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Abstract

We study production planning problems where multiple item

categories are produced simultaneously. The items have random

yields and are used to satisfy the demands of many products.

These products have specification requirements that overlap.

An item originally targeted to satisfy the demand of one

product may be used to satisfy the demand of other products

when it conforms to their specifications. Customers' demand

must be satisfied from inventory a% of the time. We formulate

the problem with service constraints and provide near-optimal

solution to the problem with fixed planning horizon. We also

propose simple heuristics for the problem solved with a

rolling horizon. Some of the heuristics performed very well

over a wide range of parameters.
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Deterministic Approximations to Co-Production Problems
with Service Constraints.

Gabriel R. Bitran and Thin-Yin Leong

1. Introduction

This paper examines multi-period multi-item production planning

problems in environments with stochastic process yields and substitutable

demands. The outputs of the process have characteristics that vary in a

broad band covering the needs of several customers. The functional form of

the products desired by different customers are the same but their

performance requirements are different. These requirements may overlap such

that units produced for one customer may be used selectively to fill

another customer's demand. Customers' demands must be satisfied from

inventory % of the time.

Such situations are often encountered in practice. Especially notable

are those in the high-volume components manufacturing and petro-chemical

processing industries. The semi-conductor and electronic components

sectors, in particular, are characterized by high yield variabilities, and

produce products that have different specifications and applications. For

example, a component part that goes into high technology applications like

aerospace instruments has tighter specification requirements than a similar

part that is used in consumer products.

The units produced by the manufacturing process can be classified

into a set of finite number of item categories according to the ranges of

their specified characteristics. The total yield rate of the manufacturing

process is probabilistic. Hence the percentage of acceptable units and the

relative proportions of items in each production lot can be different from

run to run. The variations of the proportions among the items are
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correlated. The units are classified into items to simplify inventory

management. The demand for products from customers is met by selecting the

items that conform to the needed requirements. The requirements met by one

item may also be satisfied by items that are defined by more stringent

specifications. In this way, product demands are substitutable.

This paper is based on a study performed at a custom semi-conductor

manufacturing facility. Current practice at this facility does not

distinguish items from products. Production runs are made to order because

of the large number of product configurations. The paper is organized as

follows. The literature is briefly reviewed in section 2, followed by the

detail problem description and model assumptions. The model formulation and

analytical results are presented in section 4. Heuristics motivated by the

analyses are described in section 5. The next section reports computational

results and comments on implications of the results. The paper ends with a

summnary and conclusions.

2. Literature Review

The general class of problems studied in this paper was proposed by

Bitran and Dasu [1989]. They identified a class of problems with multiple

items, stochastic yields, and, more importantly, interchangeability of

items to satisfy customers' demand. They framed a multi-period model with

dynamic deterministic demand; production, shortage and holding costs; and

product substitution structure. Drawing from the insights of the two period

problem, a class of heuristics was provided for solving the multi-period

problem with no capacity constraint.

Until recently, stochastic yield problems have received little

attention in the literature. Whenever uncertainty is incorporated in the

models, it is usually related to demand variability. Even these have
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certain peculiarities. Production planning problems with uncertainties

usually assume that production capacity is unconstrained. This point was

highlighted in Bitran and Yanasse [1984]. Problems of this type have been

thoroughly investigated in the field of inventory control. The

production/inventory management literature splits into the two main

streams: 1)capacitated problems with deterministic demands or 2)stochastic

demands and/or yields problems with no capacity constraint.

Papers that studied yields related problems include Shih [1980];

Karmarkar, and Lin [1986]; Mazzola, McCoy, and Wagner [1987]; Moinzadeh,

and Lee 1987]; Lee and Yano [1988]; Gerchak, Vickson, and Parlar [1988];

and Henig, and Gerchak 1989]. All these problems focussed on the single

item case. Yano, and Lee 1989] review the lot-sizing problem when the

yields are random. They reported finding little research done on multi-

period problems. The measure of performance in most of the papers, the

authors encountered, seek to minimize expected costs and very few have

constraints on measures of service. The latter, it seems, is because their

inclusion make the problem intractable rather than being irrelevant in the

problem context.

Multi-item models usually consider decisions related to the

production of items one at a time or in coordination. The decision-makers,

in these problems, decide how much of each item to produce. Deuermeyer, and

Pierskalla [1978] studied processes with co-production; that is, multiple

products produced simultaneously or product with by-products. They made no

distinction between items and products since it did not matter in their

instance. Deuermeyer, and Pierskalla [1978] consider two items and two

processes. One of the two processes makes two items simultaneously, with

fixed item proportions while the other can produce one given item. The

3



model can be generalized to m processes and n items. The products' demand

is stochastic with no substitution allowed and there is no capacity

constraint.

Almost all of the stochastic production planning/inventory control

models have penalties for product shortages. Managerially, it is sometimes

difficult to quantify what the shortage costs comprise as well as their

magnitudes relative to other costs. In most instances, the production

facilities are evaluated on their ability to meet demand. Hence, it is more

appropriate, in these instances, to model directly the service

requirements. Chance constraints are often used for this purpose. Bitran

and Yanasse [1984] provided deterministic approximations to the production

problem with stochastic demands. Service constraints were used in place of

shortage costs. The service constraints were formulated as chance

constraints and were converted into their deterministic equivalent. The

problem was approximated by a deterministic linear program. The authors

provided parametric relative bounds for their approximations. The relative

errors are small for probability distributions commonly encountered in

practice.

Our model generalizes Bitran and Dasu [19891's model to T periods and

multiple items with a general product demand substitution structure. In

place of shortage costs, we introduced service constraints. The approach we

take follows from the work of Bitran and Yanasse 1984]. In contrast, we

have uncertainty in the yield rates with given demands whereas they assumed

fixed yield rates with stochastic demands. Our problem assumes the

production of multiple items but this differ from their multi-item

extension in that we have co-production of the items and our products'

demand is substitutable. As in Bitran and Yanasse [1984], we use Jensen's
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inequality to provide relative error bounds. For a more complete

bibliography of previous studies and related problems, see Bitran and Dasu

[1989], Bitran and Yanasee [1984], and Yano and Lee 1989].

