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Abstract 
 
In present study interface element with nonlinear spring is used to simulate cohesive zone model (CZM) in reinforced 
concrete beam in Mod I of crack propagation. Modified crack closure integral method is implemented to model 
propagation of fracture process zone (FPZ). This model, energy can calculate energy release rate in concrete by using 
new method in energy approach. Energy dissipation rate by steel bars is obtained to affect on crack propagation criterion 
to implement in finite element method. The results show that proposed model does not depend on mesh size. 
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1. Introduction 

 
Crack modeling in reinforced concrete (RC) beam is 
essential due to nonlinear behavior. One of the challenges is 
propagation of tensile crack in RC beam. There is a little 
knowledge on how to predict crack in RC beam. However 
many significant efforts have been made to study fracture 
mechanics in failure mode of RC beams [1,2].  

Fracture mechanics was employed to model tensile crack 
in concrete with strain softening behaviour. It was first used 
to study crack propagation applying linear elastic fracture 
mechanics (LEFM) in warships in World War II [3]. Later 
some studies used LEFM in concrete propagation analysis, 
but Kaplan [4] found out that deploying LEFM is not 
acceptable to solve crack problems with normal concrete 
sizes. Hillerborg et al. [5] proposed the first model in 
concrete based on nonlinear fracture mechanics. Mentioned 
study introduces a region, often termed as fracture process 
zone (FPZ), ahead of real crack tip which leads to crack 
closure (Figure 1). This significant and large zone contains 
micro-cracks in matrix–aggregate, gel pores, shrinkage 
cracks, bridging, and branch of cracks that is located ahead 
of the macro-cracks. Since a significant amount of energy is 
stored in this region, a crack can have stable growth before 
peak load. In addition, the existence of the FPZ justifies the 
strain softening behaviour in the stress- crack opening curve 
after peak load. In this region, the interlocking crack 
surfaces after peak load contribute to a gradual decline in 
stress and prevent sudden failure [3]. The FPZ dimension 
depends on the size of structure, initial crack, loading and 
material properties of concrete. The length of the FPZ is of 
special interest as compared to its width. The effective 

modulus of elasticity is reduced when moving from 
undamaged regions into the FPZ. 
 

 
Fig. 1. FPZ in front of crack with normal stress 
 
 

Energy approach can describe crack propagation 
criterion in fracture process at the crack-tip. The energy 
approach displays that the energy requisite, which stored in 
the FPZ, to form crack, it is called energy release rate, must 
be enough to overpower the critical fracture energy. A 
criterion for crack propagation can be defined in terms of 
energy release rate to study crack state. The energy approach 
criterion depends on stiffness matrix, displacement and 
crack geometry [6]. 

Different approaches have been investigated to model 
discrete crack as well as its propagation criteria. To simulate 
the FPZ, Hillerborg et al. [5] used cohesive stress which is a 
function of crack opening. Hillerborg’s approach can be 
applied to any structure, even if no notch or fictitious crack 
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exists [7].  In this model, as stress is a function of crack 
opening, it reaches tensile strength at the tip of the crack, 
and reduces to zero at its critical opening (wc). The amount 
of the area under the stress-crack opening curve is equal to 
energy release rate. This model, often referred to as cohesive 
zone model (CZM), was deployed to simulate the FPZ in 
normal size structures, using either nodal force release 
method or interface element with zero initial thickness 
technique [8]. 

 So far, the method suggested by Hillerborg et al. [5] has 
been applied more widely due its practically, accuracy and 
cost effectiveness. To model the CZM, two types of 
interface elements were deployed. One of the most widely 
used interface elements is continuum cohesive zone model 
(CCZM) (e.g. Xie and Gersle [9]). An alternative interface 
element is discrete cohesive zone model (DCZM) which is 
very simple to implement. The DCZM results are 
satisfactory compared to CCZM, especially for pre-cracking 
phase when stiffness is selected to have a very large value 
[10]. The DCZM is based on the basic idea that cohesive 
zone behaves like a spring. This point of view suggests that 
instead of using a 2-D interface element along the crack 
path, a spring element should be utilized between interfacial 
node pairs. In the present investigation DCZM is applied 
because this method reduces computational time and is 
compatible with the finite element method. 

