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This paper develops a new model for studying multi-echelon inventory systems
with stochastic demand. For the model we assume that each site in the system orders at
preset times according to an order-up-to policy, that delivery times are deterministic, and
that the demand processes are stochastic with independent increments. We introduce a new
scheme for allocating stock in short supply, which we call virtual allocation and which
permits significant tractability. We exercise the model on a set of test problems for two-
echelon systems to get insight into the structure of good policies. We find that the least-
inventory policy puts the safety stock at the retail sites (lower echelon ) with the central
warehouse (upper echelon) primarily serving as a central ordering agent. Nevertheless, the
test problems show some benefit from holding stock at the central warehouse, even though
it will stock out with high probability. Furthermore we are able to show that the virtual
allocation rule is near optinal for the set of test problems.

1. Introduction

Multi-echelon inventory systems are of great practical interest and significance.
Most consumer and industrial finished goods are distributed through multi-echelon
inventory systems of one sort or another. Spare parts for office equipment, computers,

automobiles, and military hardware are commonly provided through multi-echelon

systems. Any enterprise with geographically-dispersed demand, economies of scale in
production and/or transportation, and market-driven service requirements must typically
rely on a multi-echelon inventory system to remain competitive. Multi-echelon inventory
systems are also common in production contexts, particularly in multi-plant operations

where the inventories may act to decouple one facility from another.

Over the past thirty years there has been much progress in developing an inventory
theory for these multi-echelon systems. In particular, for deterministic demand there are
very effective procedures for setting reorder intervals for a wide range of systems (Roundy

1985, Maxwell and Muckstadt 1985). For serial systems with stochastic demand, there are
approaches for finding good or optimal order policies for both the periodic review case
(Clark and Scarf 1960, Federgruen and Zipkin 1984c) and continuous review case
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(De Bodt and Graves 1985). For one-for-one systems with stochastic demand, there is a
rich literature on models and algorithms for finding stockage policies for multi-echelon
systems, e.g.,Sherbrooke (1968), Simon (1971), Muckstadt (1973), Graves (1985),
Svoronos and Zipkin (1988b), Axsater (1988).

The more general problem with stochastic demand, a distribution or general
network, and batch or periodic ordering, seems to be much harder, and progress here has
been slower. Most of the work considers a two-echelon distribution system with identical
retail sites and Poisson demand, and then develops an approximate model of system cost or
performance as a function of stockage levels; a simulation is used to evaluate the
approximate model. Noteworthy examples are the papers by Deuermeyer and Schwarz
(1981) and Svoronos and Zipkin (1988a) for the continuous review case, by Jackson
(1988) for a periodic review case, and by Eppen and Schrage (1981) and Federgruen and
Zipkin (1984b, 1984c) for a periodic review case in which the central depot holds no stock.
Jackson (1988) and Schwarz (1989) provide excellent reviews of this literature with several
additional citations; rather than duplicate these papers, I refer the reader to their
discussions of the literature.

In this paper I present a new model for multi-echelon inventory systems. For this
model I require two key assumptions: a fixed schedule for replenishments for all sites in
the system, and a seemingly simplistic allocation rule ir, which stock at an upper echelon is
virtually committed as demand occurs at a lower echelon in the system. All sites follow a
base stock (or order-up-to) policy, which is the same policy as considered by Jackson.
The assumptions for the model are stated in the next section, Section 2, and a discussion of
the assumptions follows in Section 3. The model is developed for the case of Poisson
demand, deterministic transhipment (or lead) times, and a distribution network topology.
In Section 4, I provide an exact characterization of the inventory at any time at any site in

the system. In Section 5, I use an example to show how to exercise the model in a general
context for a given stockage policy. We can simplify the computational requirements of the
model for a two-echelon system. I show this in Section 6, and introduce a two-moment
approximation for the inventory distribution. A set of test scenarios are analyzed in Section
7; these tests provide insight into the structure of the optimal stockage policy and, in
particular, show how inventory should be allocated across a two-echelon system for these
scenarios. A lower bound for the allocation policy is described in the next section; the
evaluation of this lower bound on the test problems shows that the assumed policy, namely
virtual allocation, results in near-optimal inventories. Finally, in Section 9, I discuss how
the model and analyses might extend to permit more general demand processes, stochastic
lead times, and general network topologies.
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2. Assumptions

Network Topology: We consider a multiechelon distribution system consisting of M
inventory sites, i =1, 2, ... M. Each site j has a single supplier i = p(j), except for site 1

which is replenished from an exogenous source; we assume that the sites are numbered
such that p(j) < j.

We term sites with no successors as retail sites. The remaining sites act as storage

and consolidation facilities, and are called transhipment sites. The unique sequence or path

of sites from site 1, to a retail site is the supply chain for the retail site. We call site 1 the

central warehouse (CW).

Demand: The distribution system supplies a single good or commodity from a single

source (external supplier for site 1) to a population of customers. We assume that customer

demand occurs only at retail sites. (The model can easily permit customer demand at the

intermediate sites by splitting the site into two sites: a pure transhipment site and a retail

site. ) Customer demand that cannot be met by inventory on hand is backordered until

sufficient inventory is available. The demand at each retail site is given by an independent
Poisson process. For each retail site j, we define Dj(s, t) as the demand over the time

interval (s, t]; for each transhipment site we define Dj(s, t) as

Dj(s, t)= Di(s, t)

where the summation is over the immediate successors to site j, that is, i such that j = p(i).

For each site i, either retail or transhipment, Xi is the expected demand rate per unit time.

Fixed Scheduling: We assume that for each site we are given a schedule of preset times

at which each site places its replenishment orders on its supplier; that is, for each site j we
are given pj(m) for m = 1, 2, ... where pj(m) is the time at which site j places its mth

order. We also assume that the times at which the corresponding shipments arrive at the
site are preset and known. In particular, rj(m) is the time at which site j receives its mth

shipment, where the mth shipment follows the mth order. However, the quantity received

in the mth shipment may not exactly match the quantity ordered in the mth order. The

supplier may ship less than ordered when there is an inventory shortage, and will make up
the shortfall on subsequent shipments. We define pj(m) to be less than pj(m+l), and

require that rj(m) is less than rj(m+l), and pj(m) is less than or equal to rj(m). The
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difference rj(m) - pj(m) is the lead time for the mth order by site j, and may vary by order.
The requirement that rj(m) is less than rj(m+l) means that there is no order crossing.

Ordering Policy: At each order occasion, a site follows an order-up-to policy based on
echelon stock. Since we assume that all customer demand is met, this policy translates into
an order quantity which replenishes all demand since the last order occasion. Namely, at
its mth order occasion pj(m), site j places an order equal to Dj[ pj(m-l), pj(m) ].

To initiate this policy we assume that each site has at time zero an initial inventory
(which we term the base stock or order-up-to point), given by Bj for site j. We assume that
the first order is placed at pj(l) > 0; we require that Bj > O for all j.

