
How Can Groups Communicate

When They Use Different Languages?

Translating Between Partially Shared Type Hierarchies

Jintae Lee*

Thomas W. Malone*

SSM WP #3076-89-MS September, 1989

*Massachusetts Institute of Technology, Sloan School of Management
.. .r

How Can Groups Communicate
When They Use Different Languages?

Translating Between Partially Shared Type Hierarchies

Jintae Lee and Thomas W. Malone
Massachusetts Institute of Technology

Many computer systems are based on various types of messages, forms, or other objects. When users of
such systems need to communicate with people who use different object types, some kind of translation
is necessary. In this paper, we explore the space of general solutions to this translation problem and
propose several specific solutions to it. After first illustrating the problem in the Object Lens system,
we identify two partly conflicting objectives that any translation scheme should satisfy: preservation
of meaning and autonomous evolution of group languages. Then we partition the space of possible
solutions to this problem in terms of the set theoretic relations between group languages and a
common language. This leads to five primary solution classes and we illustrate and evaluate each one.
Finally, we describe a composite scheme, called Partially Shared Views, that combines many of the
best features of the other schemes. A key insight of the analysis is that partially shared type
hierarchies allow "foreign" object types to be automatically translated into their nearest common
"ancestor" types. The partial interoperability attained in this way makes possible flexible standards
where people can benefit from whatever agreements they do have without having to agree on
everything. Even though our examples deal primarily with extensions to the Object Lens system, the
analysis also suggests how other kinds of systems, such as heterogeneous databases or EDI
applications, mignt exploit specialization hierarchies of object types to simplify the translation
problem.

Computer-based systems often use various types of messages, forms, and other objects
to communicate information. When all the people who wish to communicate with each
other use exactly the same types of objects, translation problems do not arise.
However, when people want to communicate with others who use different kinds of
objects, some kind of translation is necessary. The needs for such translation seem
likely to become increasingly common as more and more diverse kinds of systems are
linked into heterogeneous networks.

We have been particularly concerned with one instance of this problem that arises in
the context of template-based office communication systems (e.g. [Malone et. al. 87b]
[Tsichritzis 82]). The problem is how users of such systems can communicate with
other users who have a different set of templates. Other examples of the problem
arise when users of different databases exchange data or queries, or when different

companies wish to use Electronic Data Interchange (EDI) standards to exchange

business forms such as purchase orders and invoices.

In this paper, we will explore the space of general solutions to this translation problem

and propose several specific schemes for solving it. Our primary goal has been to

design extensions to the Object Lens system [Lai et. al. 88] that allow different groups

to communicate with each other when (1) the groups use some, but not all, of the same

types of objects, and (2) the object types used by each group may change over time. In

addition to these extensions to the Object Lens system, we have been pleased to find

that our analysis has implications for other kinds of data interchange as well. In fact,

the problem of sharing information among partially overlapping language

communities may be regarded as one of the fundamental problems of coordination.

One of the most important general lessons of our analysis here is that several novel

and attractive translation schemes are possible when the object types are arranged in

an inheritance hierarchy with certain types of objects being regarded as

specializations of others. In particular, unknown object types can be automatically

translated into the nearest "ancestor" types they share with the receiving system.

One other interesting aspect of this approach from the point of view of object-oriented

system is that it translates the contents of foreign objects into object types for which

the receiving system already has actions defined. In the language of object-oriented

programming, this means that partial interoperability is attained by translating

object fields without needing to translate object methods.

In the first section of the paper, we illustrate the problem as it arises in the context of

the Object Lens system. In the second section, we state the problem more precisely in

terms of the objectives that we want its solution to satisfy. In Section 3, we explore the

space of possible solutions by suggesting a dimension along which to partition the

space and examining a representative solution for each class. In Section 4, we propose

a new scheme that combines most of the desirable features of the solutions we explored

and in Section 5, we describe our implementations of the scheme in the Object Lens

system. Finally, we hint at the implications that this research might have for other

contexts such as heterogeneous databases and Electronic Data Interchange.

2

1. Illustration: Inter-group communication in the Object Lens system

1.1 Description of the Object Lens system.

Object Lens is a general tool for cooperative work and information management. It

provides flexible facilities for storing and manipulating representations of many

different kinds of "objects," such as messages, people, projects, and tasks. For

example, it lets people specify rules to automatically filter, sort, and prioritize

electronic messages they receive; and it helps people find and summarize objects in a

database. The system is described in much more detail elsewhere [Lai et. al. 88].

Figure 1.1 A template for an object type, PERSON, is displayed in an object

editor.

§ e Close Cancel Add Link Hardcopy *Others*", , Ip I II iI I i I i ii,

Job title: Research Assistant
Alternatives Office: E55-27C
De scriptionsTelephone Number: 577-1155

Default
Ex lanation Supervisor: Hope Lee
*1·1;,··I ~Keywords:

Comments: He is a very active member.
:.. i

...... J i AleraivsOfie:E 5-7DscIti ons ~I. ~~.;.~..rrrr~~~~~~~~~.·---- ·· ·· ·- ·- ~ .

For our purposes here, a central feature of the system is that it depends on a set of

semi-structured templates for different types of objects. For instance, a person object

contains fields for name, job title, telephone number, and address (Fig. 1.1), while a

message object contains fields for To, From, Subject, and Date. The display-oriented

object editor, shown in Fig. 1.1, uses pop-up menus to suggest alternative values for

different fields, but users can put any value they desire in any field. A similar editor is

used to create rules for automatically processing objects of a given type based on the

contents of their fields. Users can also easily summarize the contents of collection of

3

objects in various formats such as tables and trees. In addition to fields and values, a

template has several other properties such as a display format and a set of actions that

can be applied to it. For instance, some actions are appropriate for all objects (e.g.,

Show or Hardcopy) while other actions are appropriate only for certain types of objects

(e.g., Answer or Forward for message objects).

The set of object types currently in use by our research group at MIT is shown in Fig.

1.2. As shown in the figure, the templates for different object types are arranged in a

network with some templates designated as "subtypes" (or specializations) of others.

The subtypes of a given template automatically inherit from the parent template its

field names, actions, and other properties. Any subtype may also, in turn, add new

fields or override any of the property values inherited by the parent (Fikes and Kehler,

1985). For example, the Action Request message type has the field Action Deadline in

addition to the usual fields such as To, From, and Subject. Its child, Bug Fix Request,

inherits these fields and has additional fields such as Bug Name and Severity.

We will refer to this network of object types as a type hierarchy even though it need not

be a strict hierarchy. The multiple inheritance capabilities of the underlying

knowledge representation system that we use [Stefik et.al. 83] allow one message type

to inherit properties from more than one parent.

1.2. Communicating with other groups.

In the simplest version of Lens, all users of Lens in a local group are expected to share

the same network of object types (though individual users can customize for

themselves the display properties of a shared object type). The problem arises when

users of an Object Lens system want to share objects with others who do not have

definitions for the object types to be shared. The simplest case of this problem arises

with exchanging messages, and we will illustrate the problem in this context.

Since Lens users are connected to national electronic mail networks, they often

o communicate with other people who do not use Lens at all, and they sometimes

communicate with users of Lens at other sites that use a different set of message types.

4

Figure 1.2 The object type hierarchy used at MIT

Close Add Link Move Selection Delete Slection *Others*
Isao i~e~~Im

LLhLn

Aent
yPC:Tnt P_ F.BoOK citatio

YPL:

Y
Poler YE

YPE: YC

w Ic Selection ul

YC:OtwarYPE:
Teoxt ' _ __ __

TYPE'
lEnveloDl

uoest for Informatio
Y :

Acjon e ues Meetino Pro osa

II YU~ $;x~ ua T~n CbuDoX e =

Uication Announcerme

Y E: -
YJTi Annun C,

Me~ssasq i ,qMeetr Announceneri ms tin ea AIecatlon
Try-VI! 2 =5 Ix Announcomo

C!i~ T 'E: ,
NetworK Oisoussi nite

YIPS C:. n MeetMG Acceptano

Noiieu Ix Comrnitmen

m~~~~'riPC
IcVenII IM1UIunI N TYPE:

lComferetic.

