP
:97 gavalios
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
 \\
 LIy yodą •sozepdn quoddns \\

\end{tabular} & \begin{tabular}{l}
－вәәеддәда！по！ \\
 дә！gea notip of dostapl \\
 2प7 07 1007 рад－700ג！ P 60！ －quarajda！dizuadanj •qonpodd \\

\end{tabular} & \begin{tabular}{l}
－spuz－700лj ә8วч7 јо әио \\
 \\
 \\
－грие』 07 pafaod 8728［007 \\
 pue＇（saysui）＇I＇J＇\＆＇asequs \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
－s2seq \\
 \\
 \\
 \\
 －aวd＇fioddns ұıомұәа puedza \\
 \\
 \\
 \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
 \\
 \\
 ว7e7s ұัaдanว
\end{tabular} \\
\hline \begin{tabular}{l}
－47no \\
 \\
е se patieqsui si วseqtifnh
\end{tabular} & \begin{tabular}{l}
－hai ue vo mazsds ［0л700う doys qof e yutin zina \\
 \\
 \\
 วsn vo！ponpodd u！B！gia』 วq山
\end{tabular} & \begin{tabular}{l}
 \\
 \\
 \\
 －dy－satuedroo oos aunfuod jo \\

\end{tabular} & \begin{tabular}{l}
－spuermos әдепipioqns \\
 \\
 \\
 \\
－ 80017 \\

\end{tabular} & \begin{tabular}{l}
suotpeotiddy puy \\
 ษัวมมก2
\end{tabular} \\
\hline 8S79 ：LIV 108A & 9IOL ： 1 日 & Tōs dolsuoll ：H8OMY & \[
\begin{gathered}
\text { תsvais } \\
\text { : aspaxs }
\end{gathered}
\] & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
 \\
 aвеgezep pue afqeq doj 87! \\
 -7ขав \\
-aбpuer pzep pae 'zuanabruea \\
 \\
 \\
1R7PP PZұпq! \\
 \\
 \\
 \\
 \\
 SAK \(2 廿 7\) ט!
\end{tabular} & \begin{tabular}{l}
- วэчепиоддวд \\
 \\
 \\
 \\
 \\
 -әdmi Kןienauab fou ade safep \\

\end{tabular} & \begin{tabular}{l}
 s, hai pue (aseqas pue 'ssad6ui \\
 -uen aseqejep [puopzeray paseq \\
 \\
 \\
 \\
Ga!poo lae znoytin sazand \\
 pue zgo ytin joedazu! of siasn 8nolie zeqt (280) SHEO [Puo!7] \\
 \\

\end{tabular} & \begin{tabular}{l}
 \\
 \\
 \\
- วұ! \\
 \\

\end{tabular} & suotponiog 2In7nd put 800!? Pluat ว7eqs jozans \\
\hline \begin{tabular}{l}
- 27 • 6 6и \\
 \\
 \\
 - вวваәэ! \\
 \\
 \\
 - әр! пирtдом
\end{tabular} & \begin{tabular}{l}
-рәұпәпә亩! \\
 100|J-doys e pue \&amb eqep \\
 \\

\end{tabular} & -ватэлабе диап -dazaos pue suolpenodioo doctem и! Luea !azep 07 008I дәло & \begin{tabular}{l}
 \\
 \\

\end{tabular} & suotzeotiddy pup su0!pelipzal ฉขวมมด) \\
\hline S0/70s any '2ga 'pus : M I & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
 \\
 \\
 до ә00 dq uо!редар! 8000 дәрии 8! 8aseqpiep 「enotferad-u0u of \\
 \\
 \\
 Адәлә quoddns of suefd лочdezan
\end{tabular} & \begin{tabular}{l}
-6atnuizuo \\
 \\
 \\
 \\
 \\
 \\
 doj [rays pue 307 dSIT cod] \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
- saдnұеәј ә8วч7 \\
 \\
e au!jap of ungaq sey yiom \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
 \\
 \\
 \\

\end{tabular} & 800!podito วanznd puy 800!7eltaty วдeqs juaring \\
\hline \begin{tabular}{l}
 \\
 d0700גd se yons gatuedroo 005 \\
 \\
 \\
 \\
 jo neanng sgoopzerado 'jyeas \\
 \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
- әлоqе paq!גовәр saseq \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
-6u!anวขejnuew \\
 \\
 вว! oos't Liy
\end{tabular} & \begin{tabular}{l}
-p108 \\
 \\
 pue sauexjuṭer oo pasn snjod jo \\
 \\
 \\
 - пequ 6u!pnipa! ‘spase zuawua -nó pue 'simppese '[r!̣ueu!] u! pasn ade lawjod pue sajod
\end{tabular} & suotzeotiddy puy suotipiteqsuI 7 ฟวมภท \\
\hline
\end{tabular}

22
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
-asRal \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
- qndu! se abemi radmos әрриеч of sj007 би!ведןдд \\