Order Filling Policy: Suppose site i is the supplier to site j, i.e. i=p(j). Then site i

ships to site j only when there is an order occasion uy site j. The amount shipped depends
on the inventory availability at the supplier and on the allocation policy by the supplier.
When site i does not completely fill the order by site j, then the unfilled portion of the order
is treated as a backorder on the supplier. This backorder remains open at least until the next
order occasion by site j; only then will the supplier try again to fill the outstanding order.

We define the random variable Tj(m) to represent the coverage provided by the

supplier on the occasion of the mth order by site j. In particular, the amount shipped by the
supplier at time pj(m) [to arrive at time rj(m)] is given by Dj[ Tj(m-1), Tj(m) . Since the
supplier cannot cover demand that has not yet occurred, we must have that Tj(m) < pj(m).
If Tj(m) < pj(m), then the supplier did not completely fill the order by site j, and Dj[ Tj(m),
pj(m) ] remains on backorder. If Tj(m) = pj(m), then site i has filled the mth order by site

j.
The primary thrust of the analysis in the next section is to characterize the random

variable Tj(m). To do this we require an assumption about how the supplier allocates

inventory when faced with a possible shortage.
The CW (site 1) is an exception to this discussion since its supplier is external to the

system. We assume that this external supplier is completely reliable and fills every order
exactly as scheduled [ i.e., Tl(m) = pl(m) ].

Virtual Allocation: We assume that each transhipment site observes in real time the
demand processes at all of its downstream retail sites. Since each site follows an order-up-
to policy, each demand event will eventually trigger a sequence of replenishment requests
from the retail site up the supply chain to the CW: each site on the supply chain increases
its next order by one due to a particular demand occurrence. In anticipation of these
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replenishment requests, we assume that at the time of a demand event each transhipment
site on the supply chain acts as if the replenishment order were placed concurrently. Each
site on the supply chain commits a unit of its inventory, if available, to replenish the
downstream site; however, the actual shipment of this unit to the downstream site does not
occur until the next order occasion. In effect, a site will take a unit from its uncommitted
inventory and load it into a waiting truck that is destined for the next site in the supply
chain. However, this truck does not depart until the next scheduled departure time. Once a
unit has been committed for shipment to a downstream site (e.g., loaded onto the truck), it
cannot be uncommitted and will wait until the next order occasion when the actual shipment
occurs.

If a site on the supply chain does not have an uncommitted unit to commit at the
time of the demand event, the site creates a backorder and adds this to the current list of
outstanding orders. When inventory becomes available to service these outstanding orders,
they are filled in the order in which they were created. Again, though, the filling of the
outstanding order results only in committing the inventory to the next scheduled shipment.
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3. Discussion of Assumptions

Network Topology: We present the model and analysis for a pure distribution system.

We sketch how to extend the model to permit more general networks with assembly sites in

the last section of the paper, however, it is not clear that the analysis required by the model

will remain computationally feasible for this case. Hence, the primary presentation is for

distribution systems.

Demand: The analysis requires that the demand process at each site has independent

increments and has unit demands; for convenience and tractability, we present the model

for the most common instance of this type of process, a Poisson process. Of these two

requirements, the requirement of independent increments seems to be the more crucial. As

will be seen, the analysis focuses on the time when the uncommitted stock at a site is

depleted. As long as the demand process has independent increments, we can find the time

at which the uncommitted inventory first reaches or crosses zero. For the case of unit

demands, at the depletion time there is exactly zero uncommitted inventory and no

shortages. For non-unit demands (e.g., a compound Poisson process), there may be

shortages at the depletion time, the existence of which complicates the analysis. In the last

section, we describe how to extend the analysis to this case.

Fixed Scheduling: There are several comments that need to be made about this

assumption. First, the motivation for the assumption is multi-item distribution systems in

which there are regularly-scheduled shipments between sites. Regularly-scheduled

shipments are common in practice in order to achieve an efficient utilization of available

transportation resources and/or to procure transportation services at least cost. In a multi-

item inventory system, where the replenishment of each item occupies a small portion of a

truckload, transportation economies will dictate a replenishment schedule that fosters

consolidation of item shipments. As such, we may interpret the times for order placement,

pj(m), as the times for a dispatch of a truck or rail car from the supplier destined for site j.

Second, the assumption of fixed scheduling separates the problem of determining

the reorder intervals from the problem of setting safety stocks. There has been extensive

study and significant progress on determining reorder intervals for distribution systems

(e.g., Roundy 1985, Graves and Schwarz 1977) and for more general networks (Maxwell

and Muckstadt 1985). By assuming fixed scheduling, we effectively presume a

hierarchical approach in which the reorder intervals are determined first, followed by
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setting the safety stocks. Alternately, one might envision a procedure that iterates between
setting the reorder intervals and finding the required safety stocks.

Third, we have assumed that the lead time for each order, rj(m) - pj(m), is known

and deterministic. In the last section we discuss how to extend the model to permit
stochastic lead times.

Fourth, the model and analysis do not require any assumptions about the pattern of
the order schedule, other than it is fixed and known. Nevertheless, we would expect that
the fixed schedule would exhibit some regularity. For instance, the lead time to deliver an
order is likely to be constant for a site from order to order, and the time between placing
successive orders could be constant for a site. Also, we might expect that the order
schedule is nested: whenever a site receives an order, each immediate successor places an
order. Although the analysis does not require it, the order policy implicitly assumes some
regularity in the order schedule, as discussed next.

Ordering Policy: Given the assumption of fixed scheduling, then an order-up-to policy
with base stocks is most reasonable, provided that there is a regular pattern of
replenishments and constant lead times. The order-up-to (base stock) level is set, roughly,
to cover demand between the time of placing an order, pj(m), and the time of the receipt of
the next order, rj(m+l); that is, the inventory needs to cover demand over the review
period, pj(m+l) - pj(m), plus the lead time, rj(m+l) - pj(m+l). If for site j this time
interval rj(m+l) - pj(m) is highly variable, then site j will need to adjust its order-up-to

(base stock) level to accommodate the variability in the replenishment intervals. We can
build this accommodation into the model, but ignore it here to simplify the presentation.

In order to implement this policy (as well as virtual allocation), we need to assume
that there is an information system which permits a site to observe demand as it occurs at
the successors to the site. That is, each site will know its echelon inventory in real or near-
real time. This is technically feasible and exists in some systems for high value or high
volume goods.

Order Filling Policy: This policy is consistent with the notion of a fixed schedule,
particularly a fixed transportation schedule. A truck goes on a regular schedule from
supplier to site; on each shipment occasion, the supplier tries to fill as much of the
outstanding order from the site as possible. There are no emergency or unscheduled
shipments.