3. Problem Description and Model Assumptions

In studying the co-production problem with stochastic yield we

encountered the following types of management decisions: process-product

structuring decisions and production planning decisions. A production

process may be set for a specific product. However, because of variation in

the output characteristics, by-products, for which there may be demand,

will be produced. Hence, instead of having processes specified for each

individual product, a sub-set of processes can be identified with each

process targeted towards a group of products. Each process produces a

subset of items. The items are used to satisfy products' demand. The chain

relationship is shown below. The first set of decisions consists of

determining what processes to select and what products are covered by each.

These higher level decisions will be addressed in a forthcoming paper.

Figure 1. Process-Item-Product Chain Relationship.

For a given sub-set of products, and their pre-selected process, the

production planning decisions are: l)how much to produce and 2)how to

allocate the inventory of items to the products. We consider, in this

paper, the production planning problem under the following assumptions:

a. A multi-period model with finite planning horizon. Decisions are made

5

I
i



at the beginning of each period. Production is instantaneous or has a

leadtime of a finite number of periods. The demands are deterministic and

dynamic. Without loss of generality, there are no initial inventories of

items. Shortages are backordered. Service requirements for meeting each

product's demand are given. These are expressed as meeting or exceeding

given probabilities of satisfying demand.

b. Holding and production costs are incurred in each period. All cost

functions are proportional to the number of units and have the same

constants of proportionality for each period. Shortages are not explicitly

penalized. Undesired units may be sold for a small salvage value and

revenue from this source is assumed to be negligible. Because of the above,

to maximize profit we need only mnimize the total cost.

c. The joint yield rate probability density function (pdf) of the items is

not restricted to any type and is independent of the size of the production

lot. In this way, the number of units obtained for each item is given by

the product of the yield rate of the item and the production lot size. The

production process is pre-selected and it has a stationary joint pdf for

each period.

d. The products' demand substitution structure is known. The substitution

structure allows only uni-directional (down-grading) substitution and the

product substitution relations are transitive. We denote by i -> , if item

i can substitute item . Transitive substitution means that if i -> i and i

-> k, then i -> k.

4. Model Formulation and Analytical Results

Following a list of notation, we characterize the substitution

structure of products. Linear programming formulations are presented next,

followed by approximate deterministic equivalents.
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NOTATIONS

n, T: Number of products and length of planning horizon.

A(i): Set of all products downgradeable to product i, for i=l,..,n.

That is, j e A(i) implies that any item deliverable as product i,

can also be delivered to the customers as product i. We say that,

i is Above i in the product substitution hierarchy.

AU(i): Aggregate i, the set of all products in A(i)Ui. AU(i)=A(i)Ui.

dit: Net demand of product i in period t.

Dit: Net demand of aggregate i in period t.

qit: Yield rate of item i in period t.

We assume that, for each product i, there exists a corresponding

item i that can be used directly to satisfy its demands. The yield rate of

item i is the fraction of a production run that can be used for product i

but not by any other product in A(i). By this definition, the yield rate of

items can be very small when there are many products that have almost

similar specifications. In our formulations we are interested in the sum of

the yield rates of items that can be used for product i.

Pit: Sum of yield rates of items that can be used for product i in

period t and Pit = keA(i)Ui qkt-

f(x;y): Pdf of random variable (r.v.) x evaluated at y.

F(x;y): Cumulative density function of r.v. x evaluated at y.

Prob(.): Probability of the event argument.

E(.): Expectation function.

h, c: Unit holding and unit production costs.

o: Probability target for meeting demand. (Typically, a is close to

1.)

Nt: Total number of units to be produced in period t.
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Iit: Net quantity of items available for product i at the end of

period t.

Jit: Net quantity of item i at the end of period t.

Jit : Inventory of item i at the end of period t. Jit+= Max(O, Jit ).

Ji : Backorder of product i at the end of period t. Jit-= Max(0,-Jit).

Additional notation is introduced when appropriate.

SUBSTIUTIONC STUCTURE

We represent the product substitution structure by a directed graph

G(V,E). The following algorithm is proposed for constructing G(V,E).

Algorithm STRUCTURE

EtA- [Subroutine CONSTRUCT]. Construct a directed graph G(V',E' ), with

each product represented by a vertex in V'. We add a directed edge (i,j) if

product i can substitute product j. That is i -> i <=> (i,j) E'.

tbeI2 [(Subroutine LABEL]. Re-label the graph G(V',E') with vertex labels

i=l,..,n' such that for every (i, j) e E', i < i. In this way, i -> i => i

< j. Remove any cycles, discovered during the labeling process, by

combining the vertices in the each cycle into a single vertex. Let the

resulting number of vertices and the vertex set be denoted by n and V

respectively. For each vertex i of the re-labeled graph, construct the sets

Ai), for i=l,..,n.

Step 3 [Subroutine REDUCE]. Reduce the number of edges in the directed

graph G(V,E') to give G(V,E) as follows:
SET E = E'
FOR i=1 to n; j A(i); k e A(j)

Remove (k,i) from E if (j,i) e E
NEXT k,j,i.

The algorithm STRUCTURE is justified by the theorems that follow. The

proofs of some lemmas and theorems are omitted to keep this manuscript

within acceptable length for publication.