\end{tabular} & & \begin{tabular}{l}
 \\
 \\
 \\
 \\
-sisougetp pue but \\
 \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
sootiojato ampnd pay \\
 ว7eqs juadinu
\end{tabular} \\
\hline \({ }^{\text {-78̇nbax uodn paysiuand }}\) & \begin{tabular}{l}
 -ut \(8,007 e x a y s\) pue 'redastnad \\
 \\
 \\
 \\
 qua!̣ quaдaj!!p ooz дало
\end{tabular} & \begin{tabular}{l}
- อวว 'Saxy \\
 \\
 падq алеч SHIOI jo вұоวчodao
\end{tabular} & \begin{tabular}{l}
 \\
 \\
 \\
 \\
 -ewoine 20!fio apnjou! suo!7 \\
 8วt!
\end{tabular} & 800!7e? !iddy puy suotiplipzsuI 7 (2วañ \\
\hline \[
\begin{aligned}
& \text { PHdaS } \\
& \text { :HOJuID }
\end{aligned}
\] & & \[
\begin{gathered}
\text { SHIOI } \\
\text { : } 18979 \text { q.oog }
\end{gathered}
\] & Saliod
:Saiootionjoda ; SHadsis wag & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
－ฉวедұио \\
aәpun әuop aq Lea rotpertion \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
－\(\partial\) jqeftene \\
 － 7 sanba』 dasn îq pappe aq \e屯 sjafndaos pue＇suotientidde \\
＇SHEO［PUOTATPPY •נวQue！ \\
 saseqezep pue suoupeotidde jo \\
 \\
 \\
วप7 ロ！̣7！ \\
 \\
 \\
 \\
 SHI faoddns fou sวop snidzHOT
\end{tabular} & \begin{tabular}{l}
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
pue SHA／qPA＇asegiefs asnoh \\
 \\
 \\
ade epy pue［eosed＇oiseg］ sweaboad nyariod pue＇rog03＇s doj 7addne quog pue qös pap －paqua sopinodd 2 segaris \(28 n 0 \mathrm{H}\) \\
 \\
 \\
 －วa 10j วโqe！tear fou si fnq \\
 \\
 \\
 －yino par sha－sha bajojfedd \\
 pue Sha／zya wo 68／uep a！paseat \\
 \\

\end{tabular} & 800！podito adnznd puy 800！17P？！！！ วдeqs poanan \\
\hline \begin{tabular}{l}
－suo！buazra pue quawdo \\
 \\
 \\
 －68／L pazexodionat duedmoo
\end{tabular} & & \begin{tabular}{l}
－8xaznde02 pinog swino s，yic jo jedanas do buṭuuna dotigaza SIL \\
 \\
 \\
 of papaene qoedzooo ISt כuody \\
 \\
 \\
 \\
09 dวao u！patieqsu！ade \\

\end{tabular} & \begin{tabular}{l}
－ว7ว＇трапабе \\
 \\
 \\
 －reytide［eporantoo jo abuea \\
 \\

\end{tabular} & \begin{tabular}{l}
 \\
 \\

\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
－007＇6015－00Ls \\
 \\
 ј0 ว2！！＇panposd uo 6u！puadəa
\end{tabular} & \begin{tabular}{l}
000＇90IS－00g＇Is Денәјед S0／】ðs \\
 000＇2I S－OSI \＄（чэед） Ids fovozoxd \\
 000＇IL \＄－000＇IS Je7s／SA89Ni \\
 000＇se \＄－00s \＄Lenzzeg Sub
\end{tabular} & \begin{tabular}{l}
 \\

\end{tabular} & \begin{tabular}{l}
－000＇92IS \\
 \\
 \\
 07 000＇6I＇s doj sabued dafiod \\
 \\

\end{tabular} & \begin{tabular}{l}
8วว！̣⿺辶ร \\
pQY 7onpord \\
 ว2eri！iodddy
\end{tabular} \\
\hline \begin{tabular}{l}
 \\
 －şjoud MaIa＇066I u！poanetd \\
 \\
 －06／I \\
paseapar aq of pauupid \(\cdot\) quardo \\

\end{tabular} & \begin{tabular}{l}
 \\
 \\
 әлеирлеч впоәаәбодадәу иәәиұәа \\
 \\
 \\
－әјпрои әэаги \\
－ә7u！̣！pur uotzeado asequzep \\

\end{tabular} & \begin{tabular}{l}
－bexizferd \\
 \\
 －01d vo！poesued paznq！iqsip \\
 \\
 \\
 －
\end{tabular} & \begin{tabular}{l}
－Ifural pappe ade squax \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
 \\
 \\
do fonpo1d jo вұпатоdioj ข！！！pods
\end{tabular} \\
\hline \begin{tabular}{l}
－quazedsoedz \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
 \\
 \\
 \\
 \\
 \\
 \\
 \\
u！pazxoddns foo әat feyz 8วdat efep Shan［epol jensnun \\

\end{tabular} & \begin{tabular}{l}
－710dm！ \\
 \\

\end{tabular} & －pasinhba s！ว6ueyo out & \begin{tabular}{l}
\(1 \cdot 072\) \\
 радпппрая вәГпрои do smed60id＇ezed \\
 saseqpied \\
 \\

