
A QUANTITATIVE ANALYSIS OF U.S. AND JAPANESE
SOFTWARE-ENGINEERING PRACTICE AND PERFORMANCE

Michael A. Cusumano and Chris F. Kemerer

Sloan School of Management
Massachusetts Institute of Technology

Sloan Working Paper # 3022-89 BPS/MS

July 1989

For Presentation at TIMS XXIX, July 23-26, 1989
Osaka, Japan

DRAFT -- PLEASE DO NOT QUOTE OR REPRODUCE
* COMMENTS WELCOME *

II�

Abstract

Since the early 1980s, there has been a mounting debate in industry

literature and in U.S. government-sponsored reports over the relative

performance of software developers in Japan versus those in the United States.

This literature is divided between assertions of Japanese or U.S. superiority in

this technology. However, both sides of the debate have offered evidence that,

to date, has been primarily qualitative or based on one or two cases.

This paper contributes to the debate in two ways. First, it offers a

comprehensive literature review that analyzes existing comparisons of Japanese

and U.S. firms in software development and summarizes the major proposed

differences in performance. Second, it presents the first set of quantitative

data collected from a statistically comparable sample of 24 U.S. and 16 Japanese

software-development projects, and uses these data to test propositions from

the literature. The analyses indicate that Japanese programmers perform at

least as well as their U.S. counterparts in basic measures of productivity,

quality (defects), and reuse of software code. The data also make it possible to

offer models that explain some of the differences in productivity and quality.

[SOFTWARE DEVELOPMENT PRODUCTIVITY; SOFTWARE QUALITY; SOFTWARE
REUSE; JAPANESE SOFTWARE; JAPANESE MANAGEMENT METHODS]

1

_ _ _ - --- ------- _ ___ _______ __

I. Introductionl

Japanese firms have become well-known for their high levels of

productivity and reliability in manufacturing, their quality in product

engineering, and the increasing sophistication and diversity of their products.

They have competed effectively in a broad range of industries, with products of

varying degrees of complexity in design, engineering, and assembly: steel,

ships, automobiles, televisions, video recorders, machine tools, semiconductors,

and computer hardware, to name a few. Yet, despite this impressive record of

successes, some researchers doubt whether the Japanese will duplicate their

achievements with new, still-evolving technologies, where customers and

producers have yet to define product or process standards. A major challenge

-- and the subject of this comparative paper -- is the design and production of

computer software.

Managing software development has been problematic since the beginning

of the industry in the late 1950s, when programmable computers first appeared.

Rapidly changing and rising demand has consistently exceeded the ability of

educational institutions and companies to train enough skilled programmers to

meet market needs. Attempts to manage the development process more

effectively have seemed woefully inadequate compared to dramatic improvements

in hardware. Many software producers continue to experience cost and schedule

overruns as the rule rather than the exception, while huge variations in

customer requirements and programmer productivity have further complicated

managerial tasks. As a result, characteristics of the industry and the

1 The authors would like to thank each company and individual who
participated in this study, since their cooperation made this effort possible.
The authors also gratefully acknowledge the research assistance of Kent
Wallgren, who assisted in the data collection and preliminary analysis as part of
a Masters' Thesis Project at the M.I.T. Sloan School of Management in 1987-
1988. Helpful comments were received on an early draft from W. Orlikowski, N.
Venkatraman, and D. Zweig.

2

technology produced a situation referred to as the "software crisis" as long ago

as 1969 (Hunke 1981, Frank 1983). Most of the problems cited in the 1960s

continued to plague software producers in the 1980s (Arden 1980, Boehm 1987,

Ramamoorthy 1984, Brooks 1987).

The primary objectives of this paper were to compile comparisons of

Japanese and U.S. project performance in software and then offer some

exploratory but quantitative data in order to shed some light on a debate that,

up to the present, has proceeded largely in an anecdotal and qualitative fashion.

The disagreements center around the efficacy of the Japanese in software

development, specifically, whether Japanese firms have been able to transfer

their skills in engineering, production, and organization management to this

relatively new technology.

This paper is structured as follows: The second section reviews existing

literature in an attempt to identify what statements observers have made

regarding the Japanese and U.S. in software development. The third section

explains the research methodology followed to confirm or deny several

propositions indicated in the literature. This methodology consisted of the

collection of quantitative data on a sample of actual software projects done in

the U.S. and Japan. The subsequent sections analyze the sample in some detail,

including descriptive information, process data, and performance comparisons.

The concluding section summarizes the results and limitations of the study, as

well as implications for future research.

1I. Literature Review: Propositions in the Debate

A review of more than a dozen sources published between 1969 and 1989

revealed a debate with two sides, neither well-supported. On the one hand

were claims that the Japanese were significantly behind the U.S. overall in

3

software development, especially in products. The arguments consisted of

general statements that Japanese firms relied on tools and techniques adopted

from the U.S. and Europe, and they suffered from a severe shortage of skilled

programmers. Japanese programmers also seemed to lack creativity and the

ability to invent new products or offer sophisticated products, especially

software packages. Japanese software also seemed more costly than U.S.

programs. In addition, the Japanese were behind in basic research. To many

authors, these reasons made it unlikely Japanese firms would compete effectively

in the U.S. software market (Table 1).

On the other side of the debate were arguments that Japanese firms were

ahead in areas related to the process of software development: productivity,

quality (defect) levels, tool usage, and reusability, as well as discipline,

teamwork, planning, and management. Some authors also believed that problems

common in programming might actually benefit from skills Japanese firms and

workers seem to possess in abundance, such as excellence in planning, problem-

solving, process management and attention to detail, willingness to cooperate

and communicate, high motivation among workers and managers, creativity in

nearly all things mechanical, and general perseverance (see, for example, Belady

1986).2 In the product area, there were more disagreements, although some

observers felt the Japanese were at least equal to the U.S. in custom

applications programming and specific software areas (real-time applications,

graphics and video programs, super-computer programs, on-line reservation

systems, and embedded software in consumer and industrial products) (Table 2).

Comments from specific articles reflects the qualitative and sometimes

contradictory nature of the debate. For example, a 1983 publication based on a

2 Although the literature on Japanese management styles and employee
behavior is too long to cite comprehensively, examples include Vogel 1979, Cole
1979, Schonberger 1982, and Abegglen and Stalk 1985.

4

visit to 10 Japanese software producers and RD organizations, sponsored in

part by the U.S. Office of Naval Research (Kim 1983), claimed Toshiba's

Software Factory was "one of the most advanced real-time software engineering

organizations in the world," with productivity averaging 2870 instructions per

programmer month in 1981, an extremely high level compared to U.S. figures.

The author thought that the productivity advantage stemmed from a Japanese

lead in developing and using integrated tool sets. In the product area, the

Japanese appeared behind in package development but advanced in real-time

software and artificial intelligence applications (primarily for language

translation).

A 1986 article provided more numbers from Toshiba: 65% reuse in

delivered code and productivity of 2000 lines per month per programmer, with

merely 0.3 defects per 1000 lines of code (Haavind 1986). Once again, however,

the author did not describe the number and nature of the projects covered, or

what specifically the numbers measured. These were important qualifications:

For example, a 1987 article by the Toshiba manager who headed the software

factory noted all productivity figures were annual averages converted to

"equivalent assembler source lines of code," not actual number of lines written.

There were also various defect levels, depending on customer requirements and

length of testing (Matsumoto 1987). But while the numbers were difficult to

assign precisely, other articles continued to report higher levels of reuse in

Japan (Standish 1984, Tracz 1988) as well as greater management emphasis on

designing for reuse and reusing code when developing new programs (Cusumano

1989).

A 1984 article, based on a questionnaire survey and site visits, examined

30 software production facilities at 13 Japanese and 13 U.S. companies

(Zelkowitz et al. 1984). The authors found similar technology for software

5

development in the two countries, with Japanese firms relying on tools and

techniques from the U.S. or Europe. However, the Japanese seemed to use tools

more widely, perhaps because tool development came out of company overhead

rather than project budgets. This study also found the Japanese conducted

extensive analyses of the causes of software defects, although it left the

question open whether Japanese firms were systematically better in quality,

productivity, or other areas of software development.

