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Abstract

This paper develops an algorithm for solving a standard-form linear program

directly from an infeasible "warm start,"i.e., directly from a given infeasible solution

x that satisfies A = b but x X 0 . The algorithm is a potential function reduction

algorithm, but the potential function is somewhat different than other interior-point

method potential functions, and is given by

F(x, B) = q In (ct x- B)- 3 In (xj + h (cT x- B))
j=l

where q = n + f is a given constant, h is a given strictly positive shift vector used

to shift the nonnegativity constraints, and B is a lower bound on the optimal value

of the linear program. The duality gap cT x - B is used both in the leading term as

well as in the barrier term to help shift the nonnegativity constraints. The

algorithm is shown under suitable conditions to achieve a constant decrease in the

potential function and so achieves a constant decrease in the duality gap (and hence

also in the infeasibility) in O(n) iterations. Under more restrictive assumptions

regarding the dual feasible region, this algorithm is modified by the addition of a

dual barrier term, and will achieve a constant decrease in the duality gap (and in the

infeasibility) in O(V-i) iterations.

Key Words: Linear program, potential function, shifted barrier, interior point

algorithm, polynomial time bound.



1. Introduction

This study is motivated by the problem of solving a linear program from an

infeasible "warm start" solution, i.e., a solution that is not feasible for the linear

program but is believed to be close to both feasibility and optimality for the linear

program. The existence of such a "warm start" solution arises in many of the

practical applications of linear programming. Quite often in the practice of using

linear programming, it is necessary to make multiple runs of a given linear

programming model, typically with relatively minor adjustments to the data of the

given model. Over thirty years of experience with the simplex method has shown

that the optimal basis (or equivalently the optimal solution) of one version of the

model usually serves as an excellent starting basis for the next version of the model,

whether or not the basis is even feasible for the next version of the model. When

using the simplex method for solving linear programs, such a "warm start"

infeasible solution can dramatically reduce the number of pivots and consequently

the running time (both in Phase I and in Phase II) for solving multiple versions of a

given base case linear programming model. In spite of the practical experience with

using "warm start" solutions in the simplex method, there is no underlying

complexity analysis that guarantees fast running times for such "warm start"

solutions. This is due to the inevitable combinatorial aspects of the simplex

algorithm itself.

In the case of interior-point algorithms for linear programming, much of the

current complexity analysis of these algorithms is based on starting the algorithm

from either an interior feasible solution (and only analyzing Phase II) or on starting

the algorithm from a completely cold start, i.e., no known feasible solution.

Anstreicher's combined Phase I-Phase II algorithm [2] is an exception to this trend, as

is the shifted-barrier algorithm in [4]. (See Todd [10] for further analysis and

extensions of Anstreicher's algorithm.) Both of these algorithms, as well as the

algorithm presented in this paper, can be used to solve a linear program from an

infeasible "warm start." Furthermore, all three algorithms have the following other

desirable features: they simultaneously improve feasibility and optimality at each

iteration, and so bypass the need for a Phase I-Phase II transition. Under suitable

assumptions, these algorithms also have a worst-case computational complexity that

is polynomial-time, and their theoretical performance is a function of how far the

initial "warm start" is from being feasible and from being optimal (using a suitable

measure of infeasibility and of optimality).



The algorithm developed in this paper is a potential function reduction

algorithm, but the potential function is somewhat different than other interior-point

method potential functions. The construction of the potential function is an

extension of the shifted barrier function approach developed in [4]. Suppose we are

interested in solving the linear program:

LP. minimize cT x

x

s.t. Ax = b, x > 0,

directly from a given infeasible "warm start" solution, i.e., a directly from a given

solution that is infeasible for LP in the sense that A = b but X 0 . Let

h e Rn be a given strictly positive vector in Rn that is used to "shift" the

nonnegativity constraints from x > 0 to x + he > 0 for some positive parameter

e . A shifted barrier function approach to solving LP is to solve the parameterized

problem:

n

Sh(e): minimize cT x - In (xj + hj e)
x j=1

s.t. Ax = b,

x+ he > 0,

for a sequence of values of e that converges to zero, see [4]. One can easily show that

as e goes to zero, optimal solutions to Sh(e) converge to a feasible and optimal

solution to LP . (Problem Sh(e) above is a specific instance of a more general

shifted barrier problem studied in Gill et. al. [5]). If B is a lower bound on the

unknown optimal objective value of LP , denoted z* , then the duality gap

cT x - B can be used as a proxy for in problem Sh(e) . This leads to the following

potential function minimization problem:
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PF: minimize F (x, B) = qln(cTx-B) - In (x + hj (cTx - B))
x, B

s.t. Ax = b

x + h(cTx-B) > 0 ,

where q > n is a given fixed scalar. Note that for a sufficiently small values of B 

that Cx, B) is feasible in PF.

An algorithm for solving PF is presented in Section 3, and this algorithm is

denoted Algorithm 1. This algorithm is a direct extension of the potential function

reduction algorithm of [31, which is a slightly altered version of Ye's algorithm [11]

for linear programming. At each iteration, a primal step is taken if the norm of a

certain vector is sufficiently large; otherwise an improved dual solution is produced.