\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
－aqeitear ade squmoo \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 －гәро世 по роадәр вәэтид
\end{tabular} & \begin{tabular}{l}
－ \\
 Layz 8e 600 se＇วгgetieas \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
－әблечр \\
геuotutppe of－dz7nogids \\
 \\
 \\
 \\
 \\
－－епадеэтдs \\
чэед JoI s66＇Is－Lenдze97\％s \\
－000＇02s－ 780 BO 7 s
\end{tabular} & \begin{tabular}{l}
－000＇0zis of 000＇s codj babuex \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
รวว！̣адร puy ponposd \\
 วzeetroiddy
\end{tabular} \\
\hline \begin{tabular}{l}
 วั！ \\
 \\
＇て／Sd）วロ！ IIth aseqeqep sт̣̆s－aseqe7ep \\
 \\
 \(\qquad\)
\end{tabular} & \begin{tabular}{l}
 \\
 00 paseq spooz dxenotyo！p ezeo
\end{tabular} & \begin{tabular}{l}
 \\
 \\
 \\
 \\
 no！gaza yiza e＇sazandrostuta \\
 \\
 \\
 \\

\end{tabular} & － 1 depatidodd & \begin{tabular}{l}
 \\
 \\
10 \(\mathfrak{7}\) onpord 30 87uarodeo Pu！̣oods
\end{tabular} \\
\hline & & \begin{tabular}{l}
－［рт！ \\
 \\

\end{tabular} & & \begin{tabular}{l}
\(1 \cdot 37\) \\
 рамипбан вагпрои д0 buex60лd＇rzeo j0 по！ұеอ！ saвeqepea ［е209 07 радয়nbay вวбиечว јо ұчวาะม
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline -000'001s - 000's9 \({ }^{\prime}\) & \begin{tabular}{l}
- quaguoninua \\

\end{tabular} & - то!penn6! \(-\partial p(78!1 \cdot \$ \cdot 0) 000 \times 66 \$-000\) 's \(\$\) cidj sabued әвпวว! & \begin{tabular}{l}
 \\
'atexjutere e joj 000'00is \\

\end{tabular} & \begin{tabular}{l}
sววinas \\
pay jonpodd 30 26uey 2511 Id วұеп! 1 01ddy
\end{tabular} \\
\hline \begin{tabular}{l}
-47!!!q!zed \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
- 18 d 0 T) \\
 \\
 \\
 \\
 \\
 \\
 \\
 дәрип әле вұпәоодкоз пәи Аиен
\end{tabular} & \begin{tabular}{l}
 dayzo ify - parauefd 8! has pur \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
'066I ם! pasezןдג \\
2q [!! -WEI pue jd 'WaI pue yun ozant \\
 \\
 \\
 \\
 \\
 \\
 jo saḋf onf Jo 87sigu00 Lawood
\end{tabular} & \begin{tabular}{l}
 \\
 \\
do ponpodid jo \\
 ง!ִ!
\end{tabular} \\
\hline & \begin{tabular}{l}
 \\
 :8วdio \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
-SHA Y6nozyz \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
-pдлош \\
 \\
 \\
 -әdo j! 'дәләно日 -6и!̣вәวолd \\
 \\
 volfeotidde of vo!zeoty
\end{tabular} & \begin{tabular}{l}
\(1 \cdot 072\) \\
'ұиарівау วя 0ф рал!пиау sәппрои do samanord 'rzea \\
 saseqpapa \\
 \\

\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
Idiliod
: Jui 'sasoilag molduyodul
}

\section*{8SpagaduI \\ :- d80 g gruddos aspagaini \\ \\ do gandilsul shassahovssu}
SIO
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
－＋000•002s \\
 ＇siseq กdj dad e vo pasqวo！
\end{tabular} & \begin{tabular}{l}
 \\
 10I \(000^{\prime} 000{ }^{\circ} 85-000^{\prime}\) OgIs modi 26uea sojud suotz \\
 әotud paxif pazzuexent 10 d
\end{tabular} & －00！̧eotidde u0 ұuәpuada & \begin{tabular}{l}
－7800 7e papinadd 7rodans juәado \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
8วว！nas puy ponpord \\
 ว7eatrojddy
\end{tabular} \\
\hline \begin{tabular}{l}
＇Sa／TరS ‘I／T0 \\
＇ShI ‘Shy＇got＇za0 ‘had exdns \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
－eqep abemi ylic［eวp \\
 \\
 \\
 －uว of xad of วoejaza！NOSI 6a！jexodaooul－sa！i！！itiqedes \\
 \\
－tidde gatzsira of suotsuazia
\end{tabular} & \begin{tabular}{l}
－baje yэea u！dititiqedea \\
 ддadıa pue saseqpiep se qons \\
 \\
 \\
 pue вазеqедер јо dnoá чэед
\end{tabular} & \begin{tabular}{l}
 \\
 \\
 \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
 \\
 \\
do jonpodd j0 87ロarodion ग！j！ods
\end{tabular} \\
\hline \begin{tabular}{l}
－「วロมว】 \\
 \\
－ha！jua apeadoad pue dode \\

\end{tabular} & －parinnad 8！วбueyo on & \begin{tabular}{l}
－азея әбрапподу вгәрои әвеqедер ач7 и！радоэв взер \\
 \\
 алтұеи ג！ уэед sว！uanb shioi－вазеqетер \\

\end{tabular} & －padinbar s！วбury ou & \begin{tabular}{l}
－コวว \\
＇วロวріรวม วя 0』 рал！пиау вәппрон do sweaboid＇ezed I0 UO！ sasegezed \\
 \\

\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
- aredjuitre eqo ajor \\
 \\
 \\
 \\
 ezep pae 'ла \\

