
A GLOBAL QUERY PROCESSING IN
COMPOSITE INFORMATION SYSTEMS

Y. RICHARD WANG
STUART E. MADNICK

May 1989 WP # 3015-89-MS '

Global Query Processing
in Composite Information Systems

Y. Richard Wang
Stuart E. Madnick

E53-317, MIT
Sloan School of Management

Cambridge, MA 02139

(617) 253-0442
rwang@sloan

March 1989

Center for Information Systems Research
Sloan School of Management

Massachusetts Institute of Technology

Global Query Processing in Composite Information Systems

ABSTRACT Many important applications in the 1990's will require access to and integration of
multiple disparate databases both within and across organizational boundaries because of the push-
pull effect between the significant advances in information technologies and the ever increasing
competition in the global market. This type of application system has been referred to as a Composite
Information Systems (CIS). In order to facilitate the increased connectivity for CIS, many strategic,
organizational, and technical connectivity issues need to be addressed. This paper examines the
critical issues involved in global query processing in CIS -- a key aspect of technical connectivity. A
query processing mechanism is developed to transform a CIS query into an equivalent Global Syntax
Construct (GSC) table. Semantic action routines are invoked, in turn, to translate the GSC table into
an Equivalent Internal Construct (EIC) table. The EIC table can be further augmented with the
required information for retrieving information and formulating composite answers from multiple
disparate databases. In addition, optimization is performed along the way for reducing the amount of
information to be retrieved from the remote local databases.

1. INTRODUCTION

Advances in computer and communication technologies have provided significant opportunities

for, and successful examples of, dramatically increased connectivity among information systems [6,

12, 20, 25]. These opportunities, in turn, have enabled new forms of intra- and inter-organizational

connectivity [2, 5, 16, 24]. Meanwhile globalization, whereby the scope and presence of organizations

expand beyond their traditional geographic boundaries, has propelled many organizations to

capitalize on these increased connectivity opportunities. As a result of the interplay between the

increased connectivity and globalization, many important applications in the 1990's will require

access to and integration of multiple disparate distributed databases both within and across

organizational boundaries. This type of application system has been referred to as a Composite

Information System (CIS) [21, 27, 28, 29].

In a major international bank, for example, issues involved in global security trading have

become increasingly critical. The bank acts as an intermediary in the handling of securities for many

other financial institutions around the world. It is becoming increasingly important to know almost

on a minute by minute basis what is the current status of a security transaction: Is the security in

transit? Has the payment been cleared? This affects whether a given security can be sold at that

moment or later days. More than two thirds of the security transactions handled by this bank occur

1

-��------------�---

between countries. For instance, a security being held in Germany is to be sold in Hong Kong by

someone in the USA. Thus it is necessary to make movements between the separate country-based

security systems. Currently much of the global security exchange processing must be handled

through human operators. If an agent in the USA wishes to sell securities that are held in Germany

to someone in Hong Kong, someone would actually call Germany to find out the current status, and

contact Hong Kong to track its processing there. To provide some degree of "global" view, a "shadow

database" is being introduced. That is, a copy of some aspects of the security status information from

all of the centers is transferred to a database held in the U.S. once a day. This gives a snapshot of

global status as of some moment in the past 24 hours. The bank is very concerned that this twenty

four hour lag is not adequate to deal with the increasing amount of almost real time security handling

requirements. Developing a CIS that will provide worldwide status information in less than five

minutes as needed has become a high priority.

Many strategic, organizational, and technical connectivity issues involved in CIS have been

addressed previously. This paper focuses on CIS global query processing. It provides a mechanism for

a userl to specify a CIS global query with the "appearance" of a single global database that combines

all of the relevant disparate and geographically distributed systems (e.g., global security systems).

Section 2 discusses issues involved in accessing multiple disparate databases. A CIS global query

processing example is presented in section 3. Section 4 presents the algorithms for translating a CIS

global query into GSC and EIC which has the necessary information for further optimization and

query execution. Finally, concluding remarks are made in section 5.

2. CONNECTIVITY ISSUES

Technical connectivity issues can be categorized into first- and second-order issues. The first-

order issues are encountered immediately when attempting to provide access to and integration of

1. By "user" we mean, throughout the paper, a person who has knowledge of how to formulate
queries against a database schema. This person could be a database administrator, a view
administrator, an application programmer, or an end-user who has the knowledge.

2

1l

multiple information resources [8, 10, 13, 18, 19], such as machines from multiple vendors (IBM,

DEC, AT&T, etc.), multiple physical connections (local net, wide-area net, etc.), and different

database accesses (ORACLE/SQL, IBM's SQL/DS, flat files, menu-driven systems).