In 1984, the U.S. Department of Commerce published an analysis of U.S.

competitiveness in software that cited both weaknesses and strengths in the

Japanese industry (U.S. Department of Commerce 1984). This report maintained

that the Japanese were "far behind the U.S. in basic research and advanced

development of software," and "have never developed a programming language or

an operating system that has become a de facto standard internationally."

Nonetheless, the authors recognized the Japanese were making rapid progress in

tool usage and product engineering, especially along the "software factory"

model, and were overtaking the U.S. in their efforts to move software

production beyond the "craft" stage. This report also contained some

quantitative data: "Japanese programmers average 2000 lines of code per month

(versus less than 300 lines per month for U.S. programmers) and have one-tenth

the error rate (defects) of their U.S. counterparts" (p. 11). However, the

Department of Commerce offered no information to allow the reader to evaluate

and compare the numbers it cited. The report did not, for example, reveal

what kind and how many projects, what phases of the development cycle, or

what levels of reused code these "averages" reflected.

Other articles continued to refer to high levels of productivity, reuse, and

quality in Japanese software, but general backwardness in products and

research. A 1984 article noted the rise of "software factories" in Japan and

6

their highly systematic approach to software production, as well as Japanese

excellence in graphics and embedded software, such as in industrial and

consumer products. But it concluded that Japanese software "is less

sophisticated and more costly to produce than Western software" (Uttal 1984).

Another 1984 article noted Japanese strengths in certain types of software

products -- video games, super-computer programs, large-scale banking and

airline-reservation systems -- as well as a possible 10% to 15% edge in

productivity. However, the authors concluded the Japanese industry was too

small (one-quarter of U.S. sales) to compete effectively with the U.S. (Sakai

1984).

A 1987 study by the U.S. Office of Technology Assessment (OTA) on U.S.

competitiveness in service industries (Office of Technology Assessment 1987)

agreed the Japanese, in the long run, would "emerge as the primary U.S.

competitor in software." OTA concluded, however, that "Jipan remains

substantially behind in software, with poor applications packages -- along with

limited sales and service networks...." Nonetheless, Japan seemed to have

emerging strengths: The researchers asserted that Japanese systems software,

based on U.S. products, "is usually considered to be quite good," and Japanese

language processing software was sophisticated. Furthermore, while custom

programming was far less efficient than package use and still constituted the

bulk of the Japanese software market, Japanese firms such as Toshiba seemed to

excel at producing complex software efficiently and with many fewer defects

than in the U.S. (pp. 160-166).

While information on products was scarce and difficult to evaluate, a 1988

survey of 20,000 Japanese computer users by a Japanese journal indicated that

Japanese firms were to some extent superior to U.S. firms competing in Japan

in custom applications and software maintenance, in addition to offering lower

7

III

prices for leased software and system-engineering services. But Japanese

customers were less satisfied with Japanese products, compared to U.S. products,

in basic systems software and office systems (Nikkei Computer March 1988,

September 1988; Cusumano 1988).

A study supported by the U.S. National Science Foundation to evaluate

Japanese technology (JTECH Project) concluded as well that, while Japanese

firms seemed excellent in product engineering, reusability, tool use, and quality,

Japan overall was behind in basic research and advanced development for

software (Gamaota and Frieman 1988). A 1989 article made broader claims,

noting that the Japanese software industry was still "small and not very

visible," and perhaps two decades behind the U.S. (Rifkin and Savage 1989). Yet

another 1989 essay maintained that, while the Japanese were strong in

applications systems for their home market, they appeared weak in other

product areas. This author argued that, in general, the Japanese suffered from

a severe shortage of skilled programmers and had few software houses that

were financially strong enough to compete with U.S. firms in the American

market (Lecht 1989).

Perhaps the most glaring defect in this literature has been its anecdotal

nature -- general comments that are difficult to test, such as assertions that

Japanese products lacked sophistication or creativity; and assertions that relied

on information from one or a few firms, with little or no attempt to collect

quantitative data systematically. Part of the reason for a debate of this type is

the difficulty of measuring performance in software programming or product

operation, especially across different users, producers, and projects (Jones 1986),

as well as national markets. Nevertheless, the reports or articles cited provided

several suggestions of differences between Japanese and U.S. practice and

performance in software development:

8

III

Proposition 1:

Proposition 2:

Proposition 3:

Proposition 4:

Proposition 5:

Proposition 6:

Proposition 7:

Japanese software developers copy or rely on Western tools
and techniques (Table 1).

Japanese software is less sophisticated than U.S. software
(Table 1).

Japanese software development managers are ahead in project
management (Table 2).

Japanese software developers make greater use of reused code
(Table 2).

Japanese software developers are ahead in tool usage (Table
2).

Japanese software developers are ahead in software
productivity (Table 2).

Japanese software developers are ahead in software quality
'(Table 2).

Analysis of commonly-defined data collected as part of this research

should either support or question these propositions, as well as indicate if there

are significant interrelationships among some of the variables.

111. Research Methodology

The methodology adopted to compare Japanese and U.S. firms was to

collect data on standardized forms from individual development sites for

particular software systems. The first task was to compile a list of major

software producers and development sites in each country that also were

comparable in terms of product or project size and applications. Names of

firms came from annual lists of the largest software producers in U.S. and

Japanese publications (Datamation 1985, Kiriu 1986). Annual reports and other

company information indicated the location of major software sites. The next

step was to identify managers of software development at these sites willing to

complete a standardized data-collection form on one or more systems of their

9

choice. The approach taken was to contact the managers of production

engineering or quality assurance in each development site by letter and by

telephone, explain the purpose of the study, and ask for their cooperation in

return for a copy of the research report.

Managers at 44 development sites in the United States (and one from a

Japanese joint venture returned from its U.S. partner) initially agreed to

complete the form and submit data on projects of their choice; 28 were

returned, from 12 firms. Managers at 26 development sites in Japan also agreed

to complete the form on projects of their choice; 20 were returned, from 9

firms (See Appendices A and B). After review of the returned forms,

augmentation of incomplete forms or clarification of responses was attempted by

telephone or letter. The end result of this additional effort was that 4 of the

U.S. surveys and 4 of the Japanese were not usable. Either they did not

include enough data or the respondent who filled out the survey indicated too

many doubts about the reliability of the data. In addition, the one returned by

a U.S. company from its joint venture in Japan was excluded from the study,

since this appeared to represent a combination of Japanese and U.S. practices

or personnel. Thus the response rate for returns was 48 out of 70 (69%), and 40

out of the 48 projects (83%) were used in this research, although not every

data-collection form contained complete information on each question. 3

The high percentage of returns (given the detailed data required) seemed

due to the personal commitments the researchers sought from individuals in

each firm and continued appeals by telephone and letters until most of the

surveys sent out came back completed. Companies were also promised

confidentiality, i.e. no project data would be directly associated with a

particular company. One obstacle to getting a larger sample was that, for the

3 For example, 9 of the 40 did not report quality (defect) data.

10

.:��1�--11���------��--------�--- ��----�--

U.S. firms in particular, many did not collect data (such as on work years by

phase of development, lines of code produced, defect levels by degree of

severity and over time), in sufficient detail to participate. This contrasted to

the Japanese firms, where data collection appeared to be more routine and

thorough. Also, some firms in both countries, even after initially agreeing to

submit data, decided not to divulge this information on productivity and quality

for competitive reasons, even when promised confidentiality.

It should be noted that the sample was not random. The research

identified leading producers who collected detailed information on their

development processes. The research also followed the methodology used by

Zelkowitz et al. (1984), allowing managers to select on what systems to report

data. One must therefore assume that companies probably chose their best

projects, or at least projects under sufficient control for them to have fairly

detailed data on productivity, quality, and other measures. In short, the sample

remains exploratory. Nevertheless, it is believed to give an indication of "good

practice" in the U.S. and Japan, at a selected group of firms that collected

detailed data and took an interest in software-development management. It also

provides a unique opportunity to assess quantitatively the claims and counter

claims raised by anecdotal reports over the last decade.