\end{tabular} & \begin{tabular}{l}
- पocgaza 0098 Sha/zYa \\
 \\
 \\
 -npiappoi gi of dn aoj gatu!edz \\
jo sLep \(l\) 'THOM 'sisisdipur \\
 \\
 -по!̣ว! \\

\end{tabular} & \begin{tabular}{l}
-000’0c\$ 8! majozerd pazis -Ṭप! \\
 \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
รวว!̣aวร \\
puy fonpord 10 ә6иен дэ! 1 д aper!roaddy
\end{tabular} \\
\hline \begin{tabular}{l}
 \\
 \\
 \\
 \\
 \\
 6u!̣ioztuon pue 'Kaənovad 'uotit \\
 pae dəpitnq daevoifo!p ezed
\end{tabular} & \begin{tabular}{l}
 \\
 'sjo07 astu of sabpiaq jevory -Tppe '7ıoddns dI/dju әрприт \\
 - butbrajodd hei-jza pae 'jzo -2a0 ITnj 10j sapinodd '686I \\

\end{tabular} & \begin{tabular}{l}
 \\
 47! i!qedeo s!yd - apoer zonpodd .วuope-parza, e a! вәдедado pue \\
 \\

\end{tabular} & \begin{tabular}{l}
 \\
 \\
 \\
 -tian of sLenzzes -0006da pue ooocdi do zวhrazs pue asegaras
\end{tabular} & \begin{tabular}{l}
 \\
 \\
до 7 วnpord jo 87ロarodiou P!!!ods
\end{tabular} \\
\hline \begin{tabular}{l}
 \\
Lay e bị houozne [reot -auon
\end{tabular} & \begin{tabular}{l}
- рагinnaд 8! әбиечу \\
 \\
 \\
 \\

\end{tabular} & -padinbad s! 26 ¢eqo oh & \begin{tabular}{l}
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
\(1 \cdot 370\) \\
'дорртяәд วя \(0 \downarrow\) рал!ппадя вәүпрон \\
 \\
 sasegezeo [200107 рац!̣nbay вวбиечว јо ұธวาะд
\end{tabular} \\
\hline \begin{tabular}{l}
огшияม \\
: JuI rolltyogini pavo
\end{tabular} & & \begin{tabular}{l}
 \\
: d 00 O VIPO TORLIOO
\end{tabular} & \begin{tabular}{l}
яSоонвя 10 о \\
:MOLLPYOdyOD SOMOOJ
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
－Senaze9 wis jo suotzeaiquor pue di／dว」＇xu！ \\

\end{tabular} & \begin{tabular}{l}
－oni－has pue＇spooozodd di \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
－pazsn 6utaq miojzerd \\
 \\
 \\
 ＇dud＇Jddy＇soigzza＇w母o \\
 \\

\end{tabular} & \begin{tabular}{l}
－I＇ 8 SOO 47！ \\
 \\
 dazndros［euosdad hai＇sainia \\
 \\

\end{tabular} & 8วอ！ajas みхоитวม \\
\hline \begin{tabular}{l}
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 e aq uev qutun suotipesuedif \\

\end{tabular} & \begin{tabular}{l}
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
 \\
 \\
 \\
 sว！！abra！dazje pue aдojaq \\
 \\

\end{tabular} & \begin{tabular}{l}
 \\
д0 pary a mazndmos ןevos \\
 \\
 se yons szoanos snotuen and \\
 －pa66ot poe patijuan＇payipon \\
 \\
 －－2e of pasn st ә6enbuef［ejnp \\
 pue zan par saseqpaep siuy \\
 ＇Lyipor of pue sarij peot of \\
 \\

\end{tabular} & ұшапабепеи ио！poesued， puy әjepdo ［eqoro \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
 \\
 \\
 por（hos）daбraeh piea［rqot9
\end{tabular} & & \begin{tabular}{l}
 \\
 ＇sวu！！pasea ‘sau！pazes！pap \\
 －zan anyda ue baisn pazarajd －n！s！วseqeapp paznq！azs！p y
\end{tabular} & \begin{tabular}{l}
－pazaddne spooz7oid \\
 \\
 puedra of pazticiaj－fajen \\
 \\
 －vodinuz jboy ayp doj rojozodd \\

\end{tabular} & \\
\hline －pazroddne 70 H & \begin{tabular}{l}
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
－варои โIT \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 －！пои ио！ \\
 \\
 \\
 \\
 －pazaddns 8！quamabever vo！ \\

\end{tabular} & \begin{tabular}{l}
 －пол sey дориал дәаәноч ！［әла！ \\
 \\
 \\
 \\
 \\

\end{tabular} & 7ロәиวбепен мо！̣วрsueג』 pay ววepda ［eqol9 \\
\hline 2SYgitian ：1IV 10881 & & \begin{tabular}{l}
IXS dousuol \\
：hsarivt
\end{tabular} & \begin{tabular}{l}
gspax \\
：aspais
\end{tabular} & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
－sて＇I pue \\
 \\
 \\
 \\
 \\
 \\
 Rady fevoi doj sux pue foudayza \\

