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Hierarchical Production Planning (HPP)

1.0 Introduction

In general terms, production may be defined as the process of

converting raw materials into finished products. Manufacturing systems are

typically composed of large number of components which have to be managed

effectively in order to deliver the final products in right quantities, on

time and at an appropriate cost. In systems characterized by multiple

products, several plants and warehouses, a wide variety of equipment and

operations, production management encompasses a large number of decisions that

affect several organizational echelons. To understand the role of Management

Science models in supporting those decisions, it is useful to classify them

according to the taxonomy proposed by Anthony (1965). He classifies decisions

into three categories: strategic planning, tactical planning and operations

control.

Strategic planning decisions are mostly concerned with the establishment

of managerial policies and the development of resources to satisfy external

requirements in a manner that is consistent with the organizational goals. In

the area of production management these decisions relate to the design of

production facilities and include the following: (i) location and sizing of

new plants, (ii) acquisition of new equipment (iii) selection of new product

lines, and (iv) design of logistic systems.

These decisions are very important because, to a great extent,

they define the competitive position of the firm, its growth rate, and

eventually, determine its success or failure. Also these decisions, which are

made at fairly high managerial levels, involve large investments, have long

term implications and are affected by both external and internal information.

Thus, any model-based system to support these decisions should have a broad
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scope, long planning horizon, and recognize the impact of uncertainties and

risk attitudes.

Tactical planning decisions focus on the resource utilization process.

At this stage, after decisions have been made regarding physical facilities,

the basic problem to be resolved is the allocation of resources such as

capacity, work force availability, storage and distribution resources.

Typical decisions in this category include utilization of regular and overtime

labor, allocation of capacity to product families, accumulation of seasonal

inventories, definition of distribution channels, and selection of

transportation alternatives. These decisions involve a medium range planning

horizon, and the aggregation of items into product families. In the

literature, models addressing these issues are classified as aggregate

planning models.

Operations Control: Decisions in this category deal with day to day

operational and scheduling problems which require complete disaggregation of

the information generated at higher levels. Typical decisions at this level

include the following: (i) production sequencing and lot sizing at the item

level, (ii) assignment of customer orders to individual machines, (iii)

inventory accounting and inventory control activities, (iv) dispatching,

expediting and processing orders, and (v) vehicle scheduling.

The three types of decisions identified in Anthony's Framework -

strategic planning, tactical planning and operational control - differ

markedly on several dimensions which have important implications in developing

a solution approach to address production planning and scheduling problems.

Table 1.1, reproduced from Hax and Candea (1984), summarizes these differences

and contrasts the characteristics of the decisions in these three classes.

The interdependence among these classes of decisions is very strong and
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therefore an integrated approach is required to minimize suboptimization. The

development of integrated decision models that deal with all the decisions

simultaneously, while attractive in principle, has severe drawbacks. First,

these models tend to be very large, and in most practical situations, it would

be very difficult, if not impossible, to obtain optimal solutions with

reasonable effort. Second, even if computational power and methodological

capabilities would permit solution of a large detailed model, the approach is

inappropriate because it would not be responsive to the management needs at

each level of the organization, and would prevent interaction between models

and managers at each organization echelon.

The hierarchical approach to production planning and scheduling

recognizes these differences. In this framework, the decisions are decomposed

into subproblems, which in some way, within the context of the organizational

hierarchy, link the higher level decisions with those of lower level in an

effective manner. Decisions that are made at higher level impose constraints

on the lower level decisions. In turn, detailed decisions provide the

necessary feedback to evaluate the quality of aggregate decision making.

Hierarchical planning provides a framework that has application

beyond the areas of production planning and operations management. For

example, Winkofsky, Baker and Sweeny (1981) consider this approach in the

management of research and development resources. Ruefli and Storbeck (1984)

examine hierarchical decision processes in a non-production context. In a

recent paper, Geoffrion (1987) suggests a hierarchical approach to structured

modeling. The aim of structured modeling is to provide a formal mathematical

framework and computer based environment for conceiving, representing and

manipulating a wide variety of models. The framework of structured modeling
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uses a hierarchically organized, partitioned, and attributed acyclic graph to

represent the structure of a model.

The hierarchical approach to production planning is not a new

concept. Early motivation for this approach can be found in Holt et al (1960)

and Winters (1962). However, in this chapter, we focus on recent developments

and describe applications of this approach to resolve production planning and

scheduling problems. It should also be recognized that a number of other

approaches have been proposed to address these problems and are described

elsewhere in this handbook. For example, Chapter 8 provides an introduction

to production planning, and Chapter 10 is devoted to scheduling. Mathematical

programming models and methods are discussed in Chapter 9, Materials

Requirement Planning is described in Chapter 12, and Just in Time philosophy

and Kanban systems are described in Chapter 14.

This chapter is organized as follows. In the following section we

provide the basic ingredients of Hierarchical Production Planning (HPP)

systems and describe, in detail, models for single and multi-stage systems.

This section (Section 2.2) also contains a discussion of some important issues

related to aggregation and disaggregation in hierarchical systems. In Section

3 we describe the role of feedback mechanisms in HPP and discuss two different

interpretations of this term. Section 4 is devoted to issues related to

uncertainties and the role of stochastic programming models in HPP systems.

Finally, we provide some concluding remarks in Section 5.

2.0 HPP Systems:

Production planning and scheduling in multiproduct systems has

received considerable attention in the operations research literature. The

focus of most of this work has been on the analysis of individual components

of the overall problem - facilities planning, aggregate capacity planning,



inventory control, and detailed scheduling. There are few notable exceptions

that provide an integrated solution to these problems. The works of Manne

(1958), Dzielinski and Gomory (1965), Lasdon and Terjung (1971) and Zangwill

(1966) can be interpreted as efforts to integrate decisions in production

planning and scheduling. In this approach, a single detailed model

(monolithic formulation) is formulated to determine optimal planning and

scheduling decisions. For a detailed discussion of these methods, the reader

is referred to Chapter 9 of this handbook.

In contrast, in the hierarchical approach to production planning

and control the detailed monolithic formulation is replaced by a sequence of

models that are consistent with a hierarchy of decisions that have to be made.

Aggregate (strategic and tactical) decisions are made first and impose

constraints within which more detailed (operational) decisions are made. In

turn, the detailed decisions provide the feedback to evaluate the quality of

the aggregate decisions. Figure 2.1, from Meal (1984) illustrates the

decision hierarchy in the context of production planning and scheduling.

Decisions at the higher levels of the hierarchy are invariably based on

aggregate models. The success of the hierarchical approach depends, to a

large extent, on the consistency between the aggregation and disaggregation

procedures, and on the interaction between the models at the different levels.

Each hierarchical level has its own characteristics and aggregation methods

are typically influenced by a number of factors that include the following:

(i) length of the planning horizon,

(ii) level of detail of the required information and forecasts,

(iii) scope of the planning activity and

(iv) the authority and responsibility of the manager in charge of

executing the plan.
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Early work using the hierarchical approach was motivated by

planning and scheduling problems in discrete parts, batch manufacturing

systems. (See Hax and Meal (1975), Bitran and Hax (1977)). In these

applications, end products were aggregated into families and product families

were grouped into product types. The upper level models were typically linear

and mixed linear integer programs while the lower level models were convex

knapsack problems. This approach is described, in detail, later in this

section.

The HPP approach, however, is quite general and has been adapted

to a wide variety of systems by suitable choice of aggregation and

disaggregation schemes and submodels. For example, applications of the

approach to a continuous manufacturing process and a job shop can be found in

Bradley, Hax and Magnanti (1977, Chapters 6 and 10 respectively).

Axsater and Johnson (1984) have used this approach to provide

aggregate models for supporting capacity planning decisions in MRP systems.

Their model is based on product and machine groups and is designed to provide

consistency between machine capacities and the requirements imposed by the

detailed schedules derived by the MRP procedure. This paper is discussed in

Section 2.4.

Bitran and Tirupati (1988a,b) describe a single stage, parallel

machine scheduling application in which resource allocations are determined by

an aggregate model. Aggregation in this application is achieved by

classifying jobs into product families. The upper level model in this

application is a mixed integer, quadratic program that can be interpreted as a

machine grouping and aggregate loading problem. As a result, the detailed

III
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scheduling problems at the lower level are considerably simplified. Kusiak

and Finke (1987) present a hierarchical approach to address the process

planning problem in flexible manufacturing systems.

The foregoing discussion indicates that hierarchical planning

represents a philosophy to address complex problems, rather than a specific

solution technique. In the next section we illustrate this approach by

describing, in detail, the method proposed by Hax and Meal (1975), Bitran and

Hax (1977) and related work on production planning and scheduling for single

stage batch manufacturing systems. This is followed by a discussion of

aggregation and disaggregation methods. We note that the single stage model

is a simplification of the manufacturing process. In this model the details of

the production process are ignored and the system is modeled as a black box

with critical resource(s) that limit its capacity. However, the hierarchical

approach is amenable for adaptation to more detailed models. As described in

Section 2.2, in more detailed multistage models, we distinguish between

different stages of production (such as part production, assembly, etc.) and

incorporate resource constraints at each stage.

2.1 Hierarchical Planning in Single Stage Systems:

Hax and Meal (1975) introduced the concept of hierarchical

planning by recognizing the differences between tactical and operational

decisions. Tactical decisions are associated with aggregate production

planning while operational decisions are an outcome of the disaggregation

process. The hierarchical structure proposed by Hax and Meal and subsequently

used by Bitran and Hax (1977, 1981) and Bitran et al (1981) is based on three

levels of product aggregation described below:
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Items are the final products delivered to the customer and represent the

highest degree of specificity regarding manufactured products. A given

product may generate a large number of items differing in characteristics such

as color, packaging, labels, size, accessories etc.

Product types are groups of items that have similar unit costs, direct

costs, holding costs per unit period, productivities (labor hours per unit of

product) and seasonalities.

Families are groups of items that belong to the same product type and

share similar setups. That is, whenever a machine is prepared to produce an

item in a family, all other items in the same family can be produced with

minor change in setups.

The classification described above can be illustrated by

considering the product line of a luggage manufacturer. Products of the same

size can be aggregated to define product type. Within a product type, items

with the same frame can be produced with a common setup and constitute a

product family. Items within a product family are distinguished by

characteristics such as color, minor variations in material, etc.