8

III



(SP)
ZSp = Min E(h Eni=lETt= 1 Jit + + c Tt=1 Nt)

subject to
Iit = Ii,t-1 + PitNt - EjeB(i) Wijt - Dit, i=l,..,n; t=l,..,T (2)

Prob(Iit > ) > , i=l,..,n; t=i,..,T

Nt, Wijt > 0, (i,j) E; t=l,..,T

where Iit = keAU(i)Jkt, Pit = EkAU(i)qkt ,'and Dit = keAU(i)dkt are the

aggregate variables. The number of downgrading terms in (2) is reduced

because some of the 'downgrading from' and the 'downgrading to' terms

cancel each other.

From (1) and (2) and noting that initial inventories are zero, we get

Jit = Ett=l (qi N + Ekea(i) Wkit - ijeb(i) Wij - diT), and (3)

Iit = Ett=1 (Pi N - jieB(i) Wij% - Di). (4)

Theoeom3: (SPI) and (SP) are equivalent.

Proof:

(=>) Prob(Jit>O, i=l,..,n, t=l,..,T) > a => for any i and t Prob(Jkt>O,

ksA(i)Ui) a. By definition Iit = .keAU(i)Jkt. Hence Prob(Iit>O) a for

any i and t.

(<=) For any i and t, we know that Prob(Ikt > 0) a for k e A(i). For

those k A(i) such that Prob(Ikt > 0) > a, we can downgrade some of their

units to product i till Prob(Ikt > 0) = a. Hence we can make Prob(Ikt > 0)

= a for all k e A(i) without changing the objective value. But Prob(Iit >

0) can only increase with downgrading from above. Since Prob(Iit > 0) a,

Prob(Ikt > 0) = a for all k A(i), and Iit = keA(i)UiJkt, hence Prob(Jit

> 0) > a. Therefore, (SP) is equivalent to (SPI). ·

We re-write (SP) as follows:
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(SP)
ZSp = Min E(h Eni=lETt=1 [Et=l (qizN + kea(i) Wkit - ijeb(i) WijT

- di)] + + c Tt=1 Nt)
subject to

Prob(ZtT=1(PiTN - EieB(i) Wij - DiT) > 0) > o, (5)

i=l,..,n; t=l,..,T
Nt, Wijt > 0, (i,j) E; t=l,..,T.

The variables Iit and Jit are replaced by the right-hand-side of equations

(3) and (). We will refer to the feasible region of (SP) as G. With the

joint pdf of qit given, the [Et=1 (qiN + kea(i) WkiT- Zieb(i) Wiji -

di,)]+ term in the objective function of (SP) can be more explicitly

written as:

zt=l1 (jeb(i) Wij + diT - Ekea(i) Wkit)

[y- tt=l(Ejeb(i)Wijt + di - kea(i)Wki)].f(Et =lqiTN;y)dy ·

We have used for our objective function the expected value of the sum

of the holding and production costs. This is not unreasonable under most

situations. Other types of functions may be used to reflect risk

preferences. Examples of these include the V-type and P-type formulations

as proposed by Charnes, and Cooper [1963] as opposed to the E-type that is

used here. We will assume that the feasible region defined by constraint

(5), for each i and t, is convex. That implies that G is convex. The

results of Monte-Carlo simulations, under the conditions of our test

problems, indicate that this is a reasonable assumption for a. close to 1.

For a planning horizon of more than two periods, (SP) is difficult to

solve since the yield rates qit are not known beforehand. Without the prior

knowledge of qit, it is not possible to guarantee that any solution for the

whole horizon, will be feasible after the first period. As such, most

stochastic programming problems in the literature are solved for one period

12
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at a time but may include as input, the demand of at most one period into

the future. When there are seasonal demand fluctuations and limited

capacity, the problem becomes even harder to solve. Hence, the need to

assume that the capacity is not constrained in earlier studies.

As a step towards solving (SP), we propose a few approximations. Each

of these approximations redefines the feasible region. The objective

function remains the same as in (SP). We will provide the motivation and

insight into each of these approximations. These alternative problems are

still not solvable by standard linear programming codes because of the

stochastic terms in the objective function. Deterministic approximations

are then obtained for each of these formulations.

APPROXIMATIONS TO (SP)

We now focus on equations (5), the chance constraints in (SP). Since

Nt, t=l,..,T are our decision variables, we cannot apriori know the

distribution of Ett=1piTN. An approximation for the constraint at period

t, that is often made, is to assume that the yield rates of all periods

except the latest one are equal to their expected value. This reduces the

number of random variables in each constraint to one, making the problem

tractable.

For each service constraint (5) for period t, we let

for 1 t < t , Pi = E(i) ;=l,..,t1

Pit ;t=t.

The constraint (5) in period t becomes Prob(pitNt + Et-1=lE(pi)N -

EtT=1(jB(i) Wij + DiT)) > 0) a and results in:
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(SPi)
ZSP1 = Min E(h ni=lETt=l [t=l (qiTN + kea(i)Wki - jieb(i)Wijt

- din)] + c Tt=1 Nt)
subject to

i(1)Nt + t-1,=E(Pi)N - EtT=l=.jB(i)Wij-> tt=1DizT (5.1)

i=l,..,n; t=l,..,T
N t, Wijt > 0, (i,j) e E; t=l,..,T

where i(S) = F-1(ESs=pis;1-ca) and i(S) can be interpreted as the S

periods (l-a) fractile for items good for product i. The one period (1-a)

fractile is the yield rate that will be exceeded with probability a. The s

periods (1-a) fractile is the yield rate that will be exceeded with

probability a if the production quantities of all the periods are equal.

For simplicity of notation, we let t-l=lE(pi)Nk = 0 for t=l. We will

refer to the feasible region defined by the problem (SP1) above as G1.

For the second approximation, in each service constraint (5), we let

Pit=Pi. Here, it is as if the yield rates for each i are correlated across

all the periods. With some algebraic manipulations, another approximation

results. We refer to the feasible region of (SP2) below by G2.