7
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Virtual Allocation: One motivation for this assumption is to obtain tractability in the
analysis. The assumption states that each transhipment site allocates its inventory on a
virtual basis as demand occurs. Inventory at a site is committed in a FIFO (first-in-first-
out) fashion where the timing of the demand events sets the order of allocation. On the one
hand, this scheme can be viewed as an equitable allocation rule in which a site's inventory
is always applied to the oldest outstanding orders. On the other hand, the scheme is not
optimal in that it does not account for the relative need of downstream sites for inventory
replenishment. For instance, it may be desirable to uncommit an inventory unit, which had
been destined for one site with ample safety stock, and redirect it to another site with a
more critical need for replenishments. In this respect, the virtual allocation rule will not
perform as well as a dynamic allocation rule that takes into account more information.

To gain insight into the non-optimality of virtual allocation, we compare it versus an
idealized allocation policy. On a set of examples wC show that the difference in inventory
requirements between the best inventory policy, assuming virtual allocation, and the best
inventory policy for the idealized allocation, is quite small.
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4. Model Analysis: Characterization of Inventory

The first step in the development of the model is to specify the inventory at each
site. Let Ij(t) denote the echelon inventory at site j at time t: that is, Ij(t) is the inventory at

site j, plus all of the inventory at or in transit to the successors to site j, minus any
backorders at the retail sites served by j. Let Bj denote the echelon base stock for site j;

that is, Bj = Bj + , hi where the summation is over the immediate successors to j. Then

we argue that

Ij(t) = j - Dj[ Tj(m), t] (1)

for rj(m) < t < rj(m+l) and where Tj(m) represents the coverage provided by the supplier
on the mth shipment to site j. We will characterize Tj(m) below.

The argument for (1) is immediate. By assumption, Ij(O) = j . The demand on

the echelon stock at site j up to time t is Dj[ 0, t ]. The total replenishments to the echelon

stock as of time t are Dj[ 0, Tj(m) ] by the definition of Tj(m). The current inventory is the

initial inventory at time 0 minus the demand over the time interval [O,t] plus the

replenishments over this interval [0O,t]. A crucial requirement for this result is that there be
no lost sales.

We can use a similar argument to characterize the available inventory at each site,
denoted by Aj(t): Aj(t) is the inventory at site j at time t that has not been committed for

shipment to another site. A negative value for Aj(t) corresponds to outstanding orders or

backorders at site j at time t. By noting that Aj(O) = Bj and repeating the argument for (1),

we have

Aj(t) - Bj - Dj[ Tj(m), t ] (2)

where rj(m) < t < rj(m+l). Implicit in this development is the fact that the demand process

that depletes the available inventory is the same as that for the echelon inventory; similarly

the replenishment process is the same for the available inventory as for the echelon

inventory.
To use (1) or (2) we need to specify Tj(m). At time pj(m), site j places an order for

Dj[ pj(m-l), pj(m) ] on its supplier, site i where i = p(j); site i ships Dj[ Tj(m-l), Tj(m) ]

where Tj(m) either equals pj(m) if sufficient stock is available, or equals the time at which
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the supplier ran out of available inventory to allocate to site j. Suppose n is such that ri(n) <

pj(m) < ri(n+1); that is, at time pj(m), site i has received its nth shipment, but has not yet

received its n+lst shipment. We define Si(n) as the depletion or runout time for the nth

shipment to site i; that is, based on the receipt of the nth shipment, site i is able to cover or
replenish the demand processes of its successor sites up through time Si(n). Hence, if

Si(n) occurs after pj(m), Tj(m) = pj(m); if Si(n) occurs before pj(m), Tj(m) = Si(n). Thus,
we have

Tj(m) = min [ pj(m), Si(n)] . (3)

To use (3) we need to characterize Si(n). Although we term Si(n) as the runout

time for the nth shipment to site i, this time may occur before the actual receipt of the nth

shipment, as will be seen. We will show that

Si(n) = min s: Di[ Ti(n), s ] = B i } . (4)

To demonstrate (4), we consider two cases. First, suppose from (4) that Si(n) > ri(n);

then from (2) we see that Si(n) corresponds to the first instant s 2 ri(n), when the available

inventory, Ai(s), reaches zero, provided we ignore all subsequent shipments to site i.

Thus, the nth shipment runs out at time Si(n). The second case is when Si(n) < ri(n).

Here the receipt of the nth shipment does not cover all of the outstanding orders and leaves
the available inventory negative, i.e. Ai(s) < O0 at s=ri(n). In particular, from (2) we

observe that at s=ri(n), Ai(s) = -Di[ Si(n), s ]. Thus, in this case the nth shipment covers

the demand processes through but not beyond time Si(n), and we say that the shipment ran

out at time Si(n).
We note from (4) the relation between the runout time Si(n) and the coverage Ti(n)

for the nth shipment to site i. The difference between these two times is the buffer time
provided by the base stock B i at site i. When the base stock is zero, the runout time is the

same as the coverage time. When the base stock is positive, the difference between the two
times is a random variable with a gamma distribution with parameters (Xi, Bi ); that is,

Si(n) - Ti(n) is a gamma random variable with mean and variance given by Bi/Xi and

Bi/(Xi) 2 . Furthermore, the random variable Si(n) - Ti(n) is independent of Ti(n), due to

the assumption that the demand process has independent increments.

This completes the general characterization of the inventory process. In summary,

to characterize the echelon or available inventory at a site j at time t, we need to identify the
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relevant shipment m for time t and then characterize Tj(m), the coverage provided by the
mth shipment to site j. To characterize Tj(m), we need to identify the relevant shipment n
to supplier i for the mth order placed by site j; then we have to characterize Si(n), the
runout time for the nth shipment to site i. To characterize the runout time Si(n), we need to
characterize Ti(n), the coverage provided by the nth shipment to site i. We can continue in

this fashion up the supply chain until we reach the CW. Here we can stop since the
external supplier is reliable and hence, Tl(m) = Pl(m) for all orders by the CW (site 1).

Before closing this section, we might try to relate this model to more traditional
inventory concepts and approaches. From (1) or (2) we see that the inventory at time t is a
base stock level minus the demand over an interval of length t - Tj(m), which we can write

as
t- T(m) = [t- rj(m) rj(m) [j(m) - pj(m) ] + [ pj(m) - T(m) ].

The first component is the time since the receipt of the last shipment, the second component
is the lead time for the mth order, and the third component is the shortfall in resupply due to
a runout by the supplier, site i. Thus, we see here the role of the replenishment lead times
and supplier runouts in determining the inventory at a site at a random time t.