5

1I
III
r
I

t

·:

-

,o ----- �"--n

:i
I'

I:
r'

·1

I
I

IIr

1

I

It

r
r
I

II

t

t

,r

·,

·,
I,
I,

5
1,
·,
:I

'I
'II
II

I:

II
,I

·;
::

:1

r:

e: - . . .
.:11111~~~~11~~· 1;1;.1~~:·:~~:·:(:1:1:(.·.·..;

One solution to this problem was the following: When a Lens message is sent--even
within the local group--it is sent as an ordinary message with only the standard mail
header fields in its header. All the other fields specific to this message type are sent as
the first few lines of what the mail transport system regards as the body of the
message. The body of the message also includes a field called "Message Type" and
another one called 'Text" that contains all the remainder of the message. Thus any
electronic mail recipient can read a message from a Lens user. If the message is one of

ie specialized types with extra fields, these fields (including the field names followed
v colons) will simply appear in the body of the message.

hen a Lens user receives a message, the message is first checked to see whether it
atains a field called Message Type and whether the name in that field is one
:ognized by the local group. If so, the message is treated as being of that specialized
;e. If not, the message is treated by Lens as the most general message type of
·--Message. Thus Lens users can receive messages from any connected electronic

1i user. These messages are not processed by any of the special purpose rules set up
particular kinds of messages (such as Meeting Announcements or Bug Fix

quests). They can, however, be processed using rules that check fields present in all
ssages (such as To, From, Subject, and Text). Thus the system degrades quite
"acefully," taking advantage of as much of the Lens functionality as possible, even
en communicating with non-Lens users.

th this scheme, Lens users can also receive and process specialized message types
m Lens users at other sites--or even from non-Lens users who simply send messages
th the appropriate field names typed into the body of the messages. When the
nding site and the receiving site have exactly the same definitions for a given

:-essage type, this communication works as desired. A similar scheme would, of
course, work for other types of objects besides messages. Instead of translating
unknown object types into "Messages", however, they should be translated into the
most generic type of object (called "Thing" in Object Lens). Some of our examples in
the remainder of this paper will involve only messages; others will involve more

general object types.

6

There are two kind of problems, however, that can occur with schemes like this:

(1) If the sender and the receiver use the same name for what are actually different

object types, then the incoming objects may have either extra fields, missing fields, or

both. In these cases, the extra fields are inserted in the text of the message (or in the

"Comments" field of an object) and the missing fields are simply treated as being

empty. Even if fields with the same names are present, the sender may be using these

fields in ways that are different from what the receiver expects.

(2) If the sender and receiver use different names for what are in fact the same object

types (e.g., Bug Report and Bug Fix Request), then humans can read each other's

objects satisfactorily, but none of the automatic processing that could otherwise have

been applied to the objects will be invoked.

No disasters occur in either of these cases, but the Lens system fails to be as helpful as

it might be. The problem we will explore in the remainder of this paper is how to

design systems like Lens that can retain as much functionality as possible in

communication between groups without imposing excessive burdens on the different

groups to coordinate their changing document type definitions.

2. The Problem

We formulate our problem more precisely as follows:

Let there be some number of groups A, B, C, etc. Each group has a set of object types

that are shared by all members of the group. For instance, the types shared by

members of group A might be denoted by al, a2, etc. We refer to the set of object types

used by a group as the language of the group. We will be particularly concerned with

languages that are type hierarchies-- that is, languages in which some object types are

specializations of others (their "parents") and automatically inherit properties from

their parents.

7

There are also some number of translation schemes for translating types from one

language to another. For instance, TXy(x) might be a scheme that translates the

types used by group X into types used by group Y. The problem is to formulate

translation schemes that (1) preserve the original "meaning" of a given type of object

as much as possible while (2) allowing different groups to create or change their type

definitions with as much autonomy as possible. Let us explore these two objectives in

more detail.

2.1. Preservation of Meaning

The question of what an object, or any other expression, "means" is, of course, a

complex philosophical and linguistic issue (eg. see [Putnam 75] [Jackendoff 83]). For

our purposes here, we will oversimplify greatly and ignore most of these complexities.

Following ([Barwise & Perry 83] [Hewitt 83]), we will not regard the "meaning" of an

expression as having some (potentially falsifiable) correspondence with "reality".

Instead, we will focus only on the actions that a receiver might wish to take on

receiving an "expression" (eg. a document). Thus, for our purposes, two documents

that evoke the same actions in the same situation, have the same "meaning". To

preserve meaning of an expression, therefore, means to translate the expression in

such a way that the receivers of the translated expresion can perform the same range

of actions they would have wished to perform had they received and "understood" the

original expression. We intentionally leave undefined the term "understood" and

appeal only to an intuitive sense of what it would mean for receivers to "understand"

the original expression.

In the context of Lens, for example, we can interpret this criterion as follows. Take the

simple scheme TAB that translates any type unknown to a group into the most

general type the group has, say Message. Suppose someone in Group A sends to

someone in Group B a message of type Action Request, and suppose that Group B does

not have the message type Action Request. The operations that the members of the

group want to apply on objects of the generic type, Message, such as Reply To,

Forward, etc. are preserved under this scheme. However, the operations specific to

Action Request messages such as Making a Commitment would not be available

8

because, for all the system knows, the object received is now an object of type Message

no matter what the original group may have intended it to be.

Now suppose further that group B has a message type called Request and that another

translation scheme T'AB allows translation of all objects of type Action Request to this

type, Request. This translation scheme would preserve the meaning of the original

type to the extent that the operations that the group has defined on Request objects

overlap with the operations that the group would have defined over the set of objects

that the other group classify as Action Request. If the two sets of operations are the

same, then the meaning of the type is fully preserved, despite the differences in how

the groups name it. If the two sets of operations do not have much in common, then the

meaning of the type is not well-preserved. One can imagine situations where this

definition is problematic -- e.g., receivers cannot understand the document as its

senders did--but is useful enough for our purposes.

One way to ensure full semantic preservation is to require all groups to share he same

set of types. However, such a requirement has its costs. The next objective captures

the tradeoffs involved.

2.2 Autonomous evolution of group languages

Each group would, in general, like to be able to create or change their type definitions

according to their own needs with as few constraints as possible from the other groups.

We separate three aspects of this objective: maximizing expressive adequacy,

minimizing the need for consensus, and minimizing the need for updates.

2.2.1. Maximize expressive adequacy. Each group would like to be able to express the

distinctions that are useful for its purposes. Requiring all groups to share the same set

of message types makes it difficult to meet this objective of expressive adequacy

because the different goals and contexts of different groups often lead them to make

conflicting distinctions. For example, a manufacturing division of a company might

want to make many detailed distinctions in their messages about different parts and

subassemblies of many different products while the marketing division of the same

9

company might want to group products in a different way and make detailed

distinctions about various market segments.

2.2.2 Minimize need for consensus. Each group would also like to be able to change its

type structure while requiring as little consensus as possible from other groups. In

general, type structures are not static, but evolve as needs change. The less the need

for consensus from other groups, the more easily a group can change its type

definitions to meet its current needs.

2.2.3 Minimize need for updates. When a group makes a change, other groups might

need to know about the change so they can maintain consistency. For example, if one

group renames a type, all the other groups that _maintain a dictionary for translating

types from that group would need to update their dictionaries. The cost of updates is

affected by: (1) the extent to which changes need to be propagated, (2) the complexity

of the data structures needed for such propagation, and (3) the extent to which the

change requires modification of the existing structures. The less updates a translation

scheme requires on these dimensions, the more desirable it would be on this objective.

In the next sections, we will discuss how these different objectives interact when we

evaluate different translation schemes against these objectives.