IV. Descriptive Data

In this section the Japanese and U.S. samples are compared in terms of a

number of descriptive dimensions: application type, programming language,

hardware platform, and size.

The data-collection forms, in addition to requesting information on

productivity and quality, requested a brief description of the purpose of the

software. This allowed the researchers to characterize the 40 software systems

11

into one of the standard applications described by Jones (1986): (1) data

processing (e.g., financial database, human resource), (2) scientific (e.g.,

simulation models, CAD tool), (3) systems software (e.g., operating system,

compiler), and (4) telecommunications and other real-time systems (e.g.,

switching, data transmission, and network processing). The distribution of

projects in the total sample, shown in Table 3, appears comparable, although

not identical. To determine if product type affected performance measures, the

analyses that will follow include variables that represent possible differences in

application mix across the two samples.

Proposition 1: Japanese software developers copy or rely on Western tools
and techniques (Table 1).

Lists of applications, programming languages, and hardware platforms, as

well as the tools used in software development, indicate that Japanese firms

have largely followed the lead of the U.S. and Europe, where this technology

was invented. For example, primary application languages are quite consistent

across the two countries (see Table 4a). The U.S. firms have somewhat more

representation in Assembly and COBOL, although this reflected the greater

percentage of real time and data processing systems, respectively (see Table 4b).

The hardware platform on which they were delivered are virtually identical,

even though the Japanese firms have a slightly greater percentage of

microcomputer implementations, and the U.S. firms a small advantage in

mainframes (Table 5). More detailed comparisons of tools used discussed below

(sees Tables 11 and 12) also lend support to Proposition 1 and to the more

specific statement that, in terms of applications, languages, and hardware

platforms, as well as tools, there do not appear to be significant differences

between the U.S. and Japanese samples under analysis in this paper.

12

III

Proposition 2: Japanese software is less sophisticated than U.S. software
(Table 1).

The term "sophistication" is vague in the context of software. One aspect

might be the type and number of functions available in a program, although

neither this study nor any other known to these authors has directly compared

Japanese and U.S. software in terms of functionality. The writers who claimed

Japanese software lacked sophistication specifically stated or implied that

Japanese programs appeared less "complex" than U.S. software (Uttal 1984, OTA

1987). If one accepts that there is a strong association between the complexity

of software and the size of a system, then the data collected make it possible

to compare the Japanese and U.S. systems in an area related to sophistication.

The conventional measure for size in a software project is the number of

non-comment source lines of code, or SLOC that are produced (Boehm 1981,

Conte et al. 1986, Jones 1986, Putnam 1978, Walston and Felix 1977). This

metric has a long history in both research and practice, and has been the

subject of much debate concerning rules for counting SLOC and their efficacy

as an input metric for project estimation as well as a measure of productivity

(Albrecht and Gaffney, 1983, Jones 1986, Kemerer 1987). The current state of

the debate is best summarized by this statement from a recent article by Barry

Boehm: "The current bottom line for most organizations is that delivered source

instructions (lines) per project man-month... is a more practical productivity

metric than the currently available alternatives" (Boehm 1987). In order to

compare system size as well as productivity across a number of organizations,

this research chose non-comment SLOC as the output size metric and

13

work-years as the input size metric. 4 Table 6 shows the means and medians of

these metrics. Note that the U.S. and Japanese systems are of roughly

comparable size, and the results of the nonparametric Wilcoxon rank sum test

(equivalent to a Mann-Whitney U test) were that no statistically significant

difference was found (Bradley 1968: 105-114).

One possible concern with the use of SLOC metrics for inter-project

comparisons is the variance in programming languages. "A line" of Fortran may

not be equivalent to "a line" in Assembly language, for example. To control for

this source of variance, the SLOC measures were converted to a common size of

Fortran equivalent statements, using the conversion factors proposed by Jones

(1986: 49, Jones 1988). For example, using languages in the current sample,

Assembly language is at "level" 1, and Fortran is at "level" 3. It thus takes 3

lines of assembly language to equal 1 line of Fortran. This conversion was

performed on all of the SLOC data, and the results are also shown in Table 6.

Note that the conversion produces Fortran-equivalent LOC that are slightly

smaller than the raw SLOC data, due to the languages used. Note also that the

relative numbers between the U.S. and Japanese companies do not change

significantly, which would be expected given the similar language set in each

country's data. It follows that no support is found for Proposition 2, that

40ne possible concern about such a measure is the reputation of Japanese
firms for long work days. (e.g., In the automobile industry Japanese employees
tended to work about 15% more days per year than their U.S. counterparts
(Cusumano 1985).) However, it appears that hourly differences were relatively
minor for U.S. and Japanese system developers. In Japan, 1987 figures indicate
the average weekly hours for the information-processing services industry were
37.6 and, for the software industry (system engineering, programming,
operations), 37.3 hours. The Japanese reported modest overtime hours per week,
averaging 6.2 in information-processing services and 7.7 in the software industry
(Joho Sabisu Sangyo Kyokai 1987: 118-119, 133). In the U.S., for SIC code #737
(computer programming, data processing, and other computer-related services),
average regular hours worked per week (excluding overtime) in 1987 were 37.5,
nearly identical to Japan. U.S. employees also worked overtime as needed,
although the U.S. Department of Labor did not collect these data for service
industries (U.S. Department of Labor 1989).

14

Japanese software is less sophisticated than U.S., at least to the degree that

system size reflects sophistication.

V. Process Data

In addition to the descriptive data described in Section IV, data were

collected on the process of software development as practiced in the U.S. and

Japan. These data consist of both the labor (project staffing) and capital (tool

usage) inputs to the software development process.

A. Labor Inputs

One widely used surrogate for the quality of personnel employed on a

project is their average years of experience (Chrysler 1978, Banker et al. 1987).

As can be seen in Table 7, these levels are essentially identical for the data

from the two countries. This contrasts with claims (such as Lecht 1989) of

greater shortages of experienced software developers in Japan compared to the

U.S. Therefore, any existing management or performance differences between

the countries in this sample are unlikely to be explained by differences in

experience as measured by years of employment in software development.

Proposition 3: Japanese software development managers are ahead in project
management (Table 2).

The literature suggested the Japanese were strong in various areas of

project management, such as planning, discipline, and teamwork. The data

collected focused more on performance measures, such as productivity and

quality (defects), which probably reflect management skills, but did not directly

define areas of management and attempt measurements. However, the form did

request data on how projects used personnel, such as the allocation of effort

15

across the systems development life-cycle, and this provides some insight into

project management. In particular, previous researchers have suggested that

performance differences may be due to increased emphasis on the initial stages

of the development life cycle (Gaffney 1982, McKeen 1983).

Average data relating to life-cycle emphasis as collected on the individual

systems are shown in Table 8. For purposes of this data collection effort,

"Design" includes the pre-coding specification as well as the design phase.

"Coding" includes programming, and "Testing" includes debugging. As can be

seen, on average the Japanese spend significantly more (at the alpha = .01

level) time in the early life cycle phase, and significantly less (at the alpha =

.05 level) in the coding phases. These data provide support for Proposition 3 to

the degree that emphasizing design and de-emphasizing coding is seen as

desirable. The difference in testing percentage was also higher, although this

difference was not statistically significant at usual levels. The data from Table

8 suggest hypotheses relating to performance measures that will be tested in

Section VI below -- namely, that the Japanese firms in this sample spend a

greater percentage of time in the design and test phases (although the latter

difference was not statistically significant).

Data were also collected on the composition of the work-years in terms of

full-time versus part-time project participation in each of the phases. As

shown in Table 9, these data are similar for the two countries in the design

and coding phases, but the Japanese projects show significantly greater reliance

on full-time testing personnel than do the U.S. firms. This is another

difference in project management that supports suggestions by other researchers

that Japanese firms excel in defect analysis (Zelkowitz 1984) and other aspects

of quality control (see Table 2).