We also note that the model just characterizes the echelon or available inventory at a
site at a time instant; thus, from the model we can obtain the probability density function
for the inventory level at any time. For determining the best inventory policy, though, we
might want to know the average inventory for a given policy (i.e., specification of base
stocks). To determine this, one might first find the average inventory at each time instant
and then integrate this over an appropriate time interval; however, care must be taken with
the choice of time interval to ensure a proper accounting. Ideally, there would be a cyclic
pattern to the ordering schedule and then the time interval for integration would cover an
entire order cycle for the system. For instance, if we have a single-cycle ordering policy
(described in Section 7), then one could integrate over the time interval between the receipt
of two successive shipments to the CW, say from rl(m) to rl(m+l). When the ordering

schedule is not cyclic, it is not clear that average inventory is well defined, other than for a
specified time interval.
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5. Example

As an example consider a supply chain consisting of three sites, namely sites 1, i
and j where 1 = p(i) and i = p(j). Suppose we want to characterize the echelon or available
inventory at site j at time t, i.e., either Ij(t) or Aj(t). To do this, we first need to identify the

relevant orders for the supply chain at time t. Suppose integers m, n and q are such that

rj(m) t < rj(m+l),
ri(n) < pj(m) < ri(n+ 1),

and rl(q) < pi(n) < rl(q+l).

Thus, at time t, site j has received its mth shipment; at the time of the placement of site j's
mth order, site i had received its nth shipment; and, at the time of the placement of site i's
nth order, the CW (site 1) had received its qth shipment.

We depict in Figure 1 the time diagram for the relevant orders, where we arbitrarily
set the time for the placement of the qth order by the CW to be time zero: pl(q) = 0.
(Equivalently, we restate the time scale by subtracting pl(q) from the original times.)

Figure 1: Time Diagram for Relevant Orders

P1 (q)=O rl(q) r1(q+1)

I I I I I I I I I I 
o pi(n)

Pi(n) ri(n) ri(n+l)

I I I I I I I i I i !
o Pj(m)

pj(m) rj(m) rj(m+1 )
I I I I t I I I I
O t

For the remainder of this section, we will drop the order indices for the relevant

orders for ease of presentation. It should be understood, though, that the timing of events
is as depicted in Figure 1. Whenever we refer to the relevant order by site 1, i or j, we are
referring to the qth, nth or mth order, respectively.

Now to evaluate (1) and (2) for site j at time t, we start at the top of the supply chain
and sequentially characterize the random variables for the coverage and runout times for the
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relevant shipments. Since the supplier to the CW is completely reliable, the coverage
provided by the relevant (qth) shipment, which is received at rl, is given by

T1 =Pl =0.

From (4), we can now evaluate the runout time for this shipment by

S 1 - T = G ( 1 , B 1 ),

where G(X, B ) is a gamma random variable with parameters (, B ). Since T1 = 0, we
have that S1 = G(X1, B1 ).

We now repeat these steps for site i, first using equation (3) to evaluate T i and then
using equation (4) to evaluate Si. The coverage from the relevant (nth) shipment to site i is

given by

T 1 =min[Pi, S,

where Pi is a known constant, and S 1 is a gamma random variable. Hence the distribution
of Ti is a truncated gamma distribution with a mass point at Ti = Pi.

The runout time for the relevant (nth) shipment to site i is found from (4):

Si =T i + G(, B i ).

Thus, we obtain the distribution for the runout time by convolving the coverage random
variable (a truncated gamma) with an independent gamma random variable with parameters

(Xi, Bi ).
For site j and subsequent sites in the supply chain, we repeat these steps. The

coverage provided by the relevant (mth) shipment to site j is obtained by truncating at pj the

runout time from the upstream site:

Tj =min [ pj, S i ]

The characterization of the coverage random variable gives the distribution of the inventory,
either from (1) or (2), at site j at time t. Given the distribution of Tj, we first obtain the
distribution of Dj[ Tj, t ], namely the uncovered demand from the last shipment until time t.

13
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Dj[ Tj, t ] is a mixture of Poisson random variables with means Xj(t - Tj), where the
mixture is over the distribution of Tj. Knowledge of the distribution of Dj[ Tj, t ] gives

immediately the distribution of the echelon inventory or available inventory from (1) or (2),
respectively.

The runout time for the relevant shipment to site j is found by convolving the
distribution for the coverage random variable with that for a gamma random variable:

Sj = Tj + G(Xj, Bj ).

If site j is a transhipment site, then the runout time is needed to characterize the inventories
at the successors to site j.

From this description we can find the distribution of the inventory at any site at any
time for the given model assumptions. From a computational standpoint the most difficult
steps are the determination both of the runout time, which requires the convolution of two
random variables, and of the uncovered demand Dj[ Tj, t ], which requires the evaluation

of a mixture of Poissons. In the next section we show how these calculations simplify for
the case of a two-echelon system.
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6. Two-Echelon System

Suppose that we restrict attention to a two-echelon system. As an example consider
a supply chain consisting of sites 1 and j where 1 = p(j) and site j is a retail site; note that

the CW (site 1) may also supply several other retail sites. Again we want to characterize
the echelon or available inventory at site j at time t, i.e., either Ij(t) or Aj(t). The relevant
orders for the supply chain at time t are m for site j and n for the CW; that is, rj(m) < t <
rj(m+l), and rl(n) < pj(m) < rl(n+l). We define time such that Pl(n) = 0, and depict the

timing of these events in Figure 2 below.

Figure 2: Time Diagram for Two Echelon System

P1 (n)=O r1 (n) r1 (n+1)

I I I I I I I

O pj(m)

pj(m) rj(m) rj(m+l)

I I I I I I I 

O t

Thus, at time t, site j has received its mth shipment; the inventory at site j at time t depends

on the coverage from the mth shipment, which depends on the time of the placement of site
j's mth order, and on the runout time of the relevant shipment to the CW, namely its nth

shipment. Again, for convenience we drop the indices for the orders.
To characterize the inventory at site j at time t, we need to evaluate the coverage

provided by the most recent shipment. The coverage from this shipment to site j is given

by

Tj =min [ pj, S 1 ] , (5)

where pj is a constant, and S1 is a gamma random variable with parameters X1 and B 1.
The first two moments for the coverage time Tj are found directly from (5) to be
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E[T =E[S] + p Pr S>p - xfs(x) d (6),
p

and

E[Tr = E[S 2] +p 2 Pr S >p - x2fs (x) d (7),

where T = Tj, p = pj and S = S1 and fs(x) is the probability density function for S 1 .

We can simplify equations (6) and (7) by using the fact that S1 has a gamma

distribution G(, B ) with parameters x = 1 and B = B 1. In particular, we can express

the partial expectations in (6) and (7) in terms of the cumulative probability distribution for
gamma random variables.

f fS dx = Pr G(X, B)>p }

I XfSdx= B Pr( G(, B+) > p } (8)

p°x2fS dx = B(B+) Pr G(7, B+2)>p )
P 2

Furthermore, for B an integer, we note that

Pr{ G(, B ) > p } = Pr{ Il(Xp) < B },

where l(X.p) denotes a Poisson random variable with mean Xp. Hence, the three partial

expectations in (8) can be found from the cumulative distribution function for a single
Poisson random variable, namely Il(Xp) .