An overview of the planning process is described in Figure 2.1.1

and essentially consists of three steps, indicated in the figure by boxes 1,2,

and 3. In the first step (box 1) aggregate plans for product types are

determined. The planning horizon of this model normally covers a full year to

take into consideration the fluctuations of demand requirements for the

products. The second step in the process (box 2) results in the

disaggregation of the aggregate plan for each type to obtain production

quantities for each family. Further disaggregation of the family production

lots to determine item quantities is performed in the third step (box 3).
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It is important to note two features of the process above. First,

while the aggregate plan is run every period, only the results for the first

period are implemented. Thus the aggregate plan can be viewed as a "rolling

horizon" plan. Second, disaggregation of the aggregate plan (steps 2 and 3)

is required only for the first period of the planning horizon. As a

consequence, the data collection and data processing is reduced substantially

compared to the detailed formulations of the production planning problem.

Hax and Meal (1975) proposed a heuristic to perform the three

levels of computations. Bitran and Hax (1977) formalized the hierarchical

planning heuristic by suggesting the use of convex knapsack problems to

disaggregate the product type and family run quantities into family and item

run quantities respectively. This method, referred to as the regular knapsack

method is described below. To simplify the presentation of these models, in

many instances, we assume that the production lead times are zero. This

restriction is not necessary. The model formulations and the corresponding

results can be modified easily and extended to cases with constant lead times.

Aggregate Production Planning for Product Types:

The following linear program provides a simple representation of

the planning problem at the product type level.

Decision Variables:

Xit :the number of units of product type i to be produced in period t,

Iit :the number of units of inventory of type i carried from period t to t+l,

Rt, Ot :the regular and overtime hours used during period t respectively.

Parameters:

I: number of product types,

T: the length of the planning horizon,

cit: unit production cost (excluding labor),
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hit: inventory carrying cost per unit per period,

rt: regular time cost per manhour,

ot: overtime cost per manhour,

rmt,omt: total availability of regular and overtime hours in period t

respectively,

mi: hours required to produce one unit of product i, and

dit : effective demand for type i in period t. (A definition of effective

demand will be given later in this section.)

Problem (P) Min I T(it Xit + hit it) + ET
i-l tl tl (rt~t + tO)-l

.t Iit + Xit - t dit, i-1,2,...I, t-1,2,...T

zI mi Xit < Rt + Ot ' t-1,2,...T
i-l -

Rt < rmt, t-1,2,...T

0t < omt, t-1,2,...T

Xit, Iit, Rt,Ot > 0.

Note that in this model, X and I represent respectively production

and inventory variables at the aggregate or product type level. Since the

cost (cit,hit) and productivity (mi) parameters are required to be the same

for all items within a family, it may be necessary to scale the item

quantities in accordance to their resource consumption. In that case X and I

represent the corresponding weighted average quantities of items within each

family. It is worth to note that this procedure will be exact with a single

resource constraint. However, with more than one resource, it would be an

approximation.
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The formulation above can be modified easily to incorporate many

features such as hiring and firing, constant production lead time, back

orders, subcontracting, lost sales etc. It is important that, whenever

seasonal variations are present in the demand pattern of product types, the

planning horizon of (P) covers a full seasonal cycle. It is not necessary to

formulate the aggregate problem (P) as a linear program. Any model which

adequately represents the practical setting under consideration would suffice.

Linear programming is a convenient type of model at this level because of its

computational efficiency and the wide availability of computer codes. The

shadow price information and sensitivity analysis make such models very

flexible and can help identify opportunities for capacity expansion, market

penetration, introduction of new products etc.

Manufacturing set up costs are ignored in the aggregate model (P).

This is motivated by the fact that often set up costs have a secondary impact

on total production costs and need to be considered at the detailed or

operational level. When this is not the case the hierarchical approach can be

modified as described in Bitran, Haas and Hax (1982) or the highest level

problem can be formulated as in Graves (1982).

Advantages of Aggregate Planning:

We now describe in detail some of the advantages of the aggregate

approach compared to the detailed monolithic model. These can be broadly

classified into three categories.

(i) A major benefit of aggregate planning is the substantial savings in

the costs of data collection to support the planning model as well as the

reduced computational requirements. In a detailed model a major information

system may be needed to collect the demand, productivity parameters, and cost

data as well as prepare forecasts for thousands of individual items.
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Aggregation of items can significantly reduce the cost and effort in demand

forecasting and data preparation in addition to reducing the computational

costs.

(ii) Another important aspect relates to the accuracy of the data.

Unless all items are perfectly correlated, an aggregate forecast of demand

will have reduced variance. Given the small number of forecasts required, it

is possible to employ more sophisticated techniques such as econometric or

time series models, and to obtain judgmental input from the concerned

managers. Since the decisions considered in the aggregate model are based on

total production quantity rather than item level details, increased forecast

accuracy of total demand should improve the decision making process.

(iii) The major advantage of the aggregate approach is in the context of

implementation. In a detailed formulation with thousands of items, managers

may have difficulties in interacting with the model and comprehending the

outputs and may get lost in the details. The aggregate formulation

facilitates the managers' understanding of the key tradeoffs involved in the

production decisions. At this level of planning, most marketing forecasts are

made by product types and manpower decisions are made by broad classes of

labor.

A Family Disaggregation Model:

The disaggregation model attempts to allocate production

quantities of each product type to the families belonging to that type.

Coherent disaggregation requires consistency between the allocations among the

families and the product type production determined by the aggregate model.

In the disaggregation model (Pi) presented below the objective is to determine

run quantities for each family so as to minimize the total set up costs.
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Let sj: set up cost for family j,

Yjl: the number of units of family j to be produced in period 1,

dj: forecast demand for family j,

lbj, ubj: lower and upper bounds for Yjl,

Xil: production of product type i in period 1 to be allocated among the

families, (note that Xil is an input parameter for the model and is

derived from the aggregate plan) and

J(i): set of families in product type i that will runout in period 1.

Problem (Pi) min sj d/Y.

jcJ(i) J 1

lbjl < Yjl < ubjl'jEJ(i)

The objective function of Problem (Pi) assumes that the family run

quantities are proportional to the set up cost and the annual demand for the

family. This assumption which is the basis of the economic order quantity

formulation, tends to minimize the average annual set up cost. Observe that

the total inventory costs have already been established in the aggregate model

and do not appear in problem (Pi).

The first constraint of (Pi) assures consistency between the

aggregate and disaggregate models. The upper and lower bounds on Y in the

second constraint are computed as follows:

ubjl - max {0, osjl - aijl) , and

lbjl - max (0, djl - aijl + SSjl).

where osjl, djl, aijl, and ssjl denote respectively the overstock limit,

the demand, the available inventory, and the safety stock of family j in

period 1. J(i) is initially the set of families in product type i that
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trigger in period 1, i.e., it is the set of indices j such that djl + ssjl -

aijl > 0. Equivalently J(i) can be defined as the set of families whose

runout time is less than one time period. All other families are included in

a secondary list and are scheduled only if problem (Pi) is infeasible and

excess capacity is available for product type i. Bitran and Hax (1981) show

that the first constraint of (Pi) can be replaced by jeJ(i) Yjl< Xil without

changing the optimal solution. They also provide an efficient algorithm to

solve Problem (Pi).

The above disaggregation approach is motivated by the desire to

minimize the set up costs by scheduling only those families that are required

to be produced in the period. Hax and Golovin (1978) describe other

disaggregation approaches and Bitran et al (1981) provide a comparison of

alternate disaggregation procedures. Gabbay (1975) points out that this type

of myopic disaggregation could lead to infeasibilities. (This issue is

discussed, in detail, later in this section.) Bitran et al (1981) modified

the algorithm by introducing a "Look ahead feasibility" rule to counter the

problems of infeasibilities.

An Item Disaggregation Model:

Once the quantities Yjl have been determined, it is necessary to

allocate this production among items belonging to each family j. For the

current planning period all relevant costs have been determined by the

previous two stages in the hierarchical process. For example, the inventory

holding costs are set by the aggregate plan, while setup costs are determined

by the family disaggregation plan. However, the feasible solution chosen will

establish the initial conditions for the next period and affect the future

costs. It may be observed that the next setup for a family occurs whenever an

item in that family is depleted. In order to save setups in future periods,
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it seems reasonable to distribute the family run quantity among its items in

such a way that each item's runout time coincides with the runout time of the

family. A direct consequence is that all items will tend to trigger

simultaneously. This can be accomplished by solving the following ontinuous

knapsack problem.

Problem (Qj)

Min ( {[(Y 1 + z (aikl SSkl))/ZEK(j)dkl]-[Zkl + aikl-skl)/dkl]) 2

kcK(j) keK(j) k- k kK l

s.t Z Zkl - Yji

kcK(j)

lbkl Zkl < ubkl, kK(j).

where Zkl is the number of units of item k to be produced in period 1, K(j) is

the set of items in family j, dkl, aikl, sskl, lbkl, and ubkl represent for

item k the same quantities that were discussed for family j in problem (Pi).

The constraints of problem (Qj) are similar to those of problem

(Pi) and assure feasibility and consistency during the disaggregation. The

two terms inside the square bracket of the objective function represent,

respectively, the runout time for family j and the runout time for item k

(assuming a perfect forecast). The minimization of the square of the

difference will make those quantities as close as possible.

An efficient algorithm to solve (Qj) is presented in Bitran and

Hax (1981). It should be noted that the above formulation does not provide

for the presence of minor set ups between item changes within a family

production run. In such cases the objective function of (Qj) and the solution

procedure should be modified to reflect this fact.

In summary, the hierarchical planning system operates as follows:

1. An aggregate forecast is generated for each product type for each

period in the planning horizon. Since the number of product types is usually
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small, these forecasts can be produced by using fairly sophisticated models

(such as regression analysis) that could be prohibitive at the item level. In

addition, these forecasts can be reviewed by experienced managers in order to

introduce judgmental inputs which the models cannot capture.

2. The product type forecasts are disaggregated into item forecasts by

estimating the proportion of total type demand corresponding to each item.

