
Polynomial-Time Algorithms for
Linear Programming Based only on

Primal Scaling and Projected Gradients
of a Potential Function

Robert M. Freund

Sloan W.P. No. 2048-88 August, 1988

Polynomial-Time Algorithms for Linear Programming
Based only on Primal Scaling and Projected Gradients

of a Potential Function

by

Robert M. Freund
Sloan School of Management

Massachusetts Institute of Technology
50 Memorial Drive

Cambridge, MA 02139

Abstract

The main result of this paper is an O(i-n L) iteration interior-point algorithm for linear

programming, that does not need to follow the central trajectory to retain the complexity

bound and so can be augmented by a standard line search of the potential function. This

algorithm is structurally similar to Ye's O(Vn L) iteration algorithm. In the paper, we

present two polynomial-time algorithms for linear programming, that use only primal affine

scaling and a projected gradient of a potential function, and that do not need to follow the

central trajectory, nor do they require the use of projective transformations. The first

algorithm is an O(n L) iteration algorithm that is an extension of Gonzaga's polynomial

affine algorithm, and is based on the potential function

T n
qln(x s) - Iln(xj)

j=1

where x is the vector of primal variables and s is the vector of dual slack variables, and

q = n +i-n. The algorithm takes either a primal step or recomputes dual variables at each

iteration. The second algorithm is an O(h- L) iteration algorithm that is an extension of

the first algorithm, but uses the potential function

T n n
q n (x) - ln (xj)- ln (sj)

j=1 j=1

where q = n + fii. We show that this algorithm is optimal with respect to the choice of q

in the following sense. Suppose that q = n + nt where t > 0. Then the algorithm will

solve the linear program in O(nr L) iterations, where r = max (t, 1 - t }. Thus the value

of t that minimizes the complexity bound is t = 1/2.

Key Words: Linear program, polynomial time bound, affine scaling, interior method.

1

1. Introduction.

The current interest in interior methods for linear programming and its extensions stems

from the seminal work of Karmarkar [81 , who presented an algorithm for linear

programming that requires at most O(n L) iterations. The work per iteration involves

solving a least-squares problem, which requires O(n3) operations; however, by solving

the least-squares problem inexactly in O(n2) operations by performing rank-1 updates,

Karmarkar gave a clever argument that reduces the overall complexity bound to O(n3 5 L)

iterations. Todd and Burrell [13] suggested that Karmarkar's algorithm could be

implemented with a standard line-search at each iteration, with a substantial potential for

decreasing the actual iteration count, at the cost of an increase in the complexity bound by

nii to O(n4 L) operations. Anstreicher [2] has shown a safeguarded line-search that

retains the overall complexity bound of O(n3 -5 L) iterations, but it is not clear whether

this method is more or less efficient in practice than a standard line-search. Karmarkar's

algorithm and all of its projective transformation variants and extensions (Todd and Burrell

[13], Anstreicher [1], Gay [51, Rinaldi [2], Ye [16], and [4], for example) all retain the O(n L)

iteration count. Gonzaga [7] has presented an O(n L) iteration count algorithm that uses a

potential function but does not perform projective transformations.

In [11], Renegar was the first to develop an interior method for solving a linear program

with an O(-ii L) iteration count. The algorithm works by tracing the central trajectory (see

Megiddo [9] and Bayer and Lagarias [3]) with Newton steps. Other central trajectory path-

following algorithms with the O(iii L) iteration count have been developed since then, see

Gonzaga [6], Monteiro and Adler [101, Vaidya [15], and Todd and Ye [14], among others. If

the initial feasible solution to the linear program is not near the central trajectory, the

problem is artificially augmented at the start so that the initial solution is near the central

trajectory, and so the algorithm can be initiated. Because the iterates must stay close to the

central trajectory, the use of a line-search does not appear as promising for increasing the

performance, as it does for projective transformation based algorithms. Nevertheless, the

worst-case complexity bound on the iteration count for a central-trajectory path-following

algorithm is a nii improvement over the bound for a projective transformation algorithm.

Quite recently, Ye [17, 18] has presented an interior-point algorithm that has the

advantage of the central trajectory methods (an O(iE L) iteration count) along with the

advantages of the projective transformation methods (the method can be initiated directly

from any interior solution and the use of a standard line-search appears promising).

2

In this paper, we present two interior-point algorithms for linear programming, that use

only primal affine scaling and a projected gradient of a potential function. The second

algorithm, which is structurally similar to Ye's algorithm [18], has an O(,- L) iteration

count, and shares the advantages of starting the algorithm directly from any interior point,

as well as being able to use a line-search at each iteration.