Given the first two moments of the coverage time Tj, we can use this to

characterize the inventory at site j at time t. To do this, we need to determine the uncovered
demand Dj[ Tj, t ], which appears in equations (1) and (2). For a Poisson demand process

with parameter Xj, we can show that

E{ Dj[Tj,t] = j (t-E[Tj]) (9)
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and
Var Dj[Tj,t] } =Xj (t-E[Tj])+(Xj)2 Var[Tj] (10).

I have found that the negative binomial distribution with the same first two moments is a
very accurate approximation to the distribution of Dj[ Tj, t ]. [An exception occurs when
Var[ Tj(m) ] = 0, in which case Dj[ Tj(m), t ] has a Poisson distribution.] As an illustration

see Table 1 where I compare the actual to the approximate (negative binomial) distribution
for a case with X1 = 36, Xj =2, pj = 2, t = 4, and three possible values for B 1,

representing low, medium and high stockage levels at the CW. Graves (1985) and Lee and
Moinzadeh (1987) have previously shown the effectiveness of a negative binomial
approximation for multi-echelon systems with one-for-one ordering and batch ordering,
respectively.

As we increase the mean of Dj[ Tj, t ] (e.g., by increasing Xj, increasing the
difference t - pj, or decreasing B 1), the normal distribution becomes an increasingly good

approximation for the negative binomial distribution, and thus can be used as an alternative
approximation for the distribution of Dj[ Tj, t ].

We can use the approximate distribution for Dj[ Tj, t ] in (2) to obtain an

approximate distribution for the available inventory at time t at site j as a function of the
base stock level Bj. We would then set Bj so as to achieve some desired service level.

The determination of the moments for the uncovered demand at site j at time t
requires knowledge of the timing of the relevant orders at the CW and at site j, the demand
rates for site j and for the entire system, and the base stock at the CW . The base stock at
site j (which equals the echelon base stock since j is a retail site) is only needed in the

characterization of the inventory at time t, from either (1) or (2). This suggests an iterative

optimization approach for finding the base stock levels for all sites, which achieve a desired
service level with a minimum inventory investment. In particular, one would first set the
base stock at the CW, and then determine the minimum base stocks needed at each retail
site to provide the desired service level (e.g., 0.97 probability of stockout); then, by
searching over possible settings for the base stock at the CW, one could find the overall
best setting for the stockage levels. To help in this search, we note the changes in (6) and
(7) as we increase the base stock at the CW from B1 to B 1 +1. In particular, if we let
AE[Tj] and AE[Tj2 ] denote the change, then we can show that

AE[Tj] = Pr{ fI(lPj) > B1 )}/ 1
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and AE[Tj2 ] = 2 (B +1) Pr{ rI(Xlp j ) > B+I /(x12).

We can use these results to see immediately the change on the moments for the uncovered
demand when increasing by one the base stock at the CW . To get started we note that
when B 1 = 0, the runout time S 1 is deterministic and equal to pl(n), which is 0 by
assumption; hence, from (5) and the fact that pj(m) > r 1(n) 2 pl(n) = 0, we see that Tj is

deterministic and equal to S 1 = 0 when B1 = 0.

When the supply chain contains more than two sites, the runout time at an
intermediate site, e.g., Si in the previous example, will not have a nice distribution; hence,
the calculation of the moments of the coverage time, Tj, is not as straightforward.
However, the moments of Si are readily available from the coverage time provided by the

relevant shipment from the supplier of site i. In particular, the runout time for the relevant

shipment to site i is

Si =T i + G(, B i ) ,

where Ti and G(Xi , B i ) are independent random variables. Thus, the mean and variance
for S i are found to be

E[ Si ] = E[ Ti ] + Bi/ i

and

Var[ Si ] = Var[ T i ] + Bi/(Xi) 2

This suggests that we might suppose that Si has a gamma distribution with parameters

consistent with the mean and variance given above. With this approximation, we can
reapply (6) and (7) to evaluate the first two moments of Tj, the coverage time for a site

downstream of site i.
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7. Computational Study

We have performed some computational experiments to understand better how to
set the order-up-to levels in a two-echelon system. In particular, we desire some general
insight into how to locate inventory across the echelons to provide the best service. We
use the approximation outlined above for this computational investigation.

We consider 16 test scenarios. For each scenario the system demand rate equals
36, i.e., X1 = 36. We then assume we have a set of N identical retail sites, where we let

N = 2, 3, 6, or 18. Thus, the demand rate at the retail sites has four possibilities,
j = 18,12, 6 or 2.

For each demand possibility, we need to specify the ordering schedule and the
replenishment lead times. We assume here that the order placement schedule is periodic
with the CW ordering less frequently than the retail sites. For each retail site we specify a
review period, call it rpj, such that pj(m+l) = pj(m) + rpj for all m. We assume that the
review period for each retail site is one time unit, i.e., rpj = 1. The review period for the

CW, rpl, is a multiple of the review period for the retail sites, and for our experiments, we
set rp 1 = 2 or rp 1 = 5. The replenishment lead time for the CW or a retail site, call it -tl
or rtj, is such that rl(m) = Pl(m) + rt1 and rj(m) = pj(m) + rtj for all m. Furthermore, we

assume a single-cycle, nested ordering policy [Graves and Schwarz 1977] such that each
retail site places an order upon the receipt of an order by the CW; for instance, when
rPl = 2, then every second order by a retail site coincides with the receipt of an order by
the CW, i.e., pj(2m - 1) = rl(m) for m = 1, 2, ....

We are now ready to specify the 16 scenarios for our computational study. For
each of the four demand possibilities we consider four order policies as follows:

a) rtl = 1, rpl = 2, rtj = 1;
b) rtl = 1, rpl = 2, rtj = 5;
c) rt = 4, rp = 5, rtj = 1;
d) rtl =4, rpl =5, rtj =5.

For each demand case and order policy, we want to find the best inventory policy:
the order-up-to levels, i.e., B1 and Bj, which give a desired service level with the

minimum amount of inventory. We specify the service level as the probability that a retail
site stocks out during the order cycle for the CW, where an order cycle runs from the
receipt of one shipment to the receipt of the next shipment. To measure this service level,
we need to find that time t within an order cycle of the CW for which the probability of
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stockout at the retail site is greatest. We claim that for site j this time t is just prior to

rj(m+l), where rj(m) is the last order to be replenished from an order by the CW (e.g., if
rp1 = 5, then this is the fifth order by the retail site in the order cycle.). It should be clear

that within an order cycle at the retail site the highest probability of no inventory occurs at
the end of the cycle, i.e., just prior to the receipt of the next shipment. Furthermore, within
an order cycle for the CW, the last shipment from the CW to a retail site will never provide
relatively more coverage than earlier shipments in the order cycle.