It is shown in Section 3 that under suitable assumptions the iterates of Algorithm 1

decrease the potential function F(x, B) by at least 1/12 at each iteration, when

q = n + i . This leads to a complexity analysis of O(n) iterations to achieve a

constant decrease in the duality gap cT x - B .

The assumptions that are needed to achieve the performance results for

Algorithm 1 include very routine assumptions (i.e., A has full row rank, the sets of

optimal primal and dual solutions are nonempty and bounded, and we know a

lower bound B on z*), plus one fairly restrictive assumption regarding the dual

feasible region: it is assumed that the dual feasible region is bounded and that a

bound on the size of the dual feasible is known in advance. The boundedness

assumption is easy to coerce, but the known bound may not be very easy to satisfy in

some circumstances, except by introducing large numbers (i.e., all dual solutions lie

in a ball of radius 2 L , where L is the bit size representation of the linear program).

Section 4 of the paper examines a modification of the problem PF that

includes a barrier term for dual variables:
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HF: minimize H (x, s, B) = q In (cT x - B) - In (xi + h i (cT x - B))- In sj
x, Ir, s, B j=1 j=1

s.t. Ax = b

x + h(ctx-B) > 0

ATir+s = C

s>0

B = bT x

Algorithm 1 is modified slightly to Algorithm 2 in this section. Under assumptions

more restrictive than those of Algorithm 1, it is shown that the iterates of

Algorithm 2 decrease the potential function H(x, s, B) by at least 0.04 at each

iteration, when q = n + si . This leads to a complexity analysis of O(W-) iterations

to achieve a constant decrease in the duality gap cT x - B

Section 2 of the paper presents notation, assumptions, and preliminary

results. Section 3 contains the development and analysis of Algorithm 1, and

Section 4 contains the analysis of Algorithm 2. Section 5 contains remarks

concerning the role of dual feasible solutions in the algorithms and in the

assumptions, and compares the strengths and weaknesses of Algorithm 1 and

Algorithm 2. The Appendix contains inequalities concerning logarithms that are

used in the analysis.

2. Notation, Assumptions, and Preliminaries

If s, y, t, or h is a vector in R n, then S, Y, T, or H refers to the nxn

diagonal matrix whose diagonal elements correspond to the components of s, y, t,

or h, respectively. Let e be vector of ones, i.e., e = (1,..., 1)T. If xeRRn lixIl

denotes the Euclidean norm of x, and II x II denotes the L1 norm of x, i.e.,

n
II xll=, IXjl I

j=1

Our concern is with solving a linear program of the form:
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P: minimize cTx

x

s.t. Ax = b

whose dual is given by

D: maximize bT r

(I, s)

s.t. ATt + s = c

s>0 .

We make the following assumptions on P and D.

Al: The rows of A have full rank.

A2: The set of optimal solutions of P and D are nonempty and bounded.

Let z* denote the optimal objective value of P. We also assume that we have the

following initial information on P:

A3: We have an initial vector for which Ax = b but x ~ 0 , and

A4: We have an initial lower bound B on the unknown value z*, i.e., we have

a constant B for which B < z*

Note that if x is the initial "warm start" for P, but Ax * b, then by performing a

projection, we can modify x so that A; = b . Furthermore, we can also assume

with no loss of generality that the dual feasible region is bounded. (If the dual

feasible region is not bounded, then by adding the constraint bT xr > B to the dual,

the dual feasible region becomes bounded by assumption A2). We formally add this

assumption as:

A5: The dual feasible region is bounded.

Let he R n be a given positive vector, i.e., h > 0 . Our interest lies in

"shifting" the inequality constraints x 0 to constraints of the form x + gh > 0 ,
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for parameterized values of , so that the initial infeasible warm start solution x

satisfies + gh 0 . Furthermore, our interest is in developing an algorithm for

LP that will decrease the optimality gap cT x - z* and will decrease the value of at

each iteration. We refer to h as the given shift vector, and pg as the shift parameter.

Our approach is as follows:

Suppose B is a lower bound on z* . Consider the linear program:

LP(B): minimize cTx

x

s.t. Ax = b

x + h(ct x - B) > 0.

Note that the constraints x > 0 in LP have been replaced in LP (B) by the

constraints x + gh > 0 , where the shift parameter p. is equal to cT x-B , i.e., g

is the difference between the objective value of x and the bound B . It is

straightforward to show the following:

Proposition 2.1:

(i) If

(ii) If

Let (B)

B < z*,

B = z*,

Based on the formulation

reduction problem:

PF: minimize
x, B

s.t.

denote that optimal objective value of LP (B)

B < (B) < z*.

B = u(B) = z* .

of LP (B) , we consider the following potential function

n
F (x, B) = q In (cT x- B) - In (xj + hj (cT x- B))

j=1

Ax = b

x + h(cTx-B) > 0 ,

B < z* ,

where q > n is a given parameter. Note that the constraint B < z* is equivalent to

the condition that B < bT for some dual feasible solution (7, s) .

We make the following further assumptions on initial information about the

dual feasible region:
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A6: A bound on the set of all dual feasible slack vectors s is known, and h has

been rescaled so that hT s < - for all feasible solutions (0, s) , where

k = 9.