(SP2)
ZSP 2 = Min E(h .ni=1ETt=l[EtT=l(qiN + kea(i)Wki - jeb(i)WijT

- di%)]+ + c Tt=lNt)
subject to

Oi(l) TT=1N - Ezt=1ijeB(i)Wiji > Et,=lDi, i=l,..,n; t=l,..,T (5.2)

Nt, Wijt 2> (i,j) E; t=l,..,T.

Another approach to make the random variable t=lPiENT tractable is

to approximate each N, =l,..,t by t where t = Et=lN1 /t. This implies

that tT=l1piEN = t EtT=1lPi = (EtslNs)(t=lPi)/t. Substituting in (5)

and simplifying we obtain,

14
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(SP3)
ZSP3 = Min E(h .ni=1lTt=1 [tZ=(qiNt + Ekea(i)ki - Zjieb(i)Wijt

- dim)]+ + c Tt=1 Nt)
subject to

*i(t)/t t=l1N, - Et=1EjeB(i)Wij > -Ett=lDiT, i=l,..,n; t=l,..,T (5.3)

Nt, Wijt > 0, (i,) E; t=l,..,T.

We call the feasible region of this problem, G3.

In our final approximation, we replace each chance constraint (5) by

a set of K(t) linear inequalities. The linear inequalities are formed such

that their extreme points are points at which selected rays from the origin

intersect the lower boundary of (5). The selected rays used in (SP4) are

the axes of Nt,t=l,..,T and rays in the center of the cones formed by

subsets of these rays.

(SP )
ZSp4 = Min E(h ni=lTt= 1 [Ett= 1 (izTN + Ekea(i)Wki - jeb(i)WijT

- din)]+ + c Tt=1 Nt)
subject to

Qilk.N1 + ... + itkNt - Etz=1lje(i)Wij > EtT=lDiz, (5.4)

i=l,..,n; t=l,..,T; k=l,..,K(t)
Nt , Wijt (i,j) e E; t=l,..,T.

The coefficients iTk, =l,..,t in (5.4) are obtained as follows:

for any i, and

1) t=1,..3, we generate t! linear constraints by permutating t

coefficients (xi(t)-*i(t-l)), t=l,..,t against the decision variables

NT, =l,..,t.

(For example for t=2 and any i, the linear constraints are

*i(1)N1 + ( -i(2) - i(l))N2 - .2 =lEjeB(i)Wij _> E2=Dit and

(i(2) - i(l))N + i(1)N2 - 2T=1EieB(i)Wiji >_ 2=lDiT.)

2) t=4,..,T, we generate t constraints by permutating i(l ),., *i(l),

(Oi(t)-(t-1).4i(1)) against the decision variables N, t=l,..,t.
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The number of linear constraints needed to approximate the service

constraints (5) in G4 is n[T(T+1)/2 + 3] or O(nT2 ). The corresponding

figure for G1, G2, and G3 is nT or O(nT). Observe that the feasible

regions of all the formulations above do not contain the stochastic yield

rate term Pit and are deterministic. They are, however, not necessarily

equivalent to the feasible region of (SP) that they approximate.

DETERMINISTIC APPROXIMATIONS

In the approximations (SP1), (SP2), (SP3), and (SP4), the objective

functions are still difficult to evaluate because of the stochastic terms

qit and the need to compute the positive part of the inventory term. To

resolve this difficulty, we propose the following deterministic

approximations to each of these problems and label them accordingly. The

approach is similar to the one made in Bitran and Yanasse [1984].

First, we consider problems

(DP+1)
ZDP+1 = Min h Eni=.1 Tt=l(Et,=l(E(qi)N, + Ekea(i)WkiT - Ejeb(i)Wiji

- dig))+ + c Tt=1 Nt subject to constraints for G1 and

(DP1)
ZDp1 = Min h Eni= 1ETt=1(Et=l1(E(qi)N + kea(i)WkiT - Ejeb(i)WijT

- dit)) + c ETt=1 Nt subject to constraints for G1.

Note that the optimal solution to (DP+l) is feasible to (DP1) and it also

takes on a smaller objective function value in (DP1). Hence ZDp1 < ZDP+1.

The same conclusion is true for the other approximations which are:

(DPk)
ZDPk = Min h ni=lETt=l(Etz=l(E(qi)N, + Ekea(i)Wki - jeb(i)Wiji

- dig)) + c ETt=1 Nt subject to constraints for Gk, for k=2,..,4,

and (DP+k) for k=2,..,4 similar to (DP+i).

_NALYTICAL RESULTS

Funldaental e_mMa (Hillier [19671): Assume that g3(N,W) g(N,W) > g2(N,W)

16
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where gk: RT+a -> Rb with N RT, W e Ra and b is the number of

constraints. Consider a solution (N,W) feasible if and only if g(N,W) > 0.

i) If g2(N,W) 0, then (N,W) is feasible.

ii) If (N,W) is feasible, then g3(N,W) 0. ·

Thus, if g(N,W) > 0 represents the exact deterministic equivalent of the

constraints, then g2(N,W) 2 0 and g3(N,W) 2 0 represent constraints that

are uniformly tighter and uniformly looser than g(N,W) > 0, respectively.

From here on, we use the following definition.

Define: gk(N,W) by Gk - (N,W) I gk(N,W) 0, for k=1,..,4.

LemmDa_ [Sufficient Conditions for feasibility to (SP)]:

g(N,W) g2(N,W) > 0. 

Lemma2 [Necessary Conditions for feasibility to (SP)]: For each

ie{1,..,n), if PiT, =l1,..,t are independent identically distributed then

g3(N,W) g(N,W) 0.