If we consider an order cycle for the CW in which the order is placed by the CW at
time zero, then for the four order policies we are interested in the available inventory where

a) pj(m) = 2, t= 4;
b) pj(m) = 2, t= 8;
c) pj(m)= 8, t= 10;
d) pj(m)= 8, t= 14.

To understand the problem setting, consider case (c). The CW places its order at P1 = 0,
which we term its first order, and receives the corresponding shipment at time rl = P1 + rtl
= 4; it will not order again until P1 = P1 + rpl = 5, the shipment for which is received at
time 9. Retail site j places an order in every period (rpj = 1) and receives the corresponding
shipment in the next period (rtj = 1). The order placed at time 4 is the first order by the

retail site that is served by the first order placed by the CW. The order placed at time 8 is
the last (and fifth) order by the retail site that is served by the first order placed by the CW.
The order placed at time 8 by retail site j arrives at time 9, and the next receipt at site j will
be the first shipment served by the second CW order and will arrive at time 10. Hence, the
inventory at site j will be lowest just prior to time 10 and the relevant problem parameters
are pj = 8 and t = 10.

The four order policies are distinguished by the time between the order placement
by the CW (P1 = 0) and by the retail site (pj = 2 or 8), and the time between the placement
of an order and the receipt of the next order (t - pj = 2 or 6). Presumably, the inventory at

the CW would be sensitive to the first dimension, whereas the inventory at the retail site
would be more sensitive to the second dimension.

We consider four service levels, namely c = .80, .90, .95 and .975, and thus, have

64 test problems: 16 scenarios, each with four service levels. The test problem is to find
the inventory policy (B 1, Bj) with the least amount of inventory for which the probability

that Ij(t) > 0 is at least a. That is, we set the inventory policy so that for each retailer the

probability of stockout at the end of the order cycle (time t) is 1 - a. We solve each test
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problem by searching over a range of values for the base stock at the CW; for each value
of B we find the moments for Dj[ Tj, t ] and then use the negative binomial approximation
for the distribution of Dj[ Tj, t ] to set the base stock at the retail site, Bj, to satisfy the

service criterion.
We use B1 = B1 + NBj as an approximate measure of the total inventory for a

given policy. The average inventory level for the two-echelon system equals B 1 minus the

expected inventory on order to the CW plus the expected backorders at the retail sites. The
expected inventory on order to the CW is a constant (namely klrtl) and does not depend
on the inventory policy (B 1, Bj). The expected backorders at the retail sites does depend

on the inventory policy, but is extremely small and relatively insensitive to the inventory
policy for a fixed (and high) service level. Hence, we ignore the expected backorder
component and just use the minimization of B 1 as our objective in the test problems.

The results for the 16 scenarios are shown in Table 2 and Figures 3-6. Table 2
gives the minimum echelon base stock B 1 for each of the 64 test problems, and the

smallest value for B 1 which gives the minimum-inventory policy. Each figure corresponds

to an order policy, and plots the echelon base stck B 1 for each demand case as a function

of the base stock B 1 at the CW for service level a = .95. The general shape of these

functions is the same for the other service levels. Actually, these figures give the lower

envelope of the function; due to the requirement of integer base stocks, the actual function
is not smooth but jagged. As we increase B 1 by one unit, either we can reduce the base
stock at each retail site by one unit for a total reduction in B 1 of N-1 units of inventory, or
there is no change in the base stocks at the retail sites for a net addition to B 1 of one unit.

For clarity I have smoothed the functions to illuminate the general form of the functions.

Three observations are very apparent from the table and these figures. First, the
optimal choice for the base stock at site 1 is less than lPj in each case. The quantity klPj

is of interest because it equals the expected system demand from the time that the CW
orders (pl=0) to the time (pj) that the retail sites place their last order in the order cycle for

the CW. The fact that the base stock at site 1 is less than XlPj signifies that the CW expects

to run out of uncommitted stock prior to serving the last order in its order cycle. Indeed,

for the minimum-inventory stocking policy, the CW will stock out during an order cycle
with a very high probability. For instance, when pj = 2, the probability of stockout at the
CW is 0.98 for B1 = 55, 0.92 for B 1 = 60, and 0.78 for B 1 = 65. When pj = 8, the

probability of stockout at the CW is 0.95 for B1 = 260, 0.85 for B1 = 270, and 0.67 for

B 1 = 280.
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Second, from the shape of the functions in the figures, we see that the total safety

stock in the system is less sensitive to understocking the CW than overstocking. In

particular one sees that if one were to set the order-up-to level at the CW to achieve a
conventional service level (e.g., B 1 = lpj + k kl1P j for some k, 1 < k < 3), there would

be a substantial overinvestment in inventory in these examples.
Third, we note that in each figure the best choice of B 1 seems insensitive to the

number of retail sites. This suggests to me that the case of retailers with non-identical

demand rates would show similar behavior. That is, suppose we have three retailers with
demand rates j = 6, 12, and 18 forj = 2, 3 and 4; I would expect that system inventory as

a function of B1 would be a combination of the functions for the identical demand cases

given in the figures and would be minimized at B 1 < XlPj.
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8. Lower Bound

For the computational study we assumed a two-echelon system with a single-cycle,

nested ordering policy. With the assumption of a virtual allocation policy, we found the

inventory needed to provide a preset level of service. In this section, we examine the

assumption of virtual allocation and give a lower bound on the inventory by relaxing this

assumption.
We again consider a two-echelon system with identical retail sites and a single-

cycle, nested ordering policy. We focus on the last retail order within an order cycle,
which is placed at time pj by all retail sites. (For notational convenience, let pj be the time

of placement of the last order for all retail sites and let Tj be the coverage provided by the

corresponding shipment to the CW, applicable to all retail sites; we drop the order indices
unless needed for a clarification of the event timing.) D 1[Tj , pj] is the total uncovered

demand that cannot be shipped by the CW to the retail sites at time pj. The virtual

allocation policy spreads this shortfall, the uncovered demand, over the retail sites
according to the demand experienced by the sites over the interval (Tj, pj]; that is,

Dj[Tj, pj] is not covered by the shipment made by the CW to site j at time pj.

As an alternate policy, suppose that we can spread the total uncovered demand

evenly over all of the retail sites, ignoring integrality restrictions. That is, we assume that

the CW makes shipments such that for each retail site the uncovered demand is
D 1[Tj, pj]/N. In effect, when the CW ships to the retail sites, it tries to equalize the

inventories at the retail sites. This is equivalent to the allocation assumption made by

Eppen and Schrage (1981). As discussed there, this allocation scheme is not always

feasible and requires an assumption of balanced inventories. We contend that the analysis

of this policy gives a lower bound on system inventory over all feasible allocation policies.
For this assumption we can restate (2) as

Aj(t) = Bj - Dl[Tj, pj]/N - Dj[ pj, t (11)

for pj and t such that pj(m) < rj(m) < t < rj(m+1). Tj remains the same as given before by

(3) and (4). From (11), we see that for this policy, which we term the equal-inventory

allocation, the uncovered demand at time t for a retail site j is given by

DcTj, pj/N + Dj[ pj, t (12).

