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Abstract 
 
A simple procedure to express the lightning base current in the frequency domain is presented. The formula, based on a 
piecewise approximation of the lightning base current in time domain, allows obtaining an expression in the frequency 
domain in terms of elementary functions. The presented procedure is fast and general, since it can be used with any 
current waveshape. 
 
Keywords: Lightning Base Current, Heidler model, piecewise functions 
___________________________________________________________________________________________ 

 
1. Introduction 

The proper modeling of the lightning current is a key aspect 
for the analysis of all the effects produced by the lighting 
phenomenon itself. The computation of the radiated 
electromagnetic field and of the voltages and currents 
induced on transmission lines is strongly affected by the 
lighting channel modeling.  
 The topic has been widely discussed in literature [1] and 
nowadays the most accredited model is the so-called 
engineering model, defined by means of the expression: 

 
( ) ( ) ( )z Pv,t-z=iz,ti /0   ,                  (1) 
 

describing the current at any height z along the lightning 
channel, where i(0,t) is the channel base current, v represents 
the return stroke velocity (~ 2c/3), and P(z) is a height-
dependent attenuation function [2]. 
 Several models have been adopted in literature to 
describe the attenuation function P(z), and several studies 
have been performed to validate the proposed models [3]. 
More recently, inverse procedures have also been proposed 
in literature in order to identify the attenuation function 
starting from the measured electromagnetic field [4-6]. 
However, the debate is still open in literature. 
 A more uniform opinion is found in literature about the 
lightning base current, thanks to the several measurements 
performed on natural [7] and artificial lightning [8] at the hit 
points. Nowadays the most accredited and widely used 
model to describe the lightning base current is the one 
proposed by Heidler [9] according to the expression 
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 The parameters appearing in (2) depend by the specific 

lighting characteristics and their proper choice allows to fit 
very well any measured lightning current. 
 However, a problem occurs in frequency domain, since 
the Fourier transform of the Heidler current can't be 
expressed in terms of elementary functions [10]. This is a 
limitation, since in several cases it may be easier to perform 
calculations in frequency domain [11]. Also, in the 
frequency domain it is easier to take into account finite 
conductivity ground [12] or even multilayered structures. 
 This problem is usually overcome by performing a FFT 
of (2). However, this solution too has some disadvantages. 
Since the lightning base current is usually an input quantity 
used for further computations and the FFT returns a purely 
numerical result, this limits the possibility to carry out 
analytical calculations. Then, it has to be considered that the 
lightning base current typically has an initial rising time of 
few µs and a descending part of hundreds of µs. So, in order 
to properly describe the lightning base current, since the FFT 
requires a linear sampling of the signal, a high number of 
samples is required. 
 In order to overcome this problem, other lightning base 
current expressions have been proposed in literature, that can 
be analytically expressed in the frequency domain too [13-
14]. However, they are not so popular in literature and the 
Heidler model is currently the most used and accepted one. 

 So, in order to find a practical way to express the Heidler 
base current in the frequency domain, an alternative 
approach is proposed. Recently, a simple procedure has been 
presented in order to represent the lightning base current in 
terms of piecewise functions in time-domain [15]. In this 
paper we show how to extend the procedure to find a simple 
representation of the lightning base current in the frequency-
domain as sum of elementary functions. The method is 
tested on the Heidler base current, but can be applied to any 
lightning current waveform. 

 The paper is divided in two parts: the procedure to 
represent the lighting base current in time-domain is recalled 
at first, and the efficiency of this method is evaluated. Then, 
the expression in the frequency-domain is obtained and 
numerical results are shown. 
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2. Piecewise Representation 
 
Let us consider a function f(t) continuous in a given domain. 
The method could be also adopted for discontinuous 
functions with some small complications; however it is not 
necessary since the lightning base current can be assumed as 
a continuous function. 
 It is possible to divide the entire time domain of interest 
in N non-uniform intervals, over each of which the function 
f(t) is represented by means of a polynomial functions. It is 
worth to take into consideration the use for fitting linear and 
quadratic piecewise functions. Higher order piecewise 
functions could be considered too, but the advantages of 
using them would be minimal in terms of quality of the 
fitting or reduction of the fitting intervals. Constant 
piecewise functions offer a poor fitting. 
 The quadratic piecewise functions allow to obtain a more 
accurate fitting. In addition, the use of quadratic piecewise 
functions allows to have in the first interval a representation 
whose derivative can be zero for t = 0. This is a 
characteristic of the lightning base current, appearing also in 
(2), that can't be achieved by means of linear functions, 
unless a null function is considered in the first interval. 