3. The space of possible translation schemes

There are a number of possible translation schemes that achieve, to different degrees,

the objectives we discussed above. In this section, we will describe several general

solutions to the translation problem, evaluate each solution with respect to the

objectives discussed above, and provide specific examples of how each solution could be

implemented for the Lens system.

We partition the space of possible translation schemes by using a dimenision that

centers around the notion of common language and its relation to group language.

Even though there are other ways of categorizing possible solutions, we have found

this dimension useful in placing the schemes that seem practically important. First,

10

Figure 3.1 Possible Relations between Common Language and Group
Language

A Group Language
A Common Language

(a) No Common Language

Gi

(b) Identical Group Languages

C= Gi
for all

.........: ' , ,,':.
;,-. . :'.:,: :.:.: .

1,:.:. :.----- ---* - - : -:-:-..

(c) External Common Language

-0
...... ... ::-: :::::::::::........

(d) Internal Common Language

91i

CC Gi

(e) Superset

C Gi
,C~ c::::.: -:

(0) S~a -.
(f) Intersection

C "%Gi
C iG i

C4GiC.VG i

11

Gi:
C:

O~~~~~G

C Gi

--- . - X .·::·:

we define a common language for a set of groups as a language that all the groups in
the set use to communicate with one another. In order for all groups to be able to
communicate using the common language, each group must either use the common
language itself or be able to translate between the common language and the group
language.

Given this definition of common language, we characterize the space of possible
general solutions to the translation problem in terms of the set theoretic relationships
between the group languages and the common language (if any). If we consider only
"pure" cases, that is cases where all the group languages have the same relationship to
the common language, then, as shown in Figure 3.1, there are six possibilities. The
first possibility is that (1) there is no common language. If there is a common
language, then it may be (2) identical with the group languages, (3) non-overlapping
with the group languages, (4) a subset of the group languages, (5) a superset of the
group languages, or (6) partially overlapping with the group languages.

The first four of these possibilities represent interesting practical solutions to our
general problem, and we will describe them in the remainder of this section, using the
terms (1) no common language, (2) identical group languages, (3) external common
language, and (4) internal common language. The fifth and sixth possibilities and
"hybrid" cases where some group languages have one relationship to the common
language and other groups have another relationship can all be analyzed in terms of
the first four "pure" possibilities. We discuss these special cases briefly at the end of
the section along with several other possibilities.

3.1 No Common Language

In a scheme of this type, there is no common language that is shared by groups that
wish to communicate. Instead, each pair of groups must be able to have pairwise
translations made into and out of each other's languages. This is, in a sense, the
situation that actually prevails in the real world of natural languages such as English,
French, and Japanese. In the world of computer-based documents, this scheme implies
that there are translating programs-for each pair of groups. The most general form of
such programs would involve "dictionaries" that provide translation rules for each

1?

type from a source language into some type in the target language. Type and map
derivations in the Federated Architecture for information sharing [Heimbigner &
McLeod 1985] illustrates an example of such a dictionary in the context of database
integration.

In Object Lens, this solution could be implemented by letting each group have a

dictionary for each other group with which it communicates. Whenever an object is

received from one of these groups, Lens would use the dictionary to translate the

incoming object into a type understood by the receiving group. This translation could

involve much more than just changing the type name. It might, for example, include

moving and transforming values within the fields of the object. For instance, the

following rule might be contained in a dictionary for objects that group B receives

from Group A:

IF the object type is GRAUDATE STUDENT

and the value of SUPPORT field is TA,
THEN convert the object type to INSTRUCTOR,

and map the fields as follows:

Student ID - > SSN

TranslateDPT(DEPARTMENT) - > DPT

The rule says that if the received object is of type GRAUDATE STUDENT and if he is

teaching a course, then it should be translated into an object of type INSTRUCTOR

after renaming the field 'STUDENT ID' to 'SSN' and 'DEPARTMENT' to DPT', .
Furthermore, the function TranslateDPT will be applied to the value of
DEPARTMENT in the original message to obtain a value that is understood by Group

B (e.g. "Computer Science" to "CS").

Evaluation. This scheme is very flexible in the sense that it can provide case-specific

translations in fine-grained details. In this way, the scheme can fully preserve

meaning provided that the following condition is met:

13

If there is a one-to-many mapping from a Group A 's type, X, to Group B s types, Yi, then

there should be other characteristics of documents of type X that allow unambiguous

selection of the Yi to which X should be mapped.

In the above example, the rule that translates Group A's GRADUATE STUDENT type

to Group B's INSTRUCTOR is only a partial map because only some of the objects of

GRADUATE STUDENT type are mapped to the type in B. To be able to translate all

the GRAUDATE STUDENT objects properly, there has to be more than one type in B

to which GRADUATE STUDENT is mapped. Hence, there have to be some

characteristics in objects that allow the translation scheme to determine which types

in B the objects should be translated. In the example, the value TA in the SUPPORT

field served as one such characteristic.

This scheme also satisfies some of the objectives of autonomous evolution fairly well.

Since the group is not constrained to have any part of its hierarchy shared with other

groups, expressive adequacy is not limited. Since setting up translation rules within

a group does not affect any other group, no consensus is required. However, a problem

with this scheme is that it could be quite costly to set up and maintain. When a group

changes its type structure, the change will, in general, have to be propogated to all

other groups with which this group communicates so that the other groups can change

their translation rules or dictionaries. Each group needs a dictionary for all the other

groups with which it communicates. If there are n groups communicating with one

another, there would, in general, need to be n(n-1) dictionaries. Also, whenever a

new group joins, all the other groups would have to set up a dictionary for that group,

and the new group would have to set up dictionaries for all the existing groups.

Applicability. This scheme would be appropriate when the groups already use their

own languages and when the efforts to build translation rules and dictionaries for the

other groups are justified. Such efforts may be justified, for example, if the number of

groups that need to communicate is small or if the groups themselves are stable and

their type hierarchies do not change often.

14

3.2 Identical Group Languages

In this scheme, the common language is the same as any group language. That is, all

groups are required to use the same language and communicate through that

language. Examples of this scheme include the adoption of global standards such as

Dewey Decimal Classification System among libraries or Computing Reviews

Classification Scheme used for categorizing literature in computer science. In the

context of Object Lens, adopting this scheme means that all the groups share the same

object type hierarchy.

Evaluation. In this scheme, meaning is fully preserved because the types and the

operations defined on them are the same for all the groups. However, expressive

adequacy is quite limited and the need for consensus is quite large. Since all groups

have to agree on changes, the only changes that are easy for a group to make will be

those that do not affect other groups or those that are valuable to all groups. Even

these changes may require a significant overhead to come to agreement. This scheme

also requires that all changes be propagated to all groups. However, whereas each

group has to deal with the consequences of these changes in the No Common Language

scheme, this scheme allows the consequence management to be 'centralized' in that

whatever consequences there are can be well thought out once and distributed to each

group, For example, one can distribute a translation routine from the old type to the

new type together with a type change notice.

Applicability. This scheme would be useful when there are not already

well-established groups and when the groups do not differ greatly in their needs. This

may occur, for instance, when the domain is very restricted or artificial, or because

there is a well-accepted theory about the domain, or simply because the groups share

the same goals and environments insofar as they need to communicate. For example,

there may be a small set of generic message types such as Request and Commitment

that are useful in almost all office environments [Winograd & Flores 86].

3.3 External Common Language

.5

In this scheme, each group uses its own separate language for communication within

the group, but there is a single common language for communication between groups.

A group communicates with another by first translating its language into the common

language, and then having the receiving group translate the common language into its

own group language. In this way, each group only needs to know its own language and

how to translate it into and out of the common language. An example would be the

adoption of an international language such as Esperanto. Another example can be

found in the idea of abstract data type that allows data structures to be implemented

in any locally convenient ways as long as they maintain a consistent interface to the

outsiders ([Liskov & Zilles 74] [Guttag 77]).