Proof: By the definition of i(t), for each i and t,

Prob(.tT=lpi > i(t)) = a. Therefore for any Ns > O, s=l,..,t,

Prob(EtT=lpiT(Ets=1Ns)/t i(t)(Ets=lNs)/t) a. By an approach similar to

the proof for Jensen's inequality, we can show that for all Ns 0,

s=l,..,t, G convex, and PiT i.i.d. for E=,l..,t, t=lPiN >

Ett=lpi(Ets=lNs)/t. (We call upon the property of symmetry and note that

equality holds when N, =1,..,t are all equal.) Hence, Prob(Ett=lpiTNT >

*i(t)/t tT=N) a. Therefore, using (5.3), we conclude that for any

(N,W) satisfying G3, Prob(Et,=lpizN - tt=lEjeB(i)Wijt > t.=lDij) > A.

Lema3l [Uniformly Tighter Constraints(i)]: g(N,W) g(N,W) > 0.

Proof: For each i and t, the chance constraint (5) is replaced by a set of

linear constraints. The extreme points formed by the intersections of these

linear contraints are feasible to the chance constraint the set replaces.
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By convexity of (5), any solution in the polyhedron defined by each set of

linear constraints will be feasible to the chance constraint. It follows

that G4 G and g(N,W) g4(N,W) 0. ·

Lema la [Uniformly Tighter Constraints(ii)]: If i(s)/s> i(s-l)/(s-l) for

s=2,..,T and any i then g4(N,W)2 g2(N,W)> O0.

Lemma 5: If i(l) E(pi), then gl(N,W) g2(N,W) 0. ·

Though G1 is uniformly looser than G2, G1 is neither uniformly looser nor

tighter than G.

ThLg.rem 4: For s=2,..,T, and any i, i(s)/s > i(s-l)/(s-l) then g3(N,W) 

g(N,W) g(N,W) g2(N,W).

To graphically depict theorem , we sketch below the boundaries of the

feasible regions corresponding to equations (5.1) through (5.4) for product

i and t=2.

Figure 4. Boundaries of Feasible Regions.

The assumptions, for any i, i(s)/s 2 i(s-l)/(s-l), for s=2,..,T,

and i(l) E(pi) are not unreasonable for most pdfs when (l-a) is small.
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The first says that the (1-a) fractile of the sum of random variables after

scaling for the number of terms gets larger with more terms in the sum.

Plainly, it means that the risk of getting very low yield rates is less

when a given production quantity is divided into more lots. This is carried

forward from the conventional wisdom of not putting all the eggs in one

basket. The second assumption says that the (1-a) fractile of a random

variable is less than its expected value.

Theorem 5 [Relative Error Bounds]: Let (N*,W*) be the optimal solution to

the deterministic approximation (DPk) under consideration. For each k, the

relative error of the value of this solution to the value of the optimal

solution to (SPk) is bounded above by (ZUk(N*,W*) - ZDPk)/ZDPk where

ZUk(N,W) is the value of any feasible solution (N,W) in (SPk).

Proof: By definition of (N*,W*),

ZDPk = h Eni=l.Tt=l(EtT=l(E(qi)N* + kea(i)WkiT* - Zjeb(i)Wiji - din)) +

c Tt=l Nt*. (N*,W*) optimal to (DPk) implies that it is feasible in (SPk),

ZSPk < E{h .ni=1ETt=1(.tT=1(qiN,* + Ekea(i)Wki* - jeb(i)Wij* - din))+ +

c Tt=1 Nt*} - ZUk(N*,W*). Note that (t=l(qizNT + kea(i)WkiT -

Ejeb(i)Wijt - diT)) + is convex in (t,=lqiNU). Therefore by Jensen's

inequality, for any (N,W),

E{h.ni=jlTt=l(Et=l(qiN + Ekea(i)Wki - jeb(i)Wij - din))++ cTt=l Nt)

hni=1ZTt=l(t=l(E(qi)N + kea(i)Wki - Eieb(i)Wij - din))++ cTt=lNt.

The optimal value of the left-hand side over Gk leads to ZSPk > ZDP+k and

hence ZUk(N*,W ) ZSPk ZDP+k ZDPk. The relative error,

REk = (ZSpk - ZDPk)/ZSPk (ZUk(N*,W*) - ZDPk)/ZDPk.

5. Heuristics

So far we have examined the problem with plans frozen for the whole

planning horizon. We believe these plans can be improved if they are
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adapted to new available information. One way of adapting is to use a

rolling planning horizon. In this section, we solve linear programs (DP2),

(DP3), and (DP4) to provide plans for the current period using demand

information for a given horizon. We denote these as RH-SP2, RH-SP3, and RH-

SP4 respectively. (DP1) was not considered because of the non-uniformity of

its feasible region vis-a-vis (SP).

We next generate heuristics based on the analytical results obtained

earlier. The motivation for doing this is to examine how well these simple

rules derived from theoretical results can perform. If the heuristics are

good, they become practical alternatives for solving the problem without

relying on extensive computational power. In our heuristics, the

downgrading quantities will not be computed directly. To ensure that units

which have alternative uses are not double counted, we need to extend the

definition of aggregates. We define the expanded aggregate i, AE(i) as

equal to {i} if a(i) is empty, and {k:keAE(j),jea(i) U

(k:a(k)eAE(j),jea(i), otherwise. Some of the sets AE(.) may be the same.

We can eliminate the redundant ones and keep only those that are distinct.

The distinct AE(.) sets can be constructed using a Breadth-First Search. We

redefine the sets AE(.) as AU(i), i=n+l,... . From now on we refer only to

this extended set AU(i), i=1,..,2n. Depending on the product substitution

structure, for n products, we can now have from n to 2n aggregates.

Two classes of heuristics were examined: heuristics with and without

inventory withholding rules. We introduce three new heuristics that do not

withhold inventory. In the first of these heuristics, U1, the production

quantity decision mimics the deterministic approximations with one period

planning horizon. (The problems (DPk) for k=l,.. , are indistinguishable

when T=i.) For each aggregate i, we find the smallest Ni that needed to
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satisfy the net demand (demand less inventory plus backorders) of the

aggregate. We then set the production quantity as the largest of the Nis.