The expectation and variance of (12) are found to be
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and

j (t - Pj) + Xj (pj - E[ Tj ] )N + (.)2 Var[ Tj ],

respectively. In comparison, the uncovered demand at time t for site j for the virtual
allocation policy is Dj[Tj, pj] with expectation and variance given by (9) and (10).

Thus, we see that the uncovered demand from the equal-inventory allocation has
the same expectation as from the virtual allocation, but has less variance by an amount

Xj (N-1)(pj- E[ Tj ])/N

Hence, the equal-inventory allocation policy should require less inventory at the retail site
for any base stock B1 at the CW , than is required by virtual allocation. Furthermore, it

should be clear that no feasible allocation policy can do better (in terms of a lower variance
for the uncovered demand) than the equal-inventory allocation.

For the equal-inventory allocation, we can show formally that the best choice for
the base stock at the CW is B 1 = 0 for the case of identical retailers, and a single-cycle,
nested ordering policy, provided we allow non-integer Bj. Rather than give a formal

proof, we just present the intuition for the result. The intuitive demonstration is to argue
that for equal-inventory allocation, there is no benefit from maintaining an inventory of any
sort at the CW . This is because when one assumes that it is always feasible to equalize
inventories at an order occasion, then in effect one is assuming that when the retail sites
order the system can do as much transhipment as is necessary to equalize the inventories.
That is, assuming the feasibility of equal-inventory allocation is the same as allowing
constraint-free transhipment between retail sites at any order occasion. When transhipment
is permitted, there is no need to hold back inventory at a central facility, i.e., at site 1, and
thus the best choice for B 1 is 0. This argument extends to the case of non-identical retailers

and to a more general ordering policy in which we just require that the retail sites order
simultaneously. When we restrict the base stock at the retail sites to be integer, zero base
stock at the CW is not necessarily the minimum-inventory policy; however, the best
choice will typically be quite close to zero, since the only reason to hold stock at the CW is
due to the indivisibility of a stock unit. One reason for presenting this result is to suggest
that in the context under consideration the best inventory policy under the assumption of
equal-inventory allocation is a highly idealized (and infeasible) policy, which would require
an extensive amount of transhipment to realize.
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In Table 2 we compare the echelon inventory B 1 required by the equal-inventory

allocation versus that for virtual allocation for the 64 test problems. [For this exercise, we

approximate the distribution of uncovered demand for the equal-inventory allocation, i.e.,

(12), by a negative binomial, Poisson or binomial distribution depending on whether its

mean is greater than, equal to, or less than its variance; this is the same approximation

scheme as developed by Lee and Moinzadeh (1987), who have shown its effectiveness for
a multi-echelon system with a batch ordering policy.] The non-optimality or cost in terms
of additional inventory for the virtual allocation policy is very small for these examples.
Even though the virtual allocation policy may seem simplistic, the inventory required is not

significantly more than that required by the best possible allocation policy. Furthermore,
virtual allocation is always feasible, whereas we require an assumption of balanced

inventories (or costless transhipment) in order for the equal-inventory allocation to be

feasible. We expect, though, that for demand processes with larger coefficients of

variation, the non-optimality of virtual allocation will increase. This is because the policy
allocates inventory at time pj without consideration of the demand over the interval (Tj, pj];

with more demand variation, more information is lost by ignoring the demand over this
interval (Tj, pj]. Nevertheless, this exercise provides additional evidence and justification

for the assumption of virtual allocation for the context of fixed scheduling.
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9. Conclusions and Extensions

The model developed in this paper permits the examination of a range of inventory

policies for a multi-echelon system. From the computational studies for a two-echelon
system, as reported in the previous two sections, we can make several observations about
the role of the CW in these systems. The multi-echelon literature (e.g., Schwarz 1989)
identifies two reasons for the CW, one to pool risk over the replenishment time for the
outside supplier and the other to pool risk over the retail sites by rebalancing periodically
the retail inventories. Eppen and Schrage (1981) call the first the joint ordering effect, and
the second the depot effect. The joint ordering effect does not require the CW to hold
stock, whereas the depot effect does.

We can use the computational studies in this paper to comment on these effects.
First, we note that B = 0 represents a system in which the CW holds no stock and

effectively is just a central ordering agency. Hence, in Figures 3-6, the y-intercept shows
the inventory for the system with the joint ordering effect, but no central warehouse. From
the figures we see the incremental value of the depot effect, namely the reduction in system
inventory from going from the y-intercept to the function minimum. The benefit seems
fairly small except when there are many retailers (N=18 and j=2). We note though that

the assumption of virtual allocation may understate the benefits from the depot effect;
however, by comparison with a lower bound (see Table 2), we found that the additional
inventory reduction from an optimal allocation policy is very small, especially when the
number of retailers is 6 or less. Finally, we observe that although there are benefits via the
depot effect from having the CW hold stock, the policy with the least system inventory still
results in the CW stocking out with high probability. Thus, in terms of safety stock, the
policy with the least inventory puts all of the safety stock at the retail sites.

In the remainder of this section we discuss how the model and analysis might
extend along three dimensions. In particular, we relax three assumptions: the Poisson
demand process, an arborescent system, and deterministic replenishment lead times. In
each case we suggest the nature of the extension and, as appropriate, identify unresolved
issues. We treat each case separately and do not consider the simultaneous relaxation of
more than one assumption.

Demand The presentation and implementation of the model are easiest and cleanest
for a Poisson demand process. However, we can envision using the model for other
demand processes, possibly as an approximation. This extension is important, since in
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many contexts the demand process has a variance greater than the mean demand, and is not
well modeled by a Poisson process. We describe two cases here.

First, suppose the demand process is compound Poisson. Hence, the process has
independent increments, but possibly non-unit demands. The difficulty in applying the
model is that the inventory process at a supply site (e.g., site 1) is not skip-free, and hence,
can skip over the zero state at which the site runs out. The analysis has assumed that the
supply site has exactly zero inventory at its runout time (see (4)). For the case of
compound Poisson demand, we need to model the "overshoot" when the supply at a site
runs out. We redefine the runout time given in (4) by

Si(n) = min s: Di[ Ti(n), s ] B i }

and define the overshoot as

Oi(n) = Di[ Ti(n), Si(n) ]- Bi (13)

Suppose j (i = p(j)) is the site whose demand caused the runout at site i at time Si(n).
Then, if the runout time occurs before the order occasion pj(m) (i.e., Tj(m) = Si(n)), then
Oi(n) needs to be added to the uncovered demand Dj[ Tj(m), t] as part of (1) and (2). I he

crux of this extension of the model is to characterize the overshoot, given by (13), and then
to combine it with the uncovered demand in (1) and (2) to obtain the inventory process at
site j. The details will depend upon the actual demand distribution. A possible
approximation would be to estimate the moments of the overshoot and then to assume that
each successor has a likelihood of causing the runout proportional to its demand rate.