The first algorithm, presented in Section 3, is an extension of Gonzaga's algorithm for

linear programming, but does not make the restrictive assumption of a known optimal

objective function value. Performance of the algorithm is measured with the potential

function

T n
F(x, s) = q In (xTs) - ln(x)

f=l

where x is the vector of primal variables and s is the vector of dual slack variables, and

q = n + i-. At each iteration, the algorithm either takes a primal step or recomputes

the dual feasible solution. Primal iterates decrease the potential function by at least .18,

whereas dual iterates decrease the potential function by at least .2ii . This leads to an

overall iteration bound of O(n L) iterations.

In Section 4, we modify the algorithm of Section 3, and measure its performance with

the primal-dual potential function

T n n
G(x, s)=qln(x) - In (xj) -l In (sj)

j=1 j=1

where again q = n + . Like the algorithm of Section 3, at each iteration this

algorithm either takes a primal step or recomputes the dual feasible solution. Both primal

and dual iterates decrease the potential function by at least .02, and this leads to an overall

iteration bound of O(ii-n L) iterations.

The analysis of Section 4 suggests that the factor of nii plays a very important role in

the potential function parameter q = n + . This is examined from a complexity point of

view in Section 5, where it is shown that q = n + ni is optimal in the following sense.

Suppose that q = n + nt, where t > 0 . Then the algorithm will solve the linear program

3

in O(nr L) iterations, where r = max (t, 1 - t). Thus the the value of t that

minimizes the complexity bound is t = 1/2, which yields the O(i'- L) iterations

algorithm of Section 4.

Section 5 contains concluding remarks.

2. Notation, Assumptions, and Preliminaries.

If x or s is a vector in Rn, then X or S refers to the n x n diagonal matrix with

diagonal entries corresponding to the components of x or s. Let e be the vector of ones,

e = (1, 1,..., 1), where typically the dimension of e is n. If x e R n then Ilxllp refers to

the p-norm of x, where 1 < p < .

Our concern is with solving a linear program of the form

LP: minimize

s.t.

Tx

Ax = b

x>O

where for convenience, we assume that A is mxn with rank m. We assume (i) that LP
has a strictly positive feasible solution x > 0, and (ii) that the set of optimal solutions of

LP is nonempty and bounded. The dual of LP is given by

minimize bTr

AT +s =c

s 0.

The second assumption above is equivalent, via a theorem of the alternative, to the

assumption that there exists a solution (, s) to LD with s > 0.

LD:

s.t.

4

Let x be a strictly positive feasible solution to LP, and consider the rescaled primal

and dual pair:

LPX: minimize cTx z LDX: maximize btr

s.t. AXz=b s.t. XA +t=Xc

z>0 t0O.

Note that x is feasible for LP if and only if z = X x is feasible for LPX , and

that (, s) is feasible for LD if and only if (, t) = (I, Xs) is feasible for LDX .

If x and (, s) are primal and dual feasible, then the duality gap between
T- -T T- -T -T-

c x and t b isgivenby c x - b = x s . We will consider two types of potential

functions for LP . The first is a primal potential function, given by

T n
F(x, s)= qln(x s)- In(xj) (2.1)

wherexeP=(xeRnlAx=b,x O)ands D = (s E Rnl s 0 and ATc+ s =cforsomer Rm }

and q is a given parameter. Note that the dual slack variables enter F(x,s) through the

duality gap term only. The primal-dual potential function is given by

T n n
G(x,s)=qln(x s) - E ln(xj) - l In(sj). (2.2)

~j=1 J j=l

It is elementary to verify that scaling LP to LPX translates the primal potential

function F(x, s) by an additive constant

n
n (xj),

i=l

and that this scaling leaves the primal-dual potential function G(x, s) unchanged.