Product demands are met directly from the inventory of their corresponding

items when possible. We examine for shortages of products in ascending

order of their labels. When shortage occurs, we downgrade from their

immediate predecessors in the product substitution structure, also in order

of their labels, and work up the hierarchy till the shortage is resolved or

no more inventory for downgrading is available. We list below the algorithm

of heuristic U1 for the serial product substitution structure.

Hguristic U1
a. LET Dil = Dil - Iio, for all i.

b. LET Ni = Dil*/@i(1), for all i.

N* = Maxi { 0, Ni ), the production quantity.

c. [The item yields qi are realized.] Update inventory after direct

assignment, Jil = qiN * + Jio - dill, for all i.

d. Downgrading:
FOR i=l to n AND IF Jil <

FOR j=i-1 to 1 step -1 AND IF Jjl > 0

Downgrade from i to i till
i) Jil = 0 or ii) Jjl = 0

NEXT i,i. a

The next two heuristics examine the demand of two periods and assume

that the production of the next period will be the same as that of the

current period. U2-SP3 mimics (DP3) and U2-SP2 mimics (DP2). The

downgrading rules are as in U1. Part b of U is modified as follows for

these two heuristics:

Heuristic U2-SP3
b. LET Nil = Di1*/%i(1), for all i.

LET Ni2 = (Dil* + Di2)/0i(2), for all i.

N* = Maxi ( 0, Nil, Ni2 ). the production quantity.
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Heuristic U2-SP2
b. LET Nil = Dil*/Oi(1), for all i.

LET Ni2 = ((Dil* + Di2)/*i(1))/2, for all i.

N* = Maxi 0, Nil, Ni2 , the production quantity.

The second class of heuristics holds back, under a given rule,

inventory of higher order items from satisfying the demand of lower order

products. The rule rations scarce higher order items so as to conserve

them. This corresponds to trading-off the shortage cost of lower order

items against the cost of producing more later to meet the demand of higher

order items. For heuristics V, UWH01, and UWH02, the decision rule for the

production quantity is the same as in Ul. V is the heuristic in Bitran and

Dasu [1989]. The withholding rule in this heuristic keeps, for each

downgrading source, the net product demand relative to the total demand

less than or equal to its corresponding item's (1-a) fractile. Heuristics

UWHO1 and UWH02 are refinements of V. These two heuristics compare the

relative net demands of product pairs against the ratio of their items' (1-

a) fractiles. We list only the changes for each of the heuristics as

follows:

Heuristic V
c. (append to end of c.)

LET Di2*+ = Max (0, D(i-l),2*+ + di,2 - Jil), for i=l,..,n where

DO 2*+ = 0.

d. (replace box by)
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Downgrade from i to i till
i) Jil = 0 or ii) IF Dn2*+ > 0 THEN

Dj2*+/Dn2*+ j (1l)

Update Dk2*+, k =1,..,n
ENDIF
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Heuristic UWH01
c. (append to end of c.)

LET Di2*+ = Max (0, D(i-1),2*+ + di,2 Jil)

for i=l,..,n where D2 + = 0.

d. (replace box by)

Heuristic UWH02
c. (append to end of c.)

LET Di2*+ = Max (0, D(i-l),2*+ + di,2 - Jil ), for i=l,..,n where

D0, 2*+ = 0.

d. (replace box by)

6. Computational Results and Comments

The heuristics were tested on thirty test cases, each with three

products having a serial substitution structure. The expected yields and

the coefficients of variation of the items relative to each other were

selected so that they cover a wide variety of possible combinations. The

details of the test cases are found in the appendix. We simulated the

application of the heuristics for 1000 periods.

23

Downgrade from i to i till
i) Jil = or ii) IF Dn2*+ > O THEN

Dj2*+/Dn2*+ < j(1)/n(1)

Update Dk2 +, k =l,..,n
ENDIF

Downgrade from i to items k=j+l to i
in that order of priority till
i) Jil = 0 or ii) IF Dn2 > O THEN

Dj2*+/Di2*+ < j(1)/i(l)

Update Dk2*+, k =l,..,n
ENDTF



During the simulation, we calculate the average total cost per

period, mean and standard deviation of production quantities per period,

service levels, and statistics on inventory positions at the end of each

period. Simulations for a fixed planning horizon were also done to 10 test

cases randomly selected from the previous 30. Each of these was simulated

for 4 periods planning horizon 1000 times. The plan was applied each time

as if it was frozen for 4 periods. The upper bound on the relative errors

of the deterministic approximation for the stochastic approximation are

obtained using theorem 5.

RESUL 

The simulations demonstrated that the deterministic approximations

under the rolling horizon perform very well. They all meet service

requirements. RH-SP4 was found to perform the best. Among the LPs, RH-SP4

has the lowest average per period cost in 19 out of the 30 cases. RH-SP2

and RH-SP3 did not differ from each other at all in their performance. On

the whole, RH-SP4 is 6.98% lower in cost than RH-SP3. In the best case it

is 49.49% cheaper, at its worst it is 16.62% more expensive. Table 1

presents the results above. The static simulations showed that the average

upper bound on the relative error of approximating (SP4) with (DP4) is

about 3%.
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Table 1 - Ls under Rolling horizon
(Out of 30 test cases; comparing among R-Hs.)

Average % Average %
(Max.+ %) (Max.+ %)
[Max - %] [Max - %]

No. of Average % Maximum % Deviation Deviation
Times Deviation Deviation From From

Methods Best From Best From Best RH-SP3 RH-SP4

RH-SP/ 19 2.17 16.62 -6.98 0.00
(16.62) (0.00)

[-%9.49] [0.00]

RH-SP3 11 14.57 97.99 0.00 12.36
(0.00) (97.99)
[0.00] [-14.25]

RH-SP2 -------- SAME AS RH-SP3 -------------------------

Note: Negative indicates the method is better.