16

III

B. Capital Inputs

A number of researchers have used an economic production process model

for software development to suggest that one way to improve productivity is to

emulate industries that substituted reliable, low marginal-cost capital inputs for

repetitive activities (Kriebel and Raviv 1980, Stabell 1982, Kemerer 1988,

Cusumano 1989). In the domain of software, capital inputs most readily take

the form of tools and techniques for augmenting human labor. For this study

data were collected on two forms of capital input, code reuse and software

tools.

Proposition 4: Japanese software developers make greater use of reused code
(Table 2).

The issue of code reuse has received a tremendous amount of attention

recently as a potential "silver bullet" for the software crisis (Brooks 1987). 5

Unfortunately, with only a few exceptions (e.g. Selby 1988), little empirical data

has been published on actual reuse in industrial settings. The data for the U.S.

and Japanese firms presented in this paper are shown in Table 10. (Since

industry experts have theorized that high degrees of software reuse should

greatly improve nominal productivity levels (Jones 1986), but without empirical

data to demonstrate this, Appendix C presents the results of a test of this

relationship using data from the U.S. and Japanese systems.)

Consistent with previous reports (see Table 2), the Japanese firms seem to

exhibit higher levels of reuse than U.S. firms. Higher reusability in Japan

would also be consistent with assertions that the Japanese have taken the lead

in promoting software reuse, even without solving all the accompanying

5See also the collection of papers in Freeman 1987, and the special issue
of IEEE Transactions on Software Engineerina, September 1984.

17

difficulties (Tracz 1988). However, the difference in this sample is not

statistically significant at usual levels. Therefore, while the data appear to

support Proposition 4, they cannot be used to reject the motion that there may

be no difference in reuse levels in this sample. The data also suggest that the

very high percentages of reuse for the Japanese cited by some researchers (such

as 85% in Standish 1984) represent isolated best practice or unusual projects.

Proposition 5: Japanese software developers are ahead in tool usage (Table
2).

Another area of software development technology that has received

considerable research attention is the provision of tools, particularly so-called

CASE (Computer-Aided Software Engineering) tools, to support software

development (Henderson and Cooprider 1988). In order to investigate their

degree of use in the U.S. and Japan, data were collected with an open format

design, as follows:

Software Enaineerina Tools
List in importance the name and main function of
the most frequently used support and development
tools for product design, coding and testing.

Name Main Function
1.
2.

10.

An alternative would have been to use a closed format, asking respondents

to check the applicable boxes. It is believed that this area of practice is too

ill-established for such an approach. The open format at least permitted an

exploratory evaluation of the scope and breadth of tool usage. Table 11 shows

18

___�_���I���

the average number of tools listed by firms in each of the two countries.6

This gross level of analysis suggests that Japanese and U.S. firms had similar

levels of tool usage.

Due to the detailed level of the data, a finer level of analysis can be

performed, as shown in Table 12, which presents the tool usage statistics

broken down by type of tool used. By decomposing the usage into these

categories, the numbers of firms using any given type of tool become very

small, and therefore standard statistical tests seem inappropriate. Examination

of the table indicates that Japanese and U.S. projects used a comparable range

of tools, but with a few differences. In terms of analysis and design, similar

numbers of firms report using tools to support these activities, although the

Japanese report greater use of automatic flowcharting tools. In coding,

Japanese firms reported much greater use of what are referred to in Table 12

as "Utilities", e.g. such tools as domain-specific editors and specialized

compilers. Also, none of the U.S. firms reported using either code generators

or reusable code libraries (tools developed in the U.S. and promoted by U.S.

experts in software engineering -- see, for example, Boehm 1981, Brooks 1987).

Note that zero use of code libraries is not necessarily inconsistent with

the code reuse numbers cited earlier. Several studies describe how code reuse

can be done formally, through corporate or department code libraries, or

informally, through ad hoc reuse and private libraries (Woodfield et al. 1987).

This is an important distinction for managers, since there is some debate in the

reuse literature regarding the cost and benefits of reuse, and the variance in

6 The form permitted a maximum of 10 responses, and two of the 40
responses (one from each country) actually included 10 tools. Therefore, for
these two data points a possible methods bias exists in terms of a ceiling
effect. However, given that this was the case for only 2 of the 40 responses
and that there is one from each country, this is not believed to be a major
source of error.

19

how reuse is supported institutionally has been suggested as a factor that has

an impact on these costs and benefits (Cusumano 1989, Matsumoto 1987).

While data on testing or debugging tools is similar across the U.S. and

Japanese firms, the percentage of respondents claiming use of these tools was

relatively high (roughly two-thirds), compared to data cited by Zelkowitz et al.,

which shows only 27% claiming use (Zelkowitz, et al., 1984). The difference in

these two observations may stem from the five years difference in when the

two sets of data were collected, which would suggest that usage of such tools

has become much more common. Other tools showed similar levels of use

across the two countries. Thus, in general, the data do not lend strong support

to Proposition 5. The Japanese projects did claim far more extensive use of

coding utilities and used automated flowcharting and reuse-support tools that

the U.S. projects did not, although the U.S. projects listed some tools

(performance testing, schedule tracking) that the Japanese did not.

VI. Performance Metrics and Models

The literature suggests that the relative performance of U.S. and Japanese

software developers has become of great interest to managers concerned with

identifying and understanding good practice in the software industry as well as

to U.S. government analysts and others concerned with the international

"competitiveness" of U.S. firms. As noted in the introduction to this paper, the

literature is divided between those who feel the Japanese are behind and

unlikely to be a threat in software (Table 1) and those who feel the Japanese

are already superior in some respects to the U.S. (Table 2). Thus far, authors

have supported claims with descriptions or numbers from one or two Japanese

sites, which may or may not be exceptional. This section presents the results

of the quantitative analysis of productivity and quality on the current sample.

20

III

Proposition 6: Japanese software developers are ahead in software
productivity (Table 2).

Productivity is defined here as non-comment Fortran equivalent source

lines of code per work year (Jones 1986, 1988). Table 13 presents the

comparison of the U.S. and Japanese firms along this dimension. 7 Both the

mean and median for the Japanese firms are higher (58% to 71%) than the U.S.

numbers, although the differences are not statistically significant at usual levels

(alpha = .18). Therefore, the data, while seeming to support Proposition 6,

cannot be used with a high degree of confidence to reject the notion that there

may be no difference. Compared to the single-site data reported by other

researchers, the Japanese do not appear as productive as the most dramatic

claims (e.g., the U.S. Department of Commerce study asserting the equivalent of

24,000 SLOC/year for the Japanese), but they appear better than some modest

estimates (e.g., the 1984 claim by Sakai of only a 10% to 15% advantage for

Japan). While other studies' numbers did not take programming-language

differences into account, after making these adjustments, the data presented in

Table 13 strongly support the notion that, at the least, Japanese systems

developers are by no means behind their U.S. counterparts in terms of lines-of-

code productivity.

While differences across countries may have implications for long-term

competitiveness, of immediate interest to software managers is why differences

exist among projects and between the samples from Japan and the U.S. In

particular, can Japanese results be explained by differences in the composition

71n order to check the sensitivity of the results to the Fortran conversion,
the same test was run on the unadjusted data, which yielded similar results.

21

of the systems delivered in the two countries? In order to answer this and

other questions, a simple linear model of labor productivity was developed, using

variables reflecting differences in the two country sample that could reasonably

be assumed to have an impact on productivity. The variables chosen are shown

in Table 14.

The hypothesized impact of these variables is as follows. Data processing

applications are perceived to be less difficult, and are more likely to use higher

level languages than other applications (such as scientific or real-time), and

therefore should exhibit higher productivity (Boehm 1981, Jones 1986).