Note that assumption A6 is satisfied if we know some information on the

boundedness of the dual feasible region. For example, if we know that II s1I < R for

all dual feasible solutions (, s) , then upon replacing h - h k 1 h R where

k = 9 , we have hTs < Il sll h II < 1 Of all of the assumptions, however, A6
9 4

appears to be the most restrictive.

Our final assumption is a technical consideration.

A7: 1 + hTc 0.

This assumption can always be satisfied for a given h by slightly perturbing or

rescaling h if necessary. It is a necessary assumption to ensure the invertability of

an affine transformation defined in Section 3.

Assumptions Al through A7 include the routine assumptions Al - A4 (i.e.,

A has full row rank, the sets of optimal primal and dual solutions are nonempty

and bounded, and we know a lower bound B on z*), plus one fairly restrictive

assumption regarding the duai feasible region: it is assumed that the dual feasible

region is bounded (A5) and that a bound on the size of the dual feasible is known in

advance (A6). The boundedness assumption is easy to coerce, but the known bound

may not be very easy to satisfy in some circumstances, except by introducing large

numbers (i.e., all dual solutions lie in a ball of radius 2L , where L is the bit size

representation of the linear program). Assumption A7 is a minor technical

assumption.

Finally, we present the following technical remark.

Remark 2.1. Under assumptions Al - A7, if (, 0) satisfy ATX <0 c , then

0>0.
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Proof: Because the dual is feasible, there exists that solves AT X c . Suppose

that 0 < 0 . Then AT ( - 0 + ) -0c + c = 0 ,whereby r = -X + X isa

ray of the dual feasible region. But because the dual feasible region is bounded, then

r = 0 . This in turn implies that AT X = c , which implies that the objective value

is constant on the primal feasible region. However, because the dual has a bounded

region, the primal feasible region is unbounded, and so this now implies that the set

of optimal solutions of P is unbounded, contradicting A2. U

3. Potential Function Reduction Algorithm 1

In this section we present an algorithm for LP that generates

values of x and B in the potential function minimization problem

improving

PF:

PF: minimize
x, B

s.t.

n
F(x,B) = qln(cTx-B)- I

j=1

Ax = b

In (xj + h (cTx - B))

x + h(cTx-B) > 0 ,

B < z*,

where q > n is a given parameter. This algorithm is as follows:

Algorithm 1 (A, b. c, h, 2 , B, q e, I, k)

Step 0 (Initialization)

Define

Assign

M= [I+hcT] M-1 =[I - T]

' 1 +cTh x = x

B ° = min B,l + n -1 
h- hn

x = xO

B = Bo

Step 1 (Test for Duality Gap Tolerance)

If (cT - B) < E£*, Stop.

8
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Step 2 (Compute Direction)

Y = x + h(c-B) (2a)
A = AM- 1 Y (2b)

c = Yc (2c)

b = b-( AhR-) (2d)

A = - = cT-B (3)

1 +cT h (4)

-d [I-AT ] (5)

If Idil 1 y, go to Step 3. Otherwise go to Step 4.

Step 3 (Primal Step)
Set f = M-ld/lll (6)
Set x = x- af

1
where a = 1 - 1,+ 23 or a is determined by a line-search of the

potential function F ( -a f, B).

Step 3a (Reset Primal Variables)

Reset x = x and go to Step 1.

Step 4 (Dual Step)

Define t = () (e +d) (7)

= ()(A A -g (8)

t
= 1 - hTt (9a)

lr = 1-hTt (9b)
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B = bTs (10)

X = bTrB (11)

Step 4a (Reset Dual Variables)

Reset (, s) = (i, s)

Reset B = B . Go to Step 1.

The data includes the original data for the LP, namely (A, b, c), the given

shift vector h > 0, the initial "warm start" infeasible solution and the initial

lower bound B on z*. The scalar E* is a tolerance on the duality gap used to stop

the algorithm (see Step 1). The constant q is the scalar used in the potential

function F(x, B) in problem PF. The constant is used in the algorithm and will be

explained shortly. The constant k is the number k = 9 used in Assumption A6, i.e.,

k = 9 . Each step of Algorithm 1 is summarized below.

Step 0:

In this step, the matrices M and M-1 are defined. Note that M- 1 is well-

defined due to Assumption A7. Next the initial values x and B are chosen. It is

elementary to prove:

Proposition 3.1 (Initial Values). The values of x and B assigned in Step 0 are

feasible for PF, and furthermore,

1 _1 -X
cTxO- B = maximum (cTx - B , l -)> 0. (12)

hl hn
Expression (12) states that the initial gap cT x° - B° is the maximum of the "warm

start" gap cT x -B and the quantities (1 - xj )/hj, j=l, ..., n . Thus the initial gap is

generally proportional to the extent of the initial gap and the infeasibility of ; the

larger the negativity in xj or the larger the gap cT x -B , the larger will be the

initial gap cT x° - B°

Step 1. This step tests whether or not the current gap value cT x - B is less than or

equal to the initial tolerance e* .

Step 2. The quantity y is the value of the slacks in the program PF at the current

values of (x, B) = (, B). Next the LP data is modified to A , c , and b in (2).
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This modification will be explained below. The current value of the gap is set equal

to A in (3). The quantities g and d are defined next; g corresponds to a gradient

and d corresponds to a projected gradient, as will be explained shortly. As in the

algorithm of Ye [11] or [3], if a is "large", i.e., if dl i > ·, the algorithm will take a

primal step (Step 3). If, on the other hand, IdIll < , the algorithm updates the

lower bound B by computing new dual variables (Step 4).