From the results of the simulation, it seems advisable not to

withhold inventory. The withholding of higher order items was motivated by

the argument that it may be cost effective not to downgrade scarce high

order items since the higher order items are relatively more difficult to

produce. However, not downgrading items degrades the service performance of

the lower order products. The relative scarcity of higher order items imply

that the lower order items are in relative abundance. The service

performance of the products corresponding .to these low order items are then

usually good, so withholding may not cause the service targets of these

products to be violated. But if this is so, then the frequency of requests

for downgrading will be so small that the additional cost incurred by

downgrading, when it is needed, is negligible. Hence, it is reasonable not

to restrict downgrading. This conclusion is consistent with the results in

Table 2.

25



Table 2 - All Heuristics
(Out of 30 test cases; comparing among heuristics.)

No. of When service limits
Times are violated:

No. of- No. of Violated Average Worst
Times Times Service Service Service

Methods Best Second Limits Level Level

U1 7 9 0 - -
U2-SP3 10 14 0 -
U2-SP2 12 6 0 - -
V 7 5 12 54.93 96.00
UWHO1 6 5 12 48.88 96.30
UWH02 6 5 9 48.43 36.70

Note: Best heuristics must have the lowest average per period cost as well
as satisfy service limits. The number of 'best' exceeds 30 because of ties.

The main reason against using withholding heuristics is that they do

not guarantee meeting service targets. Shortage probabilities for cases

under withholding heuristics can be extremely high. For some of the test

cases, simulation shows that under these heuristics, service requirements

are violated in as many as 12 out of the 30 test cases. The average

shortage probabilities among the violation cases range from 25.50% to

48.43% with the maximum service performance failing to meet demand 96.30%

of the periods. The withholding heuristics do not differ very much from

each other. Table 2 above presents more details.

As a whole, a myopic rule like U was found to do well. In fact, Ul's

performance was the same as RH-SP3 and RH-SP2. It appears then that, unlike

RH-SP4 which was able to make use of future periods' information within its

plan, RH-SP2 and RH-SP3, though both also multi-period formulations, were

not able to exploit that. This does indicate that planning beyond one

period is beneficial. We postulate that it will be more so when there are

capacity constraints and seasonality in demand. Counting only cases that do

not violate service constraints, U1 performs better than any of the other

'one period' heuristics and it will not violate service limits.
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For the 'two period' heuristics, U2-SP2 is the best heuristic in 12

out of the 30 cases. This is almost twice as many times as compared to the

'one period' rules. U2-SP3, the other 'two period' rule, performed just as

well with 10 firsts and 14 seconds. We now compare U1, U2-SP3 and U2-SP2

against RH-SP4, the best method. Looking at Table 3 below, it is easy to

see that U1 is on the average 12.59% higher in cost than RH-SP4. U2-SP3 and

U2-SP2 both perform much better with average relative deviation in cost

from RH-SP4 of less than 2%. They also do better than the best method, RH-

SP4, in about half of the test cases. We can conclude that the 'two-period'

heuristics are much better than the 'one-period' heuristics. Also, the two

'two-period' heuristics though based on very simple rules, did almost as

well as the computationally more intensive RH-SP, a 4 period LP under

rolling horizon.

Table 3 - Service Conforming Heuristics Relative to RH-SP3 and RH-SP.
(Out of 30 test cases)

No. of WHEN WORSE ALL CASES No. of WHEN WORSE ALL CASES
Times Av.% Max.% Av.% Times Av.% Max.% Av.%
Better Dev. Dev. Dev. Better Dev. Dev. Dev.
Than From From Than From From

Method RH-SP3 RH-SP3 RH-SP3 RH-SP4 RH-SP4 RH-SP4

U1 0 0.00 0.00 0.00 11 23.00 97.99 12.59
U2-SP3 20 5.30 25.10 -6.33 17 7.79 34.63 1.54
U2-SP2 17 6.92 33.38 -5.89 13 7.53 27.57 1.88

Another interesting result is that the coefficients of variation

(COV) of production quantity of the better methods are also lower. RH-SP4's

COVs are smaller than the COVs of U2-SP3 and U2-SP2. In turn U2-SP3 and U2-

SP2's COV are much smaller than those of RH-SP2 and RH-SP3. In 20 out of

the 30 cases, the RH-SP4's COVs are less than one half than that of RH-SP3.

The average COVs are 2.69, 1.24, 2.69, 2.69, 1.89, and 1.69 for RH-SP3, RH-
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SP4, RH-SP2, U1, U2-SP3, and U2-SP2 respectively. Table 4 below present the

results.

Table 4 - Coefficient of Variation of Production Quantitfes
(Out of 30 test cases)

DEVIATIONS NO. OF TIMES 
FROM RH-SP3 THAN COV OF

Std. Std. RH- RH- U2-
Methods Av. Dev. Max. Av. Dev. SP3 SP4 SP3

RH-SP4 1.24 1.06 4.75 -1.45 0.72 0 0 0
RH-SP3 2.69 1.65 7.58 0.00 0.00 30 30 30
U1 2.69 1.65 7.58 0.00 0.00 30 30 30
U2-SP3 1.89 1.50 6.00 -0.81 0.50 1 30 30
U2-SP2 1.69 1.08 4.26 -1.00 0.64 0 29 15

GENERAL COMMENTS

Linear deterministic equivalents are useful and practical because

sensitivity analysis can be done 4t no additional computational effort.