III

5

Suppose L is the bit-size of a given instance of LP , and suppose we have an

algorithm for LP that reduces the primal potential function F(x, s) by an amount greater

than or equal to at each iteration, where > 0 is a fixed quantity. Then as in

Gonzaga [71, the algorithm can be used to solve LP in O((q/6) L) iterations, as long as the

initial values (x ° , s) of (x, s) satisfy F(xo , so) < O ((q/6)L). This is because in

order to round to an optimal solution to LP, we need (xTs) < 2 -L , and the bound on the

reduction of In (xTs) through the potential function F(x, s) is proportional to , and

inversely proportional to q. However, if instead we use the primal-dual function G(x, s)

we have:

Proposition 2.1. (see also Ye [18]): If an algorithm for solving LP reduces the primal-dual

potential function G(x, s) by an amount greater than or equal to 6 at each iteration,

where 6 > 0 is a fixed quantity, then the algorithm can be used to solve LP in

O[((q - n)/8) L] iterations, so long as the initial feasible primal-dual values (x °, sO)

satisfy G(x ° , s) < 01 ((q- n)/6) L] .

The proof of Proposition of 2.1 follows from the inequality in the following remark:

Remark 2.1. If x > 0 and s > 0 are vectors in R n , then

T n n
n n(x s)- A In(xj)- ; In(sj) n n(n). (2.3)

jrl j1

Proof. Let t = Xs. Then

T n n T n
n ln(x s) - I In(xj)- ; ln(sj) = n ln(e t)- E n(tj) .

j=1 j=l j=1

However,
n T
ri (tj/eTt) <(l/n)

j=1

6

because the vector t = e is a maximizer of the product term. Thus,

n T
] ln(tj/e
j=1

n ln(n) < nln(eTt)
n

Iln (tj)
j=1

t) < - In (n)

T= nln(x)

Proof of Proposition 2.1. After O(L (q - n)/8) iterations of the algorithm, the current

primal-dual iterates (x, s) satisfy

G(x, s) < - (q- n) L,

and so

-T- n
qln(x s) -

j=1
In (xj)

n
- , ln(sj)

j=1

However, by combining the above with inequality (2.3), we obtain

(q -n) lnT-
(q - n) n(x s) < -(q-n)L - n ln (n) ,

-Tso ln
andso In(x s) < -L,

and s can be rounded to optimal primal and dual solutions.

whereby,

In (xj)
j=1

n
- ln

j=l
(sj) . .

- (q-n) L

J

whereby x .

7

3. A Primal Potential Function Algorithm for LP that Converges in O(n L) Iterations

In this section we consider an algorithm for solving LP by using the primal potential

function F(x, s) of (2.1). Our principal motivation for this algorithm is the work of

Gonzaga [71, who presented an O(n L) iteration algorithm based on a primal potential

function where the optimal objective function value is presumed known. Herein, we remove

this restrictive assumption, and demonstrate a primal-dual property underlying Gonzaga's

methodology that will be used in primal-dual potential function based algorithms in

Sections 4 and 5.

Let us assume that x and (, s) are primal and dual feasible solutions, and that

x > 0. Because scaling does not affect the potential function, we assume now that x = e,

and so the current duality gap is e s. Let us now compute the projection of VxF(e, s), the

gradient of F(x, s) at (e, s) in the x-coordinates, onto the null space of A. The gradient

of F(x, s) in the x-coordinates at (e, s) is given by:

g = V x F(e,s) = -S - e (3.0)
te s

and its projection onto the null-space of A is given by

[I- AT (AA A] [±) - e]

If we replace (eTs) in the above expression by the unknown quantity A , we obtain the

direction function

d(A)=[I-AT -A(AA) A] s- (3.1)

where A is a positive scalar.

III

From (3.0) and (3.1), the projected gradient is d(eTs). Gonzaga's algorithm [7] is

motivated by demonstrating that lld(es)112 > 1 . Herein, we will alter this condition to

analyze the consequences of the condition Id(eTs)112 > .8, where the number .8 was

fairly arbitrarily chosen, and in fact any fixed scalar in the range (0, 1) would do. If
T- T-d(e s) satisfies Ild(e s) 12 .8, then the potential function F(x, s) can be reduced by

at least a constant amount of .18 by taking a step in the direction - d(e s), from the

current point x = e, as the next Proposition shows.

T-Proposition 3.1. Let d = d(e s). If 1d112 .8, then

F(e- .38d/ldll2 ,s) < F(e,s) - .18

Proof. Let us consider F(e - ad/lldll2 , s), where 0 < a < 1

Then

F(e - ad/d 1 12 , s) - F(e, s)

-T- n
=qln ((e s) - as d /11d11 2) - In (1 - adj/ldll2) - q In (e s)

j=1

as d n

(eT s)lId112 j=1

By the local properties of the logarithm

we have:

F(e - ad /11l2, s) - F(e, s)

in 1- adj
i lld112

function given in the Appendix in Proposition A.1.,

-T-
T- -

(e s)1ldl 2

adj/IIdII2 +
n

+
j=1

n

2
(adj /Ildl1 2)