Suppose that one is able to resolve the above first-order issues, the challenging information

composition task still abounds with second-order issues [3, 11, 271 such as attribute naming (company

attribute vs. comp_name attribute), domain and attribute value mapping ($ vs. or £), query

formulation (where is the data for alumni position, base salary, Ford sales, Fiat sales,etc.), and inter-

database instance identification (IBM Corp in one database vs. IBM in another database).

The capability to resolve these problems is essential in accessing autonomous information

systems in concert because of the ubiquitous syntactical and semantic inconsistencies and

incompatibilities inherent among systems. Without some kind of facilities to help resolve the

syntactical and semantic differences, the user would have to be knowledge-rich about the multiple

information systems to be accessed, and hardwire the necessary transformation in his code.

In MULTIBASE2, for example, a view administrator (VA) is trained and authorized by a database

administrator (DBA) to interpret the DBA's database. The VA is authorized by multiple DBAs;

therefore, can interpret the syntactical and semantic differences among these databases. Although

an auxiliary database is also constructed to help reconcile some of the differences among disparate

databases, the VA needs to specify the necessary mappings in DAPLEX using his knowledge of the

underlying databases. It would be very useful if this knowledge could be codified into the system.

State-of-the-art database theories have started to deal with problems such as schema integration and

heterogeneous database systems. However, a comprehensive mechanism for accessing autonomous

information systems is still critically desired [29].

2. MULTIBASE, developed by the Computer Corporation of America [13], is one of the leading
research prototypes for demonstrating the feasibility of heterogenous database systems.

3

2.1 Tasks for Connectivity

From a straight forward consideration of the ways in which disparate information systems can be

accessed in concert for composite information, schema integration [3] and its output codification need

to be performed. The schema integration activity is critical in the CIS environment. The reason is

that in the process of schema integration, all the local databases intensions are examined and can be

codified. In the MULTIBASE example, the VA is trained to understand the intensions of the multiple

local databases. Therefore, there is no need for schema integration because the intensions are

already integrated and stored in the VA's head. Whereas, in the CIS environment, this knowledge

needs to be explicitly codified in order for the system (not a human) to process a CIS query.

The schema integration task requires the DBAs who are knowledgeable about the disparate

databases to work together. The input of the task is the knowledge about the database intensions.

The output of the task is the intension of the global schema and a body of information about how to

reconcile the syntactic and semantic differences among the disparate databases.

Furthermore, a CIS query language needs to be developed. A mechanism is also needed to

transform a CIS query into some kind of internal queries which, when executed, would obtain data

from the remote local databases, resolve the inconsistencies and incompatibilities, and return the

information as specified in the CIS query.

2.2 CIS Query Processor Architecture

A CIS query processor architecture, shown in Figure 1, has been proposed [291 to partition the

connectivity problems. This architecture encapsulates the first-order issues into the local query

processors (LQPs). Each LQP is responsible for the physical connection to a particular remote

machine and the required database accesses.

4

11

An important design choice for the CIS query processor architecture is the data model to be used

for the representation of the data in the LQPs, the Global Query Processor (GQP), and the Application

Query Processors (AQPs)3. Although many semantic data models and schema integration

methodologies have been proposed and discussed in depth in the literature [1, 3, 4, 8, 10, 11, 14, 17, 18,

19, 22, 23, 26], our experiences in developing CIS [29] have led us to a combination of the Entity-

Relation (ER) [7] and relational models: The relational model is theoretically mature, information-

structure oriented, and commercially successful. The ER diagram is better suited for representing

the semantics of the underlying model. It specifies the relationship between entities explicitly 4. We

have, therefore, chosen to extend the relational model in our work, and to incorporate the useful

constructs developed in the semantic data models, such as the ER diagram, where relevant. Section 3

exemplifies global query processing in CIS.

3. GLOBAL QUERY PROCESSING EXAMPLE IN CIS

An implication of the relational/ER approach is that a relational interface is required for each

LQP5. In representing the local database, the relationship between entities is explicitly defined as

link6 entities. By requiring a relational interface for each LQP as well as for the GQP, a coherent CIS

query processing mechanism based on the relational theory can be developed. The mechanism is

exemplified below using a simplified scenario of a placement assistant system.

3.1 Schema Integration

Suppose that an alumni database has a relational/ER model interface as shown in Figure 2. The

3. Building on top of the global schema, an AQP can provide many additional functionalities,
including natural language, graphics interfaces, and any productivity tools. We focus on the
GQP in the rest of the paper.

4. In the relational model, the relationship between two entities is defined implicitly through
common attributes.

5. The issue of data model mapping to a relational interface have been discussed extensively in the
literature, e.g. Hwang and Dayal [151, thus is beyond the scope of this paper.