These proportions can be updated by using exponential smoothing techniques

which are appropriate at the detailed level. Item and family forecasts are

required for the first period of the planning horizon.

3. The available inventory for each item is updated. The effective

demand for items, families and product types is then computed. (The notion of

effective demand is described later in this section.)

4. The production schedule is then determined by solving the aggregate

and disaggregation models described earlier. Computer programs to perform

these calculations are described in Hax et al (1976).

Issues of Infeasibility and Effective Demand:

The rolling horizon procedure combined with disaggregation may

lead to infeasibilities. This may be illustrated by means of a simple example

from Bitran and Hax (1977). Consider a 3 period problem with one product type

and two items. The demand forecasts are assumed to be perfect and are

presented in Table 2.1. The table also provides the initial inventory for

each item. The aggregate constraints for the problem are

Io + X 1 - I1 - dl

I 1 + X2 - 12 - d2

12 + X 3 - 13 - d3

X1, X2, X3 1, I1 , 12, 13 0
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The detailed constraints are

IkO + Zkl - Ikl dkl, k - 1,2

Ikl + Zk2 - Ik2 = dk2, k = 1,2

Ik2 + Zk3 - Ik3 - dk3, k - 1,2

Zkt, Ikt > 0, k-l,2, t-1,2,3

Feasibility conditions require that these two constraints are satisfied

and that Zlt + Z2t - Xt, t-1,2,3

For the data in Table 2.1, the reader can verify that although

X1 - 8, X2 - O, X 3 - 60, I1 - 29, I2 O, 13 0

is a feasible solution to the aggregate problem, it does not have a

corresponding disaggregation. The reason for this infeasibility is that the

aggregate model ignores the fact that inventory for item 2 cannot be used to

satisfy the demand for item 1.

This type of infeasibility can be avoided by working with

effective demands. If the initial inventory of an item is not zero, the

effective demand for the first period is obtained by subtracting the initial

inventory from the demand. If the initial inventory is greater than the

demand of the first period then the effective demand for that period is zero.

The adjustment process is continued until all inventory is used up. The

effective demands for the illustrative example are presented in Table 2.2.

In general, if dkt is the forecast demand for item k in period t,

aik is its corresponding initial inventory and ssk its safety stock, the

effective demand dkt of item k for period t is given by

dkt - max [, m t (dk,m) - aik + SSk], if dkt-l-0 (define dk0-O)

- dk,t otherwise

The effective demand for product type i is then given by the sum of the

effective demands of all items belonging to that type, i.e.,
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dit dktkeK(i)

Even with the use of effective demands, the myopic nature of

disaggregation procedure of Bitran and Hax described earlier can give rise to

infeasibilities. Their look ahead procedure addresses this issue, but still

does not guarantee feasibility. Gabbay (1975) provides a set of feasibility

conditions and shows that, if effective demands are used along with these

conditions, any feasible solution to the aggregate model generates a feasible

solution to the disaggregate model as well. This approach, however, has two

drawbacks. First, this approach requires detailed data at the item level for

the entire planning horizon which defeats one of the major advantages of the

hierarchical approach. Second, the feasibility conditions destroy the

knapsack structure of the disaggregation problems and increase the

computational complexity. Erschler, Fontan and Merce (1986) address the

latter issue and present an equivalent set of feasibility conditions that

preserve the knapsack structure of the disaggregation problems. They also

interpret the look ahead procedure of Bitran and Hax and show that this

procedure is equivalent to imposing the feasibility conditions for two periods

- the current period for which disaggregation is required and the following

period.

2.2 Aggregation and Disaggregation:

The hierarchical approach described in the previous section should

make it clear that aggregation and disaggregation procedures play a crucial

role in the success of these methods. This problem is difficult because of

the number of factors involved, some of which are not easily quantifiable. In

fact, Hax and Meal (1975) provide only guidelines and not a specific procedure

for characterizing the product structure of batch production facilities. As

described in the previous section, in their framework, items are aggregated to
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form families and product types. An important consideration in the choice of

these procedures is the ability of the disaggregation procedures to obtain

feasible solutions at the detailed level. In the previous section we

described some of these issues in the context of the Hax and Meal, and Bitran

and Hax procedures. In this section we describe other methods that have been

reported in the literature for aggregating end items and machines for reducing

the size of the planning problem.

The theory of aggregation has been extensively studied in the

economic literature. For example, variables like individual prices and

incomes are often aggregated into price indices and total incomes. A general

overview of this development can be found in Theil (1965), Fisher (1969) and

Chipman (1975, 1976). These aggregation problems are similar to, but not

identical to those found in production planning problems.

In the operations research literature considerable amount of work

has been published on the subject of aggregation of linear and mixed integer

linear programs. The primary focus of this work has been on the development

of bounds, relative to the original large problem, based on the solution of a

smaller problem obtained by aggregation of variables and/or constraints.

Since linear and mixed integer linear programs are commonly used to model

decisions at the upper levels of the hierarchy, these results are of interest.

However, we do not provide a review of the related results in this chapter.

Instead, we refer the reader to Geoffrion (1977), and Zipkin (1980a,b) and

references therein. The problem of disaggregation has also been considered in

the context of aggregate planning (for details see Chapter 8 of this

Handbook). Examples of research in this area can be found in Winters (1962)

and Zoller (1971). Ritzman et al (1979) present an extensive collection of

papers on aggregation and disaggregation in manufacturing and service systems.
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Formal approaches to the aggregation problem in the context of

hierarchical planning have been considered, among others, by Zipkin (1982) and

Axsater (1981). We present some key results from these papers to indicate the

flavor of the problems and the difficulties involved. In both approaches the

aggregation schemes are derived by focusing on the corresponding

disaggregation problems.

Zipkin (1982) considers a multi-item problem in which the cost

function for item i, qi(Yi) is defined on (m',) for some m'<0 (possibly -X).

The qi are assumed to have the following form:

qi(Yi) -ciYi + h i H(r/Ai)dr (2.2.1)

where yi= inventory of item i, ci , hi , and i are constants, hi,pi> 0; H is

the same for all i and continuous and increasing on (m',- ); and m > m'. The

functions qi are continuously differentiable and strictly convex. The

objective is to replace the multiple items by a single aggregate product and

obtain a closed form expression for the aggregate cost function, Q(Y). The

corresponding disaggregation problem is given by

Q(Y) min q(y), s.t. Yi Y
y

where y is an I-vector of yi, i-l,2,...I,

I
and q(y) qi(Yi ) .

i=l

Zipkin proposes an approximation for Q(Y), QA(Y) which has the

same form as (2.2.1) and is given by

QA (Y) - -cOy + h H(r/p) dr, where p - I i
i-i

The approximation QA (Y) is motivated by the desire to define an

aggregate problem that is small in size and has the same structure as the

detailed problem. It is shown that QA (Y) is exact when ci - c for all i, and
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H is monomial, i.e., H(r) - a rP where the constants a and p are either both

positive or both negative. The paper provides three methods for determining

cO and h. While the model above has been formulated to describe inventory

costs, it can also be used to aggregate production costs. In that case, the

variables Yi represent production quantities and qi represent production

costs.

Zipkin also describes an application of this aggregation scheme to

the production smoothing problem of Holt et al (1960) described in Chapter 9

of this handbook and extends it to a broader class of polynomial cost

functions. It is shown that the model can also be applied to a two stage

facility with J components producing I end items. The aggregate problem, in

which the I products are partitioned into N groups, is shown to have the same

structure as the detailed problem and is formulated in terms of the product

groups. For this approach to be effective it is necessary that J and N should

be much smaller than I. Furthermore, the items within a group require the

same number of each component which appears to be an unduly restrictive

condition.

In a more general context of hierarchical planning, Axsater (1981)

considers aggregation procedures in a K item, N machine facility with the

following parameters:

Ikt: inventory level of item k at end of period t

It: (Ilt, I2t, ... IKt)

Zkt: production of item k in period t

Zt: (Zlt, Z2t --. ZKt)

akn: number of units of item k required to produce one unit of item n

A: (akn), k,n 1,2,... K

dkt: demand for item k in period t
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dt: (dlt, d2 t, ... , dKt)

mkn: production resources on machine n required to produce one unit of k

M : (mkn), k - 1,2,... K; n = 1,2,..., N

The matrices A and M are nonnegative. Constraints defining the item

inventories are given by

It - It_ + Zt - A Zt - dt

Axsater considers two types of aggregation procedures to form K' product

groups and N' machine groups to reduce the size of the planning problem.

These are referred to as grouping matrices and general linear aggregation. In

the first method grouping matrices R - (rik) and S - (ik) in which all

columns are unit vectors, are used to define the aggregation in the following

manner:

rik - 1 if item k is included in product group i and 0 otherwise,

Sik 1 if machine k is included in machine group i and 0 otherwise.

A A A A A

Aggregate variables are denoted by It, Zt dt. A and M represent

matrices (that correspond to A and M) at the aggregate level and need to be

determined. The inventory constraint thus becomes is

A A A A A A

It1- + Zt - A Zt - dt It

For a given production vector Zt, true component and capacity

requirements are given by RAZt and SMZt and for consistency between the

aggregate and the detailed models we require

ARZt - RAZt

MSZt - SMZt

"Perfect aggregation" refers to an aggregation scheme that ensures

consistency between the aggregate and the detailed models for all possible

production vectors Zt. The necessary and sufficient condition for perfect

III
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aggregation is given by finding matrices A and M that satisfy:

A

AR -RA

MS - SM

Axsater shows that in general, it is not possible to find perfect

aggregation with group matrices and proposes an approximation scheme. This

method is motivated by the observation that, while the grouping is static and

fixed in the short/medium term, the production vectors are dynamic and vary

from period to period. Thus the production vectors can be considered to be

stochastic rather than deterministic. Since no single aggregation scheme can

be perfect for all realizations of the production vector, a scheme which is

perfect in an expected sense may be reasonable. Axsater proposes solution of

A A

the following optimization problem (AP) to determine A and M:

(AP) in E ( II(AR-RA) Z 112)
A

min E (11(MS - SM) Z 112)
M

s.t. ARZ - RAZ0 and MSZ0 - SMZ0

where Z - EZ), and E-) is the expectation operator.