If Lens were to use this scheme, there would be a common type hierarchy shared by all

groups in the sense that each group would know how to translate its own types into the

types in this hierarchy and vice versa. For example, suppose that Group A wants to

send an object of type, Teaching Assistant, to Group B which does not have that type,

but has a type called Instructor. Suppose that the common hierarchy has an object

type called Student with an attribute called Support. With appropriate rules set up

between the common object and the group objects involved, the Teaching Assistant

object can be first translated into an instance of Student with the Support attribute set

to TA, which would then be translated to an Instructor object in Group B.

The translation can be done in the same way as described above for the No Common

Language scheme--that is, by means of a dictionary containing translation rules. The

differences between this scheme and No Common Language scheme is that in this

scheme all the groups need to know only how to translate back and forth between their

own languages and the common language. So each group only needs two dictionaries,

one for translating to and the other for translating from the common language; overall

only 2n dictionaries are needed for n groups.

Evaluation. This scheme can fully preserve meaning provided that the condition

discussed in Section 3.1 is met for translations both into and out of the common

language-- that is, when there are one-to-many mappings between types, there must

be some other characteristics of the documents that enable the unambiguous selection

of a target type. However, often this condition is not satisfied. Hence, in general, the

16

more translations a scheme requires, the less it is able to preserve meaning. Since an
External Common Language scheme requires more extra translation steps than the
others we have considered, we expect that it is less likely to preserve meaning than the
others.

Since each group can design its own language without being constrained by others, the
group languages can presumably have as much expressive adequacy as desired. The
need for consensus applies only to deciding what the common language should be and
how it should be modified. Any change in a group language need not be propagated to
other groups; only the mapping between the changed type and the relevant types in
the common language need to be changed. If a type in the common language changes,
all the groups that have a local type mapped to that type need to know about the
change. But, even in this case, it is only the mappings, not the group languages
themseleves, that have to be changed.

Applicability. This scheme would be useful when groups that already use different
languages want to communicate and when the cost of setting up translation rules or

dictionaries for all the groups is too high. Presumably it is for these reasons that
people propose an international language or use English as one. Also, this scheme
might be useful when there is a language that is expressive enough, but difficult to use

for that reason. For example, we can define a language to be the union of all group

languages for the cases where such a union is meaningful. Such a language could

express all the distinctions that are of interest to any group, but it might be difficult to

use if the types are too fine-grained or place too much cognitive load on the user. Such

a language, although not suitable as a group language, might serve as the common
language.

3.4 Internal Common Language

For schemes in this class, every group has a part of its language that is shared with all

the other groups, and the groups use this shared language to communicate with one
'another. For example, different academic specialists (say, physicists and

anthropologists) may each have their own technical vocabularies, but they can usually

communicate with specialists from different fields using ordinary English.

17

1_ ^ ~- -

A particularly interesting example of this class arises when the languages are type

hierarchies. If all the groups share the root node and other types in the top part of the

type hierarchy (i.e., they share the most general types), then all the other types that

exist in the separate group languages are specializations of types in the common

language. This makes it especially easy to translate group types into the common

language, as we illustrate below.

Figure 3.2 A Common Hierarchy and its Local Augmentations

L r;sage

Action Request Commitment ~Totice

\

\ / '," Common
/ .N. Hierarchy

I.."

ii~ ~~~~
4 . ·

Bug Fix InformatLENS-related Software!
Bug Fix Informtion Meeting Request Release
Request Request Announcement

3roup A's augmenraton Group B'; augmentation

:'e have explored a scheme of this type for Lens called the Local Augmentation

Theme. For instance, all groups might share the message types that are useful

. most everywhere, such as Message, Action Request, Commitment, and Notice. Then

;ach group is allowed to locally augment the hierarchy by creating subtypes of these

shared types (See Fig. 3.2). When group A sends to group B a message of type, say,

Meeting Announcement, the type is automatically translated into the nearest

ancestor in the common hierarchy, in this case Notice. Those fields of the type

Meeting Announcement (such as Topic) that are also in the nearest common ancestor,

Notice, are preserved as they are; those that are not in the ancestor (such as Meeting

Time and Meeting Place) are treated as a part of the main text and put in the

beginning of the Text field. Of course, if group A sends a message of a type that is

already in the common hierarchy, thien no translation is necessary.

18

-------- l"l-II��IX-�·-�111-���-�1�--^�- ·-�-�---I�1I�

One way of implementing this scheme is to have each object include the information

about its type in the object type hierarchy used by the sending group. If this type is not

in the common hierarchy shared by all groups, the object also contains: a) the name of

the sending group and b) the nearest "ancestor" of the object type in the common

hierarchy. This way, receivers in the sending group can process the message as being

of exactly the type intended by the sender, and receivers in all other groups can process

it as being of the nearest "ancestor" type in the common language.

Evaluation. This scheme preserves meaning to the extent that the type structure is

shared. If the message is of a type in the common hierarchy, then its meaning is fully

preserved. If not, then its meaning will be abstracted away to the degree that its

ancestor in the common hierarchy preserves its properties. This scheme allows a great

latitude in expressive adequacy since each group can add as many types as desired to

express distinctions that are important to them. The only constraint on expressive

adequacy is that groups cannot completely ignore distinctions made in the common

hierarchy. For example, suppose, as before, that the common hierarchy classifies

Message objects into the speech act categories such as Action Request, Notice, and

Commitment. If a group does not want to uoe this speech-act based categorization, it

can add other children of Message and use them for internal communication, but the

group members will still receive messages from other groups based on the speech act

categorization.

This scheme only requires consensus among groups on what the common hierarchy

should be, and it only requires the propagation of changes in this common hierarchy.

The changes made locally within a group need not be propagated to other groups.

However, a change in the common hierarchy needs to be propated to all groups.

Furthermore, unlike in the External Common Language scheme, such a change might

require much change in the local structure. For example, all the groups that have

rules or subtypes of the modified type might have to make necessary adjustments.

Applicability. This scheme would be useful when (1) there do not already exist

numerous well-established and incompatible language groups, (2) there are important

conmmonalities across groups, and (3) there are also significant local variations among

19

groups. For instance, it seems quite useful in the Lens environment to have a set of

common message types used by all groups (such as Action Request, Commitment, and

Meeting Announcement), and to also let each group develop their own specialized

message types for their own unique situations. The X.400 standards for electronic

messaging are compatible with this approach since they include a field for specifying a

message type, and leave open the possibility of different groups developing their own

conventions about how this field is used.

3.5 Common Language as a Superset of Group Languages

In this scheme, the common language is a superset of the group languages. An

interesting instance of this scheme is the following: Suppose that different groups

maintain different type hierarchies. However, when a group receives an object of

unknown type, that type and any of its supertypes that are not known locally are

automatically imported into the local type hierarchy. In this case, the common

language is the union of all the groups' type hierarchies, because any object in the

union can be used to communicate among the groups.

Evaluation. In this scheme, meaning can be fully preserved if the types are imported

together with all their operations. However, doing so can be costly; or if the operations

are written in a programming language not supported in the receiving group,

automatic importation can be impossible. This scheme allows the groups to express

whatever they want without much need for consensus. However, this scheme does not

address the problem of how the imported objects are related to the local types. It also

has the potential problem of creating different types with the same name, thus

"cluttering" the type space. Also, in this scheme, the update propagation can be costly

if we want to maintain consistency between the imported type and the original. Any

change made to a type would have to be either broadcast or sent to all the groups who

imported the type. The latter requires that whenever a group imports a type, the

originating group would have to be notified.

* Applicability. In spite of the potential costs of this scheme, it is simple and offers a

large degree of autonomy for groups. It can be practically useful when the costs of

importing foreign objects is not too high. For example, if only a small number of

20

people are involved, updates may be rare (and their total cost low) and there may be

little danger of cluttering the type space. The usefulness of this scheme is also

increased when the object types are hierarchically arranged and some types are known

to both groups. In this case, a form of the local augmentation scheme can be used to

apply operations from a shared supertypes to newly imported types.