The second case is when we model the demand over an interval (s,t) as coming
from a normal distribution with mean g(t-s) and variance o 2 (t-s). Furthermore, we

assume the demand process has independent increments. Note that these assumptions
permit both non-integer demand and the possibility of negative demand over an interval.
Nevertheless, this is a common model of the demand process for inventory systems, and
the inventory model given by equations (1) - (4) applies directly for this demand process.
The difference between the runout time and the coverage for a given order, Si(n) - Ti(n), is
no longer a gamma random variable. Instead, Si(n) - Ti(n) is the first passage time

between 0 and B i for a Brownian motion process with parameters g and o 2 . The

distribution of this first passage time is known (e.g., Karlin and Taylor 1975, pg 363 );
the cumulative distribution function for this first passage time and its partial expectations
can be written in terms of the normal distribution, e.g., Hadley and Whitin, 1963, pp 143-
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148. Hence, it may be possible to develop simplifications analogous to (8) for evaluating
(6)-(7) for the case of normal demand.

Network Topology We have developed the model for an arborescent system in
which each site has a unique supplier. Suppose we relax this assumption and consider site
j as an assembly operation, which requires supplies from a set of sites, say i = 1, ... j-1.

That is, to create a unit of inventory at site j requires one unit from each supply site. We
again assume a fixed order schedule and virtual allocation of available stock at every site.
For site i being a supplier to site j, define Tij(t) as the coverage provided by the last
shipment from i to j that will have arrived by time t. We can write Tij(t) in terms of the time

that j placed the last order and the runout time at site i in an expression analogous to (3).
We define Tj(t) as the coverage provided by the set of suppliers to site j as of time t: Tj(t) =
min {Tij(t)} where the minimization is over the supply sites i = 1, ... j-1. Then the

available inventory at j at time t is

Aj(t) = Bj - Dj[ Tj(t), t ]

The challenge for the analysis of this model is the characterization of Tj(t); Tj(t) is not only
the minimum of a set of random variables, but these random variables, {Tij(t)}, are not
independent. The dependence across the {Tij(t)) is due to the fact that the supply sites

service the same demand process whenever they supply a common assembly, e.g., site j.
Also, there is an open question of how good or appropriate is the assumption of virtual
allocation in this context.

Stochastic Lead Times Suppose that the order occasions pj(m) are fixed and certain,
and that for site j, its supplier only ships at time pj(m). However, the times at which a
shipment is received, namely rj(m), are uncertain. Thus, the lead time for an order, rj(m) -
pj(m), is stochastic. We again assume that the orders do not cross, rj(m-1) < rj(m), and
that the lead times are always non-negative. We assume that the realization of rj(m) does

not depend on the demand process or the amount ordered. Note that the orders placed by a
site remain the same as for the case with certain lead times; that is, at time pj(m) site j
orders an amount Dj[ pj(m-l), pj(m)].

Consider time t and define 7j(m, t) as the probability that site j has received its mth

shipment by time t. These probabilities can be derived from the specification of the
stochastic lead times; Zipkin (1986) gives one model for stochastic lead times, which is
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consistent with the above assumptions and applicable to this analysis. Then the available
inventory at time t equals

Aj(t) = Bj - Dj[ Tj(m), t ]

with probability nj(m, t), where Tj(m) is given by

Tj(m) = min [ pj(m), Si(n) ]

with probability ni(n, pj(m)). Si(n) is unchanged and given by (4). Hence, the
characterizations of Aj(t) and Tj(m) entail the evaluation of a mixture over the possible
realizations for the last order received as of time t or time pj(m), respectively. Depending

upon the nature of the stochasticity, this may not be an easy task. Nevertheless, the
structure of the model remains valid.

Acknowledgement: The author wishes to thank Professors Anant Balakrishnan, Hau Lee,
Don Rosenfield, Lee Schwarz, Larry Wein and Paul Zipkin for their helpful comments on
an earlier draft of the paper.
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Table 1: Comparison of Actual to Approximate Distribution
for Uncovered Demand

Pr (D=i) B1 = 50 B 1 =65 B 1 = 80

Actual Approx. Actual Approx. Actual Approx.

i= 0 5.05E-6 8.94E-6 5.30E-6 6.06E-6 5.59E-6 5.74E-6

1 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

2 0.0004 0.0005 0.0004 0.0004 0.0004 0.0004

3 0.0015 0.0019 0.0016 0.0016 0.0016 0.0017

4 0.0044 0.0053 0.0047 0.0049 0.0049 0.0050

5 0.0106 0.0119 0.0113 0.0116 0.0119 0.0120

6 0.0214 0.0227 0.0229 0.0232 0.0240 0.0240

7 0.0370 0.0377 0.0396 0.0397 0.0414 0.0414

8 0.0561 0.0556 0.0600 0.0599 0.0626 0.0626

9 0.0758 0.0739 0.0811 0.0806 0.0842 0.0841

10 0.0925 0.0895 0.0987 0.0980 0.1020 0.1018

11 0.1031 0.0998 0.1095 0.1088 0.1124 0.1122

12 0.1060 0.1034 0.1117 0.1111 0.1136 0.1135

13 0.1014 0.1002 0.1054 0.1052 0.1061 0.1061

14 0.0909 0.0913 0.0926 0.0929 0.0921 0.0921

15 0.0769 0.0786 0.0763 0.0768 0.0747 0.0748

16 0.0619 0.0643 0.0592 0.0598 0.0569 0.0570

17 0.0477 0.0501 0.0435 0.0440 0.0408 0.0409

18 0.0354 0.0373 0.0303 0.0307 0.0277 0.0278

__ I ��_�--�I�-_�-_�



Table 1 (continued)

Pr (D=i) B 1 = 50 B 1 =65 B 1 =80

Actual Approx. Actual Approx. Actual Approx.

19 0.0254 0.0266 0.0202 0.0204 0.0179 0.0179

20 0.0178 0.0183 0.0128 0.0129 0.0109 0.0109

21 0.0121 0.0121 0.0078 0.0078 0.0064 0.0064

22 0.0080 0.0077 0.0046 0.0045 0.0036 0.0036

23 0.0052 0.0048' 0.0026 0.0025 0.0019 0.0019

24 0.0033 0.0029 0.0014 0.0013 0.0010 0.0010

25 0.0021 0.0027 0.0008 0.0007 0.0005 0.0005

26 0.0013 0.0009 0.0004 0.0003 0.0002 0.0002

27 0.0007 0.0005 0.0002 0.0002 0.0001 0.0001

28 0.0004 0.0003 0.0001 0.0001 4.93E-5 4.60E-5

29 0.0002 0.0001 4.90E-5 3.50E-5

30 0.0001 0.0001

31 7.21E-5 3.70E-5

__��___I
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