Step 3. In this step the algorithm computes the primal direction (6) and takes a step

in the negative of this direction, where the length a is computed either analytically

or by a line-search of the potential function.

Step 4. In this step the quantities (, s) are defined in (9). Proposition 3.4 below

demonstrates that the values (, ) will be dual feasible if II ii < < 1 . The

lower bound B on z* is then updated to B = bT X in (10). It will be shown that if

q = n + W then B - B = P > 0 , where is defined in (11).

Note that the major computational effort in this algorithm lies in the need to

work with (A AT)- 1 , i.e., to solve a system of the form (A AT) v = r for v .

However, because M -1 is a rank-1 matrix, XA A is a rank-3 modification of

A y2 AT (where Y is a diagonal matrix). Therefore methods that maintain sparsity

in solving systems of the form A 2 AT can be used to solve for d in Step 2 of the

algorithm.

In the remainder of this section we will prove:

Lemma 3.1 (Primal Improvement)

If Algorithm 1 takes a primal step and 0 < a < 1, then F(R - xif,B) -

a 2
F(R,B ) - a Y + 2 (1 ) . If Y = 0.5 and a = 1-1/al+2y, then F(-af,B) -

F(, B) < -1/12 .

Lemma 3.2 (Dual Improvement)

If q = n + if, y (0, 1), and p = (1 + )/(k(1 - ) < 1, then if Algorithm 1

p 2

takes a dual step, F(R, B) - F(, B) - (1 - Y) f + p + 2 (1 - p) If = 0.5 and

k = 9,then p = 1/3 and F(R, B) - F(R,B) < -1/12 .
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Lemmas 3.1 and 3.2 show that Algorithm 1 will reduce the potential function by at

least 1/12 at each iteration. Lemmas 3.1 and 3.2 thus serve as the basis to analyze the

complexity of Algorithm 1.

Let S = {x Rn I F(x, B) < F (x °, B) for some B e [B° , z*]}, let p =

n n
max , In (x + hj (cT x - B)), and let 8 = - In ( + hj (cTx - B°)) . It is
xeS j=1 j=l1

straightforward to show that S is a bounded set, that p is finite, and so 8 is finite.

Theorem 3.1. Suppose Algorithm 1 is initiated with q = n + 4if, k = 9, and Y = 0.5 .

Then after at most K = 12 (n + iF) I ncx B) + 12 iterations, the algorithm will

stop with cTx-B < e.

Proof: From Lemmas 3.1 and 3.2, we will have after K iterations,

F(, B) F(xP, B) < F(x° q In - 8.

Upon setting y = x + h (cT x ° - B °) , y = x + h (cT x -B ) , we have

q n (cT -B) -

i.e., q In ( T X - B)

n n

- In j qln (cT x °- B ) -X Iny-q
j=1 j=1

in(cTxO - B °
*l

£

In yf + q In - 8 .

n
However, In j

j=1
< p , since xe S

n
,and y =

j=1
p-8 . Thus

qin (cTx-B) < p-(p- )+qlne -8 = qInE* ,

whereby cT x - B < e .

- 8,

n

< ,Iny
j=1

n

-I
j=1

.
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We now proceed to prove Lemmas 3.1 and 3.2 by considering first the primal

step and then the dual step.

Analysis of Primal Step

At the beginning of Step 2 of Algorithm 1, the values of (x, B) = , B) are

feasible for PF, and the slacks are y = x + h(cT - B) > 0 . Now consider the affine

transformation:

y = T(x) = - l [x+h(cTx - B)] = -lMx - -- lhB,

where M is defined in (1). The inverse of T(x) is then:

x = T-l(y) = Yy-h IYTh).

where = Yc is defined in (2).

Note that T(R) = e . It is straightforward to verify that the affine transformation

y = T(x) transforms the problem PF to the following potential function reduction

problem:

PG: minimize G (y, B) = q In - In yj- In 
y j=1 j=1

s.t. Ay = b

y> ,

where y, A, b, are defined in (2) . Because TO = e , y = e is feasible in PG

Proposition 3.2. If (,B) are feasible for PF, then T(x) and T-1 (y) are well-defined,

and for all y = T(x) , then

(i) Ax = b if and only if Ay = b

(ii) x + h (cT x - B) > 0 if and only if y > 0

(iii) F (x, B) = G (y, B) .

Proof: Follows from direct substitution. U
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From (iii) above it follows that a decrease in G (y, B) by a constant will

correspond to an identical decrease in F (x, B) .

Much as in Gonzaga [6], Ye [11], and [3], we now show that the projected

gradient of G (y, B) in the y coordinates at the point y = e is a good descent

direction of G (y, B) . Note that g defined in (3) is the gradient of G (y, B) in the y

coordinate at y = e , and d is the projection of g onto the null space of the

equality constraints of PG . Also note that gd = a d = I dl 12 . Finally, note that

if a primal step is taken in Algorithm 1, then Ii dl[ > a .

Proposition3.3. G(e-ad/ ld l,B)-G(e, B) < -c + 2(2a2) for a [0,1).