The constraints of (AP) assure that the aggregation defined by A and M

is perfect in an expected sense while the objective function is the expected

value of the squared Euclidean norm. Axsater shows that a general solution to

(AP) is given by

A - RAR* + G'G

M- SMR* + G"G

where G', G" are arbitrary matrices of dimension K' x K' and K' x N'

respectively,

R* - ZOZOTRT / ZOTRTRZO + (I - ZOZOTRTR / ZOTRTRZO) pRTQt,
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G I - RZOZTRT OTRTRZO - QQt,

Q - (I- RZ OZOTRT / ZOTRTRZO) RPRT (I - RZOZOTRT / ZOTRTRZO),

Qt - pseudo - inverse of Q and

P - E (Z - Z0) (Z - ZO)T)

A A

The procedure above to determine A and M is computationally reasonable.

However, a major drawback is the data requirement. While it is easy to obtain

the expected production vectors at the item (detailed) level, it is extremely

difficult to estimate the variance / covariance matrix P at this level of

detail. In practice, the issue is further complicated because it is necessary

A A

to determine the grouping matrices R and S together with A and M.

Axsater also considers an alternative scheme - general linear

aggregation and provides necessary and sufficient conditions to obtain perfect

aggregation. However, this procedure does not seem very attractive since it

requires assignment of fractions of items to different product groups. For

further results on this subject, the reader is referred to Axsater et al

(1983), Axsater and Jonsson (1984), and Axsater (1986).

The above discussion illustrates some of the difficulties

associated with aggregation of items and machines and suggests that the

definition of appropriate hierarchies of products and machines, in practice,

is still an imprecise science. It also highlights the need to develop easily

implementable aggregation methods.

2.3 Multistage Models:

The single stage models described so far in this chapter capture

essential features of the hierarchical approach to production planning.

Extension of this approach to systems with multiple stages requires

coordination between the different stages which introduces an additional
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dimension of complexity. In this section we discuss some of these issues by

focusing on the extensions by Meal (1978) and Bitran et al (1982) for two

stage systems. Related work can also be found in Maxwell et al (1983) and

Gelders and Van Wassenhove (1982). Beyond these references, the literature on

HPP for multi-stage systems is quite scanty. This area presents potential for

further research.

Meal (1978) describes an integrated distribution planning and

control system which highlights some of the difficulties encountered in

extending the hierarchical approach to multistage systems. A schematic

diagram of the system is presented in Figure 2.3.1. The first two stages

model the manufacturing system and correspond to parts production and assembly

operations, while the third stage represents the distribution system. The

major objective of the planning system is to achieve an integrated control of

operations at the three stages. There is no attempt to optimize the decisions

at either the aggregate or detailed levels. Figure 2.3.2 presents an outline

of the planning system and describes the data requirements and the flow of

control information. It can be observed from this diagram that a two level

hierarchical system is used to control the operations in the production

stages. The aggregate plan in this system is essentially a manpower plan for

a horizon of 9 to 18 months. Unlike the models described in the previous

section, in this system there is no mechanism to ensure consistency between

the aggregation and disaggregation decisions, except for the imposition of

capacity constraints. In this respect, the link between the two hierarchical

levels can be considered relatively weak, compared to the previous models.

Consistent with the system objectives, detailed schedules (disaggregation

decisions) are based on tight coupling between the various stages of the

production and distribution system, which is achieved by adopting a base stock
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control procedure. The inventory levels of the system, however, are

determined by the aggregate model and are based on long-term forecasts.

Figure 2.3.3 presents an outline of the two level hierarchical control system

for the two production stages.

In contrast to the manufacturing stages, no aggregate planning is

done at the distribution stage. This was considered unnecessary in view of

the excess capacity available in order processing and shipping activities.

Detailed shipping schedules are prepared daily using a 1 to 3 week horizon and

are based on a base stock policy. The outline of the control system for this

stage is presented in Figure 2.3.4. Meal (1978) describes several heuristic

rules employed in the system to develop aggregate plans and detailed

schedules.

Bitran et al (1982) present an extension of the model described

in Section 2.1 to a two stage system. The two stages represent respectively,

parts production and assembly. Figure 2.3.5 provides a schematic overview of

their approach which may be summarized as follows:

1. Aggregation of products and parts.

2. Aggregate planning for the two stages using an integrated model to

guarantee appropriate coordination between stages.

3. Aggregate plans for parts and finished products are disaggregated to

determine detailed schedules.

4. Reconcile possible differences at the detailed level via part

inventories.

The hierarchy for the assembly stage (end products) is the same as

that described in Section 2.1 for single stage systems. At the parts

production stage only one level of aggregation is employed and parts are

classified into part types. Thus, part items are individual parts required as
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a component to a product item or having an independent demand as a service or

spare part. Part types are groups of part items having similar direct

production costs, holding costs per part period, and consume the same amount

of resources per part. This particular classification was motivated by the

fact that, in the application considered, there was no significant shared

setups among the parts. The approach, however, is quite general and can be

extended to other two stage systems with different levels of aggregation at

each stage.

We introduce the following additional notation to describe the

aggregation and disaggregation models (This notation is similar to the one

used in Section 2.1 with "^"A denoting the corresponding variables at the part

production stage.):

L: fabrication lead time for parts

J(i): the set of indices of product families in product type i

N(k): the set of indices of parts in part type k

A

hkt: holding cost per unit of inventory of part type k from period t to t+l

sskt: safety stock for part type k in period t

oskt: over stock limit for part type k in period t

A

rkt: cost of one hour of regular time at the part production stage
A

okt: cost of one hour of overtime at the part production stage

mk: units of labor consumed to produce one unit of part type k

(rm)t: availability of regular time in period t at the part production stage

(om)t: availability of overtime in period t at the part production stage

Dkl: demand of part type k over the run out time

fijkn: number of units of part n required by each unit of product family j,

neN(k), jEJ(i)

��I�I___
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fik: average number of parts of type k required to produce one unit of product

type i

A

Sk: setup cost for parts in part type k

A A

lbnl and ubnl: lower and upper bounds on production quantity of part n in

period 1

A

Rkt: regular time hours for part type k in period t

Okt: overtime hours for part type k in period t

Ikt: inventory of part type k at the end of period t

A

Qnl: quantity of part n scheduled for production in period 1

A

aint: inventory position of part n at time period t (includes the number of

parts on order or being fabricated that will become available in period

t.)

Aggregate Production Planning for Part Types and Product Types

The aggregate model is a linear program similar to the single

stage model and is formulated as follows:

[TP] min T El (hit Iit + rt Rit + t it +
t=l i=l

vL~K A A A^ A A

zTLzK (hkt kt + rt Rkt + Ot kt
t-l k-l

s.t. Iit-l + mi(Rit + Oit) - lit - dit, i-l,2,.... I (2.3.1)

t-l,2,...T

iRit < (rm)t, t - 1,2,...T (2.3.2)

iClOit < (om)t, t - 1,2,...T (2.3.3)

ssit S Iit osit, i - 1,2,.... I, t - 1,2,... T (2.3.4)

K ^ ^

ZlRkt < (rm)t, tl,2,.... T-L (2.3.5)k-1

III
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K A

klCkt < (om)t, t-,2....T-L (2.3.6)

A A A

SSkt I Ikt < OSkt, k 1,2,...K, t - 1,2,...T-L (2.3.7)

A A A A A I

Ikt-l + mk (Rkt + Okt) - Ikt i.lfik mi(Rit+L + Oit+L) (2.3.8)

k-l,2,...K, t-1,2...T-L

A A A

Rit, Oit, Rkt, Okt, Ikt 0 (2.4.9)

Constraints (2.3.1) and (2.3.8) represent respectively, the inventory

balance for the product and part types. The product type demand as explained

earlier is the net effective demand and I.e initial inventory Ikl is equal to

the safety stock sskl. Constraints (2.3.8) couple part type requirements and

product type production and represent the link between the two stages. The

fabrication lead time is modeled as a time lag between initiation of part

production and the availability of parts at the assembly stage. Thus part

production in period t (mk (Rkt + Okt)) is available for assembly in period

t+L. The right hand side of (2.3.8) represents the demand for part type k in

the assembly stage in period t+L and defines the demand at the part production

stage in period t. The other constraints involve either part types or product

types but not both. (2.3.2) and (2.3.3) are the regular time and overtime

constraints at the assembly stage while (2.3.5) and (2.3.6) are the

corresponding constraints at the parts production stage. (2.3.4) and (2.3.7)

reflect upper and lower limits on inventories of product and part types

respectively. These limits are defined in a manner similar to those in the

single stage model. It may be noted that the parts required for the first L

periods of production at'the assembly stage (constraint 2.3.1) are already

being manufactured, or have already been ordered. Still, these constraints

are included to make the system responsive to forecast changes in each period.



ll

30

This is motivated by the fact that at the parts production stage minor

variations can be absorbed by either expediting or by having a supplier make a

special delivery.

We note that problem TP is similar to the aggregate problem (P) of

Section 2.1 and all remarks pertaining to the advantages and disadvantages of

the linear programming formulation apply to (TP) as well. Also, TP can be

modified to incorporate features such as planned back orders, hiring and

layoffs, lost sales and subcontracting. In the same vein, TP is also solved

with a rolling horizon of length T. At the end of each period, new

information becomes available and is used to update the model. Only the

results pertaining to the first L+l periods for product types, and the first

period for part types are implemented.

A critical parameter in problem TP is the definition of fik' It

is the weighted average of the fijkn and is defined as

fik jje(i) neN(k) fijkn /jJ(i)

where J(i) is the set of indices of the product families in product type i,

N(k) is the set of indices in part type k, dj is the annual demand of family

j. It is important to realize that fik is a weighted average of the parts

required by individual items in the family. Thus the solution of the

aggregate problem does not assure the existence of a feasible disaggregation,

even with perfect forecasts. The authors observe that in practice this is not

a critical issue and can be taken care of by using safety stocks to provide

protection against variations in the bills of materials. These observations

are partly justified by a result which guarantees that, under the following

conditions:
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(i) perfect forecasts are available,

(ii) initial inventory of every family is zero,

(iii) Problem TP is solved just once (it is not solved on a rolling

horizon basis), and

(iv) the first L constraints of (2.3.1) are deleted;

the initial inventory of part type k together with the production scheduled by

TP up to period t is sufficient to satisfy the sum of the demands,

corresponding to the interval [l,t], of all parts in part type k for every t,

such that 1 < t < T - L. This result is easier to understand after reading

the disaggregation scheme described below.