From finite element point of view, stiffness of FPZ 
should be properly chosen. In practice, this damage zone has 
a different stiffness due to micro-cracking, bridging, 
branching that undertake use of energy in crack growth. So it 
is significant to use more accurate stiffness element to 
simulate the FPZ in finite element method. Also, when the 
FPZ length is fully extended and arrived at the maximum 
rate, stress-free length is appears in front of notch or macro-
crack, behind FPZ,[11] which was not considered by 
previous research [12,13,9,1,8,14,15,16] 

Also, to predict crack propagation, correct estimation of 
energy release rate is important. As it is known, energy 
release rate is the basic idea of nonlinear fracture mechanics 
for crack propagation that depends on many parameters such 
as external load and element stiffness.  

On the other hand, steel bars have usually been applied 
to improve flexural capacity and to rest crack growth in 
concrete. So, modeling the steel bars and its effect on 
propagation of tension cracks in RC beam is necessary.  

In the present study, interface element boundaries are 
utilized to simulate cohesive cracks. This model justifies the 
softening behavior of normal stress in the FPZ in concrete. 
Modified crack closure integral method with nonlinear 
spring is applied. A nonlinear spring element is used to 
derive forces in nodes due to normal stress in the FPZ. Strain 
energy release rate is obtained by energy approach while 
effect of steel bars on propagation of tension crack criterion 
is considered. Results for RC beam with initial notch are 
presented and comparisons between computed and 
experimental recent results are made. 
 
 
2. Numerical Model 

 
2.1. Interface Element 
Modified crack closure integral method is applied to model 
CZM [17]. As mentioned before, the FPZ has a softening 
action due to the interlock of aggregates and micro-cracks. 
Thus, a nonlinear spring is proposed to place between 
interfacial node pairs (Figure 2). In this figure, the node 

pairs ‘1’ and ‘2’ have initially the same coordinates. Spring 
softening is set at the crack tip between the nodes ‘1’ and 
‘2’. Node ‘3’ is a dummy node and it is only used to 
illustrate the variation in the crack form. 
 
 

 
Fig. 2. Spring Interface Element Between Two Nodes 

 
 
The local element stiffness matrix and the displacement 

vector related to nodes ‘1’ and ‘2’ are given by[15]: 
 

K = 

 kx         0
0     ky

−kx   0
0 −ky

−kx   0
0 −ky

kx     0
0         ky

  ,  u =

u1
u2
u3
u4

                         (1) 

       
where   kx  and  ky are the stiffness values corresponding to 

the local coordinates  x and y, respectively. u1  and u2  are 
displacement components in x and y directions for node ‘1’, 
u3 and  u4  are displacement components in x and y 
directions for node ‘2’, respectively. In this research, the 
value of the stiffness in x direction,  kx  , is obtained based on 
the normal stress versus crack opening curve. Figure 3 
illustrates the normal stress versus crack opening curve 
which can be explained by[18]:  

 
σ = ft  exp  (−  k  𝑤

!)                                                                  (2) 
 
where σ, 𝑓! and w are normal stress, tensile strength of 

concrete, crack opening, respectively .The k , 𝜆  are constant. 
Thus stiffness in x direction,  kx  , can be calculated as: 
 

kx= 
1

  k𝜆ft  exp  (−  k  𝑤!)                                                           (3) 

  
Small displacements are assumed to model crack. Based 

on small displacements, the stiffness at ith iteration (i=j+1) 
in nonlinear solution can be written as:  

 

𝑘!
!= 

1

  k𝜆ft  exp  (−  k  𝑤
!!)  

                                                   (4) 

 
Where the 𝑤! is crack opening in jth iteration. For fast 

convergence on nonlinear solution, the initial stiffness is 
used as wc 30 by small time step in nonlinear solution. The 
wcis critical opening displacement[19].   

Since only Mode I is considered and the crack path is 
known, the stiffness component in y direction can be 
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calculated from shear modulus of concrete without any 
changes using previous study[10]. 
 