\end{tabular} & \begin{tabular}{l}
 \\
 \\
 \\
 \\
－saseqefep วfonas of suo！f \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
－utipuod pue＇zouja \\
 \\
 \\
 әбеввә！paepueqs e sey วsegдวұuI
\end{tabular} & \begin{tabular}{l}
－8601 10 ддว sappuey pue ：pzep saddava pue \\
 \\
 \\
 pue 6uṭanb spodzu02＇sabes \\
 \\
 J－IdJ pue jddy 6aicisn＇キys Yz！n \\
 u！＇sit fi esadel uotzestunm －ت00 queitideos hela pue＇spau \\
 \\
 \\
 \\

\end{tabular} & 8วอโฺ1วโ ม10月72ม \\
\hline \begin{tabular}{l}
－ 800 ！poesuedz \\
 \\
ว10॥ 8！6uts82001d paseq 7604 \\
 \\
 \\
 \\
 －dopanap pides วzezi！iorj ues \\
 \\
 \\

\end{tabular} & －abeuea votpoesuedz pue әzep －dn jeqoj6 jo sjanal snotara әр！модd［！！ วanznd • 「eatidzad ełep 87joddns dju0 vo！̣sian fuasadd & \begin{tabular}{l}
－00！feo！jdde［enp！n！po！2प7 50 рәәи әч7 ио би！poadәр едер IIе \\
 \\
7！ \\
 \\
 \\
 of pasn วq URD＇f！wion aseqd －onj د！femozne pue suo！zoesued \\
 onf＇apiboid e codd cuocssas \\
 －dn әq ups sәseqezep әd！ \(7[\mathrm{nh}\)
\end{tabular} & \begin{tabular}{l}
 i！8dasn suinoju！uayz pue éras ped yozedos e u！paooad ayt \\
 \\
 \\
 \\
 \\
 \\

\end{tabular} & ұоапабепен volpopsued】 pay ә7epdn「eqol9 \\
\hline
\end{tabular}

\footnotetext{
IมITDOd

}
\begin{tabular}{|c|c|c|c|c|}
\hline & \begin{tabular}{l}
－8［0．00701d \\
ม10п7әи јо ұиәриадәри！s！ \\
 \\
 ／dal＇วsa＇（て＇gat＇act＇olze） YUS／HeI ：Gurpnpa！paziod －dns spovozodd ұдомдәи IIV
\end{tabular} & \begin{tabular}{l}
－еұuantida！ 00 дuapuadap axe \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
 \\
7xodsuex би！ әonnozad otieadp pue＇ry pue \\
 \\
 \\
 snotoryoulse pue snoooxponds
\end{tabular} & รวэ！ィมวฐ มлопวみม \\
\hline \begin{tabular}{l}
 \\
 \\
 \\
 －вds ұиапабеиет авеqрерр дачдо дој әañas aq 【ей－panjon \\
 \\

\end{tabular} & \begin{tabular}{l}
－ 6 ut \\
－szoond notpoesuedz pue＇［iciz 7！pne＇6u！dopicuon s82002d j0J \\
 －atidodd Iq pawiojazd vo！pounj \\
 －efep fevoi e aip janazs aseq －ezep pue asequejep ein suzfsis \\
azonad do sp007 volfestunn － 00 pue dapuer ejea 46nodyz pandojazd safepdn ןeqol0
\end{tabular} & \begin{tabular}{l}
 \\
 －вәвеqеzep ayz jo Lue a！ezep \\

\end{tabular} & \begin{tabular}{l}
－8！seq poatqo Lq 7oว！qo \\

\end{tabular} & таәпәбвиеи vo！porsued】 puy ә7epda ［eqolo \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
 әоор 8! 78วпbaג גว8n е jo \\
 \\
 \\
 \\
 \\
 \\
 \\
 дasn pue satij [eatioot IIt
\end{tabular} & \begin{tabular}{l}
-sienaze6 şyэur lq pozroddns \\
 [evol ayz ite 880л0e suitor \\
 \\
 \\
2प7 7e anovo Les Lazonb rapd \\
 \\
 \\
 \\
 \\
ач7 7e вว! \\
 \\
рәұnq! \\
-8!рерв әqд -вว! \\
-Rzep [poit 07u! pabodioozp ade Lapootpoia rzea pazqq!az \\

\end{tabular} & \begin{tabular}{l}
-2п! \\
 \\
 \\
 \\
 \\
 \\
 sodj pazada! aдe eqep әouo
\end{tabular} & \begin{tabular}{l}
- ad \\
 squodəı әonpo̊d of eqep jo 6и! \\
 \\
 IV 00 paseq aəfoday SIMYy \\
 \\
 'paseq ппан 'sejuas [eanpas \\
 \\
 \\
 \\

\end{tabular} & 60!882001d ムдəñ \\
\hline \begin{tabular}{l}
 yossajoud hain palpeo jonpord \\
 \\
 \\
 \\
 pajepost pae ‘paznq!aze! \\

\end{tabular} & \begin{tabular}{l}
- 1 варои дачдо 07 \\
 pue 'eдепачаs [ejof 07 sabueyo \\
 \\
 \\
 \\
 pue 'add 7 ezep 'aweo aseqezep \\
 -saseqezep [esol of syu!t. \\
 \\

\end{tabular} & \begin{tabular}{l}
 \\
[rqoto oh -buotatarjap pzep \\
 \\
 pazifue jayjanj aq Ler zearaj \\
 \\

\end{tabular} & \begin{tabular}{l}
- Sidg \\
-sәәәи әдәчи рәр!иодd syо0q \\
 \\
 -dicosəp вzер jo uo!tapap pue \\
 \\
 \\
 \\
 \\