6. We use "link" instead of "relationship" to avoid the confusion between a relation and a
relationship.

5

Composite
Answer

Global
II D ata
I Dictionary

I
I

I %%

f001 x

4-
.--

(

CISITK
Worksta tic

Executable
Local

Queries

I
I
I
I
I

1 Local Query
Processor 1

in
_ _ _ _ _ _ _ _ _ _ _.-- -

Z/

.ocal
wuery
esults

L - - -- - - -I

Figure 1 The CIS/TK Query Processor Architecture

6

r
I
I
I
I
I
I
I

)
I,

I

III
I
I

I Kesults

I
I
I
I
I

I
I

es I
l
l
l
I

_

11

i

* _

I

_ .

, _ -

II

_·

e_ - - _ -- -_-I

_ - - - - - - -.

I
work for access

Alumni: (SSN, name, major, degree)
Access: (SSN, areacode, number)

Telephone: (areacode, number)

Workfor: (SSN, name, department, position)

Corporation: (name, industry, CEO)

Figure 2 Alumni Database in Relational Model with an ER Diagram
i~ ~ ~ ~ ~

model stipulates that each alumnus is uniquely identified through a social security number (SSN).

Associated with each alumnus is a a name, a major, and a degree. An alumnus can be accessed

through multiple telephone numbers. An alumnus may work for many corporations, each with a

position in a department. Finally, a corporation is associated with an industry and has a CEO. It

may employ multiple alumni.

A placement office database is depicted in Figure 3. A student is uniquely identified by an ID#,

and associated with a name, a GPA, and a major. A student may interview many organizations for

positions at the specified job locations by interviewers at the visit-days. Finally, an organization is

associated with a business, and is based in a state.

A company database is depicted in Figure 4. A company has a name, a CEO, belongs to an

7

I
II

I I

disclose ownership

Company: (name, CEO, industry, headquarter)

Disclose: (name, year)

Finance: (name. year, asset, revenue, profit)

Ownership: (name, taxid, percentage)

Investor: (taxid, type)

Figure 4 Company Database in Relational Model with an ER Diagram

industry, and its headquarter is located in a city. The company discloses financial information each

year on asset, revenue, and profit. It is owned by many investors, each of them can be identified

through a tax identifier. There are different types of investors, e.g., institutional or private.

From the knowledge about the three databases, an integrated global schema can be constructed

as shown in Figure 5. As mentioned earlier, an important task after the schema integration activity

is to encode the mappings between the entities, links, and attribute values as well as other pertinent

information. Ideally, all the intensions about the databases should be codified explicitly. The entity,

link, entity attribute, and link attribute mappings will be shown later in Table 1, 2, 3, and 4

respectively. They are used in the query transformation process as discussed below.

3.2 Global Query Parsing

Consider the query "Find all the names and degrees of the alumni who are CEOs of corporations"

for the query to the global schema in Figure 5. An SQL expression and the corresponding relational

algebra for the CIS query are shown in Figure 6(a). The parse tree for the relational algebra is shown

in Figure 6(b) where n denotes project, a denotes select, and Ow denotes join. The GQP applies the

schema integration output encoded in Table 1 through Table 4 to transform the original global parse

tree into an equivalent tree as follows: First the join operation at the lower left corner of Figure 6(b)

8

11

Note: "G" indicates Global

Fiqure 5 A Global Schema for the Alumni, Company and Placement Office Data Bases

Querv: Find all the names and degrees of the alumni who have the same names as the CEOs of
the companies they work for.

name, degree
(Select SSN

(Select

From
From
name

GAlumni Where SSN =
Gworkfor Where Name =
From GCompany Where CEO = GAlumni.name))

In Relational Alaebra:
Let A denote GAlumni, W denote Gworkfor, and C denote GCompany,

(((A [A.SSN = W.SSN] W) [W.name = C.name C) [C.CEO = A.name 1) [A.name A,degree]

Ficure 6(a) Example Qeuryv for the CIS Global Schema

is examined. From Table 2 the GQP knows that the Gworkfor link has a counterpart, i.e. workfor, in

the alumni database. Therefore, it knows that the join will be done with an (alumni) entity in the

alumni database, as confirmed by Table 1. As a result, GAlumni is translated into Alumni.

9

In SQL:
Select

r

Furthermore, GAlumni.SSN is translated into Alumni.SSN, and Gworkfor.SSN is translated into

workfor.SSN from Table 3 and Table 4 respectively.