 

 
Fig. 3. Concrete σ –COD Curve  
 
 
2.2. Energy Release Rate and Crack Propagation 
Criterion 
The strain energy for 𝑚th element is the hatching area under 
σ –COD curve (Figure 3): 
 

𝑈! = ft exp −  k  𝑤! 𝑑
!!

!
𝑤                                                                                                    (6) 

 
that can be calculated by using Gaussian integration in 

finite element method. Strain energy release rate for Mode I, 
based on energy approach is: 

 

GI =
∂𝑈
∂A
=
𝑈! − 𝑈!!!

B∆
                                                      (7) 

 
where A , B are crack surface area and thickness of the 

beam. The ∆ is crack extension which in the present study is 
assumed[3]: 
 

∆=0.4
𝑛′𝐸Gc
𝑓!
!                                                                                  (8) 

 
where the 𝑛′,  𝐸 and Gc are number of elements whit 

changes their stiffness in behind the FPZ , modulus of 
elasticity  of concrete and critical strain energy release rate 
,respectively . At each step, more than one element may deal 
with crack extension and it propagates along other elements. 

As for the steel bar to resist crack propagation, in the 
present study, energy dissipation rate based on energy 
approach, as surface force in [6], is obtained by: 

 

𝑅 =   
∂(𝑢!

! − 𝑢!!!)Fx    
∂A

                                                                                                                  (10) 
 
where the Fx is nodal force due to existing steel bar in x 

direction. The 𝑢!!  and 𝑢!!! are displacements in x 
direction for node "5" and "6", respectively, in the vicinity of 
steel bar (Figure 4), for 𝑚th element due to propagation of 

the FPZ.The   Fx  due to propagation of the FPZ, for 𝑚th 
element is given by: 

 
 

Fx=ks 𝑢!! − 𝑢!!!                                                                             (11) 
 
where the ks is elastic modulus of steel. 
Substituting Eq. (11) into Eq. (10) and using finite 

deferencemethodyields 
 

𝑅 =   
𝑘![(𝑢!

! − 𝑢!!!)! − (𝑢!
!!! − 𝑢!!!!!)!]  

(𝐴!B )∆
                          (12) 

 
 where the 𝐴! is cross-section area of steel bars.  Eq. (12) 

is used to estimate effect of steel bars as crack propagates in 
concrete. This relationship shows that initially when the FPZ 
length increases and crack opening mouth is small in 
concrete, effect of steel on preventing crack propagation is 
less. Finally, as the FPZ length reaches the constant value 
and crack opening mouth increases; steel bar role is to resist 
crack growth increases. So far, no model has presented a 
convincing equation to estimate effect of steel bar on crack 
propagation. The energy criterion of crack propagation will 
be: 

 
GI − 𝑅 > GIc                                                                           (13) 

 
where Gc  𝑖𝑠 critical strain energy release rate. It is noted 

that The 𝑅  and  GI are not based on the size of the mesh.  
 
 

 
Fig. 4. Interface Element to model steel bars 
 
 
2.3. Stress-Free Region 
A more accurate explanation of propagation and crack 
formation must be considered in model such as stress-free 
region length. Wae et al. [20] shown as crack opening 
displacement reaches to 3.6  Gc 𝑓!, stress-free region 
appears in front of the notch tip while FPZ length increases 
linearly and fully develops. That means as crack length 
reaches about 0.91 times the ligament length,  ℎ − 𝑎!, FPZ 
length increases linearly and fully develops.That is 
formulated in finite element methods by: 
 
aσ=0=n l                                                                                        (14)  

 
where n   and  l are number of elements that have failed 

behind crack and length of mesh. When FPZ fully 
propagated, n element is set to zero behind crack as crack 
propagates. 
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2.4. Computer Implementation 
FEAPpv program code is developed for analysis of 2-D 
plane stress in concrete [21]. Nonlinear spring is 
implemented for interface element in the User Subroutine 
FEAPpv Fortran programming while nonlinear dynamic 
relaxation method is used for interface element in the 
program[9]. Four-node isoparametric elements are used for 
bulk concrete as linear elastic. Two-node truss element is 
used to model steel bar with perfect plastic behaviour and 
the beam is not reinforced with stirrups. Bond-slip between 
longitudinal bars and concrete is modelled by Ingraffea et al. 
approach [22].  Crack does not propagate when the energy 
release rate,   GI  is smaller than critical strain energy release 
rate (Gc  ). Algorithm showed the major step in the present 
numerical model to solve fracture in the beam. 
 