Mainframe applications may be less productive than minicomputer or

microcomputer applications, as they imply larger, more complex projects than

minicomputer applications, and therefore diseconomies of scale may set in

(Brooks 1975, Boehm 1981, Banker and Kemerer 1989). In addition, they may add

response time delays due to being a large, shared resource where development

may compete with production jobs for machine cycles (Banker et al. 1989).

Greater time in the coding phase may be a sign of projects with

inadequately specified designs, or so-called "gold-plating" (Boehm 1981), which

also would suggest projects with less resulting productivity. Finally, greater

code reuse will increase productivity as measured by SLOC (Jones 1984). The

results of the model are shown in Table 15.

This model explains about half of the variation in productivity in these

data. The signs of the coefficients of the independent variables are all in the

expected direction. The value for code reuse is significant at the alpha<.001

level, the values for data processing application and mainframe platform are

significant at the alpha=.05 level, and the value for coding phase percentage is

significant at the alpha=.10 level.

In terms of explaining U.S./Japanese differences, the greater code reuse

22

and less time spent during coding clearly seems to aid the Japanese firms. The

U.S. had more data-processing systems, which exhibit higher productivity than

the more technical systems. Therefore, this sample may tend to understate the

U. S./Japan productivity differences (due to the U. S. sample having proportionally

more data-processing projects) compared with an identically matched sample. 8

Proposition 7: Japanese software developers are ahead in software quality
(Table 2).

Quality is a particularly important performance measure since it has long

been argued that overall productivity, that is, productivity taking into account

the life-cycle maintenance required to fix software defects, is directly related

to the quality of the original designs and code (Brooks 1975, Boehm 1981). The

quality metric chosen for this research was the number of failures per thousand

non-comment source lines of code during the first 12 months of the system's

service. Failures were defined as "basic service interruptions or basic service

degradations of severity such that correction was not deferrable." Data were

available from 20 of the U.S. firms and 11 of the Japanese firms, and are

presented in Table 16.

Similar to the results for productivity, the Japanese firms showed mean

and median numbers of failures lower than the U.S. firms (one-half to one-

fourth), although these differences were not statistically significant at generally

accepted confidence levels (alpha = .16). Again, these data do not represent

8The Belsley-Kuh-Welch test of collinearity was run, and no confounding
of these results by collinearity is suggested (Belsley 1980). The residuals were
plotted against the predicted y values, and the pattern suggested possible
heteroscedasticity. However, the results of a Goldfeld-Quandt test on each of
the independent variables was that the null hypothesis of homoscedasticity could
not be rejected at the alpha=.01 level (Pindyck and Rubinfeld 1981: 104-105).

23

the extremes suggested by some previous research (e.g., the U.S. Department of

Commerce study claimed that Japanese error rates were one-tenth the U.S.

rates). However, the Japanese median does support a prior claim of .3

defects/1000 SLOC (Haavind 1986). Therefore, the data suggest support for

Proposition 7, but cannot be used with a high degree of confidence to reject

the notion that there may be no difference.

As for productivity, while verifying the differences across countries

provides indications of where "best practice" might be occurring, software

managers should be most interested in why quality differences exist. Can these

results be explained by differences in the composition of the systems delivered

in the two countries? In order to answer this question, a simple linear model

of quality was developed, using variables reflecting differences in the two

country sample that could reasonably be assumed to have an impact on quality.

The variables chosen are shown in Table 17.

The hypothesized impact of these variables is as follows. The larger a

system, the more difficulty in thoroughly testing it. A greater percentage of

time in the testing phase should reduce the number of later failures. The only

possible effect of mainframes may be the possibly greater availability of

testing/debugging tools. However, this can be measured directly, so the

hardware platform categorical variable is not included, and in its place is the

number of testing/debugging tools used, which would be expected to improve

quality.9

9 Variables relating to system type (data processing or real-time), were not
included in the model, since the relation of system type to quality is not widely
agreed upon. Data processing applications may, in general, have less stringent
reliability requirements, and therefore may exhibit lower quality. On the other
hand, the perceived greater complexity of real-time systems may make them
harder to debug, and therefore their quality may be less. Depending upon
which effect dominates, the reliability requirement or the complexity factor, it
is unclear what the sign of these variables will be. However, a model including
these variables was run for purposes of sensitivity analysis, and these system-

24

III

The results of the model are shown in Table 18. The interpretation of the

model is that more failures/1000 SLOC are present in larger systems (significant

at the alpha=.001 level). A greater percentage of time spent in the testing

phase reduces the error rate, as does a greater use of testing tools (both

results are significant at approximately the alpha=.10 level). 10 In terms of

explaining U.S./Japanese differences, given that the failure rate is higher in

larger systems, and given the somewhat larger size of the Japanese systems in

this sample, the difference between the two countries may tend to be

underestimated compared to a sample of identically matched systems.

VII. Conclusions

This paper began by summarizing an ongoing debate revolving around how

well the Japanese are performing in software development, an area where U.S.

firms have dominated since the beginning of the industry. Anecdotal literature,

based on one or two companies or on information from only one site and not

analyzed statistically, provided confusing evidence. Assertions ranged from

claims that Japanese firms were already vastly superior to U.S. firms in

software productivity and quality to suggestions the Japanese were still far

behind the U.S. in this industry by a variety of measures. The research

presented here provides what appears to be the first review of existing

literature as well as the first quantitative data analysis comparing software-

development practice and performance in the U.S. and Japan.

Data from 40 systems do not support propositions that there are major

differences between U.S. and Japanese performance in software development,

either in a positive or negative sense. Japanese and U.S. firms appeared to use

type variables were not found to be significant.

10 The discussion in footnote 8 applies here as well.

25

similar tools, develop systems of comparable sophistication, and displayed

statistically comparable levels of reuse, productivity, and quality. However, to

those who argued that Japan lagged far behind the U.S., it seems clear that

Japanese software developers are, at a minimum, as good, in productivity,

quality, and management, as their U.S. counterparts. In fact, it would be a

mistake for U.S. firms to be complacent in this industry. Japanese performance,

as reflected in the collected metrics, on average appears to be superior to the

U.S., although differences were not significant statistically, reflecting high

variances as well as the small size of the final sample. These are,

unfortunately, common problems in the collection of empirical data on software

engineering (Jones 1986). Nonetheless, the study revealed potentially emerging

and important differences.

In project management, individual years of experience were similar, in

contrast to claims that the Japanese lacked experienced staff, compared to the

U.S. Yet there were significant differences in how these personnel were used.

The Japanese spent less time than their U.S. counterparts on coding, a

relatively routine part of software development, and more time on design.

Productivity, measured as non-comment lines of code per work year and

adjusted for different languages, was about 60% to 70% higher in the Japanese

projects, in spite of some application differences in the sample that may have

favored the U.S. Analysis of the data further suggested that code reuse and

less time spent in coding boosted Japanese productivity averages. The number

of major defects per 1000 lines of code in the first twelve months after

delivery in Japanese software products was half or less than in the U.S. sample.

This again suggests a difference of potential importance for managers interested

both in good practice and potential competition from Japan. The analysis also

revealed that (1) larger projects tended to have more defects, and (2) the

26

Japanese tended to have fewer defects in spite of having slightly larger systems

on average in this sample. More time spent in testing, and greater use of

testing tools, was shown to be associated with lower error rates.

Larger-sample studies, longitudinal analyses to -identify rates of

improvement, as well as more exploration of differences in management and

development practices, are needed to explore further the comparison of Japanese

and U.S. software producers. International comparisons are important both to

probe the reasons behind good practice, wherever this may occur, and to

evaluate the performance of individual firms and projects.

As for future competition from the Japanese in software, detailed studies

of companies and facilities reveal that the Japanese are paying increasing

attention to product functionality and ease of use (Cusumano 1989), as well as

reusability and automation. Combined with greater attention already being paid

to design and testing, and their apparent strengths in managing the process of

software development, it is likely the Japanese will continue to improve their

capabilities and potential for international competition in software. It is an

open question to what extent companies from Japan will emerge as strong rivals

of U.S. or European firms outside Japan, where local service and relationships,

as well as fluency in local languages and business practices, may be as

important as expertise in systems development. Japanese firms also need to

have a surplus of skilled software personnel versed in foreign languages and

practices to develop custom applications or packages for export, and they did

not appear to have this surplus in the 1980s.