Proof: G (e-ad/IIdIl,B)-G (e, B)

T e-d - ( {_1J/_X_
q- In - in 1-E~T~e ): M-k - ii)

• qIn (i-(aJzf/II l )) + aeTa/IlII
n A. Te - AB

(from Proposition A.2 of the Appendix)

< - q T /Ie-[ II + aeTd/lIIEe -B )

0a2
+ 2(1 - a)

a2
+ 2(1 - a)

(from Proposition A.1 of the Appendix)

-a iCe + 2-
- Hall T Z + 2(1 -a)

-a

1=d 1-dl gd
2 2 - + a2

+ 2(1 -) = -alldli + 2(1-a) - j + 2(1 - a)-

14
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1
Proof of Lemma 3.1: Upon setting a = 1 - n1 + 2 im Proposition 3.3,

G(e - ad/ dil{,WB) - G(e, ) < -(1 + -1 +-2y) -0.085 with = 0.5 . Finally,
from the definition of T(x) and T-1 (y) and Proposition 3.2, we obtain

FR -af ,B)-F ( ,B) < -0.085 < -1/12 . .

Analysis of Dual Step

Algorithm 1 will take a dual step (Step 4) if II d ll < y

quantities t, X, s, and hi are defined. We first show:

. In Step 4, the

Proposition 3.4. If II dI < y < 1 at Step 2, then (rs) is well-defined and (,s) is a

dual feasible solution.

Proof: Because A =cTT5- B> 0, q 0, y > 0, and Idil < y < 1 , then from (7) we

have t 0 . From (5) and (4) we have

- e - x (AX 'YA

which after rearranging is

-- = l(e + ) + Tx (A TXl -
1+CTh qjq

from (8). But from (2b) and (2c) this is

1 + )Y = (e + d) + Y(M-1)T AT 1 + c T h

15
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which from (7) is

c = t + (M-1)TATX.
1 +cTh

Premultiplying (13) by hT yields

hT c =- hTt+hT(M-l)T ATx
1+cTh

But hT (M-l)T = hT( 1 h
\1+c Th

from (1), so (14) becomes

t =hT C - hT AT 
1 + cT h

so that

lhTt- = +hTATX .
1 +cT h

Expanding (13) using (1) gives

c =t + ATX c hTAT ,
1 + cTh 1 + cTh

i.e.,

ATA ,+t = C1 +hTAT = (1
1 +cTh I

-hT) ,

where the last equality is from (16).

16
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But t > 0 , so from Remark 2.1, 1 - hTt > 0 . Therefore the definitions of s and Ir

in (9) are well-defined, and from (17) we obtain ATl + = c . Finally, s > 0

because t > 0 .

Our next task is to prove bounds on the quantity defined in (11). Toward this end,

we first prove two propositions.

Proposition 3.5. If q = n + vff and 0 < 1 and Algorithm 1 is at Step 4, then

yTPt s (n+ v

Proof: From (7) we obtain

yTt = (A (eTe+ .

Proposition 3.6. yTt =cT-(bTb+ hTt ).

Proof: Premultiplying (13) by yT gives

cT-+
1 + CT h =Tj+ eV(M-1)T ATX y+ eTXTX.

Thus yTt = cy
1 +cTh

-T - -T-
- Ae= C y

1 +cTh
- b =cy

1+ cT h

-T -T -
X b + AhB

1 + cTh

(since A e = b and using (2d))

-T- B
1 +cTh

-T 
-bT) + X AhB+B

1 +cTh

= TX - - 'bT + ' Ah+l = 'T X
1 +cT h

- B - bT~ + B( - hTt)

17
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(from (16))

= Tx- (bT + ht) . -

Proposition 3.7. If q = n + if and 0 < < 1 and Algorithm 1 is set at Step 4, then

(1 -y)qFA < 
...

< (1 + ) A

q(1- hTt)
, where is defined in (11).

Proof: From (9) and (11),

= bTr-B (bT -T_ =

(i-hT )

bT +hTtB-B

(I hT)
cT - Tt- B

1- h t

(from Proposition 3.5,

= (1 --

(from (3))

> ( h At ) (n .

(from Proposition 3.5)

= (I hTt )q

A d(1 - y)
q because hTt > 0 .

(18)

18



This shows the first inequality. For the second inequality, note from (18) that

-= bt-B
= (l hT )(-((eT e + eT))

A(1 + y)f

(1 - hT)q 

Before proceeding with the proof of Lemma 3.2, we will need one more proposition.

Proposition 3.8. Suppose 0 < y < 1 and that + < k, where k is there k is the constant

of Assumption A6. Suppose Algorithm 1 is at Step 4 and define is as in (11) and
define

Then (i) h ( p

Then (i) ,hTY- e p

and (ii) n ( hi
j=1 2(1-p

Proof: (i) = t
1- hTt

/ yj)
hj / Yj)

< p2

2 (1 - p)'

(hT)q)-1(e + d)

(from (7) and (9))

19
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> T 74 (e- ye) =

Because (,s') is dual feasible, from Assumption

1 2 hTs' 
k vW

(1-yA - 1

q( 1-hT)

A6 we have:

( -a hTY e -
q(l - hT)

From Proposition 3.7 we have P3 < (1 + ) A

q( - hT) '

where 3 is defined in (11). Combining (20) and (21) yields

(1-+ = 

(ii) For convenience, let r

j=1 2 (1-rj)

n r2

j=1 2(1- p)

= [3 -l h . Then (i) states eT r < p

Ilr112
2(1 -p)

< 11 r 
2(1 -p)

_ P2

2(1 -p)

, and

.