Disaggregation Procedure:

The disaggregation of the aggregate solution to TP is achieved in

two steps. In the first step product family requirements for the first L+1

periods and part requirements for the first period are determined jointly to

assure consistency between the two stages, while in the second step the

detailed item schedule is developed for the assembly (second) stage.

Step 1: Product Family and Part Requirements:

Let Xit and Xkt denote the production of product type i and part

A A A

type k respectively in period t, i.e., Xit - mi (Rit + Oit), Xkt mk (Rkt

A

+ Okt)-

The disaggregation model to determine the production quantities and for

product families parts is described as follows:

Problem (TD):

K A A A

min ZL+1 El Z sj Dt / Qt + Sk Dkl / Qnl
tel ill jg fi ,tt) J t k-1 nN(k,l)

set izl i2Ji )t<A As. t ~ Z inj 
i jJittjtkn Qjt aint SSnt' k-l,2, ...k, nN(k,t) (2.3.11)

,-l jCJ~i' 1t-l,2,... L+l
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A A A

I jJ L) fijkn QjL+ < ainL+l SSnL+l + Qnl k l, 2,..K,
ncN(k,l) (2.3.12)

j J(i)Qit Xi i-l,2,...I, tl,2 .... L+l (2.3.13)

-neN(kl) Ql Xkl, k-1,2,...K (2.3.14)neN(k,l)

lbjt < Qjt < ubjt, jeJ(i,t), i-l,2,..I, t-1,2,...L+1 (2.3.15)

A A A

lbnl Qnl Ubnl, nN(k,l), k-1,2 .... K (2.3.16)

where J(i,t) and N(k,l) are the set of indices of families in product type i

and parts in part type k that are triggered (will run out) in period t and 1

respectively. Similarly to the single stage models of Section 2.1, the

objective of the disaggregation procedure is to minimize the set up costs at

both stages. The objective function of (TD) assumes that while a set up is

required for each part, the set up cost is equal for parts within a prt type.

A

Thus sk can be interpreted as the average set up cost for parts within part

type k. Constraints 2.3.11 could have been omitted and the production within

the lead time "frozen". However, this was not done in problem TD since some

corrections can be accommodated in practice either by expediting production or

by having special deliveries made by suppliers.

Constraints (2.3.12) together with (2.3.11) assure that the part

production lots are sufficient to meet part requirements for L+l periods,

(2.3.13) and (2.3.14) ensure consistency between the aggregate model and the

scheduled lot sizes. (2.3.15) and (2.3.16) impose upper and lower bounds on

the production lot sizes. These bounds are defined in the same manner as in

single stage models.

Problem TD has a convex objective function and linear constraints

and is similar to the disaggregation problem (Pi) described in Section 2.1.

It can be shown that (TD) can be decomposed into continuous convex knapsack

III
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subproblems and each can be solved through procedures similar to those used to

solve problem (Pi).

Step 2: Disaggregation to determine product item requirements:

Once the product family run quantities are determined, the item run

quantities are computed by solving a disaggregation problem similar to that

encountered in single stage problems (problem Qj of Section 2.1). The product

item run quantities are determined by equalizing the run put times for items

within a family.

2.4 Materials Requirement Planning (MRP) and HPP:

MRP is perhaps the most commonly used approach to deal with multi-

stage production planning problems and has become a benchmark for evaluation

of HPP systems. (For a detailed description of this approach, the reader is

referred to Chapter 12 of this handbook and references therein.) The basic

idea in MRP is to start with a master schedule for the final products, which

is then exploded to compute the requirements for all parts. When all the

requirements for a given part have been consolidated, an individual production

schedule is developed for each item, based on appropriate lot sizing

procedures. Typically, MRP systems offer a number of alternative methods for

deriving item and part schedules. In most MRP systems, the master schedule is

an external input. Thus MRP can be viewed as an information system and a

simulation tool that generates proposals for production schedules which

managers can evaluate in terms of their feasibility and cost effectiveness.

In its present structure, MRP does not deal directly with optimization

criteria associated with multilevel production problems. The lack of

appropriate support for managers to generate good master schedules usually

leads to infeasibilities of schedules due to capacity constraints. This fact

is cited as one of the major weaknesses of MRP.
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In contrast, the objective in HPP is to develop, at an aggregate

level, a joint product type-part type schedule that is consistent and

recognizes resource (capacity) limits. The schedule also attempts to minimize

the primary costs. Moreover, the aggregate plan is concise and facilitates

the understanding of its implications. The disaggregation procedures in HPP

focus only on the time periods that cover a lead time, which avoids excessive

amount of data and computational work. Bitran, Haas and Hax (1982) contrast

the two approaches for a two-stage system and provide a numerical example to

illustrate these differences. In this illustration, the master schedule for

MRP was determined using the hierarchical procedure of Section 2.1 for single

stage systems (end products). The Silver-Meal heuristic was used in

developing detailed schedules for parts and items. The two stage model

described in Section 2.3 was used to derive the schedules based on the HPP

approach. The computational results of that paper suggest that considering

explicitly the cost criteria and capacity constraints significantly improves

the quality of the production plans.

Axsater and Jonsson (1984) likewise note the limitations of MRP

and suggest that the HPP philosophy can be used to develop systems to support

MRP and overcome some of its limitations. They observe that MRP can be

considered as a particular form of hierarchical structure, with end products

at the highest level and parts and components at the lower levels. They

remark that this hierarchy is not suitable in the presence of capacity

limitations and suggest that the master schedule for MRP should be developed

on the basis of other aggregation methods. Their paper reports simulation

results of such a model developed for a Swedish company manufacturing rock

drilling equipment. In the aggregate model items and parts are aggregated

into three product groups based on number of operations; purchased items,
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items with at most five operations and the rest with more than five

operations. Axsater and Jonsson examine two alternative methods for

aggregation of machine centers into machine groups. In the first method

machine groups are based on production load; a utilization of 75% was used as

a cut-off to form two machine groups. In the second method, aggregation is

based on similarity of product flows. In this method a similarity coefficient

sij between two machines i and j is defined as

sij - number of items processed on both machines i and i
number of items processed on machine i and/or machine j

This measure developed by McAuley (1972) is commonly used in Group Technology

and FMS applications in clustering parts and machines. For machine groups I

and J containing nI and nj machines respectively, the similarity coefficient

is defined in an analogous manner as

siJ 1 Z Z sij

Ii

Axsater and Jonsson suggest the use of models similar to those described in

Section 2.2 for determining aggregation matrices specifying part and capacity

requirements for a given grouping scheme. Aggregate production plans are

determined sequentially using a hierarchy of objectives. First, aggregate

plans for order releases are found by minimizing the sum of echelon stock and

undelivered orders. In the second step production of raw materials and parts

are determined. The priority of objectives in this step are as follows:

(i) minimize the deviation of machine load from capacity,

(ii) minimize the echelon stock at each stage, and

(iii) minimize the net production.

The objective of disaggregation procedures is to obtain order

releases for end items and parts that are consistent with the aggregate plans.

The authors suggest that the MRP logic may be used in deriving the detailed
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schedule by modifying the order quantities to maintain consistency between the

two levels. However, they adopt a procedure in which order release times are

altered at each stage and the MRP logic is not strictly observed. The

detailed schedules are derived based on the following priority scheme for

order releases.

(i) Items needed to replenish safety stocks of final products.

(ii) Final products with negative slack.

(iii) Orders with earlier starting date according to the MRP system.

Simulation experiments with the two systems indicate that the

hierarchical planning approach results in lower costs (statistically

significant at 3% level with t-test and 7% with Wilcoxon test) compared to the

stand alone MRP system. These experiments also examine the impact of

alternate methods for aggregation and disaggregation procedures on the quality

of the schedules.

The discussion above demonstrates the fact that MRP and HPP

concepts are complementary rather than competitive. (Meal et al (1987)

illustrate this complementarity with an application from the computer

industry.) For example, MRP systems can be improved by use of optimization

models at the aggregate level to derive good master schedules. Also, HPP

methods have been developed for single and two stage systems only and

extensions to multistage plants are not easy. The literature on this subject

is quite scanty and there is considerable research potential to develop

systems that integrate features of both systems.

3.0 Feedback Mechanisms in HPP

An important component of hierarchical systems is the interaction

between models at different levels to ensure consistency between the planning

and scheduling decisions. "Feedback" refers to this interaction and

_____1_____�1__11___I�_i-----_lr-li-il-· -..-Flrl1·--_1-
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represents a critical link between the aggregate and the detailed decisions.

This term, however, has been used with different meanings in the context of

HPP. For some, feedback refers to the flow of information from the

disaggregation problem to the aggregate level at the end of each period. To

others it has meant a mechanism like the pricing procedure in generalized

programming or like the obtainment of a sequence of convergent dual variables

in subgradient algorithms. In this section we review both interpretations and

the results presented in the literature. This discussion is primarily based

on the models of single stage systems presented in Section 2.1.

In its simplest form the feedback from the detailed level includes

the actual realization of the production and demands for each item. The

information to the aggregate problem is the inventory levels of the product

type. Another component of the feedback, not necessarily from the detailed

level, includes revised forecasts of the demand at the product type level. A

consequence of this information is the modification of the aggregate plan by

resolving problem (P) in each time period. The solution of the aggregate

problem on a rolling horizon basis can thus be interpreted as the

manifestation of the feedback mechanism in the Bitran and Hax procedure.

This information flow has other uses as well. For example, the

myopic procedure of Section 2.1, for disaggregation of product type quantities

into family lot sizes, could lead to infeasibilities. Bitran et al (1981)

propose a "look ahead feasibility rule" to overcome this problem. In this

modification the families scheduled for production in a given period are based

on (i) the revised aggregate plan, and (ii) the revised demand forecasts for

the first two periods. This procedure is still based on knapsack problems and

is computationally efficient.