3.6 Other translation schemes

We have discussed above five of the six set-theoretic possibilities (Fig. 3.1) for the

relationship between the common language and a group language. We can also have

(a) hybrid cases, where some groups have one relationship with the common language

and other groups have different relationships, and (b) sequential composition of the

basic cases. We show elsewhere [Lee & Malone 88b] that these other possibilities, as

well as the sixth possibility not discussed (Intersection in Fig. 3.1), can all be analyzed

as combinations of the five schemes discussed above. In [Lee & Malone 88b], we also

discuss a translation scheme that exploits the subsumption property of certain type

hierarchies. In this scheme, a message is automatically classified into the type

hierarchy according to what fields it contains [Schmolze & Lipkis 83]. This scheme

requires no explicit agreement about the types used, but it does require agreements

about the field names themselves as well as some other restrictions on the form of the

type hierarchy.

3.6 Summary of translation schemes

Table 3.1 summarizes the different classes of translation schemes we have considered.

The detailed discussions above are summarized in the table by rough qualitative

rankings of the schemes on each objective. In each column, the schemes that in

general satisfy the objective better receive more stars. For example, the schemes that

receive more stars in the column, Need for Consensus, have less need for consensus.

As we have seen, there is a complex tradeoff between the objectives we are trying to

achieve. For example, the pairwise translation scheme used when there is no common

language allows full expressive adequacy and little need for consensus, but at the cost

of more need for propagation of changes. An identical group languages scheme has full

21

preservation of meaning, but much less expressive power. And any scheme that uses

trivial translation rules (e.g., all foreign message types are translated into generic

Messages) can reduce the need for consensus and for propagation of change at the

expense of preservation-of meaning.

Table 3.1 Evaluation of the different classes of translation schemes.

Meaning Expressive Need for Need for

Preservation Adequacy Consensus Updates

No Common ** *

Language

Identical Group ***** * * ***

Languages

External Common * *** ***

Language

Internal Common *** ** ** **

Language

Superset *** **** *

We have shown how the classes of translation schemes we have discussed exhaustively

partition the space of possible solutions. However, the examples of these schemes that

we considered are by no means the only possible ones. For instance, there may be

other schemes that exploit special properties of particular languages just as the Local

Augmentation Scheme exploits the inheritance property of type hierarchies.

22

4. An Attractive Composite Scheme: Partially Shared Views

In this section, we present a composite scheme, called Partially Shared Views (PSV),

that combines some of the best features of the basic schemes discussed above: It allows
groups to share some object types, to set up translation rules for other object types, and

to use default translations into shared "parent" types for still others.

This scheme exploits the notion of views to modularize related type definitions and

make relations among such modules explicit ([Barber 82] [Goldstein & Bobrow 81]). A

view is a set of object types and their relations. A view V2 is a subtype of V1 if some of

the message types in V2 are specializations of ("children" of) the message types in V1.

Figure 4.1 shows a few examples of views.

Figure 4.1 Examples of Views

,,7

I

4.1 How It Works

When a group G receives an object from another group, then one of the following

happens:

(1) If the object belongs to a view that has been 'adopted'by the group, then the object is

treated as being of its original type.

Vv

(2) If the object is from a view that has not been adopted by the group, then:

(a) if the object meets a pre-specified criterion (e.g. if it is from the system

administrator), then the view that it belongs to is automatically adopted and the

object is treated as in (1).

(b) if the group has a translation rule set up for the object s type, then the object

is translated according to the rule.

(c) if the group has a translation rule set up for a supertype of the object (but not

for the object type itself), the object is treated as the supertype and translated

accordingly. That is, all the fields that belong to the supertype get translated as

specified in the translation rule, and all the fields that are not included in the

supertype are simply added to the beginning of the comment field of the object.

(d) Otherwise (if none of the above conditions holds), the object is automatically

translated into the most specific supertype in the most specific view that is

shared by the sending group and the receiving group. When the translated

object is shown, the information about its original type and view is preserved so

that the receiving group can, if it wishes, set up translation rules for this new

type or, possibly, adopt the entire view to which it belongs.

The above algorithm is based on the following assumptions:

1. All groups share the default view, VO, which consists of the most general type (e.g.

Thing).

2. When a group adopts a view, it also adopts all the views which are its ancestors.

3. Each object includes the following information:

a. the type of the object, t.

b. a globally unique name of the view within which this type is defined, v.

c. the "genealogy" of the object, such as {(tl, vl), .. , (tn, vn)}, where the vi's are

the names of ancestor views of v ordered from most specific to more general, and

each ti is the most specific ancestor type of t within vi.

24

Ill

The actual algorithm used is actually a bit more complex than presented here because

multiple parents are possible. In these cases, the genealogy information has to be

presented as a nested list and we have to make sure that we deal with multiple parents

appropriately. But, for simplicity, we assume below that each object has only a single

parent.

4.2 Illustration

We illustrate the PSV scheme by describing its implementation in the Object Lens

system [Lai et. al. 88]. Object Lens and PSV are implemented in Interlisp-D (and

Loops) on Xerox 1100 series workstations connected by an Ethernet. All the features

described below have been implemented and have received limited testing at our site.

The following scenario illustrates how PSV works. This hypothetical scenario is

inspired by our experience with test sites for the Information Lens, and illustrates the

use of PSV for translating messages only. (Other kinds of objects are not included in

this scenario). Site A is loosely based on our own group at MIT and Site B is loosely

based on our primary external test site. Suppose there are five views related as shown

in Figure 4.1. The Base View is the parent of all the other views; it contains only the

most general message type: Message. The Standard View is intended to contain a set

of templates that would be useful for almost any group using Lens. Here, we illustrate
one possible such set by three message types based on speech acts (Action Requests,

Notices, and Commitments) and several specializations of these speech acts such as

Meeting Proposals and Meeting Announcements. Site A's view adds to the Standard

View several specialized message types that are of use in that particular group (e.g.,

Bug Fix Requests and Bug Fix Announcements). Figure 4.2a shows all the templates

used by Site A. The templates that belong to the Site A View itself are shown in

blackshade, and the templates belonging to the Base View and the Standard View, are

shown in grayshade. Site B's view, as shown in Figure 4.2b, is a different

specialization of the Standard View. Site C's view, even though not shown here in

6 detail, is included to demonstrate that no site is required to adopt the Standard View.

For instance, Site C might use some basis for message type categorization that is

different from the speech act scheme.

Figure 4.1 A sample set of views..

I Close Cancel Zoom Out Zoom In Others'
i c , -̂~~~~~~~~-

Figure 4.2 Templates in the views adopted by Sites A and B, respectively.

(a) Site A b) Sit B

4.2.1 Explicit translation rules

Suppose that someone at Site B sends the message of type Bug Report shown in Figure

4.3a to Site A. We further assume that Site A has the following translation rule set up

for this type:

IF the message is of type Bug Report in Site B View

and the value of the field System is Lens,

THEN change its type to Bug Fix Request in Site A View

and use the value of Bug Name for Bug

and the value of Impact for Severity.