\end{tabular} & 00ำวกำ8003 entups [8qOT9 \\
\hline
\end{tabular}

\section*{8SYais}

\section*{Tods donsoril}
RIOd
:Mad

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
－08 op of pazinoyzne 8！גวsn วч7 pap！aodd baseq －Pjep aticodios jo daqunu lue \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
－spuegroo shad \\
 \\
 \\
วчд \({ }^{2}\) ？ \\
 \\
70s＇08｜\％•pazaddns \(8!\) \\
 \\
 \\
 \\
 87800 ухоп7วロ pue 6u！̣89002d \\
 \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
 \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
 \\
 aR sว！uant s8วうodd of noy ao \\
 \\
 \\
 \\
 \\

\end{tabular} & （［PAD！ 6а！88วつ0ад〈ıanð \\
\hline \begin{tabular}{l}
－pautjap aq Ler sәseq －едер дд！ \\

\end{tabular} & \begin{tabular}{l}
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
－वгqpiteas \\
әде 06！gap әseqеzep jo 0017 \\
 \\

\end{tabular} & －Lxeqoiţọp snid／0aつ sasa & \(\begin{array}{r}\text { notyondzeuon } \\ \text { erayos } \\ \hline\end{array}\) ［ PqOTO \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
- ootzerguedz ә6ennuet pue 'eqep \\
 \\
 \\
 \\
 \\
 \\
 \\
 -8ว00גd vo paseq dбวzedz8 7802 \\
 е в8วә0дд о7 рәрәәи вәвеqе7ер \\
 \\
 - rea pur pasaed bi tõs u! lazno
\end{tabular} & \begin{tabular}{l}
-วda7 shag pae aotpeoot јо вватрдебад раделаиаб 8 т әрог ә! \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 -ap pue qaәsu! ‘azepdn 'Laənb) \\

\end{tabular} & \begin{tabular}{l}
 \\
 \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
 \\
 \\
 \\
 әэелдәји! ұиว!̣! \\
 \\
 \\
 \\
 -a 0 овад але saseqezep quadaj!!p \\

\end{tabular} & ([елว!גдวу) 6u!95z20גd 4ano \\
\hline \begin{tabular}{l}
-aterop zaps \\
247 jo squarota efep doj suo!f \\
 \\
a! pae suo!zeras paquar6exi pue poleotidad 6uthatoods \\
 \\
 \\
 чэед 'papeoi ade eqешачәs \\
 әטор ио!̣!u!jar esaseqezep [ejoi snotiea ssodjer pau!f -ap suotfeopidde fazaju!p 10] \\

\end{tabular} & \begin{tabular}{l}
 \\
пววดววๆ вби! -oe pue suotidicasap pyep \\
 shotie styil -s6utddet razyos \\
 \\
 \\

\end{tabular} & & \begin{tabular}{l}
- วweu 28 Pq \\
 \\
 \\
 \\
 \\
 \\

\end{tabular} & \\
\hline
\end{tabular}

\section*{9500н88MOd \\ }

\begin{tabular}{|c|c|c|c|c|}
\hline & \begin{tabular}{l}
-Shed [reotiziad-von doj abeng -vep asequepep fevol of iòs jo \\
 \\
 \\
 \\
 \\
 prepurze e rita sootidanuod \\
 -әдаб е от виопвдалиоэ әбеввап donaz pue adit ejep ranojad
\end{tabular} & \begin{tabular}{l}
-pazodat Iffejtsiqd วae ejep \\
 \\
 บ! votutu! \\
 - чerazs of pabitiser b7tun pue \\

\end{tabular} & \begin{tabular}{l}
 \\
 \\
 -sadif zealoj ezep [enjoe por ә6е8n д0ј 8ио \\
 \\

\end{tabular} & \begin{tabular}{l}
яәчрзевв!и \\
 8ว!7!!!q!?edrojuI 87PO
\end{tabular} \\
\hline \begin{tabular}{l}
-papinoid st louaded \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
- Rzep dịay doj 48! \\
 [e00 Jeyt 8 pue suotapazodd วप7 วлaz8q0 \\
 \\
- ロ! (sumpool sproty [en \\
 [peol e of s7a!od yu! 24, \\
 \\

\end{tabular} & \begin{tabular}{l}
 \\
 -der voizerajoju o! puraras pue \\
 070! вјер pazade! sderad \\
 \\
 \\
 8! епәчәв равея дगедо-षои
\end{tabular} & \begin{tabular}{l}
- 4 !! [puotpounj \\
 \\
 efep sinya aq7 07 loai - Shoi \\
 \\
 \\
 \\
 \\
 \\

\end{tabular} & \\
\hline & & & -[200!7P1ว¢ & tгрои: е7ea [eqOIO \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
 \\
 \\
 \\
 'qua! \\
 doj (SI patieo) впачоs aseqpepa \\

\end{tabular} & \begin{tabular}{l}
-swexfoxd do sopnx \\
 \\
 Lue saofle feqz aseq a6parnoux \\

\end{tabular} & \begin{tabular}{l}
 \\
 pau!jap ade zenioi pue ad 77 ezeo
\end{tabular} & \begin{tabular}{l}
- aben6uet \\
 eqep pautiap dasn sfaoddns •It - [ет!penoine pappuey ade suots -dasion zewiod •jasazs vado \\
 -ef80edif [enotzound -emayos \\
 \\
 \\