A C

A.SSN

I([A.name, A.degree]

= ~h A.name

C.CEO

C =

W.name

W.SSN

C.name

Legend: A(GAlumni)
C(GCompany)
w(Gworkfor)

Figqure 6(b) A Parse Tree for Figure 6(a)

Table 1: Entity Integration of Alumni, Comapany, and Placement Databases

Global Schema Alumni Database Placement Database Company Database

GCompany Corporation Organization Company

GStudent Student ---

GFinance --- Finance

Glnvestor --- --- Investor

GAlumni Alumni --- ---

GTelephone Telephone --- __

Table 2: Link Integration of Alumni, Comapany, and Placement Databases

Global Schema Alumni Database Placement Database Company Database

ginterview --- interview ---

gdisclose --- disclose

gownership _ --- ownership

gworkfor workfor ---

gaccess access --- ---

10

11

Table 3: Entity Attribute Integration of Alumni, Comapany, and Placement Databases

Global Schema Alumni Database Placement Database Company Database

GCompany.name Corporation.name Organization.name Company. name

GCompany. Industry Corporation.industry Organization.business Company.industry

GCompany,headquarter --- --- Company.headquarter

GCompany.CEO Corporation.CEO --- Company.CEO

GCompany. --- Organization,
base-state base-state

GStudent. ID# --- Student .ID#

GStudent.name S--- tudent.name

GStudent.GPA --- Student.GPA

GStudent.major --- Student.major

GFinance.year --- Finance.year

GFinance.asset --- Finance.asset

GFinance.revenue --- --- Finance.revenue

GFinance.profit --- --- Finance.profit

Glnvestor.taxid --- Investor.taxid

Glnvestor.type --- Investor.type

GAlumni.SSN Alumni.SSN

GAlumni.name Alumni.name

GAlumni.major Alumni.major

GAlumni.degree Alumni.degree

GTelephone.areacode Telephone.areacode

GTelephone.number Telephone.number ---

Next the second join operation in Figure 6(b) is parsed. From Table 2, the GQP knows that the

Gworkfor link has a counterpart, i.e., workfor in the alumni database. It uses this information to

translate GCompany into "Corporation" although from Table 1 the GQP actually finds that

GCompany has three counterparts in the local databases: "Corporation" in the alumni database,

"Organization" in the student database, and "Company" in the company database. In addition, the

GQP translates GCompany.name into Corporation.name, and Gworkfor.name into workfor.name

11

Table 4: Link Attribute Integration of Alumni, Comapany, and Placement Databases

Global Schema Alumni Database Placement Database Company Database

ginterview. ID# Student.lID# ---

ginterview.name --- Organization.name ---

ginterview.position --- intenrview. position ---

ginterview.job-location --- interview. job-location ---

ginterview. i nterviewer -- interview. interviewer

ginterview.visit-day --- interview.visit-day

gdisclose.name --- --- Company.name

gdisclose.year --- --- Finance.year

gownership.name --- --- Company.name

gownership.taxid --- ..--- Investor.taxid

gownership. percentage --- --- ownership.percentage

gworkfor.SSN workfor.SSN --- ---

gworkfor.name workfor.name --- ---

gworkfor.department workfor.department

gworkfor.position workfor.position --- ---

gaccess. SSN Alumni.SSN --- ---

gaccess.areacode Telephone.areacode

gaccess. number Telephone.number --- ---

from Table 3 and Table 4 respectively, knowing that the mappings should be made to the Alumni

database.

Next the GQP parses the select (a) operation. From Table 3 and the relational scheme of the

intermediate result, the GQP recognizes that the GCompany.CEO information is stored under the

attribute Corporation.CEO; similarly GAlumni.name under Alumni.name. Finally, the GQP parses

the project (n) operation. It recognizes Alumni.name and Alumni.degree from Table 3. The

equivalent parse tree is shown in Figure 6(c). Since no further optimization can be made on the tree,

the GQP sends it to the LQP responsible for the alumni database.

12

I

11

imni.name

H

[Alumni.name, Alumni.degree]

= 1

Corporation.CEO AlL

\ Corporation

Alumni workfor =

J \ workfor.name Corporation.name

Alumni.SSN workfor.SSN

Figure 6(c) An Equivalent Parse Tree for the CIS Query in Figure 6(b)

We have exemplified the basic mapping mechanism for a CIS query. Interesting issues and

approaches involved in multiple databases global query will be discussed in section 4.4. Section 4

presents the algorithms for translating a CIS global query into an Equivalent Internal Construct

(EIC) table which has the necessary information for further query optimization, routing, and

execution.

4 CIS GQP

A simplified BNF grammar 7 for the GQP is shown in Figure 7. It enables us to analyze the

syntax of a global CIS query. For example, the CIS global query in Figure 6(a) can be analyzed, as

shown in Figure 8, and decomposed into the Global Syntax Construct (GSC) tuples in Table 5.

Corresponding to the GSC table are many semantic action routines that need to be executed,

depending on the GSC tuples, in order to generate an Equivalent Internal Construct (EIC) table.

Specifically, a GSC driver can be developed. Given a GSC table as input, the driver will invoke the

7. Only the select, project, and join operators are illustrated in the grammar. Conditions and other
operators such as union, intersection, difference, divide, and Cartesian product should also be
implemented.

13

a

14

BNF for the CIS Global Query Processor
Terms: Entity LinkAttributel Space (I)l[I], I S I > I I = I > I <
Entity: an entity relation defined in the entity table.
Link: a relationship relation defined in the link table.
Attribute: an attribute in a relation defined in the entity.attribute or link.attribute table.
Note: Space is ignored by the lexical analyzer, () takes precedence over left to right parsing.
<e>::= 51 12 1=1>1<
<E> ::= <entity>
<L> ::= <link>
<A> ::= <attribute >
<X> ::= <A> [<X>,<A> /* X is a subset of a relational scheme */
<condition> ::= [<A> <0> <A>]
<ER>::= <E> I <EP> I <ES> I <LE> /* Entity Relation*/
<LR>::= <L> I < LP> < LS> /* Link Relation */
<CL> :: = <condition > < LR > /* Condition followed by an LR */
<CE > :: = <condition > < ER > /* Condition followed by an ER */
<EP> ::= <ER> [<X>] /* Entity projection */
<LP> ::= <LR> [<X>] /* Link projection */
<ES> :: = <ER> <condition> /* Entity selection (restriction) */
< LS> :: = < LR> <condition> /* Link selection (restriction) */
<EL> ::= <ER> <CL> <EL> <condition> I <EL> [<X>] /* Entityjoins a Link*/
<LE > :: = <EL> <CE > /* Link joins an Entity */
<path> :: = <ER> <path > <CL > <CE > /* A legal CIS global query */
<done> ::= <path> I <LR>l <EL>

Figure 7 A Simplified Grammar for the CIS GQP

(((A [A. SSN = W.SSN] W) [W.name = C.name] C) [C.CEO A.name) [A.name, A.degreel

\ \ \I / \ o/
(((E[A eA L) [A OAE) [A A) LA A
/ ' \] \ '

ER Condition LR Condition ER Condition X

CL CE Lecend: A(GAlumni)
J ' /C(GCompany)

EL - LE w(Gworkfor)
ES - ER - EP - ER done

Figure 8 Parsing the CIS Query in Figure 6(a)

11

Table 5 The Global Syntax Construct (GSC) Table for the CIS Query in Figure 6(a)

Left-hand Relational Right-hand
R# Type Scheme Construct Unit Relational

Scheme~~~~~Scheme

R1 EL GAlumni GAlumni[GAlumni.SSN = Gworkfor
Gworkfor.SSN]Gworkfor

R2 LE GAlumni U Gworkfor R1 [Gworkfor.name = GCompany
GCompany.nameJ GCompany

R3 ES GAiumni U Gworkfor R2 [GCompany.CEO = Not Applicable
U GCompany GAlumni.name]

R4 EP GAlumni U Gworkfor R3 [GAlumni.name, Not Applicable
U GCompany GAlumni.degree]

appropriate action routines for translating the GSC table into an EIC table. The EIC table is used to

determine how to decompose a global query into local queries and how to process them so composite

information can be formulated. The algorithms of action routines for a, n, and join are described

below.

4.1 The o Algorithms

Consider a a operation specified by a GSC tuple (ES or LS in Figure 7). The operation may be

defined on a single global relation (either an entity or a link) with certain attribute restrictions.

There are two possible cases of the relation and attributes in the local databases:

(ol) Only one local database has a relation corresponding to the global relation, and all the global

attributes have a counterpart in the local relation.

(o2) Multiple local databases have a relation corresponding to the global relation, and all the

global attributes have a counterpart in at least one of these local relations.

Alternatively, a a operation may be defined on an intermediate relation, denoted by R# in a GSC as a

result of other operations (e.g., R2 in Table 5). There are two possible cases of the relation and

attributes:

(o3) All the attributes exist in the R# relational scheme.

t

15

(a4) Some of the attributes do not exist in the R# relational scheme, but have their counterparts

in some local databases.

The action routine algorithms for ol through a4 are described below.

The ol Algorithm

Step 1: Substitute the relation and attributes of the GSC tuple by the local relation and attributes.

Step 2: Insert the result from step 1 as an EIC tuple, and register the local database as the query
execution location, as shown in Table 6.

Table 6 An Equivalent Internal Construct (EIC) Relation For the CIS Query in Figure 6(a)

Left-hand Relational Right-hand Query
R# Type Scheme Construct Unit Relational Execution

Scheme Location

R1 EL Alumni Alumni[Alumni.SSN = workfor Alumni
(J 1) workfor.SSN]workfor

R2 LE' Alumni U workfor R1 [workfor.name = Corporation Alumni
(J2) Corporation.name] Corporation

R3 ES Alumni U workfor U R2 [Corporation.CEO = Not GQP
(03) Corporation Alumni.name] Applicable

R4 EP Alumni U workfor U R3 [Alumni.name, Not GQP
(n3) Corporation Alumni .degree] Applicable

II I-

The 02 Algorithm

Step 1: For each of the local databases participating in the a operation, do Step 1.1 to Step 1.2

Step 1.1 Substitute the relation and attributes of the GSC tuple by the local relation and
attributes.

Step 1.2: If all the global attributes in the restriction also exist in a local relation, then insert
an EIC tuple including the restriction; otherwise, insert an EIC tuple without the
restriction. In either case, register the local database as the query execution location.

Step 2: Insert an equi-join operation on the primary key of the global relation for the EIC tuples
created from step 1. Register the GQP as the query execution location.

Step 3: Insert a a operation for the EIC tuple created in step 2 with the restriction. Register the GQP
as the query execution location.

16

11

N
I

The o3 Algorithm

Step 1: Substitute the global attributes of the GSC tuple by the attributes in the R# relational
scheme.

Step 2: Store the result from step 1 as an EIC tuple, and register the GQP as the query execution
location.

The a4 Algorithm

Step 1: For each of the local databases participating in the operation, do Step 1.1 to Step 1.3

Step 1.1 Substitute the relation and attributes of the GSC tuple by the local relation and
attributes.

Step 1.2: If all the global attributes in the restriction also exist in a local relation, then insert
an EIC tuple including the restrictions; otherwise, insert an EIC tuple without the
restrictions. In either case, register the local database as the query execution
location.

Step 1.3: Insert an equi-join operation on the primary key of the global relation for the EIC
tuples created from step 1.2 with the beginning intermediate relation. Register the
GQP as the query execution location.

Step 2: Insert a a operation for the EIC tuple created in step 1 on the condition. Register the GQP as
the query execution location.

Note that some optimization is embedded in o2 and o4: when an operation can be performed

locally so that only the useful data will be returned, the information is sent to a local database. For

example, in o4 step 1.2 if all the global attributes in the restriction also exist in a local relation, this

information is included in an EIC tuple which is sent to the corresponding local database. The local

database in turn makes use of the information to return only the relevant information to the GQP.

We now turn our attention to the n algorithms.

The n Algorithms

The n algorithms are very similar to o because both of them are unary operators. Corresponding

to the o algorithms, there are four n algorithms, denoted as nl through n4. The nl and n3 algorithms

are identical to ol and o3. The n2 and n4 algorithms are described below.

17

The n2 Algorithm

Step 1: For each of the local databases participating in the n operation, do Step 1.1 to Step 1.2

Step 1.1 substitute the relation and attributes of the GSC tuple by the local relation and
attributes.

Step 1.2: Insert an EIC tuple with the primary key and as many of the local attributes
corresponding to the global attributes to be projected; register the local database as
the query execution location.

Step 2: Insert an outer equi-join operation on the primary key of the global relation for the EIC tuples
created in step 1.2. Register the GQP as the query execution location.

The n4 Algorithm

Step 1: For each of the local databases participating in the operation, do Step 1.1 to Step 1.3

Step 1.1 Substitute the relation and attributes of the GSC tuple by the local relation and
attributes.

Step 1.2: Insert an EIC tuple with the primary key and as many of the local attributes
corresponding to the global attributes to be projected; register the local database as
the query execution location.

Step 1.3: Insert an outer equi-join operation on the primary key of the local relation for the EIC
tuples created from step 1.2 with the beginning intermediate relation. Register the
GQP as the query execution location.

Step 2: Insert a n operation on the the R# created from step 1. Register the GQP as the query
execution location.

We now turn our attention to the join operator.

4.3 The Join Algorithms

There are two possible local links: (1) only one local database has the link relation corresponding

to the global link, and (2) multiple local databases have a link relation corresponding to the global

link. Further, the join can be between two relations or between an intermediate result (R#) and a

relation. Thus, we have four join algorithms as described below.

(J1) Between two global relations, and only one local database has the link relation corresponding

to the global link.

18

11

(J2) Between an R# and a relation, and only one local database has the link relation

corresponding to the global link.

(J3) Between two global relations, and multiple local databases have a link relation corresponding

to the global link.

(J4) Between an R# and a relation, and multiple local databases have a link relation

corresponding to the global link.

The J1 and J2 algorithms are identical, as described below.

Step 1: Find the local entity, next to the local link, which corresponds to the global entity to be joined.

Step 2: Substitute the global relations and attributes by the local relations and attributes.

Step 3: Insert the result from step 2 as an EIC tuple, and register the local database as the query
execution location.

The J3 Algorithm

Step 1: For each of the local databases which has a link corresponding to the global link, do Step 1.1
to Step 1.3

Step 1.1: Find the local entity, next to the local link, which corresponds to the global entity to
be joined.

Step 1.2: Substitute the global relations and attributes with the local relations and attributes.

Step 1.3: Insert an EIC tuple which joins the two local relations; register the local database as
the query execution location.

Step 2: Insert an EIC tuple which performs an outer-union of the results from Step 1.

The J4 Algorithm

Step 1: For each of the local databases which has a link corresponding to the global link, do Step 1.1
to Step 1.2

Step 1.1: Find the local entity, next to the local link, which corresponds to the global entity to
be joined.

Step 1.2: Insert an EIC tuple which retrieves the information in the local relation that we are
interested in (if EL, then take link, if LE, then take entity); register the local database
as the query execution location.

Step 2: Insert an EIC tuple which performs an outer-union of the results from Step 1.

Step 3: Insert EIC tuples which join the results from Step 2 with the left hand-side of the join.

We have presented the algorithms of the action routines for o, n, and join. With the semantic

action routines and the GSC driver, Table 5 can be translated into an EIC relation shown in Table 6.

19

4.4 Issues and Approaches

We now revisit the global query exemplified in Section 3. Suppose that CEO is not an attribute of

the Corporation entity in the alumni database. In this case, although the GSC table remains to be the

same, the corresponding EIC table will be different. The GSC driver recognizes that the "CEO"

attribute does not exist in R2 anymore, but does exist in the company database. Therefore, the o4

action routine is invoked instead of o3, as shown in Table 7. It first inserts the R3.1 tuple which

retrieves the company entity from the company database without any restriction. In addition,

register the company database as the location for query execution. Secondly, it inserts R3.2 which

joins company (R3.1) with R2 on the primary key of GCompany, i.e., join Corporation.name with

Company.name. In addition, it registers the GQP as the location for query execution. Now that R3.2

has all the attributes required for the a operation, the restriction is made in the GQP, and the result is

retained in R3.3. Figure 9 depicts the equivalent parse tree for the case.

Now suppose that not only that the Corporation entity does not have the CEO attribute, but also

the names in the Corporation column are spelled differently from the names in the Company column
Table 7 Alumni Databsse without the CEO attribute

Right-hand QueryLeft-hand Relational Right-hand Query
R# Type Scheme Construct Unit Relational Execution

Scheme Location

R1 EL Alumni Alumni [Alumni.SSN = workfor Alumni
(J 1) workfor.SSN] workfor

R2 LE Alumni U workfor R1 [workfor.name = Corpora- Alumni
(J2) Corporation.name] Corporation tion

R3.1 ES Company Company Not Company
(o4) Applicable

R3.2 (o4) Alumni U workfor U R2 [Corporation.name = Company GQP
Corporation Company.nameJ R3.1

R3.3 (04) Alumni U workfor U R3.2 [Company.CEO = Not GQP
Corporation U Company Alumni.name] Applicable

R4 EP Alumni U workfor U R3.3 [Alumni.name, Not GQP
(n3) Corporation U Company Alumni.degree] Applicable

-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I - -I -III

20

11

a [A.name, A.degree]

in the company database (e.g., IBM vs. International Business Machines, Inc.). The reader may have

noticed that the action routines described earlier assumed that the instances in different databases

have the identical format (e.g., all spelled as IBM). In order to handle these inter-database instance

problem and other incompatibilities among disparate databases, further enhancements are needed in

order to produce an even more detailed table which will resolve inconsistencies and incompatibilities

among systems. Figure 10 exemplifies the equivalent parse tree in this case.

With the detailed EIC table, addition optimization can be performed before remote local

databases are accessed, and composite information formulated. The approach presented in this paper

also allows us to perform operations over mismatched domains [9] and to handle queries with missing

information [26] systematically.

5. CONCLUDING REMARKS

Recent business changes are both enabled by and are the driving forces towards increased

connectivity. Some of the increasingly evident changes include globalization of markets requiring

21

Legend:
A (Alumni)

W.name C.name C (Corporation)
A C = w (workfor)

A.SSN W.SSN

Figure 9 Equivalent Parse Tree for the Alumni Database w/o the CEO Attriobute

'4R

a [A.name, A.degree]

= A.name

Synonym.CEO

Synonym.name

Corporation.name

U

O
P Synonym.name

Company.name

C

W.name C.name

Company
Legend:
A (Alumni)
C (Corporation)
w (workfor)

W.SSN

Parse Tree for the Alumni Database w/o the CEO Attriobute and Incompatible
Names Between Corporation and Company

complex interconnectivity of systems, and innovative information systems requiring a high level of

strategy, technology, and cross-functional integration such as global securities trading. Shadow

databases (or subject databases) have been the predominant approach practiced in the industry today.

The human intervention required in the approach is similar to a "batch-oriented" operating system.

The query processing capability presented in this paper is a step towards an "on-line, interactive" CIS

for increased connectivity. A research prototype is currently being developed to demonstrate the

feasibility.

22

A C

/
A.SSN

Figure 10

------- ---

11

I

'References

1. Abiteboul, S. & Hull, R.. (1987). IFO: A Formal Semantic Database Model. ACM Transactions
on Database Systems, 12 (4), 525-565.

2. Barrett S. "Strategic Alternatives and Inter-Organizational Systems Implementations: An
Overview," Journal of Management Information Systems. (Winter 1986-87), Vol. 3, No. 3, pp.3-
16.

3. Batini, C. Lenzirini, M. and Navathe, S.B. "A Comparative Analysis of Methodologies for
Database Schema Integration," ACM Computing Surveys, Vol. 18, No. 4, (December 1986), pp.
323 - 363.

4. Brodie, M. and Mylopoulos, J. (Ed.) On Knowledge Base Management Systems, Springer-
Verlag (1986).

5. Cash, J. I., and Konsynski, B.R. "IS Redraws Competitive Boundaries," Harvard Business
Review, (March-April 1985), 134-142.

6. Clemons, E.K. and McFarlan, F.W., "Telecom: Hook Up or Lose Out," Harvard Business
Review, (July-August, 1986).

7. Codd, E.F. Extending the Database Relational Model to Capture More Meaning. ACM
Transactions on Database Systems. 4 (4), 397-434.

8. Dayal, U. and Hwang, K. "View Definition and Generalization for Database Integration in
Multidatabase System," IEEE Transactions on Software Engineering, Vol. SE-10, No. 6,
(November 1984), pp. 628-644.

9. Demichiel, L. G., "Performing Operations Over Mismatched Domains," Proceedings of the Fifth
International Conference on Data Engineering, February, 1989, p. 36 - 45.

10. Deen, S. M., Amin, R.R., and Taylor M.C. "Data integration in distributed databases," IEEE
Transactions on Software Engineering, Vol. SE-13, No. 7, (July 1987) pp. 860-864.

11. Elmasri R., Larson J. and Navathe, S. "Schema Integration Algorithms for Federated Databases
and Logical Database Design," Submitted for Publication, (1987).

12. Frank, Madnick, and Wang, "A Conceptual Model for Integrated Autonomous Processing: An
International Bank's Experience with Large Databases," Proceedings of the 8th International
Conference on Information Systems (ICIS). (December, 1987).

13. Goldhirsch, D., Landers, T., Rosenberg, R., and Yedwab, L. "MULTIBASE: System
Administrator's Guide," Computer Corporation of America, Cambridge, MA, (November 1984).

14. Hull, R. & King, R. (1987). Semantic Database Modeling: Survey, Applications, and Research
Issues. ACM Computing Surveys. 19 (3), 201-259.

15. Hwang, H. & Dayal, U. (1981). Using the Entity-Relationship Model for Implementing Multi-
Model Database Systems. In P. Chen (Ed.), Entity relationship approach to information
modeling and analysis (pp. 237-258) . California: ER Institute.

16. Ives, B. and Learmonth, G.P., "The Information System as a Competitive Weapon,"
Communications of the ACM, Vol. 27(12), (December 1984), pp. 1193-1201.

17. Kerschberg, L. Ed. Expert Database Systems. Proceedings from the First International
Workshop. The Benjamin/Cummings Publishing Company (1986).

18. Litwin, W. and Abdellatif, A. "Multidatabase Interoperability," IEEE Computer, (December
1986).

19. Lyngbaek, P. and McLeod D. "An approach to object sharing in distributed database systems,"
The Proceedings of the 9th International Conf. on VLDB, (October, 1983).

23

20. Madnick (ed.) The Strategic Use of Information Technology. Oxford University Press, (1987).

21. Madnick and Wang, "Integrating Disparate Databases for Composite Answers," Proceedings of
the 21st Annual Hawaii International Conference on System Sciences, (January 1988).

22. Manola, F. and Dayal, U. "PDM: An Object-Oriented Data Model," Proceedings of the
International Workshop on Object-Oriented Database Systems. Pacific Grove, CA. (September
1986) pp. 18- 25.

23. Peckham, J .& Maryanski, F. (1988). Semantic Data Models. ACM Computing Surveys 20
(3), 153-189.

24. Porter, M. and Millar, V.E., "How information gives you competitive advantages," Harvard
Business Review (July-August 1985) p. 149-160.

25. Rockart, J. "The Line Takes the Leadership: IS Management in a Wired Society," Sloan
Management Review, MIT Vol. 29, No. 4 (Spring 1988) p. 57-64.

26. Shin, D.G. (1988). Semantics for Handling Queries With Missing Information. Proceedings of
the Ninth International Conference on Information Systems. 9, 161 - 167.

27. Wang, Y.R. and Madnick, S.E. "Facilitating Connectivity in Composite Information Systems,"
ACM Data Base, in press.

28. Wang, Y.R. and Madnick, S.E. "Evolution Towards Strategic Applications of Databases Through
Composite Information Systems," Journal of Management Information Systems, in press.

29. Wang, Y.R. and Madnick, S.E. (ed.) Connectivity Among Information Systems: Composite
Information Systems Proiect, Volume 1, MIT (September 1988).

24

1l