26

Ulose Cance zloom Uut zoom n 'utners -
.l.......... l *X

PLATE TECAPL LT5

A~~C R c CA -- CA
ATP. -_ A_ A____

_ _ _ _ _ _-- - T E PL A T

TEs _',

elommtctr*
c,,:> trca

.i ., m r

.........

i~~
S i i

~~~i~~~ec~I

- A___ A____ 7___ An._ .___ _ Anti___ . ;



Figure 4.3 A Sample message and its translation into the views used at two other
sites.

(a) The original message

(b) Translation to Site A's view

based on an explicit translation

rule

- se ..... Cne. Send Add Link .Othr

Close Cancel Send Add Link 'Others'

Subject: Lens bq
Date: 2-S--ep9 5 2 31
To: BugFi<ers
From: Jin Lee
cc:
Reply-to: Mlike,4S1TE-B
Action Deadline: this week
Bug: Heart Breaking Bug
Severity: Moderate
Software System:
Keywords: editor bug
Text:
Message Type- Bug Report
System: bjiet Lens
Lsp.Systerm Date: -Mar-88 02:24:13
Mtachine OTiger
Frequency: often

/'/h-r you open the translaion e-dtor, rra,
-

e
-:harct-er ooking ike a heart ppea3rs, oloo-.e3 b,
a break.

-Miike

- -·- - ·~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(c) Default translation for Site
D into the nearest shared

"ancestor" type

2/

Close Cancel Send Add Link 'Others

Subject: L'-k b,.kJ-
To: e ugF i , er1 i- lTE -
From: Jin Lee
cc: Ln-l,._er _ . T-_:T-'

Reply-to: -, ,e ,. iTE-
Action Deadlrne: ti_- -. ee,.
System: 'o-e:t Lers
Lisp.System.Date: I .1-sr-. :2: 2 3
BUg Name: e"*rt reavir eua
knpact: -'odert:e
Machine: -
Frequency: o,:en
Keywords: e-ltor bug
Text: ',hr, /.u, o:r-n th, e Jr ejitor, 
strange .har.Ster lC-iiuir3 .ye , heori ,apcrs,
'ollowec by s ret3 '

-Mike

Close Cancel Send Add Link 'Others'

Subject: Lens buq
Date: 2-5ep-39 16:3-57
To: L- n-:j.3--,3 ITE-T
From: jin L-ee
Cc:
Reply-to: !tike, 5.TE-B
Action Deadline: ths /-eel'
Keywords:
Text:

4-ess3ge Type. Bug9 Report
,.g rt.lame Hert Grean ,ng Bug

:r-p3-t: Moderate
System Objet Lens
Ls p.System.Date: 1 Mar-88 02:2413
-la-:hine: OTiger

Frequen<: v oten

./;he, iou opet' the tr3nra,3tlO, -editor, 3 trange
:a-ar3 :ter oking ike 3 1e3-i 3Cper, tifolic -c tby
3 oresk.

-lv ike

:·:

·I;

:·:

...... . i i .......... .......

-. ... ..-. .. . . . ......

..... . ............ .......... .. .... 
. .



This rule causes the Bug Report shown in Figure 4.3a to be translated into the Bug Fix

Request shown in Figure 4.3b. Furthermore, all the operations applicable to the

translated type are applied to the message. For example, if the receiver at Site A has

set up a rule to automatically archive all Bug Fix Requests into a database, then this

message will be so archived.

4.2.2 Default Translation

Now suppose that the original message in Figure 4.3a is also received by a Lens user

at Site D, and suppose further that Site D has adopted only the Standard View with no

local augmentation of its own and no explicit translation rules. Figure 4.3c shows how

the original message would be automatically translated by default into the nearest

shared "ancestor" type used by both Sites B and D. In this case, the nearest shared

ancestor type is Action Request, so the message is translated into an Action Request

and the contents of the Action Request fields (including Action Deadline) are carried

over into the new message. All the other fields from the original message are simply

inserted in the text field of the new message. When users at Site D receive this

message, any rules they have set up for Action Requests will be applied to it.

4.2.3 Maintaining views and translation rules

We expect that, in most cases, the adopting of views and the creation of translation

rules will be done by the same "systerm administrators" who maintain each local

group's message types. In these cases, most users would just load new versions of their

system when announced by their local system administrator and they would not even

need to be aware of what or how views were being used. Some users, however, might

have communication needs that differ significantly from others in their local group.

For instance, they might communicate frequently with people at another site who use

a number of specialized message types for which the local system adminstrator has not

created any specialized translation rules. In these cases, the individual users might

want to adopt another view or create their own translation rules, and the PSV scheme

a allows them to do this quite easily.

4.2.4 Implementation issues

28

� ____�_�I_ ____l__l_��___a___�__Ilji�_�_P___^·l__�



In our prototype implementation of this scheme, we did not attempt to deal with all the

issues that would arise in implementing it on a large scale. In this section, we briefly

sketch a few of these issues and possible solutions:

(1) User interface for translation rules. In our prototype implementation, the user

interface for specifying translation rules was relatively primitive. There are a variety

of attractive possibilities for a more graceful interface, however. In the Object Lens

environment, for example, it would be consistent to have translation rules defined as

specializations of the generic rules used by all agents. These rules could specify in

their IF conditions, the criteria for messages to be automatically translated, and their

THEN actions could contain a set of "mapping" objects, each one specifying a source

field (from the original message), a destination field (in the translated message), and

an optional conversion function to be aplied to the field contents. An alternative

approach for specifying translation rules would be to let the user "draw" connections

between the fields of the source object type and the destination object type using

"rubber banding" lines. This approach was used, for example, in the KEEconnection

system for importing information from remote databases into knowledge-based

systems [IntelliCorp 87].

(2) Storing and transmitting view definitions. In a large scale implementation of a

scheme like this, a critical issue is where and how views (i.e. sets of object type

definitions) would be stored and transmitted. We believe it would be desirable to have

two options: (a) Users who have convenient access to shared file servers would

presumably like to be able to store and retrieve views using these file servers. (b)

Users who do not share access to file servers should also be able to simply mail view

definitions to each other.

(3) Including type names and 'enealogy "in objects. We believe it is desirable to have

objects be "self-contained" in the sense that any receiver can tell, by looking at the

object alone, how to interpret it (i.e., whether this is a view and type already known to

the receiver). It is also desirable, especially in the case of message objects, for the

objects to be readable by human receivers who are not users of the PSV scheme. These

two objectives present a slight conflict since including globally unique identifiers for

29



types, views, and type genealogies will require including some "ugly" identifying

information in the human readable objects. We believe, however, that in most cases a

satisfactory solution will be to compactly encode this information in a character string

that is "hidden" somewhere in the object. For example, with messages, this string can

be either (a) placed in a Message Type field in the message header (analogous to the

Message Identifiers used by many current mail systems), or (b) "buried" at the very

end of the message after a human readable label like "Identifying information:".

4.3 Evaluation

PSV is a composite of several of the basic schemes discussed in Section 2. As noted

above, between groups that share the same ;iew, the scheme is an instance of the

Identical Group Language scheme. To the extent that the groups have translation

rules between views, it serves as an instance of the No Common Language scheme. To

the extent that one automatically adopts views, it is an instance of the Superset

Common Language scheme. PSV, however, provides a finer control over automatic

adoption by allowing users to specify the conditions under which a view should be

automatically adopted. When the groups share only some views and do not yet have

translation rules set up between the views not shared, the scheme acts as an instance

of the Internal Common Language scheme. The scheme thereby allows finer-grained

adoption of translation methods among different groups while still providing a

· unifying framework. Within this framework, a group can weigh the importance of

different objectives in different cases and select a translation method appropriate for

each case. For example, if it is quite important for a group to understand another

group's language, then it can decide to share the same view or adopt a view where

translation rules can be set up precisely. On the other hand, if such precise

understanding is not important enough to justify the effort, the group can create its

own view and rely on the default translation of the type into its nearest ancestor in the

shared view.

4.4 Applicability

Since the Partially Shared Views scheme combines many of the best features of the