In conclusion, this study suggests that Japanese and U.S. performance in

software development at the moment is more alike than different, and projects

from both countries display considerable variability. However, the high levels

of productivity, quality, and reuse emanating from Japan may be a cause for

27

11

concern among some U.S. managers. At the least, Japanese software producers

analyzed in this research have already set very high standards for performance,

matching if not exceeding the best U.S. firms. If the Japanese continue or

even improve upon these high levels, and master other elements needed to

compete overseas in software development, companies from Japan may someday

prove to be strong competitors in yet another industry.

28

Table 1: Negative Comments About Japanese Software Development

Comments: Sou rces: Quantitative Data:

PROCESS

Copy/Rely on Western Tools Kim 1983 None
and Techniques Zelkowitz 1984 None

Kishida 1987 None
Cusumano 1989 Managers' Survey

Severe Shortage of Skilled Lecht 1989 None
Programmers

More Costly Software Uttal 1984 None

PRODUCTS

Lack Creativity Uttal 1984 None
Rifkin and Savage 1989 None

No Inventions U.S. Commerce 1984 Historical Lists

Less Sophisticated Uttal 1984 None

Few Packages Kim 1983 None
U.S. Commerce 1984 None
OTA 1987 Industry Data

Behind in Basic Research U.S. Commerce 1984 None
Gamaota & Frieman 1988 Anecdotal

GENERAL ASSESSMENT

Behind the U.S. Overall U.S. Commerce 1984 None
Sakai 1984 None
OTA 1987 Industry Data
Rifkin and Savage 1989 None
Lecht 1989 None

29

III

Table 6: Input and Output Metrics

Wilcoxon Rank Sums
Z APproximation

Work-years 102 (22.5) 47 (20.1)

343K (124.1) 433K (163.7)

Fortran
Equivalent 288K (77K)

(83.9%
389K (144K)
89.8% of SLOC)

Average
Fortran
Conversion

Table 7: Personnel Experience

Averaae Years of Experience

Wilcoxon Rank Sums
Z Approximation

Prog rammer
Designer
Manager

3.48
4.46
7.61

3.31
4.44
7.00

Size
Means

U.S. (median)

S LOC

.00

.54

.62

.90 .94 .38

-. 94
.35
.00

32

,

Table 8: Effort by Phase

Effort Distribution by Phase
JaPan Wilcoxon Rank Sums

ADroximation

Design %
Coding %
Testing %

31
36
33

Statistical Significance
** = .05, *** = .01

Table 9: Full-Time Effort

Full-Time vs. Part-Time %
U. S. Japan

Percentaae bv Phase

Wilcoxon Rank Sums
Z Aroximation

Full time design
Full time coding
Full time testing

Statistical Significance
** = .05

82
81
61

Levels:

Code Reuse

Code Reuse (% of Delivered Lines)

U.S. (median) Japan Wilcoxon Rank Sums
Z Approximation

Code reuse 9.71 (3) 18.25 (11)

33

39
25
36

2.71 ***
1.97**

.66

Levels:

77
81
86

- .38
.07

1.95**

Table 10:

.71

..

-

_ _ _ _ _ _ _ _ _ _

Table 2: Positive Comments About Japanese Software Development

Comments: Sources: Quantitative Data:

PROCESS

Ahead in Quality (defects) Zelkowitz 1984 None
and "Product Engineering" Johnson 1985 None

U.S. Commerce 1984 None
Haavind 1986 1 Company's Data
OTA 1987 1 Company's Data
Gamaota & Frieman 1988 1 Company's Data

Ahead in Tool Usage Kim 1983 None
Zelkowitz 1984 Site Survey
U.S. Commerce 1984 None
Johnson 1985 None
Gamaota & Frieman 1988 None

Ahead in Productivity Kim 1983 1 Company's Data
U.S. Commerce 1984 Anecdotal
Haavind 1986 1 Company's Data
Gamaota & Frieman 1988 1 Company's Data

Ahead in Reuse Standish 1984 Anecdotal
Haavind 1986 Anecdotal
Gamaota & Frieman 1988 1 Company's Data
Tracz 1988 Anecdotal
Cusumano 1989 Manager Survey

Ahead in Maintenance Kishida 1986 None
Nikkei/Cusumano 1988 User Surveys

Ahead in Project Naur and Randall 1969 None
Management (Planning, Tajima & Matsubara 1981 1 Company's Data
Discipline, Teamwork) Zelkowitz 1984 None

U.S. Commerce 1984 None
Johnson 1985 None
Belady 1986 None

PRODUCTS

Good in Custom Nikkei/Cusumano 1988 User Surveys
Programming OTA 1987 None

Good in Specific Applications Kim 1983 None
(Real-Time, Al, Graphics, Uttal 1984 None
Supercomputer, MIS, On-Line Sakai 1984 None
Reservations, Embedded, Gamaota & Frieman 1988 None
Jap. language processing) Lecht 1989 None

30

��~����-----

Table 3: Alications DeveloDed

Appl ications

Data Processing
Scientific
Systems
Telecomm./Realtime

Table 4a:

8 (33)
1 (4)
4 (17)

11 (46)
24

Japan (%)

2 (13)
3 (19)
6 (38)
5 (31)

16

Primary Proarammina lanauaaes

Primary Languaae

Assembly
C
Cobol
Fortran
PL/1
Pascal
Other

Table 4b:

Japan (%)

5 (21)
3 (13)
6 (25)
3 (13)
2 (8)
1 (4)
5 (21)

24

2 (13)
3 (19)
2 (13)
2 (13)
4 (25)
0 (0)
3 (19)

16

Primary Proarammina Lanauaae by ADDlication

Data
Processina

Cobol
Pascal
Fortran
C
PL/1
Assembly
Other

Tota I

8
1
1

Scientific

2
2

410

Table 5: Hardware

Telecommunications
Systems and Other Real-Time

1
2
3
3
1

10

1
3
3
4
5

16

Platformsl 1

Hardware Platform
Mainframe
Minicomputer
Microcomputer

U. . (%)
11 (52)
6 (29)
4 (19)

21

Japan (%)
7 (47)
4 (27)
4 (27)

15

1 1 Note that only 36 of the 40 systems are shown as systems with multiple
platforms are excluded.

31

, _ . _ ._ -. , . _ . , ii .--. .__ _ I_ l l

... T , _ . _.._. _ .. .

III

Table 11: Tool Usage

Mean Tools/Methods Reported Used Per Proiect

U.S. (median) Japan Wilcoxon Rank Sums
Z Approximation

Number Used 4.04 (4) 4.13 (4) -. 06

Table 12: Detailed Tool Usaae

Types of Tools Used - Percentage (%) Reporting Use

U.S, Japan
Analysis/Design

Design support 29.2 31.3
Auto. Flowchart 4.2 18.8

Codinm
Utilities 29.2 75.0
Envir. Mgmt. 37.5 25.0
Data Mgmt. 12.5 6.3
Code Generators 0.0 6.3
Reuse/Pgm. Lib. 0.0 18.8

Testi n
Test/Debug 66.7 62.5
Simulators 25.0 18.8
Performance Testing 4.2 0.0

Other Tools
Docum. Support 8.3 6.3
Schedule Tracking 16.7 0.0
Problem Tracking 29.2 6.3
Metrics Collection 12.5 12.5
Miscellaneous 16.7 18.8

34

III

Table 13: Mean Productivity (Fortran-Equivalent SLOC/Work-Year)

U.S. (median) Japan Wilcoxon Rank Sum
Z App rox imation

Fortran productivity 7290 (2943) 12447 (4663)