Proof of Lemma 3.2:

= q In(cT -i) - In (yj - hj) - q In (CT-B)+ In(j)
j=1 j=1

= qn(l-(
n

- In(1-rj)
j=l

where r = - h and = B-B = bTi-B .

20
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Thus from Proposition 3.8 and Propositions A.1 and A.2 of the Appendix

j=l 2 (1 -rj)

(^ )~B·P · 2 ( - p)

< 1- A · ~p2

<- P + P+2( -p)

(from Proposition 3.7)

p2

2(1 -p)'

where p - (kl

4. Potential Function Reduction Algorithm 2

In this section we consider a modification of the potential problem PF

defined in Section 3 to the altered potential function problem HF presented below.

We then present Algorithm 2 which solves LP by seeking improving values of

primal and dual variables in HF. Algorithm 2 is in fact a slight modification of

Algorithm 1.

Consider the potential function minimization problem:

21
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n n
HF: minimize H (x, s, B) = q In (cT x- B)- In (xi + h i (cT x - B)) - ~ In s i

x, s, iB, j=l j=1

s.t. Ax = b

x + h(cTx-B) > 0 ,

ATr+s = c

s>0

B = bT n

where q > n is a given parameter. Note that in this program that the potential

function H (x, s, B) is similar to F (x, B) but also contains a barrier term for the dual

slack variables s . Potential functions of this sort were first studied extensively by

Todd and Ye [9] and by Ye [11], [3], and others.

Also note that because Ax = b and AT + s = b , then

cTx-B = CTX-bTr = xTs, (22)

so that we could in fact rewrite H (x, s, B) as

H(x,s)=H(x,s,B)=H(x,s,cTx - xTs) = qln(xTs)- In(xj+hjxTs) Insjl (23)
j=1 j=1

The following algorithm (denoted Algorithm 2) is designed to generate improving

values of x and (n, s) in the potential function minimization problem HF

Algorithm 2 (A, b, c, h, , , *, a, k)

Step 0 (Initialization)

Define M = [I+hcT] M -= [I -h 1] (1)

xo = x

(co, so)= (, S)
BO = bTiC

x = xo

iB = bT '

22
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Step 1 (Test for Duality Gap Tolerance)
If cTx -B < £E, Stop.

Step 2 (Compute Direction)

y = x+h(cT-B) (2a)
A = AM-1 Y (2b)

c = Yc (2c)

b = b- AhB (2d)
1 + cT h

a = -c- (3)
1 + cT h

d = (I) (- -e (4)

= 1 Xr(-AXrY (5)

If ||d 2 , go to Step 3. Otherwise go to Step 4.

Step 3 (Primal Step)

Set f = M -l d/ ldI (6)
Set x = - af

where a = 1- + 2y ', or a is determined by a line-search of the

potential function H(x- af,) .

Step 3a (Reset Primal Variables)

Reset x = x and go to Step 1.

Step 4 (Dual Step)

Define t = (e ) (7)

X = ( X- Xq (A 1 (8)

23



s = 1_hTt (9a)

-t = 1-hT[ (9b)

B = bTl (10)

= bT- B (11)

Step 4 (Reset Dual Variables)

Reset (ir, ) = (r, s)

Reset B = B . Go toStepl.

In Algorithm 2, the initial data for the Fpzblem is identical to the data for

Algorithm 1, except that instead of having a lower bound B on the optimal value

z* , we instead have an explicit dual feasible solution (r, s) . Furthermore, we will

need the following altered versions of Assumptions A4 and A6:

A4': We have an initial feasible solution (r , ) for which ir and s are feasible in

HF, i.e., > 0 and x +h( T) > O

A6': A bound on the set of all dual feasible slack vectors s is known, and h has

been rescaled so that hT s < 1 for all dual feasible solutions (, s) , where
k =

k= 12 i

Assumption A4' assumes a known interior dual feasible solution (r, s) . It

also assume that x and (, s) are feasible for HF . This assumption can be very

restrictive. For instance, suppose that x < 0. Then even if (i, ) is interior feasible,

^T s < 0 , so that ^x + h xS) < 0 , violating A4'. This point is discussed further in

Section 5, which contains remarks. Assumption A6' is identical to A6, except that

the constant k has been modified from k = 9 to k = 12 . Note that other than

the initialization step (Step 0), Algorithm 2 has an identical structure to Algorithm 1.

Regarding the performance of Algorithm 2, we have

Lemma 4.1. (Primal Improvement). If Algorithm 2 takes a primal step and

0 < a < 1 , then

24
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H(x- a f, s) - H (, ) < - cry + 212 ) If Y = 0.33 and a = 1 -1 / 1 + 2y,
2(1 - ')

then H (- af,s) - H (, ) < -0.04 .

Proof: If the algorithm takes a primal step, the additional potential function term

n
I n sj is unaffected. Therefore, the analysisi the same as in Algorithm 1, and

j=l

Lemma 3.1 applies. .

