# ABSTRACT <br> SYNTHESIS OF UNSYMMETRICAL $\boldsymbol{N}$-HETEROCYCLIC CARBENE COMPLEXES AND THEIR CATALYTIC PROPERTIES 

Gülcan GENÇAY

M.Sc. Thesis, Department of Chemistry<br>Supervisor: Assost. Prof. Dr. M. Emin GÜNAY

$$
\text { 2013, } 95 \text { pages }
$$

N -heterocyclic carbenes (NHCs) are considered alternatives to phosphine ligand in metal complexes due to strong $\sigma$-donor but poor $\pi$-acceptor abilities, low toxicity and their stability to air and moisture. Because of these properties of transition metal carbene complexes used as catalyst in many organic reaction. $N$-heterocyclic metal carbene complexes are effective catalysts in many useful transformations, such as CC and $\mathrm{C}-\mathrm{N}$ coupling reactions, transfer hydrogenation, olefin metathesis, hydrosilylation, hydroformylation e.t.c.

In this study, a series of unsymmetrical $N, N^{\prime}$-disubstituted imidazolium salts were synthesized as $N$-heterocyclic carbene precursors. These compounds were used to synthesize of $N$-heterocyclic metal ( $\mathrm{Pd}, \mathrm{Ru}$ ) complexes. These complexes are classified into three groups, which are donor-functionalized NHC-Pd (6a,b) complexes, NHC ligated palladacyclic complexes (7a-c) and NHC-Ru complexes (8a-c). Due to hemilabil behavior, this study focused on the synthesis of NHC-metal complexes. Catalytic properties of synthesized complexes were investigated in Suzuki-Miyaura cross-coupling reaction and transfer hydrogenation of acetophenone. These new compounds were characterized by analytical method, elemental analysis, ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectroscopy. In addition, 6a numbered structures of the compound has also been characterized by X-ray diffraction.

Key words: N-heterocyclic carbenes (NHCs), imidazolium salts, donorfunctionalized, palladacyclic, catalyst, C-C cross-coupling reaction, transfer hydrogenation, X-ray diffraction.