Table 14: Independent Variables in Productivity Regression

Variable
X1
x 2
x3
x4

ExPlanation
Dummy variable, =1 if application is data processing, else 0.
Dummy variable, =1 if hardware platform is mainframe, else 0.
Percentage of time in coding phase
Percentage of code reused

Table 15: Productivity Regression Results
(values of t-statistics shown in parentheses)

SLOC/work-year = 10349 + 10107 x1 + -7974 x 2 + -18133 x3 + 443 x 4
(2.31) (2.43) (-2.27) (-1.66) (4.99)

R2 =.29
Adj-R = .44
F-stat = 8.572
n = 40

35

1.34

-

Table 16: Software Quality
(failures/KSLOC during first 12 months)

U.S. (median) Jaian Wilcoxon Rank Sum
(n=20) (n=11) Z Approximation

Failures/KSLOC 4.44 (.83) 1.96(.20) -1.40

Table 17: Independent Variables in Quality Regression

Variable Explanation
x1 Size of system in 1000s of Fortran-equivalent SLOC
X2 Percentage of time in testing phase
X3 Number of testing/debugging tools used

Table 18: Quality Regression Results
(Values of t-statistics shown in parentheses)

Failures/KSLOC = 9.65 + .01 x - 15.44 x - 4.68 x 3
(2.84) (3.9d) (-.1.67, (-1.84)

R 2 A
Adj-R ~4 = .38
F-stat = 7.080
n = 31

36

Appendix A: Sample Description

Development Sites
Receiving Forms

44*

26

70

Number
Returned

28*

20

Number
Discarded

4*

4

48 8

Systems
Analyzed

24

16

40

*Includes one U.S.-Japanese joint venture submitted by a U.S. firm.

37

U.S.

Japan

Total

111

Appendix B: ComPanies and Product Areas Participating in the Study

U.S. Sites/Product Areas

Amdahl/Product Software
Amdahl/Engineering Software (2 Projects)
AT T Bell Laboratories/Switching Communications (2 Projects)
AT&T Bell Laboratories/Transaction Processing
Computervision/Computer-Aided Manufacturing
Computervision/Drafti ng
Computervision/Research Development
Financial Planning Technologies/Planning Systems
Harris Corporation/Government Support Systems (2 Projects)
Hewlett-Packard/Medical Division (2 Projects)
Yokogawa/Hewlett- Packa rd/Medical Products
Honeywell/Corporate Systems (3 Projects)
Hughes Aircraft/Communications & Data Processing (3 Projects)
International Business Machines/Basic Systems Software
International Business Machines/Systems Integration Division
Unisys/Computer Systems (3 Projects)
Bell Communications Research/Applications
Bell Communications Research/Software Technology & Systems

Japanese Sites/Product Areas

Fujitsu/Communications Software
Fujitsu/Basic Software (2 Projects)
Fujitsu/Applications Software
Hitachi/Basic Software
Hitachi/Applications Software
Hitachi/Switching Software
Hitachi Software Engineering/Financial Systems
Hitachi Software Engineering/Operating Systems
Kozo Keikaku/Computer-Aided Design
Mitsubishi Electric/Communications Software
Mitsubishi Electric/Systems Software
Mitsubishi Electric/Power Industrial Systems Software
Nippon Business Consultant/System Software
Nippon Electronics Development/Communications Systems
Nippon Electronics Development/Information Service Systems
Nippon Systemware/System Software
Nippon Telegraph & Telephone/System Software
Nippon Telegraph Telephone/Network Systems
Nippon Telegraph Telephone/Applications

38

III

Appendix C: A Model of Software Reuse and Productivity

While it is generally agreed that reusability is a desirable concept, little
work has been done on attempting to quantify the impact of reuse (Seppanen
1987). In fact, Standish has noted that "... it seems a great deal of insight
could be gained from collecting and analyzing data derived from examples where
software reuse techniques have been successfully applied in practice" (Standish
1984). One of the few economic models of reuse is provided by Gaffney and
Durek (1988). They propose that the relative cost of a system that reuses code
versus a completely new system is represented by the equation:

C = (1-R) + (R*b)

where C = the relative cost (=1 for an all new system)
R = the percentage of reused code
b = the relative cost of reuse versus writing new code

(assumed to be <= 1 by Gaffney and Durek)

They further suggest that the value of b is related to the degree of reuse,
i.e., whether just code is reused or whether there is related design reuse. They
provide a hypothetical example, wherein the value of b is equal to 1-p, where p
is the percentage of time spent in the phase or phases represented by the
reused component. For example, if coding is 15% of the life-cycle, then a
system that only reuses code, but not requirements or design, would cost about
85% of the hypothetical cost of an all new system (Gaffney and Durek 1988:
48).

It is possible to test the Gaffney-Durek model using the U.S.-Japanese
data-set. Given the value of R, the value of b can be estimated via linear
regression, as follows:

y = B + B 1X 1 + B 2x 2

where y = work years
X1 = New KSLOC (= KSLOC*(1-R))
X2 = Reused KSLOC (=KSLOC*R)

The estimate of this model for the data-set is as follows:

y = -15.024 + .306 x 1 + .195 x 2
(-.44) (4.15) (.55)

The signs of the coefficients of both the new and reused code are
positive, as would be expected, because even reused code is not "free" (without
effort). And, the coefficient on the reused code is less, only about two-thirds
of that for the new code, which is also what would be expected, since if it
took greater effort, presumably programmers would simply write new code
(Woodfield et al. 1987). The estimated value of b then, is:

b = B2 / B = .64

Given an average percentage of time spent in the coding phase of 32%
(.36*(24/40) + .25*(16/40)*100), the model would predict that b = (1-.32) = .68,
quite close to that obtained from the estimate.

In terms of the sensitivity of this result, one concern is the low
t-statistic on the estimate of B2. This suggests that a high degree of

39

confidence cannot be placed in rejecting the null hypothesis that the "true"
value of B2 = 0. The noise in the estimate may be caused by differing levels
of support for reuse, both in Japan and in the U.S. In other words, facilities
with excellent support for reuse may show a lower number and those with poor
support may show a higher number, leading to an average value of .195 with a
large variance. However, lacking any other data, the value of .195 is the single
best point estimate available. In addition, the fact that the value approximates
that predicted from the theory also tends to increase confidence in the
estimate. Of course, this result needs additional validation before any general
claims can be made, but this initial result is encouraging.

40

REFERENCES

Albrecht, A.J., and John Gaffney, Jr., "Software Function, Source Lines of Code,
and Development Effort Prediction: A Software Science Validation," IEEE
Transactions on Software Engineering, SE-9, No. 6, November 1983, pp.
639-648.

Abegglen, James C., and George Stalk, Jr., Kaisha: The Japanese Corporation,
New York, Basic Books, 1985.

Arden, Bruce, What Can Be Automated?, Cambridge, MA, MIT Press, 1980.

Banker, R., S. Datar, and C. Kemerer, "Factors Affecting Software Maintenance
Productivity: An Exploratory Study," Proc. of the 8th International
Conference on Information Systems, Pittsburgh, PA, December, 1987, pp.
160-175.

"A Model to Evaluate Variables Impacting Productivity on Software
Maintenance Projects," Cambridge, MA, MIT Sloan School of Management
Working Paper #2093-88, May 1989.

Belsley, D., E. Kuh and R. Welsch, Regression Diagnostics, New York, John
Wiley and Sons, 1980.

Belady, Laszlo A., "The Japanese and Software: Is It a Good Match?" IEEE
Computer, June 1986, pp. 57-61.

Boehm, Barry, "Improving Software Productivity," IEEE Computer, September
1987, pp. 43-57.

Boehm, B.W. Software Engineering Economics. Englewood Cliffs, N.J., Prentice-
Hall, 1981.

Bradley, James V., Distribution-Free Statistical Tests, Englewood Cliffs, N.J.,
Prentice-Hall, 1968.

Brooks, Frederick P., The Mythical Man-Month, Reading, MA, Addison-Wesley,
1975.