_
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This type of feedback mechanism has cost implications also. It

may be recalled that the hierarchical structure of the models presented in

section 2.1 is suitable for systems in which the set up costs are not very

significant. In such cases ignoring such costs at the aggregate level is not

very critical. Bitran, Haas and Hax (1982) observe that these procedures are

effective as long as the set up costs do not exceed 15% of the total

production costs. They propose a modification of the regular knapsack method

for cases with high set up cost. This heuristic modification adjusts the

family run quantities (determined by the solution to problems P) to a value as

close as possible to the "ideal lots" of the corresponding dynamic lot sizing

problem. Motivated by computational considerations, the authors propose the

use of the Silver-Meal heuristic to determine these ideal lot sizes.

Graves (1982) presents an alternative method to address the

feedback question. In this approach "feedback" between levels corresponds to

the pricing procedure of generalized programming methods. Graves first

formulates a mixed integer programming model combining the product type

planning and family disaggregation decisions. He proposes the use of

Lagrangean relaxation to solve the problem. The mixed integer programming

model is described as follows:

(MM) min Zt ( t O t + h i t I i t ) + s 
jeJ(i) tl Jt

s.t Iitl + Xit - Iit - dit i-l,2,...I (3.1)
t-1,2,...T

m i Xit t < (rm)t t-1,2 ....T (3.2)

z Ijt - Iit 0 , il 2...I (3.3)
je(i) t1,2 ....

Yjt + Ijt-1 Ijt = 0 jeJ(i), i,2 .... I (3.4)

A A

Yjt - mj Yjt < 0 t-l,2,...T (3.5)
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A

Yjt e {0,1) (3.6)

A

0t' Xit Yjt' Iit' Ijt > 0 (3.7)
A A

where Ijt and Yjt are the additional variables introduced at the family

A A

level. Ijt is the inventory of family j at the end of period t, while Yjt

is a binary variable associated with the set up of family j in period t.

The objective function of model (MM) minimizes the inventory holding

costs, overtime costs and the set up costs. This model assumes that the

regular time and other production costs are fixed and hence excluded from the

objective function. Constraints (3.1) and (3.2) correspond to the aggregate

decisions, while (3.4), (3.5) and (3.6) correspond to the family

disaggregation problem. (3.3) represent the linking constraints between the

two models. Relaxation of constraints (3.3) give rise to the dual problem

(MMD) max L(A)

where L(A) - min [Z + Zi, t Ait (jZ Ijt - Iit)]

A A

s.t Z - t ( t 0t + i hit it)+ j t sj Yjt

and (3.1), (3.2), (3.4), (3.5), (3.6) and (3.7)

The dual problem (MMD) decomposes into subproblems P' and Pi' described

below.

P' min Z (ot Ot + i Iit(hit - Ait)}

s.t (3.1), (3.2) and (3.7)

T A A

Pi': min z Z Y +Ait l
jeJ(i) t-l j t it t

s.t (3.4), (3.5), (3.6) and (3.7)

Problems P and P' differ in the definition of the inventory carrying

costs. In P' the parameter hit is modified to adjust for the dual multiplier

of constraint (3.3). Problems Pi' address the same issue as Pi , i.e.,

disaggregation of product types into family lots, but has a different
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structure. Pi' decomposes into a set of uncapacitated Wagner-Whitin type lot

sizing problems that can be solved efficiently using dynamic programming

algorithms. Graves presents an iterative procedure to solve (MMD) and

suggests that a heuristic or a branch and bound procedure may be followed to

obtain a good feasible solution.

A comparison of the two approaches suggests that the Lagrangean

relaxation procedure is likely to provide more cost effective schedules that

are likely to be significantly better in cases with high set up costs.

However, this should be balanced against the computational requirements and

the complexity of the algorithm.

4.0 HPP and Stochastic Programming

The hierarchical models described so far in this chapter re

primarily deterministic in nature. However, in many real life production

situations uncertainties cannot be ignored. In this section we describe three

applications of the hierarchical approach to provide an overview of the

research in this area. In Section 4.1 we present a job shop design /

scheduling problem. This fs based on the work by Dempster et al (1980,1981)

and provides a framework for evaluating the hierarchical approach. Section

4.2 is based on the work by Bitran, Haas and Matsuo (1986) and deals with the

production planning and scheduling problem in the manufacture of style goods.

In Section 4.3 we describe Gershwin's (1987) framework for addressing

scheduling and control problems in dynamic manufacturing systems with machine

failures, setups and demand changes.

4.1 A Job Shop Design / Scheduling Problem

Dempster at al (1981) argue that hierarchical models represent a

stochastic, multi-level decision process in which decisions at higher levels
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are often based on aggregate imperfect information. They suggest that such

decisions should be based on accurate models of lower level activities that

incorporate stochastic parameters to capture the uncertainties in the detailed

decisions. They suggest that the objective at each level be the minimization

of the current costs plus the expected value of the lower level decisions.

The combination of stochastic optimization and scheduling problems makes the

resulting formulations very hard to solve. The authors interpret the

hierarchical approach as heuristics to solve the global problem. They suggest

that the multistage stochastic formulation provides a useful framework to

evaluate alternative approaches to solve the problem addressed by hierarchical

production planning. Their results focus primarily on the analysis and on the

development of bounds and heuristics to solve approximately their stochastic

programming formulation. In what follows, we illustrate their approach by

means of a simple two-level problem described in Dempster et al (1980).

In this simplified example, it is assumed that the number of jobs

to be processed is known. The design (higher level) decision consists in

determining the number of identical parallel machines to be purchased. At

this stage, the job processing times are unknown and are assumed to be random

variables with independent distributions. At the detailed level, the number

of machines is considered fixed since it is an output of the first stage

decisions, and the job processing times are known exactly. The resulting

problem is to determine a schedule which minimizes the makespan. (Makespan of

a schedule denotes the time required to complete all the jobs.) We use the

following notation to describe the model formulations:

n: number of jobs

c: cost of a single machine

m: number of machines
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pj: processing time of job j

P (P1' P2' ---, Pn)

C* (m,p): minimum makespan to complete n jobs with m machines and known p.

A tilde (-) above a variable indicates that it is a random variable and E

denotes its expected value.

Dempster et al propose the following two stage stochastic problem to

model this situation:

(MSP) Z - min (cm + E C*(m, p))

The deterministic, parallel machine scheduling problem (with fixed

number of machines) to minimize the makespan represents the detailed (second)

level optimization problem. This problem, by itself is NP-hard which makes

MSP also very difficult to solve. The authors propose a two level

hierarchical procedure to solve the problem approximately. At the detailed

level, schedules are obtained by a list processing heuristic. In this method,

jobs are chosen in an arbitrary manner and assigned to machines by a single

pass heuristic. Each job is placed on the machine that has the least

processing load already assigned. The makespan corresponding to this schedule

is denoted by CL s (m,p). At the first level an approximate solution to MSP is

obtained by solving a related problem MSP' given below.

n
(MSP') min (cm + E P/m) where P - Z pj

m j-1

The above approximation is motivated by the facts that P/m

represents a lower bound on the make span and it is asymptotically optimal in

the number of jobs. The optimal solution to MSP' is given by mH such that

mH e(L P/cJ, [EP/c), subject to mH > 1, where al denotes the smallest

integer not less than a and LaJ denotes the largest integer not greater than

a. The overall value realized by this hierarchical approach is then given by
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zH c mH + E CLs (mH, )

It is easy to show that ZH/Z* < 1 + E pmax/ (2,cEP) where

Pmax - max (pj}. This result provides bounds on the performance of the

hierarchical approach. The bound is reasonable as long as Pmax is

sufficiently small. The authors also show that if the pj s have independent

and identical distributions with finite second moments, then the hierarchical

system is asymptotically optimal in the sense that

lim (Epmax/JEP) 0 and hence lim (ZH/Z*) - 1.

It is interesting to note that the hierarchical structure proposed

for this problem is consistent with the Hax-Meal framework described earlier.

At the first level all jobs are replaced by the aggregate processing

requirements and complicating details are omitted. The authors conjecture

that similar approaches would work well for more complicated systems because

the instances for which the higher level assumptions are severely violated

occur with decreasingly small probability as the problem grows larger.

A detailed discussion of this approach and extensions to more

elaborate models can be found in Dempster et al (1981), Dempster (1982) and

Lenstra et al (1984). Their research focuses on (i) the development of

heuristics to solve the multistage stochastic program and (ii) the derivation

of relations between performance measures in related model formulations. A

summary of the results relating the performance measures for a two stage

decision model is presented in Figure 4.1.1. In developing these relations,

the authors consider, in addition to the exact and approximate formulation

based on the hierarchical approach, a third model based on perfect

information. This "omniscient" model represents the best scenario in which

all information is known with certainty before the first stage decisions are
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made and provides a lower bound on the multistage decision model. The

following notation would be useful in interpreting the results of Figure

4.1.1.

x: first stage decisions,

X: set of feasible decisions at the first stage,

w: vector of resource requirements at the second stage,

F: distribution function of w

W: sample space for w

g (x,w): cost of optimal decision at the second stage, given the first

stage decision x and the realization w of resource

requirements,

f(x): cost of acquisition of x at the first stage, and

Z* (x,w): f(x) + g (x,w).

Figure 4.1.1 describes the relations between the following three models:

Stochastic program for the two stage decision process:

EZ* = E(Z* (x* ,w)) min (E(Z*(x,w))
xeX

Omniscient Model:

ZO - Z*(xO(w),w) - min (Z (x,w))
xCX

Note that ZO (like Z) is a function of the resource requirements w and is a

random variable. The expectation of ZO with respect to w, EZO would be the

appropriate measure to compare the performance of this model with that of the

stochastic program, EZ*.

Hierarchical Approach:

In this model, in the first stage decision, E(g (x,w)) is replaced by an

estimate gH1 (x), and the first stage decision xH is determined as
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zHl (xH) - min (ZH(x)) - min (f(x) + g (x))
xEX xCX

In the second stage xH is given and the requirements w are known. The

decisions are made using a detailed model at a cost of gH2(xH,w). (The

authors observe that while gH2 (xH,w) could be the result of solving optimally

the detailed model, in most cases, the detailed problems are hard. In these

cases, gH2 (xH,w) may be the result of an approximate solution to the second

stage model.) Also, the information available at the two decision stages is

different, and the functions gHl (x) and gH2 (xH,w) are usually different.