other schemes it is potentially relevant in very many situations. In a sense, each of

30

_�__�____·�____III_�_l__O__ll__C____� �-��-lll�ni(F1-in.��-^I�C-I�-a�·�^·�XI-� -ii^--i�--- 1--1II111�I__��



the other schemes is a special case of this one. This scheme, therefore, may require
somewhat greater implementation complexity, but it allows a great flexibility in using

a combination of different translation schemes for different situations.

For instance, this approach seems clearly desirable for the Lens system. For similar

reasons, the approach also seems desirable for many other office systems. We describe

below, in Section 6, how the Local Augmentation scheme could let systems using

different subsets of EDI (Electronic Data Interchange) forms achieve a certain degree
of interoperability by agreeing on generic global standards that leave room for
augmentation by different subgroups. The Partially Shared Views scheme seems even

more appropriate in these situations because it allows many overlapping subgroups to
use their own standards for communication with members of the same subgroups, and

also to set up translation rules for communication with other subgroups, even when

there are no significant global standards.

5. Other Applications

In this section, we illustrate the generality of our scheme by applying it to two other

problems that require exchanging information between groups that use different types

of data: (1) the problem of integrating heterogeneous databases, and (2) the problem of

exchanging electronic business forms between organizations (Electronic Data

Interchange, or EDI).

5.1 Database Integration

It is becoming increasingly common in organizations today for people to want to
retrieve related information from a variety of different databases, all of which are

stored and maintained separately, and all of which have different data formats (

[ElMasri et. al. 861 [Batini et. al. 86]). For example, a bank might want to prepare a

single consolidated statement of all their dealings with a given customer, even though
the customer had many different types of accounts with the bank (e.g. checking,
saving, loans), each of which was stored by different parts of the bank in different

formats in different computers.

31



A commonly proposed solution for this problem is to provide a single "global schema"

that integrates all of the different. objects from each local database into one global
structure. Doing this integration often involves creating virtual data types, of which

the local types are special cases. In our framework, this approach is equivalent to the
External Common Language scheme because each local system can continue using its

own record formats and can use the global schema to translate into and out of the
format used by other systems. As such, it has the problem associated with the

External Common Language scheme -- namely, that some meaning would be lost in

translation. A query, if expressed locally, has to be translated into a global language,
and then to the languages local to the databases where the actual data are stored.
Furthermore, when the number of local databases is large or when local databases

change frequently, maintaining a single global schema may become unwieldy [Lee

88].

A modular organization like PSV can help solve some of these problems of the global

schema approach. PSV supports incremental sharing by allowing users to establish

shared schemas and translation rules as needed. These translation rules can be used
not only to translate data records from one view to others, but also to translate the

queries themselves. Also, when new databases are created as specializations of
existing views, certain translations can be performed automatically without any

explicit mappings. This way, a database can automatically share data with all the

databases which adopt any of its parent views. In the following, we illustrate these

features by showing how the ideas front PSV could be applied to a simple example.
This example is a somewhat modified version of the example used in [Elmasri et al. 86]

to illustrate their global schema approach.

Figure 5.1 shows five views. Some of these views are associated with databases.

There is the university database that keeps only information valuable

university-wide, and departmental and registrar databases that keep local
information. Given these databases, consider the following query: "Find all
instructors in Computer Science who either teach CS106 or whose expertise includes

'expert systems"' Suppose the query is made to the Registrar view. First, the query is

processed at the Registrar database itn the usual way, i.e. the Department field of

WORKS, the Course field of TE AC iES, and the Expertise field of INSTRUCTOR are

32

___��_ �_____·I_____IIIXI·�^___iIJ�·l�·��l(-l



Figure 5.1 Organization of Database Schemas using PSV

Superview Relation
>- Supertype Relation

Relationship Link
Base View

Payroll View
University View

Registrar View

ty

33

X



looked up to retrieve instructors who satisfy the query. However, since the Registrar

database only contains information about the instructors teaching in the current

semester, querying the registrar database alone would miss instructors not teaching

this semester. To find them, the query has to be run on the other databases as well.

If there are explicit mappings between views, say between Registrar View and

Department View, then the query would run at the Department database as well. For

example, if there is a mapping between FACULTY in Department view and

INSTRUCTOR in Registrar view, FACULTY in various department databases can be

looked up and also included in the answer to the query. Even in the absence of explicit

translation rules, the internal common language scheme can be used to automatically

translate the query to the university view. T resulting query can then run at any

database that adopts the University view -- the university and the department

databases.

6.2 Electronic Data Interchange

An increasing number of companies are now using electronic connections between

independent organizations to exchange certain standard business forms (such as

purchase orders and invoices) [TDCC 88]. This kind of exchange (called Electronic

Data Interchange or EDI) is greatly facilitated by common formatting standards for

the forms, and many industries have begun to develop such standards. For example,

there are now ANSI standards for generic forms such as Purchase Orders, Purchase

Order Change Requests, and Invoices, and industry specific forms such as Shipment

Information fo Air Carriers, for Motor Carriers, and for Ocean Carriers.

As currently used, these different types of forms constitute an essentially "flat" space,

with no notion of specialization or inheritance, but it appears that the ideas about type

inheritance and incremental sharing we discussed above could be of use in EDI

systems. For example, if EDI forms are defined hierarchically, then it would be easier

to add new types of forms that shared many of the characteristics of previous forms.

Shipment information forms for a new transportation medium (like bicycle couriers,

for instance) could be added by specializing a generic Shipment Information form

already present. More interestingly, certain automatic translations between forms

34



Figure 5.2 Organization of EDI Transaction Sets using PSV

Views are represented by the squares, types by the ovals,
and fields for a given type by the italized text items in an oval.

Generic Transportation View

Superview Relatior

... Supertype Relation

Rail View

Shipment Info for Import Sh;pnment Info for Import

35

Shipment Info for Import

Shipment Info forlmport

Haarbus Material,
Speciil Handling Instruction,
Line Item, Rates & Charges,

Total Weight & Charges, Descriptwn,
Marks, and Numbers, Serial Numbers,

Equipment Detail, Remarks.

L·-r

- -----------



would be possible without anyone needing to explicitly define them. For instance, if a
change of plans required an air shipment to be re-routed by truck, most of the fields for
the new shipment information forms could be filled in automatically from the old ones.
In some cases, this might be all that is needed. If not, explicit translation rules could
be created or, in special cases, people could complete the translation manually.

To illustrate more concretely how these ideas might be implemented, Figure 5.2 shows
a possible organization of the EDI forms (called "Transaction Sets") for various kinds
of shipment information. The "leaves" of this hierarchical organization contain all the
data elements in the currently defined standards for the different types of shipment
information forms [TDCC 88]. The figure also shows how some new generic forms can
be defined at various levels of abstraction to take advantage of the type inheritance
mechanism we have proposed here.

7. Conclusion

In this paper, we have considered a fundamental problem of coordination: How can
groups that use different languages communicate with each other? This problem