This makes it easy to evaluate the cost of meeting the service

requirements. Interactive-type approaches may be incorporated for adjusting

the service requirements to trade-off the cost and value of the service

constraints. Nonlinear deterministic equivalents and other linear

deterministic equivalents have been suggested for chance-constrained

problems. (See Hillier [1967], and Seppala [1971].) These usually assume a

particular type of pdf for the random variables. The assumption is not

restrictive in most cases but does not hold for distributions that have

fixed supports. Therefore, formulating the deterministic nonlinear program

equivalent of our problem is already a big challenge. Also in problems

where there is a large number of other linear constraints (other than those

we generate to replace each chance constraint; for example, multiple

resources production capacity constraints) nonlinear programming approaches

become very inefficient.
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Our approach is an inner linearization method. Unlike other inner

linearization methods, we do not need the functions to be separable. Outer

linearization approaches are usually used when nonlinear programming

methods are employed. The solution to an outer linearization approximation

of the problem is uniformly looser and hence may be infeasible. The gap

from feasibility may be small when there are many linearization "cuts" and

as mentioned in Hillier [1967], they are "barely infeasible". The outer

linearization methods are often multi-pass techniques. Our method, as

presented in this paper, solves for a planning horizon in one pass.

(DP4) is a simple version of a class of deterministic linear programs

that can closely approximate the chance-constrained problem (SP). More

advance, near-optimal single-pass as well as multi-pass linear programs can

be constructed to approximate and solve (SP) by clever selection of rays in

the construction of (SP4). We have used (SP6) in its current form for our

problem and found that it is significantly better than the more common

(SP2)-type approach. (For example, see Olson, and Swenseth [1988] and

Allen, Braswell, and Rao [1976].) Our approach in this paper, increased

the total number of constraints needed in our test cases from 2 (for SP2

or SP3) to 51 (for SP6).

It is interesting to note that, RH-SP4, a rolling horizon

implementation of (DP6) can perform so well in a dynamic situation. Even

more remarkable is that U2-SP3, a simple heuristic motivated by (DP3),

differs only slightly in performance from the more sophisticated and

computational more intensive RH-SP4. (U2-SP3 can also be called U2-SP4

since assuming N1 = N2 makes the second period constraints in (SP3) and

(SP6) the same.)
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In our computations, we have used fractiles obtained by Monte-Carlo

simulations since no closed-form expression for them exists. In practice,

sometimes the form as well as the values of the parameters of the joint

yield distributions are not known. Historical data may be limited. In such

situations, the data may be used to construct distribution-free (1-a)

fractiles. When the form of the distribution is known, approaches similar

to those in Bache [1979] using results of Cornish, and Fisher [1937] and

Fisher, and Cornish [1960] may be used.

In this paper, we have assumed the capacity is unrestricted and costs

constants are time-invariant. The reader will notice that these can be

relaxed for the LP formulations. Heuristics can also be derived for the

capacitated situation though this will require additional work. The

derivation of these heuristics and evaluation of their performances, and

the relaxation of other assumptions like the transitivity of substitution

remain topics for future research.

7. Summary and Conclusions

We provided LP formulations that approximate the original problem

with uniformly tighter constraints and computed, for each approximation,

the corresponding optimal production plan. The uniformly tighter feature is

important if planning is done infrequently since the production plan must

satisfy the service constraints for the planning horizon. When planning is

done every period, the approaches in this paper provide feasible solutions

even under conditions of demand seasonality and capacity constraints. Our

models rely on the benefit of solving problems with more than two periods.

This characteristic is particularly useful when the plans are determined on

a rolling horizon basis since they tend to change less nervously from

period to period.
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APPENDIX

Test Cases

There are thirty test cases, each with three products 1, 2, and 3.

Related to these products are 4 items, one for each product and the fourth

for the rejects. The substitution structure is serial and transitive. That

is, item 1 can be used as products 1, 2, or 3; item 2 can be used as

products 2 or 3; and item 3 can only be used as product 3. The mean yield

rate of each of the first three items in each problem is set L(ow),
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M(edium), or H(igh) relative to each other. The approximate values for L,

M, and H yield rates are 0.1, 0.3, and 0.5 respectively.

We define yield rate of con-aggregate i (short for conditional

aggregate) as the ratio of the sum of the yield rates of items deliverable

as product i to the sum of the yield rates of items deliverable as product

(i+1), for i=1, 2, 3. The coefficient of variation of each con-aggregate

(CCV) is also set L, M, or H relative to each other. The con-aggregates are

assumed to have Beta distributions. This is a common distribution for

random variables that range between 0 and 1 and is general enough to

approximate most empirical yield distributions. The (1-a) fractiles are

generated by Monte-Carlo simulations. The test cases are set up with the

parameters a and b for the distribution roughly according to the

specifications outlined for each case. These cases are listed in the table

below:

33



Each box above contains the parameters for one test case. The total

demand of all three products in each period is assumed to be uniformly

distributed between 750 and 1250 units, with a mean of 1000 and a range of

500. The total demand is assigned to the 3 products according to the ratios

of 3 randomly generated numbers. Unit production and holding costs are 8

and 1 respectively and a is set at 0.95.
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CCV MEAN
LMH LHL MMM MLM HML

Items a b a b a b a b a b

LMH 1 22 177 21 128 82 164 116 155 177 142
2 6 7 11 2 5 3 4 3 13 2
3 9 1 2 1 5 1 1 1 5 1

LHL 1 22 177 21 128 82 164 116 155 177 142
2 1 1 3 1 1 1 1 1 4 1
3 110 12 119 51 110 12 187 80 110 12

MMM 1 2 19 3 20 2 5 3 4 4 3
2 6 7 11 2 5 3 4 3 13 2
3 27 3 7 3 15 2 5 2 15 2

MLM 1 2 19 3 20 2 5 3 4 X 3
2 86 108 158 26 133 66 171 128 123 15
3 27 3 7 3 15 2 5 2 15 2

HML 1 1 6 1 3 1 1 1 1 1 1
2 6 7 11 2 5 3 4 3 13 2
3 110 12 119 51 110 12 187 80 110 12

HHH 1 1 4 1 3 1 1 1 1 1 1
2 1 1 3 1 1 1 1 1 4 1
3 5 1 1 1 5 1 1 1 5 1
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