\end{tabular} & вәчวјенв! ग! вว! \(7!!!q!7\) edroond 87eg \\
\hline \begin{tabular}{l}
 \\
 \\
 \\
 \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
 \\
 \\
 aq ләч7!
\end{tabular} & \begin{tabular}{l}
-8wopsis do7soon \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
 \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
тотвдалод \\
 әseqpepa [POO O
\end{tabular} \\
\hline & \begin{tabular}{l}
 \\

\end{tabular} & & & \begin{tabular}{l}
[כPOK efeg \\
[eqOT9
\end{tabular} \\
\hline 8SYGILIOM : III 80898 & \[
\begin{aligned}
& \text { giad } \\
& \text { :ndd }
\end{aligned}
\] & Tōs dolsuon :Myarl & gStars : ASPads & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
-so/Iõs pue 2 ga Lq ว6n 10j sal! pue 'rzounor pue 'ga/hOOHDYO 'SHOI 'fOLH 'SYAYOH \\
 \\
 \\
 \\
 \\
 \\
 \\
e7ep jo әбued әpin e sfladdns
\end{tabular} & \begin{tabular}{l}
 \\
 [eotuoues aq7 pue rinayos aseq \\

\end{tabular} & \begin{tabular}{l}
-280 07. \({ }^{2 P O T / P R O T}\) \\
 \\
 \\
 asegp ‘โ-て-1 8n701 :10] pap!a \\

\end{tabular} & \begin{tabular}{l}
- ग 9 ! 880 d \\

\end{tabular} & \begin{tabular}{l}
вวчวреп! !! ข! ! \\
 P 7 PO
\end{tabular} \\
\hline & \begin{tabular}{l}
-pazpן \\
 [poot pue jeqorb ayz 'ezen -ачәs раделбади! pue pazaалио \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
- ептугs zad s,hai pue \\
 \\
 -panịnbad 8! vo!̣дanuoo oh
\end{tabular} & \begin{tabular}{l}
 \\
s! shá Iq pәpinod etaqәs әчц
\end{tabular} & \\
\hline [P00!̧P|วy & & & & гวрои едео [eqOTO \\
\hline : HEI & & \begin{tabular}{l}
HALSIS IXS \\

\end{tabular} & \begin{tabular}{l}
Sxdd ‘SHA/qPB \\

\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
- JวАJวS \\
 рарриеч ase tods jo sjoneif \\
 \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
 - je peaotqeztuebao pue '6u! \\
 \\
 авеqедер-дәzu! \(8500 \downarrow\)-8วth! \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
yoz ue iq papueq Ifzuzaedsueat \\
 \\

\end{tabular} & \begin{tabular}{l}
-pationovad ade satu!!!q! \\
 \\
‘одй әप7 рие әэеддддп! әч7 \\
yбnorys 'aseqis pue "sad6aI \\
'วргедо 'rgo se yons 'sәzeqezep \\
 \\

\end{tabular} & \begin{tabular}{l}
вวчวұепв! \\
 รว! \(7!!\) ! 9 ! 7 edrosuI 87PO
\end{tabular} \\
\hline \begin{tabular}{l}
-88วээe дадоүалар \\
'дәвп-рда дој виәта [етт60! \\
 \\
 \\
 \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
-papazu se ssuotpozeod pue sutoc jo uotzesonu! miperozne \\
- [rezol of reqofa poe [eqof 6 \\
 -әио pue әu0-07-duek :6u!um \\

\end{tabular} & \begin{tabular}{l}
- ムлеяяәәәи \\
 едер Gu!ze! \\

\end{tabular} & \begin{tabular}{l}
 \\
วq पеว по!?d! \\
 \\
 \\
-әд 700 op 'qpy 10 III วsequ \\
 \\
 \\
 \\
 \\
-sen e pation "emzyos guippods \\

\end{tabular} & \begin{tabular}{l}
vois.anaoj \\
pitiqus \\
aseqeapo [POOT
\end{tabular} \\
\hline & - вя рәриәдя & \({ }^{\text {¢ Puoilpipl }}\) & & \begin{tabular}{l}
[כPON R7P0 \\
[eqor9
\end{tabular} \\
\hline \[
\begin{gathered}
\text { SIO } \\
\text { yödrad }
\end{gathered}
\] & \begin{tabular}{l}
 \\
do ghalllsul shasiajessen
\end{tabular} & \begin{tabular}{l}
sSYagedil \\
:•d800 s.
\end{tabular} & \begin{tabular}{l}
LIITOO \\

\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
 \\

\end{tabular} & T0s & \begin{tabular}{l}
－axnpoap！ \\
 \\
әqе！iene 08je si yequis 2x！ए－48！ \\

\end{tabular} & әбеn6upt vorze Indiuen P7ea jeqole \\
\hline \begin{tabular}{l}
－zan pue＇sa／Tos \\
＇80／SHI＇THLOL＇WYSA＇I／TO
\end{tabular} & \begin{tabular}{l}
－SQ／IOS pue \\
＇SHI＇SH甘＇qpy＇ح80 ：9 ロo！sdan \\
 \\