arises repeatedly in human organizations and also, increasingly, in distributed
computational systems. We have characterized and evaluated a set of generic
solutions to this general problem and illustrated their application in several practical
contexts: the Object Lens cooperative work system, the integration of heterogeneous
databases, and the use of Electronic Data Interchange standards. In particular, we
described a composite scheme called Partially Shared Views that combines many of
the best features of all the schemes we analyzed. A key insight of our analysis is that
when groups communicate using objects that are arranged in a specialization
hierarchy, they can take advantage of a powerful form of automatic translation:
"foreign" object types can be automatically translated into their nearest common
"ancestor" types and thus still retain much of their original "meaning." The partial
interoperability attained automatically in this way makes possible a much more
flexible kind of standard. No longer does everyone have to agree about all aspects of a
standard; they can still get substantial benefits from whatever agreements they do
have.

_____ _____ _~_I___I~l ~ l ·_~~___XXII_ _·II~m_·1-111~--r_(~l F~~~ i~l--^ -I--___Y-~-ll^-ri~i-~11-_.--·_.------



We believe these ideas can help solve some of the increasingly critical problems of

developing standards for interoperability in distributed computational networks. At

an even more fundamental level, they may eventually help us understand

coordination problems that arise in other contexts such as human organizations and

neural architectures.

Acknowledgement

We thank Kevin Crowston, Kum-Yew Lai, Wendy MacKay, Jim Miller, and David

Rosenblitt for their comments that helped identify and elucidate problems that we

otherwise would have not seen. This research was supported in part by DARPA; the

National Science Foundation; Wang Laboratories, Inc; Xerox Corporation; General

Motors; and Bankers Trust Company.

3/

)�



References

[Barber 82] Barber, G. Office Semantics.. Ph.D. thesis. Massachusetts Institute of
Technology, 1982.

[Batini, C. et. al. 86] Batini, C., Lanzerini, M. & Navathe, S. A comparative analysis
for methodologies for Database Schema Integration. ACM Computing Surveys v.
18(4). 1986

[Barwise & Perry 83] Barwise, J. & Perry, J. Situations and Attitudes MIT Press.

Cambridge, MA. 1983

[Elmasri et. al. 87] El Masri, R., Navathe, S., & Larson, J. A Methodology for Schema
Integration. Submitted for publication. 1987

[Fikes & Kehler 85] Fikes, R. & Kehler, T. The role of frame-based representation in
reasoning. In Comm. ACM v.28(9) September. 1985 pp.904-920

[Goldstein & Borbrow 81] Goldstein, I.P. & Bobrow, D.G. Layered networks as a tool
for software development. Proc. 7th Int 1 Conf. on Artificial Intelligence, 1981.

[Guttag 77] Guttag, J.V. 1977. Abstract Data types and the development of data

structures. Comm. ACM, v.20(6). June 1977, pp.3 9 6-4 0 4

[Heimbigner & McLeod 85] Heimbigner, D. & McLeod, D. A federated architecture for
information management. In ACM Trans. Office Information Systems 3(3) July, 1985

[Hewitt 83] Some limitations of truth theoretic semantics as a foundation for
reasoning. Draft. MIT AI Lab, 1983

[IntelliCorp 87] IntelliCorp Inc. KEEconnectiontm: a bridge between databases and
knowledge bases. An IntelliCorp Technical Article. Moutain View, CA. 1987



2

[Jackendoff 83] Jackendoff, R. Semantics and Cognition MIT Press. Cambridge,MA.

1983

[Lai et. al. 88] Lai, K.Y., Malone, T.W., & Yu, K.C. Object Lens: A 'spreadsheet' for

cooperative work. ACM Transactions on Office Information Systems 6:332-353 1988

[Lee 88] Lee, J. Knowledge base integration: what can we learn from database

integration research? MIT AI Memo 1011. 1988

[Lee & Malone 88a] Lee, J. & Malone, T.W. How can groups communicate when they

use different languages? Proc. Conference on Office Information System, pp.22-29.

Palo Alto, CA. 1988

[Lee & Malone 88b] Lee, J. & Malone, T.W. Translating type hierachies: framework

analysis and a proposal. Sloan WP. M.I.T. Jan 1988

[Liskov & Zilles 74] Liskov, B. & Zilles, S. Programming with abstract datatypes.

SIGPLAN Notices MIT Press. Cambridge, M.A. 1974

[Malone et. al. 87a] Malone, T.W., Grant, K.R., Turbak, F.A., Brobst, S.A., Cohen, M.

Intelligent information-sharing systems In Comm. ACM v.30(5) May, 1987

pp.390-402

[Malone et. al. 87b] Malone, T.W., Grant, K.R., Lai, K.-Y., Rao, R., & Rosenblitt, D.

Semi-structured messages are surprisingly useful for computer supported

coordination. In Trans. on Office Information System v.5(2) 1987 pp.1 15- 13 1

[Nii 86] Nii, P. The blackboard model of problem solving. The AI Magazine. Spring,

pp.38-53

[Putnam 75] Putnam, H. The meaning of 'meaning'. In Language, Mind, and

Knowledge, ed. by K. Gunderson. Minneapolis: Univ. of Minnesota Press. 1975



III

[Schmolze & Lipkis 83] Schmolze, J.G. & Lipkis, T. Classification in the KL-ONE

knowledge representation system. Proc. 6th Int 7 Joint Conf. on Artificial Intelligence,

1983.

[Skarra & Zdonick 86] Skarra, A.H. & Zdonick, S.B. The management of changing

types in an object-oriented database. In Proc. OOPSLA, September 1986. pp. 483-495.

[Stefik et. al. 83] Stefik, M., Bobrow, D.G., Mittal, S. & Conway, L. Knowledge

programming in LOOPS: Report on an experimental course. The AI Magazine,

pp.3-13, Fall 1983

[TDCC 88] TDCC: The Electronic Data Interchange Association. The United States

Electronic Data Interchange (EDI) Standards. V.4 Data Segments and Data

Elements. Washington, D.C. 1988

[Tsichritzis 82] Tsichritzis, D. Form management. In Comm. ACM v.25(7) July

pp.453-478

[Winograd & Flores 86] Winograd, T. & Flores, F. Understanding Computers and

Cognition: A New Foundation for Design. Ablex, Norwood, N.J. 1986

__ _ I- - -- - I I _ _ _ _ L I _~ I I - E Y --- --- _._1~1--- - ----^



M.I.T.Sloan School of Management
Working Paper Series

Papers by Thomas Malone
Professor of Management Science

Paper # Date TiftleAuthor(s)

3144 1/90 "Answer Garden: A Tool for Growing Organizational Memory,"
Ackerman, M., and Malone, T.

3142 11/89 "Does Information Technology Lead to Smaller Firms?"
Brynjolfsson, E., Malone, T., and Gurbaxani, V.

3076 9/89 "How Can Groups Communicate When They Use Different
Languages? Translating Between Partially Shared Hierarhcies,"
Malone, T., and Lee, J.

3064 6/89 "What are Good Semistructured Objects? Adding Semiformal
Structure to Hypertext," Malone, T., Lee, J., and Yu, K.

2113 12/88 "Markets, Hierarchies and the Impact of Information Technology,"
Brynjolfsson, E., Malone, T., and Gurbaxani, V.

2053 3/88 "Object Lens: A 'Spreadsheet' for Cooperative Work," Lai, K.,
Malone, T., and Yu, K.C.

2052 3/88 "Partially Shared Views: A Scheme for Communicating Among
Groups that Use Different Type Hierarchies," Lee, J., and Malone,
T.

2008 3/88 "Computational Agents to Support Cooperative Works," Crowston,
K., and Malone, T.

2051 2/88 "What is Coordination Theory?" Malone, T.

1974 "Translating Type Hierarchies: Framework Analysis and A
Proposal," Lee, J., and Malone, T.

1960 10/87 "Information Technology and Work Organization," Crowston, K.,
and Malone, T.

1851 11/86 "Semi-Structured Messages are Surprisingly Useful for Computer-
Supported Coordination," Malone, T., Grant, K., Lai, K., Rao, R.,
and Rosenblitt, D.

1837 11/86 "Cognative Science and Organizational Design: A Case Study of
Computer Conferencing," Crowston, K., Malone, T., and Lin, F.

1850 11/86 "Intelligent Information Sharing Systems," Malone, T., Grant, K.,
Turbak, F., Brobst, S., and Cohen, M.



Paer # Date..r T...it/Auth ) ---..

1849 8/86 "A Formal Model of Organizational Structure and Its Use in
Predicting Effects of Information Technology," Malone, T.

1770 4/86 "Electronic Markets and Electronic Hierarchies: Effects of
Information Technology on Market Structures and Corporate
Strategies," Benjamin, R., Malone, T., and Yates, J.

1785 3/86 "Market-Like Task Scheduling in Distributed Computing
Environments," Malone, T., Fikes, R., Grant, K., and Howard, M.

1749 1/86 "The Information Lens: An Intelligent System for Information
Sharing in Organizations," Malone, T., Grant, K., and Turbank, F.

1711 9/85 "Computer Support for Organizations: Toward an Organizational
Science," Malone, T.

1708 9/85 "Designing Organizational Interfaccs," Malone, T.

1710 8/85 "Organizational Structure and Information Technology: Elements
of a Formal Theory," Malone, T.

1709 8/85 "Toward Intelligent Message Routing Systems," Malone, T., Brobst,
S., Grant, K., and Cohen, M.

1630 12/84 "Expert Systems and Expert Support Systems: The Next Challenge
of Management," Luconi, F., Malone, T., and Scott Morton, M.

1541 3/84 "Tradeoffs in Designing Organizations: Implications for New
Forms of Human Organizations and Computer Systems," Malone, T.,
and Smith, S.

1537 10/83 "Enterprise: A Market-Like Task Schedule for Distribute
Computing Environments," Malone, T., Fikes, R., and Howard, M.

Please Use Attached Form When Ordering Papers

Title/Author(s)Paver # Date