 

 
Algorithm Flowchart of Fracture in m th element 
 
 
3.  Results and Discussion 

 
The example is a reinforced concrete beam with simple 
supports (Fig. 5(a)) which experimental data were replicated 
by Prasad and Krishnamoorthy [1]. 

The geometry of the RC beam is 1220 mm length, 125 
mm thickness. Material properties are 29270 MPa elastic 
modules, 0.18 Poisson ratios and 30.1 MPa compressive 
strength of concrete, 0.3 Poisson ratio, 100.48 mm2 cross-
section area and 395 MPa yield strength of steel. Tensile 
strength for concrete is 4.11 MPa,  Gc=113 N/m  and crack 
opening displacement critical is 0.15 mm. The k  and 𝜆   are 
1.01 and 0.063. The initial mesh is illustrated in Fig. 5(b). 
Load versus deflection at the mid-span of the beam in 
present study is compared with experimental result and 
previous model in Figure 7 [1]. Figure 6 shows the results 
are close to experimental data. It is seen that the stiffness of 

the beam in present study is slightly less than the previous 
model observation [1]. This difference may be acceptable as 
plastic deformation of steel and its effect crack propagation 
is considered in present model. It may be seen that the effect 
of steel bars on crack propagation has an important role on 
the crack behavior of the beam. 

 
 

 
Fig. 5. (a) The notched RC beam (Unit: mm) (b) Initial mesh with 42 
interface element 
 
 

 
Fig. 6. Load-Deflection at the Mid-Span of the Model and Experimental 
[1] 
 
 

Figure 7 shows crack patterns at load 26 KN in present 
study. Stress-free region length is 6.1 mm while FPZ length 
is 130.9 mm. The crack mouth opening is 0.481 mm while 
deflection at the mid-span is 0.534 mm at mentioned load.  
The FPZ propagation reaches almost three-fourth of the 
beam depth by fifth step of loading. At seventh step of 
loading the FPZ is fully propagates and stress-free region 
length appears. Initially the crack mouth opening increases 
gradually and then stays stabile due to effect of steel bars as 
load increases. At the final stage, crack mouth opening 
increases rapidly due to the bond-slip of the steel bars. 
 
 

 
Fig. 7. Final Crack predicate scale=150 (Unit: mm) 
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Fig. 8 indicates load versus deflection at mid-span curve 

with three size meshes compared with experimental 
envelop[1]. Mesh (1) 102 interface elements, mesh (2) have 
76 interface elements, and (c) have 42 interface elements. 
The aapproximate matching of the three curves demonstrates 
the independence of the model from mesh size and shows 
the model has fast convergence. 
 
 

 
Fig. 8. Load-Deflection with three size meshes 
 
 

Fig. 9 shows how the FPZ length is changed as the load 
increases by different cross-section area of steel bars. 

It can be seen that the FPZ is increased linearly and then 
stay constant. It may be due to effect of steel bars or inherent 
behavior of FPZ [23]. As expected, when cross-section area 
increases, the load bearing capacity increases at the same 
FPZ length. It is also observed that effect of the increasing 
steel bars cross-section area is more at higher loads. 
 

 
 

 
Fig. 9. Load versus the FPZ length with different cross-section area 
(mm2) of steel bars 
 
 
4. Conclusion 

 
Present investigation proposes a simple approach to simulate 
cohesive crack in RC beam. In present study, interface 
element with nonlinear spring is used to simulate the CZM 
in beam to accurate explanation of Mode I crack propagation 
in RC beam. Modified crack closure integral method is 
implemented to simulate development of the FPZ and stress-
free region length of fracture. An accurate element stiffness 
matrix is applied to derive forces in nodes due to normal 
stress in the FPZ. By using this model, energy release rate is 
calculated directly by a new method. The model is easy, 
accurate, efficient, with fast convergence and capable to 
model crack growth in RC beam. The model decreases 
computational time and complexity for discrete crack. 
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