The cost of the decisions based on this hierarchical approach is then given by

zH f(xH) + gH2 (xH , w).

zH, like Z, is a function of w, and EZH is the appropriate measure for

comparison with EZ*.

Figure 4.1.1 presents a summary of results relating to the ratios of

cost functions Z , zH and Z and their expectations. For example, if ZH/zO

with probability 1 (wpl), then ZH/Z* l wpl. However, the converse is not

true, and ZH/Z*.I wpl does not imply that ZH/ZOli wpl. Similarly, each of

the conditions ZH/Z-Ol in probability (ip), E(ZH/ZO)-l and EZH/EZO0 l imply

that the others are true. Also these conditions imply that the corresponding

results hold for ZH/Z*. Again, the converse is not true and ZH/z*1 ip does

not imply that ZH/ZOI ip.

The approach above is most suitable when the higher level

decisions are irreversible as in the case of acquisition of machines. For

example, in the production planning problems discussed in sections 2 and 3,

the aggregate decisions were flexible in the sense that plans were revised

every period. In contrast, the models of Dempster et al assume that the first

stage decisions, once made, cannot be altered (as in the case of purchase of

machines).
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4.2 Production Planning and Scheduling with Stochastic Demand

In the production planning and scheduling models described in

Sections 2 and 3 uncertainties occur primarily because of errors in demand

estimates. Also, aggregate decisions are somewhat flexible and permit minor

changes based on the forecast revisions. The rolling horizon approach to the

aggregate problem incorporates this aspect of the problem. A justification

for the disaggregation procedure of Section 2 for the case with stochastic

demands can be found in Agnihotri et al (1982). The authors show that, with

stochastic demands, the Bitran and Hax disaggregation procedure provides a

lower bound to the family run out time.

Bitran, Haas and Matsuo (1986) explicitly consider uncertainties

in demand estimates and forecast revisions while examining production planning

and scheduling issues in the manufacture of style goods. Style goods are

characterized by a very short selling season and stochastic demand. Because

of capacity limitations, manufacturers of style goods usually build up

inventory over the year preparing for demand in the selling season. If the

demand exceeds on-hand inventory, a shortage cost is incurred, while if the

opposite occurs, an overage cost is incurred. Examples of style goods can be

found in a variety of situations ranging from clothing to consumer durables.

The problem is similar to the multi-item newsboy problem with capacity

constraints with two additional characteristics described below.

First, the products have a hierarchical structure. That is,

individual items are categorized into families. A family is defined as a set

of items that share a common setup, consume the same amount of resources per

unit, and have the same magnitude of forecast errors. Setup costs are so

large that all items within a family must be produced in a single setup.
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Hence, the production planning decisions consist in determining the sequence

in which the product families will be produced and the production lot sizes

for items within each family with the objective of minimizing the total cost.

The second feature relates to demand forecasts and revisions

during the planning horizon. The mean demand for each family is assumed to be

invariant over time. However, demand forecasts for items are revised

continuously over the planning horizon. The authors assume that the planners

can estimate the improvement in the accuracy of forecasts, perhaps based on

historical trends. Forecast accuracy is measured by standard deviation of

forecast errors. For example, the volume of a standard line of products can

be forecast nearly as accurately in January as in October, while the accuracy

of forecasts for new products can be expected to significantly improve over

time. Intuition suggests that to take advantage of this characteristic, some

standard products should be produced early in the year and the production of

families with a potential for large improvement in forecast should be

deferred.

Bitran, Haas and Matsuo formulate the problem as a mixed integer

stochastic program and propose a two-stage hierarchical approach to solve this

difficult problem. The aggregate problem is formulated as a deterministic

mixed integer program that provides a lower bound on the optimal solution.

The solution to this problem determines the set of product families to be

produced in each period. The second level problem may be interpreted as a

disaggregation stage where item lot sizes are determined for families

scheduled in each period. We now describe the problem in detail.

Notation:

i: index for families, n: number of families

j: index for items, N: number of items

I�aP_ � __�_�_ ____�
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J(i): set of indices of items in family i, ni: number of items in family i

T: number of time periods in the planning horizon

mjt: time-t forecast of the demand of item j (This parameter represents the

demand forecast for item j at time t and is discussed in detail later.)

Mi: mean demand for family i

Xjt: production quantity of item j in period t

Xit: production quantity of family i in period t

rit: resource consumption for producing one unit of an item in family i in

period t

Rt: resource available in period t

sit: set up cost for family i in period t

hjt: inventory holding cost of item j in period t

vjt: material cost of item j in period t

vjt': variable production and inventory holding cost of item j

T
-v. + Z hjk
it k-t k

Pj: unit selling price of item j

Bj: loss of goodwill due to shortage of one unit of item j

Gj: salvage value of item j

6(Xjt) - 1 if Xjt > 0 and 0 otherwise

d.t: N-component vector (dlt, d2t,...,dNt)

m.t: N-component vector (mlt, m2t ... ,mNt)

Forecasts of item demands and their revisions play an important

role in the production planning and scheduling problem examined by Bitran,

Haas and Matsuo. The authors make several assumptions in characterizing the

demand behavior. These are summarized below:
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1. The demand estimates in period t for items within a family follow a joint

normal distribution.

2. The mean family demand is known in period 1 for all families and does not

change over time, i.e.,

jZJ(i t - Mi i-1,2,...n, t-12, ...T

3. The demand estimates of items in family i have a covariance matrix

aut i in period t for i - 1,2,...n, t-l, 2,...T, where i is an ni x ni

correlation coefficient matrix.

4. The precision of the forecasts are known in period 1, i.e., the standard

deviation of forecast errors of items in family i, ait, is known for

i - 1,2,...n, t 1,2,...T in period 1.

5. In period t, the demand of items in family i are denoted by random

variables (dlt, d2 t...dn t
) with joint normal distribution

i

N ((mlt, m2t...mn.t), at i)

6. The forecast accuracy is assumed not to decrease as t increases, i.e.,

Oil ai2 2 . . .aiT, i1,2,...n

The above assumptions imply that the forecasts in period t for

items in family i, (mlt, m2t, ... mn t) follow a joint normal distribution

2 2iwith mean (mll, M21, - mn.1) and covariance matrix (il -ai )Zi

The formulation in Bitran, Haas and Matsuo applies when the setup

costs of producing each family are substantial. The authors assume that each

family is setup exactly once in the planning horizon and that all production

of a given family occurs during one period. They point out that this

assumption is unlikely to be critical when the number of families is much

larger than the number of time periods. A consequence of these assumptions is

�1�11___�__��
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that, for each family i, only one of the Xits, tl, 2,...T is positive. The

cost function can then be formulated in a manner similar to that in a newsboy

problem. The overage and underage costs of producing item j in period t are

then given by (vjt- Gj) and (Pj + Bj - vjt) respectively. The cost of

producing family i in period t can then be written as follows:

e(ifj t(Xjt) + Sit

where fjt(xjt) - (Pj + Bj - v't) (dt - xjt) + v'jt dt if d >

(v'jt - Gj) (xjt - djt) + v'jt djt, if d < xt
t jt' dt t'

The stochastic mixed integer program (P) presented below models

the production planning problem as a cost minimization program.

(P)

Vp - min zT Emtim min Ed n Z ft(Xt) + st) 'it
t-l m.tlm.l dtlmt i-l jeJ(i)

T
s.t ZYit- 1, i-l,2, ....n (4.2.1)

t-l

i n jJ(i)rit Xjt < Rt, t-l.2. T (4.2.2)

Xjt < M Yit, jeJ(i), t-l,2, ...T, i-l,2,...n (4.2.3)

Yit e (0,1), i-12 t-,2, ...T (4.2.4)

Xjt > 0, jeJ(i), i1,2 ....n, t-1,2,....T (4.2.5)

[min Ed lm [ jJ(i) fjt(Xjt)] + Si] Yit represents the optimum

cost of scheduling family i in period t. Note that at time t, the forecasts

are m.t and demands for items in family i follow a joint normal distribution

with mean (it, m2t,..., mn t) and covariance matrix (a2il- a2 ) However,

in period 1, m.t are random variables (with mean m.1) and the expected cost in

period 1 for scheduling family i in period t is given by the expectation of

the expression above with respect to m.t. Hence the objective function of
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(P) can be interpreted as the expected cost of the production plan that is

based on information available in period 1. The constraints of problem (P)

are rather straight forward. (4.2.1) ensures that each family is produced

exactly once, while (4.2.2) impose resource restrictions in each period.

(4.2.3) assures consistency between family and item production schedules.

It is obvious that (P) is a hard problem with little hope for

obtaining an optimal solution for most practical cases. Bitran, Haas and

Matsuo propose an approximate solution based on a hierarchical approach. In

period 1 an aggregate problem (MIP) presented below is solved at the product

family level.

n T

MIP: Vmi p min Z Z fit (Xit Yit

s.t. (4.2.1), (4.2.2), (4.2.3), (4.2.4) and (4.2.5),

where fit(Xit) - min Ed Im -m ( i fjt(Xjt) + it
.t .t .1 jCJi

s.t. Xjt - Xit, Xjt 0
jcJ(i)

The purpose of the aggregate problem MIP is to specify the

families that need to be produced in each period. The item lot sizes

determined by MIP are ignored. Instead, the authors propose the solution of

the disaggregation problem (SP), given below, in each period.

SP: v(st, m t) - min Ed Im Z Z fj (X.t) + Z iSt

ieSt jeJ(i)

Xjt 0, jJ(i), ieS t

where St - set of families scheduled in period t, determined by MIP.

Bitran, Haas and Matsuo provide extensive justification for the

approach described above. They show that Vmip is a lower-bound on Vp. They
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also demonstrate that if the non-negativity constraints (4.2.5) are relaxed,

the optimal objective function values for problems P and MIP (Vp, and Vmip,)

are equal. It is further argued that in most applications the non-negativity

constraints are violated with low probability and hence MIP should be a good

approximation to P. To obtain detailed schedules (item production

quantities), the authors show that problem SP provides a superior solution (a

better lower bound) compared to the one obtained by disaggregating the

product family lot sizes determined by MIP. The paper also presents

approximate solution procedures for MIP and SP and provides bounds on the

performance of the heuristics.