, "No Silver Bullet: Essence and Accidents of Software Engineering,"
IEEE Computer, April 1987, pp. 10-19.

Chrysler, E. "Some Basic Determinants of Computer Programming Productivity."
Communications of the ACM, Vol. 21, No. 6, June 1978, pp. 472-483.

Cole, Robert E., Work,. Mobility, and Participation: A Comparative Study of
American and Japanese Industry, Berkeley and Los Angeles, University of
California Press, 1979.

Conte, S., H. Dunsmore, and V. Shen, Software Engineering Metrics and Models,
Reading, MA, Benjamin/Cummings, 1986.

Cusumano, Michael A., The Japanese Automobile Industry, Cambridge, MA,
Harvard University Press, 1985.

41

, "Hardware and Software Customer Satisfaction in Japan: A Comparison of
U.S. and Japanese Vendors," MIT Sloan School of Management, Working
Paper #2101-88, December 1988.

, "The Software Factory: A Historical Interpretation," IEEE Software,
March 1989, pp. 23-30.

Datamation, 1 June 1985, pp. 58-120.

Frank, Werner L., Critical Issues in Software, New York, John Wiley and Sons,
1983.

Freeman, P., ed., Tutorial: Software Reusability, Washington, D.C., IEEE
Computer Society Press, 1987.

Gaffney, John E. Jr., "A Microanalysis Methodology for Assessment of Software
Development Costs," in R. Goldberg and H. Lorin, eds., The Economics of
Information Processing New York, John Wiley & Sons, 1982, V.2, pp. 177-
185.

Gaffney, John E., Jr., and Thomas F. Durek, "Software Reuse - Key to Enhanced
Productivity: Some Quantitative Models," ACM 27th Technical SvmDosium
Proceedings, Gaithersburg, Maryland, June 1988, pp. 45-55.

Gamaota, George, and Wendy Frieman, Gaining Ground: Japan's Strides in
Science and Technology, Cambridge, MA, Ballinger, 1988.

Haavind, Robert, "Tools for Compatibility," High Technology, August 1986, pp.
34-42.

Henderson, John, and Jay Cooprider, "Dimensions of I/S Planning and Design
Technology," M. I.T. Center for Information Research, Working Paper #181,
September 1988.

Hiyoshi, Yoshitaka, "Japan, Underdeveloped in Software, May be Changing,"
Software Magazine, November 1988, pp. 71-74.

Hunke, H. ed., Software Engineering Environments, Amsterdam, North-Holland,
1981.

Johnson, Colin, Electronic Enaineering Times, "Software in Japan," 11 February
1985, p. 1.

Joho Sabisu Sangyo Kyokai (Japan Information Service Industry Association),
Joho Sabisu Sangyo hakusho 1987 (White Paper of Information Service
Industry 1987), Tokyo, Joho Sabisu Sangyo Kyokai, 1987.

Jones, T. Capers., "Reusability in Programming: A Survey of the State of the
Art, IEEE Transactions on Software Engineerins, v. SE-10, n. 5,
September, 1984, pp. 488-494.

, Programmina Productivity, New York, McGraw-Hill, 1986.

42

"A New Look at Languages," Computerworld, 7 November 1988, pp.
97-103.

Kemerer, Chris F., "An Empirical Validation of Software Cost Estimation
Models," Communications of the ACM, v. 30, n. 5, May 1987, pp. 416-425.

, "Software Production Economics: Theoretical Models and Practical Tools,"
ACM 27th Technical Symposium Proceedings, Gaithersburg, Maryland, June
1988.

Kim, K.H., "A Look at Japan's Development of Software Engineering
Technology," IEEE Computer, May 1983, pp. 26-37.

Kiriu, Hiroshi, Sofutouea sanayo no iitsuzo (The actual state of the software
industry), Tokyo, Nikkan Shobo, 1986.

Kishida, Kouichi, et al., "Quality-Assurance Technology in Japan," IEEE
Software, September 1987, pp. 11-18.

Kriebel, C.H., and A. Raviv, "An Economics Approach to Modeling the
Productivity of Computer Systems," Manaaement Science, Vol. 26, No. 3,
March 1980, pp. 297-311.

Lecht, Charles P., "Japanese Software No Threat," Comuterworld, 8 May 1989,
p. 21.

Matsumoto, Yoshiro, "A Software Factory: An Overall Approach to Software
Production," in Peter Freeman, ed., Tutorial: Software Reusability
Washington, D.C., Institute of Electrical and Electronics Engineers, 1987,
pp. 155-178.

McKeen, J.D. "Successful Development Strategies for Business Application
Systems," MIS Quarterly, Vol. 7, No. 3, September 1983, pp. 47-65.

Naur, Peter, and Brian Randell, eds., Software Engineerina: Report on a
Conference Sponsored by the NATO Science Committee Brussels, Scientific
Affairs Division, NATO, January 1969.

Nikkei Computer, 14 March 1988, pp. 58-86, and 26 September 1988, pp. 66-99.

Office of Technology Assessment, U.S. Congress, International Competition in
Services, Washington, D.C., U.S. Government Printing Office, July 1987.

Pindyck, R. S., and Rubinfeld, D.L. Econometric Models and Economic
Forecasts, New York, McGraw-Hill Book Company, 1981.

Putnam, L. H. "General Empirical Solution to the Macro Software Sizing and
Estimating Problem," IEEE Transactions on Software Engineerina, Vol. 4,
1978, pp. 345-361.

Ramamoorthy, C.V., et al., "Software Engineering: Problems and
Perspectives," IEEE Computer, October 1984, pp. 191-209.

43

I II

Rifkin, Glenn, and J.A. Savage, "Is U.S. Ready for Japan Software Push,"
Comuterworld, 8 May 1989, p. 1.

Sakai, Toshio, "Software: The New Driving Force," Business Week. 27 February
1984, pp. 96-97.

Schonberger, Richard J., Japanese Manufacturing Technigues New York, The
Free Press, 1982.

Selby, Richard, "Empirically Analyzing Software Reuse in a Production
Environment," 1988.

Seppanen, Veikko, "Reusability in Software Engineering," in Peter Freeman, ed.,
Tutorial: Software Reusability, Washington, D.C., IEEE Computer Society
Press, 1987, pp. 286-297.

Stabell, C. B. "Office Productivity: A Macroeconomic Framework for Empirical
Research," Office Technology and People, Vol. 1, No. 1, 1982, pp. 91-106.

Standish, Thomas A., "An Essay on Software Reuse," IEEE Transactions on
Software Enaineerina, v. SE-10, n. 5, September 1984, pp. 494-497.

Tracz, Will, "Software Reuse Myths," Software Engineering Notes, v. 13, n. 1,
January 1988, pp. 17-21.

Tajima, Denji, and Tomoo Matsubara, "The Computer Software Industry in
Japan," IEEE Computer, May 1981, pp. 89-96.

, "Inside the Japanese Software Industry, " IEEE Computer, March 1984, pp.
34-43.

U.S. Department of Commerce, A Competitive Assessment of the U.S. Software
Industry, Washington, D.C., International Trade Administration, U.S.
Department of Commerce, 1984.

U.S. Department of Labor, Bureau of Labor Statistics, Monthly Labor Review,
Washington, D.C., monthly issues, 1989.

Uttal, Bro, "Japan's Persistent Software Gap," Fortune, 15 October 1984, pp.
151-160.

Vogel, Ezra F., Japan as Number 1: Lessons for America, Cambridge, MA,
Harvard University Press, 1979.

Walston, C. E., and C.P. Felix, "A Method of Programming Measurement and
Estimation," IBM Systems Journal, Vol. 16, No. 1, 1977, pp. 54-73.

Woodfield, S., D. Embley, and D. Scott," Can Programmers Reuse Software?"
IEEE Software July 1987, pp. 52-59.

Zelkowitz, Marvin V., et al., "Software Engineering Practices in the U.S. and
Japan," IEEE ComDuter, June 1984, pp. 57-66.

44

�1��__1�_�_�

