
The Process Spectrum in Software Development:

An Exploratory Survey and Interpretation

by

Michael Cusumano

April 1989

THE PROCESS SPECTRUM IN SOFTWARE DEVELOPMENT:

AN EXPLORATORY SURVEY AND INTERPRETATION

INTRODUCTION

A question treated in fields ranging from history, sociology, and

organization studies to economics and management is why and how firms evolve

beyond "craft" or job-shop modes of production to benefit from disciplined

engineering and large-scale factory operations. Some researchers have

maintained that mass-production engineering and factory systems emerged after

industries "matured" -- when product standards appeared and companies began

paying more attention to design and process innovations that improved

manufacturing efficiency (Abernathy and Utterback). The de-skilling or

routinization of work, high-levels of control over production tasks and process

flows, divisions and specialization of labor, mechanization and automation,

interchangeable parts, and standardized designs were some of the major

innovations that have come to characterize large-scale factory systems in a

variety of industries (Woodward, 1965; Chandler, 1977; Hounschell, 1984). In

more generic terms, these characteristics reflect "bureaucratic" organizational

structures and marketing strategies focusing on low costs and low prices,

perhaps at the expense of reductions in product variety or functionality (Porter,

1980).

While some academic researchers, managers, workers, and other critics

have found fault with factory systems and bureaucracies for the constraints

they place on employee discretion and creativity, bureaucratic approaches have

become extremely common in the industrialized world because they are efficient,

given the problems that most organizations face and the limited solutions or

technologies most have at their disposal (Miewald, 1970; Perrow, 1972; Jacoby,

1

1973). Without bureaucratic engineering and factory systems, few people would

ride in cars or have access to a wide range of industrial products and services.

On the other hand, too much standardization or rigidity in products and

processes can lead to customer and employee dissatisfaction and decrease the

ability of firms to meet competitive challenges such as changes in consumer

desires and technology. The classic example of this was Ford's dramatic decline

in market share during the mid-1920s, despite rising levels of productivity, when

market demand and competitor offerings shifted to a greater variety of

differentiated products (Abernathy and Wayne, 1974; Abernathy, 1978).

There are, in addition, interdependent organizational, technological, and

strategic issues: A structured, standardized process may be inherently

unsuitable for a dynamic environment and an unstandardized technology

requiring complex development tasks. In fact, variability in individual

productivity and quality, along with continual evolution in technology and

market needs, have prompted debates over whether software development will

always be more like an "art" or a "craft" rather than a technology suitable for

the discipline of engineering processes and factory-like organizations (Brooks,

1975; Shooman, 1983; Hauptman, 1986). It is this issue -- what do software

producers look like, in terms of basic organizational and process characteristics,

and what should they look like -- that prompted this study. The research

began with an exploratory survey that tested a simple hypothesis:

Hypothesis: Not all managers in software firms ignore standardization and

control over tools and processes, or reusability of components -- concepts

associated with disciplined engineering and factory production in other

industries. Rather, firms probably fall into a spectrum, with some managers

emphasizing factory-like concepts more than others.

2

This paper describes the rationale behind different types of organizations

and processes, the survey of managers, and the results, as well as offers a

framework for understanding how firms may segment their products and

processes, as well as utilize other measures to improve efficiency while

retaining enough flexibility to offer customized or unique products and adapt to

changes in technology or the marketplace. The analysis of specific facilities,

including performance measures, is reported elsewhere and part of continuing

research. 1

RATIONALE FOR A PROCESS SPECTRUM -- EVEN IN SOFTWARE

Software products fall into two broad categories: basic or system

software, and applications. Basic software serves to control the primary

functions of computer hardware, and includes operating systems, database

management systems, telecommunications monitors, computer-language

translators, and "utilities" such as program editors. Applications software sits,

at least figuratively, on top of basic operating systems, and performs specific

"user-oriented" tasks. These again include pre-written or "packaged" programs

such as for payroll accounting, spreadsheet analysis, word processing, and other

standard operations, as well as "custom" software written for specific tasks and

customers, such as in the banking, financial services, manufacturing,

government, or defense sectors. Another type of application are programs

written as parts of integrated hardware and software systems (U.S. Department

of Commerce, 1985).

One way to view the design and production of these programs is as a

process of analysis and translation: analyzing a problem and then breaking it

down into a series of smaller tasks expressed in manner ultimately

3

understandable to a computer. Programmers begin by translating problems into

design specifications and then design specifications into "source code" written in

a high-level (English-like) computer language. The next step is to translate the

high-level program into a lower-level machine-language called "object code,"

consisting of zeros and ones that serve as instructions for the computer

hardware. Special computer programs called compilers usually perform this

transformation automatically, although design of the compilers, as well as prior

steps in program development, frequently require considerable human thought

and judgement (Arden: 564).

The development cycle continues in that software must still be tested and

frequently changed, repaired, or enhanced (maintained), before and after

delivery to users. In terms of time and costs, excluding those incurred during

operations and maintenance, testing is usually the most labor intensive phase,

followed by implementation (detailed design and coding) and high-level design.

For a product that continues in service with periodic modifications, post-

delivery maintenance may become by far the most costly activity, consuming as

much as 70% of total expenditures over its lifetime, according to commonly-

cited data on life-cycle costs (Boehm, 1976; Ramamoorthy et al., 1984).

While most software projects go through similar phases that appear

sequential, the production process is more iterative, i.e. developers go back and

forth among requirements analysis, specification, program design, coding,

testing, redesign, re-testing, and so on. Experienced programmers or managers

may give precise estimates of the time and labor each phase requires for

particular applications, although numerous uncertainties upset schedules and

budgets and thus make at least some software development something less than

an exact science or engineering discipline. For example, project requirements

might contain new functions that become difficult to build, customers often

4

change their minds about features they desire, and programmers usually take

different amounts of time to perform similar operations. Furthermore, the

larger projects become in terms of total length of code, numbers of components,

and numbers of people, the more complex the interactions required become, and

the greater the uncertainty of'the final product's cost, schedule, and

performance.

Variations in programmer performance appear to stem from differences not

simply in native ability, but also in the particular experiences of the individual.

A programmer who has written an inventory-control system in the past probably

can complete another inventory-control system in less time than it would take a

novice. The relationship of experience to productivity reflects the reality that

software, though a generic type of product or technology, may vary enormously

in content. The number and type of operations it must perform in each

application greatly affect the amount of thought, time, and experience required

to solve problems and write computer code. The need to adjust to each

application or situation makes it difficult for producers to establish and

maintain standards, controls, and schedules, as well as divide labor, automate

tasks, and reuse components -- the essence of factory production.

Software thus appears to have characteristics -- little product or process

standardization to support economies of scale in production operations, wide

variations in project contents and work flows, planning and production tasks

that are difficult to divide or de-skill -- that make disciplined engineering or

factory-like operations difficult and perhaps unwise or impossible to introduce

for many firms and applications. Software producers have to contend not only

with constant evolution in technology and customer requirements, but also with

demand for products with customized features.

To accommodate such a "non-routine" technology and dynamic environment,

5

many software producers embrace highly flexible, even "ad hoc" organizational

structures and production processes, with little use of formal procedures or

standards, such as in job shops or craft production in other industries. They

hire mainly experienced or talented programmers, provide a loose set of work

guidelines and product specifications, and rely on small teams to complete

projects aimed either at customizing a product for a particular customer or

developing a "packaged" program for mass-replication and distribution. These

practices were essential in the early days of the industry, when product

requirements were new and changing constantly, and programs were small, due

to hardware limitations. Craft-oriented job-shop approaches continue to work

well when product requirements are new or ill-defined, and software projects

can be completed by a small group of people working in an integrated team.

But, for many companies and in many situations, while small teams of

experts may be desirable, they are not practical. Shortages of skilled people,

lengthy and complicated projects to finish within time or budget constraints,

and products that different sets of people must maintain in the future, provide

huge incentives for managers to adopt a more structured process -- covering

methods, tools, procedures, controls, worker skills, and product components or

designs -- to reduce skill requirements and systematically recycle process or

design knowhow and other key factors of production among different projects.

To structure software development or similar technologies successfully, however,

managers must solve two fundamental problems that require linkages in

competitive strategy and market positioning, organizational structure and

personnel management, and product and process technology development: when

to introduce a more formalized and standardized process; and how to achieve a

balance between efficiency and flexibility acceptable to workers and customers

as well as supportive of the firm's competitive positioning.

6

This very practical dilemma for managers reflects a long-standing academic

debate. One set of positions, represented by various contingency theorists,

range from the assertion that there is no one best way to do anything to the

belief that optimal selections are contingent on if not determined by factors

such as the stability of the environment (Lawrence and Lorsch, 1967), the

characteristics of the technology (Woodward, 1965; Perrow, 1967), the size of

the organization (Blau and Schoenherr, 1971), or political processes within the

firm (March and Simon, 1958; Pfeffer, 1981). Others argue that managers can

significantly shape the structure of their organizations and the technology--

tools, techniques, information, and other elements used to make products or

services -- they require by selecting different competitive positions (Child, 1972;

Chandler, 1962 and 1977; Miles and Snow, 1978).

Contingency factors appear to account for no more than 50 to 60 percent

of the variability in structure among organizations (Pugh, 1973; Robbins, 1987:

176). But if they exert even this much influence on the options open to

managers, and optimal choices, then one might hypothesize that all software

producers -- or all "successful" software producers -- should look like

unstructured, highly flexible job shops, not "factories." But there should also

be exceptions -- if managers can identify segments of their industry where

relatively standardized processes and product components are appropriate at

least for some customers, and then introduce a more structured or even

"bureaucratic" system. This would require not simply an intermediate position

between craft and factory production in terms of volume of output or scale of

operations. Factory-like software facilities would have to reconcile seemingly

contradictory elements, such as the ability to standardize process, skills, and

perhaps product components, but still produce unique or customized products

rather than engage in mass production. These organizations would also have to

7

evolve along with the technology, or risk falling hopelessly behind industry

leaders and customer requirements.

The characteristics factory-like software facilities need to embrace also

would make it difficult to categorize them in terms of conventional

organizational designs or economic justifications based on economies of scale

and mass production (Mansfield, 1985). An example is Joan Woodward's

identification of three basic types of production: unit or craft production; mass

production; and continuous processing, as in chemical manufacturing. In unit

production, which relied on highly skilled workers, little formalization of

organizational rules and procedures, and little centralization of decision-making

authority, tasks were non-routine and usually manual. Mass production dealt

with more complex but repetitious operations susceptible to standardization,

economies of scale, formalization, divisions of labor, and mechanization.

Continuous processing, since it was highly automated, did not usually require

extensive centralization, formalization, or divisions of labor (Woodward: 35-50).

At first glance, software development, except for electronic replication of

finished programs, appears to fall neatly into the realm of unit or craft

production -- making one product at a time for a specific customer or set of

requirements, rather than mass-producing components and finished products

through a sequential assembly process or continuous automated operation. Yet,

some software producers began adopting formal rules and procedures, and

divisions of labor, as early as the 1960s. They also managed to "mechanize"

some operations, i.e. support them through computer-aided systems, and

"automate" others, i.e design them to be performed automatically, with little or

no human intervention. Thus the histories of actual firms suggests that not all

software development falls into the category of unit or craft production, not

even in the early days of the industry.

8

A classification problem arises with another widely-accepted organizational

scheme elaborated on by Henry Mintzberg (Mintzberg, 1979). In this

terminology, factory-like software facilities probably came closest to a

"professional bureaucracy" -- with standardized but specialized skills,

procedures, and tools controlling the work process rather than a conventional

administrative apparatus. The notion that professionalization of the work force

can serve the same functions as bureaucratic administration in mass-production

industries, while allowing for more flexibility to adapt to different customer

needs or changes in the work flow, dates back to the work of Arthur

Stinchcombe on the construction industry in the late 1950s (Stinchcombe, 1959).

Other examples of professional bureaucracies include engineering consultants and

hospitals.

But descriptions of professional bureaucracies claim they rely on

decentralized structures -- lots of individual or small-group activities -- and

little formal divisions of labor. In contrast, accounts of factory-like approaches

to software development in Japan (Matsumoto, 1987; Cusumano, 1989) as well as

in the U.S. (Orlikowski, 1988), sometimes located teams at customer sites,

although they generally did this in the planning and high-level design phases

and attempted to centralize detailed design and programming operations in

large-scale, capital-intensive facilities. Professional bureaucracies, by definition,

also consisted of professionals that had years of education in specific fields.

Software producers nominally adopting factory practices hired mainly college

graduates unskilled in software and then trained them to use a standardized

methodology and tool set (built, of course, by more expert people).

In this sense, at least some software facilities contained elements

characterizing mass-production factories in other industries, which some

theorists have labeled "machine bureaucracies" (including divisional structures in

9

large organizations): standardized tasks, unskilled employees grouped into

functional departments, centralized authority, high levels of rigid mechanization

or automation, and formal divisions of labor. Yet tasks in factory-like software

facilities did not seem completely de-skilled; most projects required technical

abilities, adaptation, and thought on the part of designers and people who built

and tested products. Functional departments and divisions of labor also did not

appear so rigid, and managers routinely used matrices -- project teams

consisting of members borrowed temporarily from functional departments--

which Mintzberg and many others have associated with a loosely structured

"adhocracy," a term referring primarily to teams of specialists relying on ad hoc

structures and procedures (Mintzberg, 1979: 431-467).

These organizational types contrast to a "simple structure," characterized

by little or no formal procedures or processes, decision making done by one

person or a small group, such as in a small family-owned store or

entrepreneurial firm. Simple structures were apparently common in the early

days of the software industry and still seem to characterize small "software

houses." Yet, as many software producers have discovered, once organizations

and production operations grow over time, more elaborate structures and

controls become essential (Woodward, 1965; Mintzberg, 1979).

Another classification scheme, suggested by Charles Perrow, is more useful

in that it focuses on task variability and how personnel analyze problems (Table

1). Organizations dealing with "routine technologies" encounter few exceptions

and thus face problems that, over time, become easier to analyze and solve

through formal procedures or tools. This standardized process eliminates the

need to have large numbers of highly-skilled (and usually expensive) employees

capable of re-inventing solutions each time problems occur. Firms dealing with

"engineering technologies" have more exceptions, but these are still relatively

10

well-defined and, according to Perrow, can be managed systematically. Perrow

contrasts routine and engineering technologies with "craft" technologies, defined

by a limited range of variability but problems that were ill-defined and difficult

to analyze, as well as "non-routine" technologies, which indicated many

exceptional and difficult tasks (Perrow, 1967).

But even this scheme does not adequately categorize factory-like software

organizations, which clearly exhibited some features of routine, mass production.

Factory-like software facilities appeared to standardize only some tasks that

were only relatively de-skilled; they relied on only some divisions of labor and

only relatively formalized rules and procedures -- compared to modes of

operations before managers explicitly adopted more structured approaches, or to

explicitly "adhocratic" firms or organizations with little or no formal structures.

THE SURVEY OF MANAGER EMPHASES

The claims of some software producers to have adopted factory-like

practices, in both Japan and the U.S., prompted this author to identify and

examine those companies that explicitly tried to organize the production of

commercial software (programs written for sale or inclusion with hardware) by

establishing what managers called "software factories" or, at least, by adopting

what managers termed factory strategies and objectives. These firms consisted

of System Development Corporation (SDC, currently a division of Unisys) in the

U.S., which launched a small factory in the mid-1970s before disbanding it after

three years due to the preference of project managers to development software

in integrated groups at customer sites in the U.S. (Cusumano, 1988a); and

Hitachi, Toshiba, NEC, and Fujitsu in Japan (Cusumano 1987a, 1987b, 1987c,

1988b), which launched several factories or factory-like efforts between 1969

and the early 1980s (Table 2). While in certain key respects the customers SDC

11

I__lll__l·XI__II__��---�--1---111.--_1 .--------I�_�

aimed at were very different from those the Japanese served, these firms were

comparable to the extent they all made unique systems or customized

applications software for large computers, and had to manage lengthy and often

extremely complex projects. 2

A problem with this sample arose in that, while the term "factory" was

particularly popular or acceptable in Japan, U.S. and European firms after SDC

tended not to use the term factory except to describe standardized tool and

methodology sets. But there were estimates of as many as 200 enterprises in

the U.S. alone with more than 1000 software personnel in centralized facilities,

emphasizing -- at least to some degree -- standardized designs and reusable

code components, common tool development, formal testing and quality

assurance procedures, productivity measurement and improvement efforts, and

process research (Jones, 1986: 243). In addition, interviews and historical

research indicated that IBM in the U.S. was probably the first company in the

world to create a structured, bureaucratic process and organization for

software, which it did in the mid-1960s to develop operating systems for the

System/360 family of computers. Yet IBM has never used the term "software

factory," and has continued to label its facilities "laboratories" or "programming

centers." Thus the existence of large software producers around the world,

some explicitly using the term factory and others avoiding it though seeming to

follow some factory-like practices, indicates that mere adoption of a name,

though it may reflect specific management objectives, is not in itself

meaningful.

To provide some perspective on what managers emphasized apart from the

labels they used, a next step in the research was to survey managers at 52

large software facilities (25 Japanese, 26 U.S., 1 Canadian) at 30 companies in

North America and Japan. The survey was exploratory in the sense that it

12

simply tested to see if current managers embraced emphases adopted earlier in

the SDC Software Factory, rather than trying to present a definitive model of

what constituted a "factory" approach.

The published descriptions and stated objectives for the SDC Software

Factory provided a comprehensive formulation of what a basic factory for

software might look like. In particular, these materials suggested eight criteria

relating to inputs standardization (emphasis on reuse of software code) and tool

or process standardization and control. SDC relied on or hoped to build a

centralized program library to store modules, documentation, and completed

programs; a central database to track production-management data; a uniform

set of procedures for specification, design, coding, testing, and documentation;

standardized project databases to guide individuals and groups constructing

different parts of a program; and an on-line computerized interface linking

various tools and databases. These five variables constituted the core process

and too, questions in the survey. Since another type of factory strategy should

be to produce standardized components and then to reuse them, rather than

"reinventing the wheel" with every customer order, three questions were

included about design for reuse, execution of reusability, and control

(monitoring of reuse rates).

Major software producers in Japan and North America were identified

through literature surveys and lists of software producers; further investigation

led to the identification of senior managers either responsible for overall

software engineering management or with responsibilities over several projects

and with sufficient experience to present an overview of practices for an entire

facility or product division. The intention was to study manager emphases at

the facility or product-division level, since software practices usually differed

significantly among divisions in diversified or large firms, and some diversity

13

1 _______1_�1___11___1_--_11111___ �-����-�

seemed useful to meet different market or internal needs.

Managers who agreed to participate in the survey received a questionnaire

containing the eight core questions plus more than a dozen others asking for

supplementary data. 3 For the core questions, they had to rank their emphasis

and impression of general policy at their facilities on a scale of 0 to 4, as well

as to comment on each answer. Optional questions also requested performance

measures such as actual rates of reused code in a recent sample year. The

intent of the survey and meaning of questions was explained at least to the

individuals in each firm handling distribution of the questionnaires. Japanese

managers were sent questionnaires in English but asked to comment on each

question either in Japanese or English.

The sample was limited to facilities or departments making products that

usually require large amounts of people, time, and tools to develop, and which

might therefore provide incentives for managers at least on the facility level to

seek similarities and common components or tools across different projects:

operating systems for mainframes or minicomputers ("systems" software); and

real-time applications programs, such as for factory control or reservations

systems ("applications" software). The analysis that follows further broke these

down into telecommunications software, commercial operating systems, industrial

operating systems, real-time control applications, and general business

applications.

All the Japanese firms contacted filled out the survey; about 75% of the

other firms contacted completed the survey. To check for consistency in

answers, two managers at each firm or facility were asked to respond, although

only about one-third the companies returned two completed surveys for each

type of facility. Among those, the answers were similar, differing by only a few

percentage points, and therefore were averaged. Two thirds of the answers,

14

however, represent single responses.4

RESULTS

A factor analysis procedure with varimax rotation indicated that the eight

questions constituted two approximately orthogonal factors, listed as the inputs

and tool and process dimensions in Table 3. Both factors had an eigenvalue

rounding to approximately 1.0 or higher and together explained nearly 82% of

the variance in the survey answers; the inputs dimension alone accounted for

62% of the variance. For each dimension, the variables with a strong loading

(minimum 0.4) were summed and used to test differences in the average

Japanese and North American scores, as well as to test if product type or

country of origin of the facility were significantly correlated with the process

and reuse scores. 5

The data reported in Table 4 reflects scores for each dimension; Table 5

summarizes the average Japanese and North American responses to the inputs

and tools/process dimensions. Table 6 presents the results of analysis of

variance tests to determine the effects of product types or country of origin on

the scores reported for the two dimensions. Tables 7 and 8 compare reuse

rates reported by the Japanese and North American facilities, and analyze

correlations with type of product and country of origin. Table 9 is a regression

analysis looking at the correlation between manager responses and reported

reuse rates.

The results support the hypothesis that there is a spectrum among

managers in how they answered the survey questions. These answers also

corresponded closely to case studies in progress of individual firms. Thus it

clearly seems that, despite potential views of software development as largely a

craft, art, or "job-shop" type of operation, some managers at facilities making

15

similar types of products were able to place more emphasis on control and

standardization of inputs (reusable modules of code) as well as basic tools and

process questions. The analysis of variance tests confirmed that product types,

at least defined generally, had no significant impact on where managers scored

on either of the dimensions surveyed.

The data also confirm there are probably national differences in reusability

emphasis. Japanese firms scored much higher on the inputs (8.7 to 5.9)

dimension (significant at 0.001), while there was no significant difference in

Japanese and North American responses on the tools and process dimension.

Reported actual reuse rates in Japan were also significantly higher than in

North America (34.8% versus 15.4%), across all product types. The reuse data

are very tentative and subject to different methods of counting across firms.

Nonetheless, they suggest that Japanese applications producers, who clearly are

marketing customized products, as well as Japanese systems producers, who sell

basic software, both tend to rely on reused code. Recycling standardized

components at Japanese applications producers is probably due to the huge

demand for custom software, as opposed to packages (low demand for which

appears to stem from the desire of Japanese firms to have unique features in

their software), and the expense of writing similar applications for different

customers from scratch with each order (Table 10).

The emphasis on reuse in commercial operating systems and other types of

software also seemed to reflect process decisions to maximize efficiency, even

with nominally unique products. Compatibility of a firm's hardware

architectures and operating systems across different size machines, such as with

Digital's VAX line, is an important factor facilitating reuse. As indicated in

Table 9, however, it also appeared that manager emphases had some impact of

this variable. There was a significant correlation between high emphases on

16

reusability and high reported rates of actual reuse.

Figure 1 presents another configuration of the survey responses. Some

clearly fell into the upper right-hand corner of the matrix and thus could be

characterized as "job shops," with little or no emphasis on standardization,

control, or reuse. Those in the lower left appeared more like "flexible"

factories or integrated design and production systems in the sense that

managers strongly emphasized reuse as well as standardization and control in

the design and construction of new products that were both unique and

customized for different customers. Most responses also fell on the right side

of the matrix, and U.S. responses on tool and process questions were not

significantly different from the Japanese, though most (but not all) of the

facilities in the lower right were Japanese. The survey of managers thus

indicated that (1) a spectrum, including factory-like emphases, existed in both

Japan and North America, independent of product type; and (2) Japanese firms

were significantly different at least in their emphasis on one factory-like

characteristic: reusability.

Some firms in the survey appeared to be in the "high-end" of the market.

These included Draper Laboratories, Honeywell, and Nippon Electronics

Development, which designed unique command-control missile systems, satellite-

control systems, and other programs largely for government or specialized use.

They did not emphasize reuse of code across different projects possibly because

most of their work was unique from job to job. However, managers at some

of their direct competitors -- Unisys/SDC, TRW, Unisys/Sperry, Toshiba--

placed much more emphasis on reuse as well as other measures of process

control or tool standardization and integration that might be associated with a

more factory-like approach. This again suggests that various process

approaches are possible even in similar market segments.

17

The only firms in this sample that developed applications packages on a

significant scale were IBM, Cullinet, and Computervision. They also showed a

range in emphases, suggesting IBM placed relatively more emphasis on reuse,

while Computervision appeared to operate more in a job shop or perhaps

laboratory mode, with very little emphasis on the variables in the survey.

There are several caveats to this survey, however. I. t, of course,

represents no more than a sampling of the self-reported opinions of one or two

middle managers from major software producing firms, rather than a

comprehensive analysis of actual practices in projects done within product

groups in partic:ular firms. Managers might be exaggerating or understating

their emphases on the various questions, although the respondents were

carefully selected and an attempt was made to examine the comments and other

documents, such as technical articles, and to interview managers in person or

by phone, and visit some actual sites, to see if answers corresponded to

realities. Detailed interviews and/or site visits were conducted for NT&T,

Mitsubishi, Fujitsu, NEC, Hitachi, Digital, IBM, Data General, Unisys/SDC,

Draper, Nippon Systemware, Hitachi, Hitachi Software Engineering, and Nippon

Business Consultants.

Another reservation regarding the survey is that, although managers were

asked to report on general practices in their areas, some companies reported

high levels of variability within projects. This appeared especially true in the

cases of Digital and Hitachi Software Engineering. In Digital, while there were

rigorous corporate guidelines, top management placed more emphasis on the

characteristics of final products rather than the development process, and

individual groups were allowed considerable autonomy, especially in applications.

Thus, while there was a management policy of stressing reusability, some

project managers, even within the VAX and VMS product areas, did not appear

18

to emphasize reuse at all.6 In the case of Hitachi Software Engineering, some

groups worked directly within Hitachi's software factories, following the factory

procedures and using the factory tools with the same degree of conformity as

Hitachi employees. Other groups worked on independent projects where

customers determined the standards. For this reason, there was a large

variation within Hitachi Software Engineering as a company and within product

areas, and thus managers felt compelled to score themselves on the low end of

the spectrum, even though they managed many projects using procedures

identical to Hitachi's. 7

Furthermore, since the sample size is relatively small in absolute numbers,

the results of this analysis must be considered as no more than suggestive of

managerial emphases existing at the participating software facilities and in the

two geographic settings. It should be noted, however, that the surveyed

Japanese firms accounted for what seems to be the majority of software

commercially written and sold in Japan, while the surveyed North American

firms included most of the large producers of operating systems and applications

software, and other basic software products such as data bases. 8

There is also other evidence supporting the observation that firms, in both

software and computer hardware, position themselves through different

combinations of price and product performance. Surveys of nearly 20,000 users

of products offered by U.S. and Japanese vendors in the Japanese market

indicated large variations in customer satisfaction, with Japanese firms trailing

U.S. vendors mainly in basic software and Japanese vendors leading U.S. firms

in areas such as hardware price-performance and applications system

engineering. Furthermore, in examining pricing data, the same surveys indicated

a clear spectrum among U.S. and Japanese vendors in this measure as well, with

Japanese prices averaging about half those of U.S. vendors (Cusumano, 1988c).

19

INTERPRETATION: STRATEGIC POSITIONING

Compared to conventional production-system archetypes, factory-like

software facilities in Japan or elsewhere seemed to fall somewhere in the middle

of a continuum of production approaches and perhaps product types as well. In

other industries, this spectrum stretched from loosely-structured job or craft

shops on one end to highly structured organizations on the other, integrating

engineering and factory operations oriented toward mass production (Figure 2).

In software, case studies suggested that factory-like approaches, especially in

applications areas, relied on tools and methods that made them resemble what

might be termed "flexible design and production systems"' such as in

application-specific semiconductor design and fabrication (ASIC), or integrated

computer-aided design and manufacturing (CAD/CAM) and flexible manufacturing

systems (FMS) in a variety of industries (Harvard Business School, 1986).

Figure 2 suggests that, in firms competing in various types of industries,

this combination of flexibility and efficiency comes through the use not of

fully-standardized methods, tools, components, and designs, but through

limitations on the range of products and customers served, and planning for

economies of scope -- savings from some joint use of inputs or factors of

production that, once acquired to make a particular product, might be used to

make others at less cost than would otherwise be the case, as in reuse of

designs or process RD (Baumol et al., 1982; Lorange et al., 1986). Also useful

to achieve this balance are process and quality standardization and control, a

combination of tailored and centralized process R&D, standardization of worker

skills, some divisions of labor, systematic reuse of product designs or code, and

extensive use of computer-aided tools. In practice, software firms did not use

factory approaches for all types of products or customers, but only for those

20

that were relatively well-understood and had some commonality across different

projects .

This notion of putting only some work in factories and less routine work

in other facilities (less-structured subsidiaries, software houses, or laboratories,

for example) reflects another observation about how managers in factory-like

software facilities managed product development: They adopted different

strategies and structures to compete in different segments of a larger market--

software. Figure 3 summarizes how firms appeared to segment products,

processes, and customers, based on a series of case studies. These suggest

strongly that successful factory-like approaches targeted the "middle" of a

market in terms of product price and functionality, stressing reusability and

economies of scope in designs, methods, tools, and application-specific

knowledge, and appealing to customers that seemed sensitive to a combination

of price and product performance.

On the other hand, firms in both the high-end, "full custom" business and

those making standardized packages appeared to require somewhat loosely-

structured, project-centered approaches that were different with each product

and relied heavily on personnel who were highly skilled and knowledgeable

about particular applications. Unique projects and highly-skilled personnel were

probably more expensive to manage, although this probably does not matter to

the producer if customers of premium products or services pay adequately high

prices or if a package becomes a "best seller" and reaps large revenues, since

there should be minimal incremental expenses in software (excluding efforts

needed for distribution and marketing), since replication of a program is a

simple, nearly instantaneous electronic process.

Factory-like software facilities thus combined some of the flexibility of job

shops, in that they made unique or customized software, with some of the

21

efficiency of factory modes of production. This positioning very much

resembled the category of the "analyzer," posed by Miles and Snow. These

firms adopted follower strategies in the market place, often allowing small,

entrepreneurial firms ("prospectors") to lead in inventions. The analyzers then

analyze these products and, through a more structured organization or process,

try to introduce similar or superior products at lower prices. Yet, in

combination with more controls and emphases on efficiency than the innovating

firms, analyzers had to be flexible enough to respond quickly to the arrival of

new products and markets. They also stood in contrast to "defenders," who

attempt to hold high-priced niches or defend mass-market positions through cost

reduction, and "reactors," who seem to follow no one particular strategy but

mainly respond to the actions of others (Miles and Snow, 1978; Miles et al.,

1978).

The electronic nature of production operations in software facilities brings

up another distinctive characteristic of software factories that is not the focus

of this study but which has become a major area of research in itself:

Software factories represented a new type of production organization, where the

"workers" were different from employees in conventional manufacturing. Not

only was there was no conventional mass production; but even coding jobs were

relatively skilled and technical, while most "work" consisted of design, testing,

and redesign on computer screens, as well as meetings to coordinate divided and

cooperative tasks, and filling in reports or writing documentation (Hirshhorn,

1984; Zuboff, 1986; Orlikowski, 1988).

It follows that managerial tasks in factory-like software facilities were

also different. Conventional decision-making algorithms relying on economies of

scale and learning curves to determine precisely the time and cost of different

tasks did not readily apply. In fact, some writers even lamented the appearance

22

of "dis-economies of scale": average productivity levels decreasing as the

number of members in a project, or the size of a program, rose beyond a

certain manageable level (Brooks, 1975; Boehm, 1981; Banker and Kemerer, 1988).

The reality of software development was that managers faced a complex,

iterative series of design, product-construction, testing, and redesign operations,

for products that were unique or customized and thus likely to encounter some

unpredictable or new requirements. What software factories achieved was to

place some boundaries on this unpredictability, in both products and processes.

CONCLUSION

It seems clear that software producers, like firms in other industries, do

not all fit neatly into any one categorization. They were not conventional

production organizations, which provided the impetus for categories such as job

shop and factory. Still, firms seemed to fall into a spectrum -- in terms of

manager emphases, prices, and customer responses to their products and

services.

A related conclusion follows: The quest for an absolute answer to whether

software development is or should be managed more like an art or craft rather

than science or engineering is probably fruitless. This is because the nature of

software development, and the optimal process or organization, depend on the

specific tasks at hand. To the extent that these tasks differ with market

segments, product types, and a firm's competitive positioning, whether software

is appropriate for a factory-like process is a strategic choice subject to

management discretion. In other words, management choices, in response to the

characteristics of software products and customers, the technology, and perhaps

features specific to programmers and programming organizations, can result in a

range of process and structural variations in software organizations. The most

23

relevant concern for managers should thus be not how to label software

development but how to create an effective balance: of efficiency, such as

standards and tools; and flexibility -- the ability to adapt to different customer

needs as well as change and evolve, through the use of effective but versatile

procedures, methods, tools, controls, and components, as well as individual or

organizational skills.

This study thus supports both strategic and contingency perspectives:

Factory-like approaches to software development, though important for what

they reveal about organizations and technology management, seem appropriate

only for some product or market segments and some competitive strategies. Be

that as it may, another thought emerging from this research may find little

support among those who would insist software development forever remain an

art or craft: Where more structured approaches appear possible and

advantageous to introduce, adhocratic or job-shop practices represent a waste

of human and capital resources, and an opportunity for management to improve

the competitive capabilities of the firm.

There seem, in fact, many advantages to pursuing a more structured

process, if at all possible. Job- or craft-oriented approaches make it difficult

for software developers to share experiences in problem solving and apply

potentially useful solutions arrived at in one project -- such as tools, methods,

procedures, and product designs -- to other projects. One might even argue

that both the difficulty or inappropriateness of product and process

standardization across different projects, as well as insufficient efforts toward

this end, contribute to the recurrence of similar problems year after year.

Solving the same problems over and over again wastes valuable human effort,

taking away time that skilled personnel might spend in improving products or

inventing new ones or new processes. The task facing software producers -- as

24

many of their counterparts in other industries have already realized -- is not

only to remain adaptable to change but to identify areas of repetition or

recurring problems and then create a strategy and infrastructure -- of tools,

methods, reusable designs, and people -- that might turn this more systematic

management of product and process development into a competitive variable.

25

____II�Xll___ill___I__.�.__��-� _

Table 1: SOFTWARE-FACTORY CASE STUDIES

= Operating Systems, Database Management Systems, Language
Utilities, and Related Basic Software

= General Business Applications
= Industrial Real-Time Control Applications
= Telecommunications Software (Switching, Transmission)

Notes: All facilities develop software for mainframes or minicomputers.
Products and Employee figures refer to 1988 estimates, except for SDC.

Facility/Proiect Products EmDloyees

Hitachi

SDC

NEC

Hitachi Software Works

Santa Monica Software Factory

BS 1500

RT 200
(1976)

Software Strategy Project

(Fuchu)
(Mita)
(Mita)
(Abiko)
(Tamagawa)

Toshiba

Fujitsu

Fujitsu

Hitachi

BS
RT
App
Tel
Tel

Fuchu Software Factory

Kamata Software Factory

Numazu Software Division
(Numazu Works est. 1974)

Omori Software Works

2500
2500
1250
1500
1500

RT 2300

App 1500

BS 3000

App 1500

Source: Cusumano, 1989: 26, based on company data and interviews.

26

Key: BS

App
RT
Tel

Est.

1969

1975-76

1976

1977

1979

1983

1985

11

Table 2: ORGANIZATIONAL STRUCTURE AND TECHNOLOGY

Structure Technology Tasks Problems Characteristics

Machine Routine, Few exceptions, Standardized and de-skilled
Bureaucracy Mass well-defined work, centralization, divisions

Production of labor, high formalization
of rules and procedures

Professional Engineering Many exceptions, Standardized and specialized
Bureaucracy well-defined skills, decentralization, low

formalization

Adhocracy Non-routine Many exceptions, Specialized skills but few or
ill-defined no organization standards,

decentralization, low
formalization

Simple Unit or Few exceptions, Few standardized specialized
Structure Craft ill-defined skills, centralized authority

but low formalization

Sources: Woodward, 1965; Mintzberg, 1979; Perrow, 1967 and 1972; Robbins, 1987.

27

. ... _. I . __

Table 3: SURVEY AND SAMPLE OUTLINE

SAMPLE: N = 51 (25 Japanese, 26 U.S., 1 Canadian)
SURVEY PARTICIPANTS: Software Development Managers
ANSWERS KEY:
4 = Capability or policy is FULLY USED OR ENFORCED
3 = Capability or policy is FREQUENTLY USED OR ENFORCED
2 = Capability or policy is SOMETIMES USED OR ENFORCED
1 = Capability or policy is SELDOM USED OR ENFORCED
0 = Capability or policy is NOT USED

SURVEY OUESTIONS:

Dimension I: InPuts Standardization (Max. Score = 12)
1. Formal management promotion (beyond the discretion of individual project

managers) that new code be written in modular form with the intention
that modules (in addition to common subroutines) will then serve as
reusable "units of production" in future projects

2. Formal management promotion (beyond the discretion of individual project
managers) that, if a module designed to perform a specific function (in
addition to common subroutines) is in the program library system, rather
than duplicating such a module, it should be reused.

3. Monitoring of how much code is being reused

Dimension II: Tool and Process Standardization and Control (Max. Score = 20)
4. Project data bases standardized for all groups working on the same

product components, to support consistency in building of program
modules, configuration management, documentation, maintenance, and
potential reusability of code.

5. A system interface providing the capability to link support tools, project
data bases, the centralized production data base and program libraries.

6. A centralized program library system to store modules and documentation.

7. A central production or development data base connecting programming
groups working on a single product family to track information on
milestones, task completion, resources, and system components, to facilitate
overall project control and to serve as a data source for statistics on
programmer productivity, costs, scheduling accuracy, etc.

8. A uniform set of specification, design, coding, testing, and documentation
procedures used among project groups within a centralized facility or
across different sites working on the same product family to facilitate
standardization of practices and/or division of labor for programming tasks
and related activities.

Total for 8 Variables (Max. Score of 32 = 100%)

28

Table 4: SUMMARY AND RANKING OF SURVEY SCORES (%)

SAMPLE: N = 51 (25 Japanese, 25 U.S., 1 Canadian)

Notes: * Indicates Japanese facilities
@ Indicates averaged responses

Max. Score = 12 20

COMPANY/FACILITY Inputs Tools/Process

Telecommunications Software
*NT&T Applications@ 11 16
*Mitsubishi Electric 9 17
*Fujitsu Communications 9 15
*NEC Switching Systems 9 14

AT&T Bell Labs Applications) 7 16
Bell Communications Research 6 15

*Hitachi Totsuka Works 6 13
*NT&T Systems@ 6 12

Bell North Research 5 20

Commercial Operating Systems
Digital VAX (Layered Products) 11 16

*NEC Software, Ltd. 10 18
*NEC Fuchu Factory 9 18

IBM-Endicott 8 17
*Hitachi Software Works@ 8 15

Control Data@ 7 17.5
Digital VMS 7 16

*Fujitsu Numazu Factory@ 7 16
*Mitsubishi Electric 7 12

Unisys/Sperry@ 5.5 12
Data General 5 13.5
IBM-Raleigh 2 17

Real-Time Control Alications
*Toshiba Software Factory 12 16
*NEC Industrial Systems 12 16

Unisys/SDC 11 14
*Hitachi Omika Works 10 15
TRW 9 20
Unisys/Sperry@ 8 20

*Mitsubishi Electric 8 15
Hughes Aircraft 5.5 17
Boeing@ 3 16
Honeywell 2 10
Draper Laboratories@ 1 6.5

29

Table 4 continued
Max. Score = 12 20

COMPANY/FACILITY Inputs Tools/Process

Industrial Operating Systems
*Toshiba Software Factory ' 12 16

Boeing@ 3 15

Business Applications
*Nippon Systemware 11 14
*Nippon Business Consultants 10 11
*Fujitsu Kamata Software Factory@ 9.5 15
Martin Marietta/MD 9.5 13

*NEC Information Services 9 19
Control Data@ 9 18

*Hitachi Omori Works 8 15
*NEC Mita 8 15
*Hitachi Software Engineering@ 7.5 9

IBM (Office Products) 7 16
Arthur Anderson 7 20
EDS/GM@ 6 12.5
Cullinet 6 13

*Nippon Electronics Development 6 7
*Mitsubishi Electric 4 10
Martin Marietta/Denver 3 14
Computervision@ 3 6
Digital (Educational Products) 3 5

30

Table 5: COMPARISON OF AVERAGE JAPANESE AND N.A. SURVEY SCORES

Note: Standard Deviations are in parentheses

n = 25 n = 27 N = 52

Dimension Japanese N A. Sample Average

8.7 (2.1)* 5.9 (2.7) 7.3 (2.4)

Tools/Process 14.4 (2.9) 15.0 (3.7) 14.7 (3.3)

* p < 0.01

Table 6: EFFECTS OF COUNTRY AND PRODUCT TYPE

Test: ANALYSIS OF VARIANCE
N = 52 (25 Japanese, 26 U.S., 1 Canadian)

Effects on INPUTS Score:
Variable
Country#
Product Type##

F-ratio Sig. Level
17.128 .0002

.200 .9367

Degrees of Freedom
1
4

Effects on TOOLS/PROCESS Score:
Variable F-ratio Sig. Level
Country# .066 .8013
Product Type## 1.395 .2522

1
4

Coded as 0 = Japanese facility, 1 = North American facility
Coded as 1 = Telecommunications Software, 2 = Commercial Operating

Systems, 3 = Industrial Operating Systems, 4 = Real-Time Control
Applications, 5 = General Applications

Table 7: COMPARISON OF REPORTED JAPANESE AND N.A. REUSE RATES

n = 18 n =18 N = 36

Japanese (Std. D.) N.A. Std. D) Sample Averaae

34.8% (18.3)* 15.4 (14.1) 25.1 (16.3)

p < 0.01

31

Inputs

Table 8: EFFECTS OF COUNTRY AND PRODUCT TYPE ON REUSE RATES

Test: ANALYSIS OF VARIANCE N = 36

Variable
Country#
Product Type##

F- ratio
12.728
1.188

Sig. Level
.0014
.3395

Degrees of Freedom
1
4

Coded as 0 = Japanese facility, 1 = N.A. facility
Coded as 1 = Telecommunications Software, 2 = Commercial Operating

Systems, 3 = Industrial Operating Systems, 4 = Real-Time Control
Applications, 5 = General Applications

Table 9: REUSE EMPHASIS AND REPORTED REUSE RATES

Test: MULTIPLE REGRESSION

36 observations fitted, forecast(s) computed for 15 missing values of dependent
variable

Ind. Variable

Constant
Inputs
Tools
Process

Coeff. Std. Error

3.234807
3.295832

-1.080677
0.450292

14.155589
1.036561
1.47857
1.588475

R-SQ. (ADJ.) = 0.1876
SE = 16.996120
MAE= 12.130720
DurbWat = 2.020

32

t-value

0.2285
3.1796

-0.7309
0.2835

0.8207
0.0033
0.4702
0.7786

Table 10: JAPAN-U.S. HARDWARE AND SOFTWARE COMPARISON, 1987

Notes: Japanese Yen converted at $1.00 = 125 Yen
NA = Not Available
Custom Software/System Integration for Japan includes consulting ($.67
billion); for the U.S. market, this category refers to contract
programming and design

Japan U.S.
Total Market $34.1 $70.4

Software Revenues/Total Market 38% 35%

Hardware Shipments $21.0 100% $45.6 100%

Large Systems 8.7 41 9.1 20
Medium Systems 3.1 15 8.7 19

Small Systems 5.0 24 8.2 18
Personal Computers 4.2 20 19.6 43

Software-Vendor Revenues $13.0 100% $24.8 100%

Total Packages 1.4 11 13.1 53
Types:
(Systems/Utilities) NA -- (5.0) (20)
(Application Tools) N.4 -- (3.7) (15)
(Application Packages) NA -- (4.5) (18)

Custom Software/System Integration 10.1 78 9.6 39
(Custom Software Only) (7.9) (61) NA --

Facilities Management/Maintenance 1.4 11 2.1 8

Miscellaneous Data:
1987-1992 Compound Annual Growth 17% 20%
Estimate for Software Revenues

Annual Growth in Supply 13% 4%
of Programmers

Typical Wait for Customized 26 40
Programs in Months (ca. 1984)

Computer Makers as Suppliers:
of Basic Systems Software 70% 45%
of Applications Software 15% 5%

Sou rces: International Data Corporation, "Japan Computer Industry: Review
and Forecast, 1987-1992," January 1989; and International Data
Corporation, Computer Industry ReDort: The Gray Sheet, 16
December 1988, p. 3. Also, for miscellaneous data, U.S. Department
of Commerce, A Competitive Assessment of the U.S. Software

33

Industry; A. Zavala, "Research on Factors that Influence the
Productivity of Software Development Workers," Palo Alto, Calif.,
SRI International, June 1985; H. Aiso, "Overview of Japanese
National Projects in Information Technology," International
Symposium on Computer Architecture, Lecture 1, June 1986, Tokyo;
Fumihiko Kamijo, "Information Technology Activities in the
Japanese Software Industry," Oxford Surveys in Information
Technology, Vol. 3, 1986.

34

Figure 1: EMPHASIS ON REUSE VERSUS TOOL AND PROCESS STANDARDIZATION

N - 51 (25 JAPAN, 25 U.S., 1 CANADA)

CODES: 0 - JAPANESE FACILITIES

1 - U.S. AND CANADIAN FACILITIES

JOB SHOP

Ii

i .t

- 01
Oi

0

_

mmmmmmmm,~~~~~~~~~~~~~

.I,. l ,, ,,,,

4 .

t m
o...... oo_

............

* i m

e o

o FLEXIBLE
FACTORY

65

HIGHPROCESS AND TOOL
STANDARDIZATION AND CONTROL

LOW
i±O

88e

REUSE
,.

44

,)4I

HIGH

LOW

i i . g T

---- I--..--------,--

: w _ _

.

Figure 2: SPECTRUM OF PRODUCTION APPROACHES

CRAFT PRODUCTION OR JOB-SHOP
Stratecgy: Customize Products and Processes for Individual Customers

Implementation:

Tradeoff:

Little Strategic Integration Beyond the Individual Project
Nearly Unlimited Range of Products and Customers
Few Economies of Scale or Scope
Focus on Product and Process Flexibility
Little Process and Quality Standardization or Control
Project-Centered Process R&D
Dependence on Highly Skilled, Multi-Functional Workers
Little Functional Divisions of Labor
No Systematic Reuse of Product Components
Little Capital-intensive Automation

Product-Process Flexibility Over Process Efficiency

FLEXIBLE DESIGN AND PRODUCTION
Strateya: Efficient Production of Different Products

Implementation:

Tradeoff:

More Strategic Integration and Management
Broad But More Limited Range of Products and Customers
Planned Economies of Scope More Than of Scale
Focus on Process Analysis and Improvement
More Process and Quality Standardization and Control
Tailored and Centralized Process R&D
Standardization of Worker Skills
Some Functional Divisions of Labor
Some Systematic Reuse of Product Components
Extensive Use of Computer-Aided Tools

Effort and Risks Required to Balance Efficiency and
Flexibility

MASS-PRODUCTION ENGINEERING AND MANUFACTURING
Strategy: Mass Production of Standardized Products

Implementation:

Tradeoff:

High Level of Strategic Integration and Management
Narrow Range of Products and Customers
High Economies of Scale
Focus on Process Standardization and Efficiency
High Process and Quality Standardization and Control
Tailored and Centralized Process R&D
Highly Standardized Worker Tasks and Skills
Rigid Functional Divisions of Labor
Reuse of Interchangeable Product Components
Rigid Automation

Process Efficiency Over Product-Process Flexibility

36

- --

Figure 3: TYPOLOGY OF PRODUCT-PROCESS OPTIONS

Market Product-Process
Variety Type

Implementation Organization
Design Production

Software or Conventional Product
Products: Performance

and Process
Infinite Full CRAFT PRODUCTION Flexibility

Custom OR JOB SHOPS

Product Batch Customer
& System Production Premiums
Engineering

Software or Conventional Economies of
Products: Scope: Inputs,

Process

Medium Systematic FLEXIBLE DESIGN
Reuse AND PRODUCTION

Product Product Customers
Engineering Construction Discriminate

on Price and
CAD/CAM, FMS Product

Program Generators Featu res

Conventional Products: Low-Cost,
Standardized

MASS-PRODUCTION Products
ENGINEERING
FACTORY SYSTEM Economies of

Few Full Scale & Mass
Standard Production

Software:
Low Margins

PROJECT, LABORATORY but High.
(packages) Unit Sales

, . . .~~,

37

Strategy:

REFERENCES

Abernathy, William J.
1978 The Productivity Dilemma: Roadblock to Innovation in the Automobile

Industry. Baltimore, Johns Hopkins University Press.

Abernathy, William J., and James Utterback
1982 "Patterns of Industrial Innovation." In Michael L. Tushman and William

L. Moore, Readings in the Management of Innovation, 97-108. New
York, Pitman.

Abernathy, William J., and Kenneth Wayne
1974 "Limits of the Learning Curve." Harvard Business Review September-

October: 109-119.

Arden, Bruce W. ed.
1980 What Can Be Automated?. Cambridge, MA, MIT Press.

Banker, Rajiv D., and Chris F. Kemerer
1988 "Scale Economies in New Software Development." M.I.T.

Information Systems Research, Working Paper.
Center for

Baumol, William J., John C. Panzer, and Robert D. Willig
1982 Contestable Markets and the Theory of Industry Structure.

Harcourt Brace Johanovich.
New York,

Blau, Peter M., and Richard A. Schoenherr
1971 The Structure of Organizations. New York, Basic 'Books.

Boehm, Barry W.
1976 "Software Engineering." IEEE Transactions on Computers. C-25, No. 12:

1126-1241.

1981 Software Engineerina Economics. Englewood Cliffs, NJ, Prentice-Hall.

Brooks, Frederick P.
1975 The Mythical Man-Month. Reading, MA, Addison-Wesley.

Chandler, Alfred D. Jr.
1977 The Visible Hand: The Managerial Revolution in American Business.

Cambridge, MA, Harvard University Press.

Chandler, Alfred D. Jr.
1962 Strategy and Structure: Chapters in the History of the Industrial

nterprise. Cambridge, MA, MIT Press.

Child, John
1972 "Organization Structure, Environment, and Performance:

of Strategic Choice." Sociology, 1: 1-22.

Comrey, A.L.
1973 A First Course in Factor Analysis. New York, Academic

The R o I e

Press, 1973.

38

Cusumano, Michael A.
1987a "Hitachi: Pioneering the Factory Model for Large-Scale Software

Development." Sloan School of Management, Working Paper #1886-87.
1987b "Toshiba's Fuchu Software Factory: Strategy, Technology, and

Organization." Sloan School of Management, Working Paper #1939-87.

1987c "NEC: Standardization Strategy for a Distributed 'Software Factory'
Structure." Sloan School of Management, Working Paper #1954-87.

1988a "Software Development Corporation: Defining the Factory Challenge."
Sloan School of Management, Working Paper #1887-87, Revised.

1988b "Fujitsu Software: Process Control and Automated Customization."
Sloan School of Management, Working Paper #2044-88.

1988c "Hardware and Software Customer Satisfaction in Japan: A Comparison
of U.S. and Japanese Vendors," Sloan School of Management, Working
Paper, December.

1989 "The Software Factory: A Historical Interpretation." IEEE Software,
March: 23-30.

Harvard Business School
1986 "VLSI Technology, Inc. (A): Automating ASIC Design," Case Study 0-

686- 128.

Hauptman, Oscar
1986 "Influence of Task Type on the Relationship Between Communication

and Perfcrniance: The Case of Software Development." R&D
Management, 16: 127-139.

Hirshhorn, Larry
1984 Beyond Mechanization: Work and Technology in a Postindustrial Aae.

Cambridge, MA, MIT Press.

Hounschell, David A.
1984 From the American System to Mass Production, 1800-1932. Baltimore,

Johns Hopkins University Press.

Jacoby, H.
1973 Bureaucratization of the World. Berkeley, University of California Press.

Johnson, James R.
1989 The Software Factory: Managing Software Development and

Maintenance. Wellesley, MA, QED Information Sciences.

Jones, Capers
1986 Programming Productivity. New York, McGraw Hill.

Lawrence, Paul, and Jay W. Lorsch
1967 Organization and Environment: Managing Differentiation and Integration.

Boston, MA, Harvard Business School Division of Research.

Lorange, Peter, Michael A. Scott Morton, and Sumantra Ghoshal

39

·� ·- ��-�--�-

1984 Strategic Control Systems. St. Paul, Minn., West Publishing.

Mansfield, Edwin
1985 Microeconomics: Theory/Applications. New York, W.W. Norton &

Company.

March, James G., and Herbert A. Simon
1958 Organizations. New York, John Wiley.

Matsumoto, Yoshihiro.
1987 "A Software Factory: An Overall Approach to Software Production."

In Peter Freeman, ed., Tutorial: Software Reusability, 155-178.
Washington, D.C., Institute of Electrical and Electronics Engineers.

Miewald, Robert D.
1970 "The Greatly Exaggerated Death of Bureaucracy." Californian

Management Review, Winter: 65-69.

Miles, Raymond E., and Charles C. Snow
1978 Organizational Strategy. Structure. and Process. New York, McGraw-

Hill.

Miles, Raymond E., et al.
1978 "Organizational Strategy, Structure, and Process." Academy of

Management Review, July: 546-562.

Mintzberg, Henry
1979 The Structuring of Organizations. Englewood Cliffs, N.J., Prentice-Hall.

Orlikowski, Wanda
1988 "Information Technology in Post-Industrial Organizations." Unpublished

Ph.D. Dissertation, New York University, Graduate School of Business
Administration.

Perrow, Charles
1972 Complex Organizations: A Critical Essay. Glenview, III., Scott,

Foresman.

Perrow, Charles
1967 "A Framework for the Comparative Analysis of Organizations." American

Sociological Review, April: 194-208.

Pfeffer, Jeffrey
1981 Power in Organizations. Marshfield, MA, Pitman.

Porter, Michael
1980 Competitive Strategy: Techniques for Analyzing Industries and

Competitors. New York, The Free Press.

Pugh, Derek S.
1973 "The Management of Organization Structures: Does Context Determine

Form?" Organizational Dynamics, Spring: 19-34.

Robbins, Stephen P.

40

1987 Organization Theory: Structure. Design. and APplications. Englewood
Cliffs, N.J., Prentice-Hall.

Ramamoorthy, C.V., et al.
1984 "Software Engineering: Problems and Perspectives." Computer, October:

191-209.

Shooman, Martin
1983 Software Engineering: Design. Reliability, and Management. New York,

McGraw-Hill.

Stinchombe, Arthur L.
1959 "Bureaucratic and Craft Administration of Production:

Study." Administrative Science Quarterly, 4: 168-187.
A Comparative

Tabachnick, Barbara L., and Linda S. Fidell
1983 Using Multivariate Statistics. New York, Harper and Row.

U.S. Department of Commerce
1984 A Competitive Assessment of the U.S. Software Industry. Washington,

D.C., International Trade Administration.

Woodward, Joan
1965 Industrial Organization:

University Press.

Zuboff, Shoshana
1988 In the Aae of the Smart M;

New York, Basic Books

Theory and Practice. London, Oxford

ichine: The Future of Work andPower,

41

I

NOTES

1. A forthcoming book based on these case studies and other material on the

technology and management responses is Michael A. Cusumano, The Software

Factory: Japan's New Challenge in Technology and Management, New York and

Oxford, Oxford University Press, 1990.

2. This list excludes a group of 200 people that did not produce software for

sale but made up the System Development department of Hallmark Cards, Inc.,

which produced programs for in-house use but is referred to by a former

manager as a "Software Factory" (Johnson, 1989).

3. Additional questions were also sent to survey participants, although

comments from the responders, site visits and interviews, as well as partial

correlation analysis, revealed that many of the non-core questions were not

particularly useful for measuring "rationalization" along large-scale engineering

and manufacturing lines. For example, three questions asked for emphasis on

standardization of languages for high-level design, module description, and

coding. It turned out that Japanese and English were mainly used for high-

level design, and many managers did not know how to answer; Japanese tended

to develop specialized languages for module description because they were less

comfortable than U.S. programmers in using English-based languages for this

purpose, which made it unfair to U.S. firms to use this question; and coding

languages were often determined by customers. A question about top-down

design was discarded because emphasis on this tended to contrast with a more

factory-type process of combining new and old code in layers. Similarly,

questions about emphasis on high-level abstraction or layering were discarded

because not everyone knew how to interpret these.

42

4. In the case of Toshiba, a single large facility (approximately 2300

programmers) had different departments producing both systems and applications

programs using identical procedures and tools, and the manager responsible for

technical development, Dr. Yoshihiro Matsumoto, submitted one set of answers

and asked that they be counted twice, under both systems and applications facilities.

5. This procedure is recommended as a simple data reduction technique by

Comrey, 1973, and Tabachnick and Fidell, 1983. Comrey suggested that loadings

of .55 (explaining 30% of the variance) were "very good," and .63 (40% variance)

or over "excellent."

6. Interviews with Anne Smith Duncan, Software Engineering Manager, Software

Development Technology, Digital Equipment Corporation, 2/10/88; and Wendy

McKay, Project Manager, Educational Software, Digital Equipment Corporation,

12/88.

7. Interviews with Matsumoto Yoshiharu, R&D Department Manager; Matsuzaki

Yoshizo, Applications Software Department Manager; and Takahashi Tomoo,

Applications Software Department Deputy Manager, Hitachi Software

Engineering, 9/3/87.

8. The top three Japanese firms ranked by software sales in 1986 were NEC

($507 million), Fujitsu ($389 million), and Hitachi ($331 million). NEC ranked

fourth in the world, behind IBM ($5,514 million), Unisys ($861), and DEC ($560).

The Japanese sales figures considerably understate actual software development,

because Japanese firms included ("bundled") systems software with mainframe

and minicomputer hardware prices, although the size of systems software

operations corresponds roughly to hardware sales. The largest Japanese

producers of mainframes by 1986 sales were Fujitsu ($2,470 million), NEC

43

($2,275), Hitachi ($1,371), and Mitsubishi ($185); the largest sellers of

minicomputers were Toshiba ($766), Fujitsu ($620), and Mitsubishi ($475). On

the U.S. side, IBM was by far the world's largest producer of hardware and

software; three of its facilities are represented in the survey. Unisys, which

ranked 2nd in world software sales, has two facilities in the survey. In

services, TRW ranked 1st and General Motors/EDS 3rd; Control Data, Martin

Marietta, and NT&T 6th, 7th, and 8th; Boeing and IBM 12th and 13th. See

DATAMATION, 15 June 1987, pp. 28-32. Other large Japanese producers of

software included in this survey were subsidiaries of Hitachi and NEC, including

Nippon Business Consultants and Hitachi Software Engineering (Hitachi), as well

as NEC Software, NEC Information Systems, and Nippon Electronics Development

(NEC).

44