Lemma 4.2. (Dual Improvement). If q = n + -, e (0,1) and p =(( 1-Y) <

then if Algorithm 2 takes a dual step,

H (xs9- H( xs) < - (1-y k 2(1-p) 2(1-y)
k ( - ) ( -

If Y = 0.33 and k =

12 , then H(x, s)-H (, s) < - 0.04 . .

Note in Lemma 4.2 that with k = 12v l and y = 0.33 , that p < 0.117,

because n > 2 (otherwise the dual feasible region would be unbounded, violating

A5). Therefore H(,s')- H (, s) - 0.04 . Before we prove Lemma 4.2, we present

a result on the complexity of Algorithm 2.

Theorem 4.1. Suppose Algorithm 2 is initiated with q = n + .t , = 0.33 . Then

after at most K = [25 v In (1)+ 25 H (x°, sO)] iterations, the algorithm will stop with

.

This theorem will be proved at the end of this section.

25
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Proof of Lemma 4.2. Suppose that Algorithm 2 is at Step 4. First note that

-Ts = T( + (Ts) h) = Tx(1 + -T h) • T( 1 + ki)

Therefore n In (yTs) < n In

However, from Proposition A.3 of the Appendix, n In (1 + k1 v) . Thus

n In(yTs) n In (xT +
k

Next note that because y = x + (TS) h 2 x5 (because we must have Ts 0 ), then

n n(yT)> n n(xTs') .

From (7) and (9a)

and II d| I I . Therefore, from Proposition A.6 of the

n
In j +

j=1

n

j=l
In (Yj)

Appendix,

> n n(yTs)-nl nn
2(1 -0

> n n(xT ') - n In n- 2(1 )
2 (1 -3')

(from (24)).
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Also, from Proposition A.4 of the Appendix,

n n
, In j + ] In yj

j=l j=l
< nln(yT)-nlnn. (27)

Let y= + (T9)h = + (cT-) h = + (ccT - P) h , then from Proposition

3.8 and the proof of Lemma 3.2 we obtain

Z In y
j=l

n p2

> = InT - p 2(1 ) 
j=l

In( s)_- 1
j=l

In yj _I
j=l

In - q In (x s) +
n n
lnInj+ In 

j=l j=l

(28)

< q n[I iT7]

(from (28))

< qIn( T)ID 1·~w~

n n
- In j + F In sj

i=l i=l

(from (26) and (27))

< qlnll + p
X tSI

p2
2(1 -p)

+ - n I n (RT) + n In (T)+
2(l -y)

(from (23))

= (q-n)ln(T) +p
xT§s

p2

2(1 -p)
(24)+ +- I .

2( -) k

27

p2
+p+ 2(1p)

2(1-p)

p2
P2(1-p) 2 (1 - )

k

i� _�II�� ��

Finally, WY-, 9 - Wxs-) = 

nln + n~)+ In (-yT



Hw= -fiq5 1- 

Thus, (q -
- - n

q
< -(-y)

2

Inequalities (24) and (25) combine to yield the result.

Proof of Theorem 4.1:

Let x and (is) be the current primal and dual

Algorithm 2.

Then

vf n (T) + nln(T - nn (-T-)(frI n (T3) - f I
k

(from (23))

= q In (T) - n I n (yTs)

In yjq In (xTj) - =
j=1

n
-5I

j=1

(from Proposition A.4)

= H(,s) -n In n.

Thus N1 n (xTs) < H (x,s ) + nln n
k

and so VIn (xT-§) < H (,s) ,

28
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variables after K iterations of

Insj-nln n

(26)
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because from A6', k = 12 f, and so 4k < nn n.
k

With K as given in the statement of Theorem 4.1,

vifn(Ts) < H(x,s) H(x°,s°) - 0.04K

< H(xO, sO) -vf In - H (xsO)

c ln ( ),

and so In( OT) E .

5. Remarks

Relative Importance of Dual Feasible Solutions. The primary motivation behind the

development of both Algorithm 1 and Algorithm 2 was to be able to solve a linear

program from an initial infeasible solution, without having to perform a Phase I

procedure or to induce feasibility by modifying the problem artificially. Both of these

algorithms will generate a sequence of primal iterates that are becoming increasingly

less infeasible and increasingly more optimal, and that converge to a feasible and

optimal solution. Notice though that whenever either algorithm takes its first dual

step, that the algorithm generates a dual feasible solution. Furthermore,

Algorithm 2 actually presumes that an interior dual feasible solution is known in

advance. In either algorithm, an interior dual feasible solution is produced or is

known in advance, even though all primal iterates may be infeasible. This suggests

perhaps that whenever a dual feasible solution is known or produced, that the LP

instead be processed by a Phase II type polynomial-time algorithm working through

the dual rather than the primal (for example, Todd and Burrell [8], Anstreicher [1], Ye

[11], or [3]). Such an approach would render the results of this paper of little

usefulness. However, there are at least two reasons why this strategy may not be

wise. The dual feasible solution that is known or produced may have a very poor

objective value, and so it may be a very poor candidate for a Phase II algorithm.