 
2.1 Polynomial approximation 

The function f(t) can be approximated as f
~

 by means of 
quadratic piecewise functions according to the following 
expression  
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where tn is the starting point of the n-th interval and U(t – tn) 
is the unit step function shifted by tn. In each interval these 
coefficients can be computed as 
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where fn = f(tn) and fn+1/2 = f((tn+tn+1)/2). 
 It is worth noting to observe that (3) can be rewritten in a 
more compact form as 
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It is also useful to observe that, in order to use linear 

piecewise functions to perform the fitting of the function f(t), 
it is enough to cancel the coefficients wn in (4) or cn in (6). 
However, note that cancelling these coefficients, the values 
of un, vn, an and bn change. 

 
2.2 Optimal computation of the sampling intervals 
If we assume to fit the function f(t) with a representation 
such as (4–6), it is trivial that the accuracy of the fitting is 
better by increasing the number of intervals. However, the 
number of coefficients increases too, and so the 
computational effort to use the representation in further 
expressions. 
 In principle, it would be desirable to have a method in 
order to find the optimal initial points tn that allows to have 
minimal set of intervals ensuring a given fitting accuracy. 
However it is not a simple task since the number and the 
widths of the intervals have to be optimized at the same 
time. 
 In order to have a quick estimation of the fitting error in 
each interval, it is possible to choose two check points 
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and define the relative fitting error as 
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 This error estimation is suitable if piecewise quadratic or 

linear functions are used. It is efficient, since approaches to 
the relative error for big values of the function (|f(t)| » 1) and 
to the absolute error for small values of the function 
(|f(t)| « 1), this is important in our case. 

 In order to obtain the fitting with a required error, an 
efficient procedure (method (a), hereafter) can be to start 
with a set of intervals, compute the fitting coefficients 
according to (4), evaluate the fitting error and then split each 
interval where the fitting error is higher than the whished 
threshold [16]. 

 Another procedure (method (b), hereafter) consists of 
adaptively building the intervals consecutively. At first, a 
trial interval is chosen and then it is reduced or enlarged, 
until the maximum interval width satisfying the requested 
error is found. Then, starting from the end of the first 
interval, the operation is repeated for a second one and so 
on, until all the interval of interest is covered. This second 
method should ensure to obtain the same quality of the 
fitting with a lower number of intervals with respect to the 
first method. However, its computational effort is affected 
by the parameters chosen to adaptively enlarge or contract 
the intervals. 
 Both these methods will be tested in a practical case and 
their performances will be discussed. 

 
2.3 Numerical results 
In order to prove the efficiency of piecewise approximation, 
we perform the fitting for a typical lightning first and 
subsequent return stroke [17]. The adopted parameters are 
shown in Table 1. The analysis is performed in order to 
discuss the two methods proposed in Section 2.2. 
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Table 1. Lightning current parameters for first and 
subsequent strokes 

 I01 
(kA) n1 

τ11 
(µs) 

Τ21 
(µs) 

I02 
(kA) n2 

τ12 
(µs) 

τ22 
(µs) 

First 28 2 1.8 95 - - - - 
Subseq. 10.7 2 0.25 2.5 6.5 2 2.1 230 
 
 

We consider the lightning base current computed in 
interval of 100 µs and 10 ms and we evaluate the required 
number of piecewise functions and the computational time, 
for different values of the approximation error. The results 
are shown in Tables 2 and 3, for a first and a subsequent 
stroke, respectively. 

The comparison is performed considering two different 
time intervals because, considering the behavior of the 
lightning base current, an interval of 100 µs is enough in 
time domain, for instance for computing the electromagnetic 
field radiated by the lightning, while an interval of 10 ms is 
required at least if it is necessary to operate in the frequency 
domain. 
 
 
Table 2. Fitting results for first stroke 
  Method (a) Method(b) 

tmax err N. coeff. CPU 
time N. coeff. CPU 

time 

0.1 ms 0.1 7 8 ms 4 7 ms 
0.01 13 16 ms 9 9 ms 

10 ms 0.1 21 21 ms 19 8 ms 
0.01 31 27 ms 30 19 ms 

 
 
 

Table 3. Fitting results for subsequent stroke 
  Method (a) Method(b) 

tmax err N. coeff. CPU 
time N. coeff. CPU 

time 

0.1 ms 0.1 9 11 ms 6 10 ms 
0.01 15 18 ms 10 14 ms 

10 ms 0.1 23 23 ms 16 18 ms 
0.01 34 30 ms 28 22 ms 

 
 
The interesting result emerging from simulations is that 

method (b) requires a smaller number of coefficients to 
perform the fitting. Although the number of coefficient is 
not so high for both methods, even a small difference may 
be useful when the lightning base current is used in further 
computations. 
 Also the computational time is shown in Tables 2 and 3, 
however both methods appear to be fast and so the 
computational effort is not a crucial aspect for these 
methods. 
 The results in Table 2 and 3 are comparable, so the 
methods are efficient for both kinds of lightning. 

 Then, adopting method (b), in Fig. 1 and 2 we show the 
lightning base current and its piecewise representation.  
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Fig. 1 First stroke lightning base current in time domain and piecewise 
representation (err = 0.01). 
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Fig. 2 Subsequent stroke lightning base current in time domain and 
piecewise representation (err = 0.01). 

 
 
 In Fig. 3 we also show a detail of Fig 2, in order to better 

appreciate the fitting. 
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Fig. 3 Subsequent stroke lightning base current in time domain and 
piecewise representation (err = 0.01) – detail. 

 
 

3. Lightning base current in the frequency-domain 
 
Once the lightning base current is represented as sum of 
piecewise polynomial functions, that is to say once the 
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expansion coefficients are computed in (4–6), its expression 
in the frequency-domain can be easily found. 
 If quadratic piecewise functions are adopted, the 
lightning base current in the frequency domain can be 
represented as 
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or, by means of the (6), 
 
 

I ω( ) =
anω

2 − bnω j−ωtn( )− cn 2+ 2 jωtn −ω2tn2( )
jω3

e− jωtn
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 Again, in case of linear piecewise function 
representation of the lightning base current, is it enough to 
cancel the terms multiplied by wn in (9) and by cn in (9), 
remembering that this operation affects the values of the 
coefficients of un, vn, an and bn. 
 The previous representation has the relevant advantage 
to express the lightning base current as sum of elementary 
functions. So this representation is powerful if the lightning 
base current has to be used in the frequency-domain for 
further analytical manipulations. 

 It is worth noting that, despite the representation (10) is 
more concise, a pole for ω = 0 is introduced. It is a false 
pole, since the single terms of the sum diverge but the sum 
itself has a finite value. This aspect has to be accurately 
taken into account for the numerical implementation of the 
formula. 

 Instead, the equivalent representation (9) is less concise 
but has the advantage that each term of the sum approaches 
to finite value for ω going toward zero. 

 It is interesting and useful to compute the limit of I(ω) 
for ω going toward 0, that is 

 

I ω( ) = un tn+1 − tn( )+ vn2 tn+1
2 − tn
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   (11) 

 
 This limit proves that the lightning base current 

representation assumes a finite value in the frequency 
domain, for ω = 0. Also, physically (11) represents the 
integral of i(0,t), so the total charge flowing at the base 
during the lightning discharge. 

 Finally, in Fig. 4 we show the lightning base current in 
the frequency domain obtained implementing the (9), 
computed with the first stroke parameters adopted in Table 
1, and we compare the result with the frequency behavior 
obtained with the FFT. A very good agreement is found. 
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Fig. 4 First stroke lightning base current in frequency domain: 
comparison between piecewise representation and FFT. 

 
 
 The plot is obtained by representing the lightning base 

current in time domain with quadratic piecewise functions, 
using the fitting method (b) in an interval of 10 ms and 
requiring a fitting error of 0.01. Using these parameters, the 
result is acceptable in a frequency until 1 MHz, which 
anyway is the most useful interval by the practical point of 
view. 

 In order to better appreciate the effectiveness of the 
method, in Fig. 5 we also show the percentage error between 
the FFT and the piecewise representation.  
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Fig. 5 First stroke lightning base current in frequency domain: 
percentage error 

 
 The same simulations are performed for a subsequent 

stroke lightning base current in Figs. 6 and 7, with similar 
results. 
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Fig. 6 Subsequent stroke lightning base current in frequency domain: 
comparison between piecewise representation and FFT. 
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Fig. 7 Subsequent stroke lightning base current in frequency domain: 
percentage error 

 
 
 At very low frequency, a proper implementation is 

required in order to avoid round off errors in the 
exponentials. However this is just a problem in the 
computation of (9), the representation is formally correct and 
can be adopted for further computations. 

 At higher frequencies, the exponential functions in (9) 
can create numerical problems, it is necessary to reduce the 
approximation error in order get an accurate representation 
in a wider interval. It is found that reducing the 
approximation error by two orders of magnitude, the 
frequency representation is accurate in one more decade. 

 
 

4. Conclusions 
 

A simple procedure has been shown to represent the 
lightning base current in the frequency domain as a sum of 
elementary functions. The method has been successfully 
tested on a typical Heidler base current. However, it can be 
applied to any other current model with the same 
performance results. 
 The proposed method is fast and allows to choose the 
desired accuracy. 
 Then, differently from the FFT, the method doesn't 
impose a relationship between the time and frequency 
samplings. This is an advantage for the computational time. 
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