\end{tabular} & ＇III ว8ego pue＇sa／70s＇280 & \begin{tabular}{l}
－heso pue \\
＇hYSI ‘HYSA ‘T－TO ‘80／HOOHLYO \\
 ＇sa／70s＇syayoy ‘z／shoi＇z8o
\end{tabular} & patuoddns Suad［e20 \\
\hline \begin{tabular}{l}
－pajaoddns วas saдnววnafs \\
 \\
 \\
 \\
 \\

\end{tabular} & & & \begin{tabular}{l}
 \\

\end{tabular} & pazłoddns sן е7е0［e909 \\
\hline \begin{tabular}{l}
－81078 8 \\
6u！zeado par suotzembityuos \\
 ๆonpodd 8，9y วaenfjos •8ұuar \\
 \\
 \\
－「елддая
\end{tabular} & \begin{tabular}{l}
－surojzefd s！̣a pue sua \\
－гедәиая
\end{tabular} & \begin{tabular}{l}
 \\
 \\
 \\
－［еладая
\end{tabular} & \begin{tabular}{l}
－SJIJ／4R－SAK＇SJID \\
／SAK＇HOLYG／SAK＇OSL／UX－SAK ＇OSL／SAN＇SHJ／KA＇SJID／SOO＇aSA ／sod ：87uanuodinia бutypado 6a！Moliol aqt w bund sihty \\
－एедәда
\end{tabular} & parenpier poe 2dentios） 7uวa00d！̣ag \\
\hline & วบО & 200\％ & \begin{tabular}{l}
raz8is voizpea \\

\end{tabular} & 10גd pantiad © Luodoy \(^{2}\) \\
\hline spgrar ：97 88zudios & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
－xatdro eq papin －odd sa！f！i！qedes［ie quoddns \\

\end{tabular} & －padinbax әuok & －Buotsuazra smid Tos ISNy & \begin{tabular}{l}
 \\
 \\

\end{tabular} & abenbueq voljerndiuen ejea［eqota \\
\hline ＇hil pue＇әjoexo＇ooozs＇il soi & \begin{tabular}{l}
－mas uo 2 zeqis •xpa uo \\

\end{tabular} & \begin{tabular}{l}
 \\
do7suon ゅapuea pue qơs dozsuon
\end{tabular} & － \(28 \mathrm{sq} \mathrm{S}_{5}\) & pałjoddns Shal［PJOT \\
\hline \begin{tabular}{l}
－smazsIS ә！La pue ‘xion \\

\end{tabular} & \begin{tabular}{l}
－жхоптән \\

\end{tabular} & & \begin{tabular}{l}
 \\

\end{tabular} & pazaddng s ¢วрои p7e0［emor \\
\hline \begin{tabular}{l}
－ Hov Guifzoddns mazsis \\
 \\
－［елапая
\end{tabular} & \begin{tabular}{l}
－Sha／8ino \\
pue 3 6utzaddns sulajferd \\
 \\
－「едәиая
\end{tabular} & \begin{tabular}{l}
－su27888 dols \\
 －［eдวuas
\end{tabular} & －pazaddns suiajzerd dayzo snotaes pue hai＇snzeazs ＇praenda＇ollody＇mas＇xya －ןeazaд & \\
\hline 2 OH & วutibua uotjpatajui efou mat & 200\％ & 28еqPzed axpsis & \begin{tabular}{l}
10ıд ралидад \\

\end{tabular} \\
\hline ASYGILTMH ：LIV X08d & & Tos dolsion ：HROIII & \[
\begin{gathered}
\text { gsvass } \\
\text { :aspais }
\end{gathered}
\] & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
 \\
 sanjea vo әоор в! do!zpisued \\
 ае цбподч7 вапреа јо вяав би! \\
 \\
 zeraij pue ziun әxit seriqodd \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
-6и!чәәчэ \\
 \\
 \\
 \\
 \\
 \\
 \\
 -тичјар раәчәв \& әч7 чбподчи
\end{tabular} & - 2 лоqе 22 S & \begin{tabular}{l}
- ifleptipaonne \\
 \\
 -aq sпotbazanoj 6u!ppinoid pazaddns ade sadiz \\
 \\
 \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
 \\
 \\
 P7P0
\end{tabular} \\
\hline \begin{tabular}{l}
 sution pue dnox 6 бuiterdad \\
 \\
 -6uIdder prot \\
วuo of Lueh pue fueh of auo pue \\
 6utdder volqerax zuo of Luen \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
 \\
 of paqiaozap aje par quequi \\

\end{tabular} & \begin{tabular}{l}
 \\
 zәблад ач7 zeyn pue sen pajoedz \\
 \\
 \\
 -
\end{tabular} & \begin{tabular}{l}
-sวutznod \\
 - тиouea oqu! paddea pue sapqe7 mozsis shea [euoupprad zyz conf \\
 \\
 \\
 \\
 \\
 \\
 - pazaddne no!gazanoz [pjot on
\end{tabular} & \\
\hline - [е00! & & - anoqe 2 S & \begin{tabular}{l}
-sd! ! 48 \\
 \\
 \\

\end{tabular} & [כPOM R7P0 [PqOIO \\
\hline & & : 8800 VLYO TOALHOJ & \begin{tabular}{l}
9Scoiganod \\
: HOLIP80d80 SOHOO
\end{tabular} & \\
\hline
\end{tabular}```