Secondly, the initial infeasible primal solution may be very close to feasibility and to
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optimality and so may be an excellent candidate for Algorithm 1 or Algorithm 2. In

fact, this second condition may typically hold when making multiple runs of slightly

altered versions of the same base case LP model, and it is this circumstance that has

been the guiding motivation of this paper.

Comparison of Algorithm 1 and Algorithm 2. When implemented without a line-

search, Algorithm 1 and Algorithm 2 differ in only three components: the choice of

the control constant , the choice of the constant k that is used to rescale the shift

vector h , and the initial presumed starting conditions of the two algorithms.

However, as is evident from a comparison of Theorems 3.1 and 4.1, the complexity

analysis of the two algorithms performed herein leads to different conclusions as to

the efficiency of each algorithm. Herein we compare the two algorithms and discuss

pros and cons of each algorithm.

A comparison of Theorems 3.1 and 4.1 suggests that Algorithm 2 is more

attractive from the standpoint of efficiency, for at least two reasons. As a function of

the duality gap tolerance £* , the iteration count constant K in Algorithm 2 is

superior to that of Algorithm 1 by a factor of O(V1h . The savings of viT parallels the

savings of ff obtained for potential function reduction algorithms that use a

symmetric primal-dual potential function versus a primal potential function, see Ye

[11] or [3]. Secondly, the constant K in Theorem 4.1 for Algorithm 2 is readily

computable as a function of the initial data for the problem. This contrasts with the

constant K in Theorem 3.1 for Algorithm 1, which involves the unknown

constants p and 6 .

The attractiveness of Algorithm 2 over Algorithm 1 is diminished when

considered from the standpoint of the initial assumptions. The additional initial

assumptions needed for Algorithm 2 are assumptions A4' and A6'. Assumption A4'

states that we know a dual feasible solution ( , ) and that ( , s) together with x are

feasible for the potential function reduction problem HF. There are many instances

where this assumption is not readily satisfiable. First, it assumes that an interior

dual feasible solution is known, which is not usually the case in practice. Second, it

assumes that this interior dual feasible solution results in a feasible solution for HF.

However, in many cases this might be impossible. For example, suppose the initial

value has all components negative or zero, i.e., x < 0 . Then x T < O0 and so the

initial feasibility condition for HF that x + h(x iT ) > 0 cannot hold. In contrast,

assumption A4 for Algorithm 1 only requires that a bound B on the optimal

objective value z* be known. This assumption is usually satisfied in practice.
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One way to circumvent the restrictiveness of assumption A4' of Algorithm 2

is to first run Algorithm 1 (but with the constant k = 12v ) until the algorithm takes

its first dual step. At that point the dual values (, ) together with the current

primal value will satisfy assumption A4' and so now Algorithm 2 can be initiated.

Note that this strategy will typically result in a larger initial duality gap (by a factor of

Vi) than if Algorithm 1 was run with the value of k set to k = 9 . This is because
the computation of B in Step 0 of Algorithm 1 involves terms of the form 1 /hj

Therefore with a constant of k = 12Ai1 versus k = 9 used to rescale the shift vector

h, then the value of the gap (cT x° - BO) could be larger by a factor of (12/9W = 4vWi/3.
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Appendix - Some Logarithmic Inequalities

In this appendix, we present a sequence of inequalities involving logarithms

Proposition

Proposition

A.1. If a > -1, then In(1+a) a . .

A.2. If al < b<1, In (1 +a) < a - 2(1-b)

Proposition A.1 follows from the concavity of the function In (x) , and a proof of

Proposition A.2 can be found in Todd and Ye [ 9 ].

Proposition A.3. If n>O and k>0 , then n n (1 + 1 3\ S .
\ k il k

U

Proposition A.3 follows from Proposition A.1 by setting a = 1 .
k 'f-

Proposition A.4. If a R n , be Rn, a>O0, b>0,then

n
n In (aT b) >2 

j=1

n
In (aj) + 

j=1

In (bj) + n In n.

Proof: This inequality is essentially the arithmetic-geometric mean inequality.

that

, from which the stated result follows by taking logarithms .

Proposition A.5. Let s = P Y-1 (e+ d) , where > 0 , y,e,d,se R n , and y>0,

ldll < < 1, and Y = diag(y) . Then

Proof: Firstnotethat Ys- (Y) e = p[I-

is a projection matrix, we have

H Ys -(YTS)e (4)Y) yT

-_ e eT ] d , and because the matrix in brackets
nJ
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IYs (s e p d P . It thus remains to show that P < n (- 

To see this, note yT s = P (eT e + eT d) > p (n - i') > p n (1- ) , from which it

yTs
follows that P < Yn (1- y) -

Proposition A.6. Let s = py-l(e+d) , where p > 0, y,e,dE Rn, and y > O0

jjdl Y< 1
n

. Then Y. In yj + In sj > n In (yTs) - n In n -
j=l j=l

Proof: For each j, yj sj = P (1 + dj), so that

lnyj + Insj = InP + In (1 + dj) > In p + dj - 2 (1-) , from Proposition A.2.

n
Inyj+Y Insj

j=1
> nlnp+eTd- 2(1 -

Also,

nln(yTs) = nln(p(n+eTd)) = nlnp+nln(n+eTd)

< nlnp+nlnn+eTd

from Proposition A.1. Combining (Al) and (A2) gives the result.
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