One of the limitations of the approach described above is the

restriction that the production of one family be started and completed during

the same period. This constraint seems rather artificial and may become

important when the number of families is not very large. In a recent paper,

Matsuo (1987) examines a different formulation of the problem and presents

solution procedures that eliminate this restriction. He formulates a

stochastic sequencing problem that simultaneously determines product sequence

and production volumes for the style goods production planning problem. In

his formulation time is treated as a continuous variable. Matsuo's solution

procedure is also based on the hierarchical approach. In the first stage

family lot sizes and sequence are determined by specifying, for each family,

the start and finish times of production. In the second stage the family lot

sizes are disaggregated. The analysis in this paper is rather involved, but

the sequencing rules that are derived are intuitively appealing, elegant and

surprisingly simple.
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4.3 Production Control and Scheduling in the Presence of Machine Breakdowns

Gershwin (1987) considers scheduling problems in dynamic

manufacturing systems with machine failures, setups, demand changes etc., and

proposes a hierarchical structure based on the frequency of occurrence of

different types of events. This framework is based on the assumption that

events tend to occur in a discrete spectrum which define the hierarchical

levels. For example, the frequency of additions of machines is an order of

magnitude smaller than setup decisions, which in turn, occur less frequently

than item production. A central assumption in this approach is that

activities can be grouped into sets J1, J2, ...such that for each set Jk

there exists a characteristic frequency fk satisfying

fl < < f2 < < ... < < fk < < fk+l < < ...

In this framework the hierarchical levels are defined by the frequency of

activities (sets Jk). In modeling the decisions at each level, quantities

that vary slowly (variables that correspond to higher levels) are treated as

static, or constant, and discrete. Quantities that vary much faster

(variables at lower levels) are modeled in a way that ignores the variations,

for example, replacing fast moving variables by their averages. These ideas

may be illustrated by considering a production planning example. In aggregate

planning models, the number of machines (variables that correspond to higher

level of hierarchy) are considered fixed. Also, in these models, details such

as machine breakdowns (lower level variables) are ignored. However, the

effect of breakdowns is usually accounted for by factoring an adjustment

(based on expected behavior) in available capacity. An interesting feature in

this approach is the treatment of capacity. Gershwin makes a distinction

between capacities at different hierarchical levels. Figure 4.3.1, which

describes the capacity definitions for an item in a multi-item shop that is
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modeled with three hierarchical levels, provides an example to clarify this

idea. In this example, the terms capacity and production rate are synonymous.

In the figure ul is the aggregate production rate (at level 1) that is equal

to the demand rate and represents the capacity available for this item. u2,

the capacity at the next level, is the relevant capacity when the setup

decisions are considered. At the operational level, when breakdowns occur,

the production rate u3 is higher than u2 and u. Gershwin also distinguishes

between controllable variables and activities such as breakdowns and repair

that are beyond control.

The objective of this approach is to determine an optimal control

strategy at the detailed level. The control strategy is specified by

selecting the time to initiate each controllable event. Gershwin proposes the

solution of one or two problems at each level to derive the control strategy.

These problems are termed as the hedging point strategy and the staircase

strategy. In the hedging point strategy problem at level k, the objective is

to determine level-k capacities ujk , j . Jm m > k, i.e., determine ujk for

all activities that occur more frequently than fk Constraints are imposed

by the total capacity available and the decisions at the higher levels. The

staircase strategy problem can be interpreted as the allocation of resources

among activities at level k, consistent with production rates uk 'l determined

at the previous level.

Gershwin, Akella and Choong (1985), Kimemia and Gershwin (1983)

describe some applications of this approach and discuss the detailed

formulation and solution procedures for the staircase and hedging point

strategy problems. The two machine, two product example of Figure 4.3.2

described in Gershwin (1987) can be used to illustrate the basic ideas of this

approach. In this example, machine 1 is an unreliable, flexible machine that

___llll__i__l_�W__jl___��lll-_l.�-ll-- ----
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can produce both parts type 1 and 2. No setups are required to change from

product type 1 to 2 or vice versa. Machine 2 is dedicated to production of

part type 1 and is totally reliable. The following data is available.

p: failure rate for machine 1

r: repair rate for machine 1

tij: duration of the operation of part type j on machine i

(tll, t12, t21)

dij: demand rates of part type j on machine i (dll, d12 , d21)

It is assumed that (i)tij and l/dij are of the same order of magnitude, and

(ii) l/r and l/p are of the same order of magnitude which is greater than tij.

The state of the system is specified by a, the repair state of machine 1 and

xll, x12, and x21; where xij is the surplus inventory and is defined as the

excess of production capacity over the cumulative requirement. An example of

a staircase strategy at level 2 for this example is presented in Figure 4.3.3,

which describes the loading decisions as a function of the system state. At

level 1, the hedging point strategy problem can be formulated as follows:

min Z cij (x, a) uij

uij

s.t. tll Ull + t1 2 u1 2 a

t21 U21 1

Ull, u1 2, u2 1 0

where uij is the production rate of part type j on machine i (decision

variable), cij(x, a) is the cost of maintaining production rate uij with the

system state (x, a).

The approach described above is a fairly recent development in the

application of the hierarchical approach to control and scheduling problems in

discrete manufacturing systems. There are several outstanding issues that
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need to be resolved before the methods can be applied widely. These problems

include the following:

(i) Development of methods to model systems in which the time scales

for various activities are not widely separated,

(ii) formulating and solving hedging point problems with non-Markov

events,

(iii) new formulations and solution procedures for the staircase

strategy to obtain loading patterns that are very close to a given

rate, and

(iv) aggregation issues in modeling higher level activities.

5.0 Conclusions

In this chapter we have described the basic features of the

hierarchical approach in addressing planning and scheduling problems. We have

also described some of the models and presented results of general interest in

this context. These models span a wide variety of manufacturing environments

ranging from continuous processes to discrete systems such as batch and job

shops. The approach has been successful on two dimensions. First, the

hierarchical framework is attractive to practitioners as evidenced by the

several applications that have been reported. Second, considerable amount of

research has been generated in developing appropriate models and solution

methods.

However, in spite of the developments in the last decade, there is

a need for good models that support decisions in more complex environments.

We note four areas with potential for further research. First, the problem of

aggregation and disaggregation has not been resolved satisfactorily. Second,

detailed models have been developed for single and two stage systems only. It

is not clear how such models can be extended to more complex systems. Third,
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the issue of feedback in hierarchical systems has not been explored adequately

and merits further research. An finally, except in a few cases, good models

have not been developed for systems characterized by uncertainties.

- - -
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TABLE 1.1 Differentation Factors of the Three Decision Categories

Management
Strategic Control Operational

Factor Planning (Tactical Planning) Control

Management of change,
resource acquisition

Resource utilization Execution,
evaluation,
and control

Implementation
instruments

Planning
horizon

Policies, objectives,
capital investments

Long

Budgets Procedures,
reports

Medium Short

Broad, corporate
level

Level of
management
involvement Top

Medium, plant level

Middle

Narrow, job
shop level

Low

Frequency of
replanning

Source of
information

Level of
aggregation

Largely external

Largely aggregated

External and
internal

Moderately
aggregated

Required
accuracy

Degree of
uncertainty

Degree of risk High

Purpose

Scope

Low Medium High

Low

Largely
internal

High

Largely
Detailed

Medium

Medium

High

Low

_ _ _ _~~~~--

LowMedium



Decision
level

Decision
process

Corporate

Plant
manager

Shop
Superintendent

Hierarchical Planning Process

Constraints

Performance
characteristics
and
operating
results

Constraints

Production Planning Decision Hierarchy

Figure 2.1 An Overview of Hierarchical Planning Approach
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Read in last period's usage

Update Inventory Status
(Physical Inventory, Amount
on Order, Backorders, Lost

Sales, Available Inventory)

Update demand forecasts,
safety stocks, overstock limits,

and run out times

Determine effective demands
for each product tpe

(1)
Aggregate Plan for Types

(Aggregate Planning Reports)

(2)
Family Disaggregation

(Family Planning Reports)

Item Disaggregation
(Item Planning Reports)

' -

(3)

I uW

Management I
Interaction I

I-

Detailed Status Reports

Figure 2.1.1. Conceptual overview of hierarchical planning system.

I

f-

K

K

-
_ I 

f .......

--

HE

!

l

U ,,,,, J

,

-- --

I I,

II



Table 2.1

DEMAND

Initial
Item Period t=l Period t=2 Period t=3 Inventory

k = 1dll 5 d12 = 17 d 1 3 =30 I10= 9
k = 2 d21 = 3 d 2 2 = 12 d 2 3 = 30 I20 = 20
Total d = 8 d 2 2 9 d 3 = 60 I = 29

~- -~ ~ ~ ~ `'~~~"~r- '~----~`" ~ ~l '~-~--- 1-



TABLE 2.2

Effective Demand

Initial
Item Period t=l Period t=2 Period t=3 Inventory

k = 1 dl = d 1 2 = 13 d 3 = 30 0
k = 2 d 2 d 2 2 =0 d 2 3 =25 0
Total d = d 2 = 13 d3 = 55 0

1 ~ ~~ ~~d = 25
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PARTS PRODUCTION UNITS ASSEMBLY LINES DISTRIBUTION

Figure 2.3.1 Major stages in the production and distribution system.
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Figure 2.3.5 A conceptual overview of a hierarchical production
planning system for a fabrication and assembly process.
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Figure 4.1.1 Relations between performance measures.
- - - do : invalid implication.

t: if ZH/z* has a finite limit (wpl).
(ip): in probability
(wpl): with probability 1

: Valid implication;
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Figure 4.3.3

Level 2: Staircase Strategy

Loading a Type j part into Machine 1 is eligible if:

1. The number of Type j parts made up to time t on Machine 1 is less than

5 Ulj(s)ds, and

2. Machine 1 is now idle.

Loading a Type 1 part into Machine 2 is eligible if:

1. The number of Type 1 parts made up to time t on Machine 2 is less than

rt

0oJ u2 1 (s)ds, and

2. Machine 2 is now idle.
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