2(1 - a)

T

(e s+ d(e s J

8

a

I Id112

2
a

2(1 -a)

- -ag d

I d112

where g is the gradient of F(x, s) at (e, s) in
T- -T- - 2

that g d = d d = lldll2 , this last expression

F(e - ad /Ildl 2 , s) - F(e, s)

2
a

2(1 -a)

the x-coordinates, see (3.0). However, noting

becomes:

-ldi2 2+((a)
2(1-a) (3.2)

Upon setting a = .38 and noting that lldIl2 = .8 , we obtain

F(e - ad /lldll2, s) - F(e, s) < .18
.

In order to analyze the case when I ldI 12 < .8, we proceed as follows.

Noting that

d(A) = [I-AT(AA)- A]((q)c - e)

we expand and rewrite this expression as

A AT)A c-e + (e + d()) = c (3.3)

and define

(3.4)

and

s(A) = ()e + d(A) (3.5)

9

ic() =(AAT) 1 - e
q

10

Then ir(A) and s(A) satisfy AT7r(A) + s(A) = c and so are dual feasible if s(A) > 0.

Furthermore, from (3.5), s(A) > 0 if Ild(A)112 < 1 and A > 0. Thus, if

IId(eTs)112 < .8 , then s(eTs) 0 and (eTs), s(eTs) are dual feasible. Next note from

(3.1) that lim IId(A)112 = + oo, unless [I-AT(AAT) A] c= 0, in which case cx is
A- 0a--,

constant on the feasible region of LP and x = e solves LP. Thus, by the continuity of

d(A) in the range A E (0, o) , if Iid(e s)112 < .8, there exists a value A e (0, e Ts) such

that IId(A)11 2 = .8 . If we set r = n(A) and s = s(A), we then obtain a .2 Y'n

decrease in F(e, s) if q n + ~-, as the next Lemma demonstrates.

Lemma 3.1. (Change in Dual Variables). Suppose q > n + Tf . Suppose Ild(es)112 < .8,

and that cTx is not constant on the feasible region of LP. Let A E (0, eTs) satisfy

Ild(A)112 = .8 and let = c(A) and s = s(A). Then n ,s are feasible for LD and

F(e, s) - F(e,) < - .2 .

T- T AT TProof: Note that e s = e s(A) = .- e e + ed(A)], from (3.5).
q

However, ee = n,and eTd () < Ild(A)l1 1
< i Id(A)112 = .8 , so that

• -e(n+.8V') < n+ .8
e sS n + .8 i < e s (n + .8 6). Therefore) < | _).

Nettt F)Fe)To

e s

q ni)= q In 1- -. 2 .

Summarizing Proposition 3.1 and Lemma 3.1, we have:

11

Remark 3.1: Assume q = n + -F. Then

a) if IId(e Ts)112 .8 , we can decrease F(x, s) by .18 by taking a step in the primal
T-

in the direction - d(e s).

b) if IId(e)112 < .8, we can decrease F(x, s) by .2V-n

s by = s) where T E (0, e s), and ld(a)112= .8

by replacing

This leads to the following algorithm for solving LP . Let (A, b, c) be the data for the

LP, let x and (, s) be initial primal and dual solutions, where x > 0, and let

g > 0 be the optimality tolerance. We have:

Algorithm 1. (A, b, c, x, s, Ir, pl)

Step 0. Initialize.

Set q = n + i, y = .8

Step 1. Test for Optimality.

-T-
If x s < l, stop.

Step 2. Rescale.

Set A = AX,c=Xc,t =sX.

Step 3. Compute Direction Function.

d(a)=[I-A(AA) A] t

If Ild(e t)112 > , go to Step 5. Otherwise go to Step 4.

12

Step 4. Recompute Dual Variables.

T-
Solve for A E (0, e t) such that A is the smallest value of A for which

I{d(A)112 = .

Set t = +dA))

and tr =(AA) A [c

Set = Ir and s = X t , and go to Step1.

Step 5. Take Step in Primal Variable Space.

Set d = d(et) . Set z = e-.38 d/1Id112 .

Set x = X z, and return to Step 1.

Note that in Algorithm 1, that at Step 2 t is the scaled version of the current dual

slack s ; (, s) is feasible in LD, and (, t) is feasible in LDX, and e is feasible in

LPX. At the end of Steps 4 and 5, respectively, the dual and primal variables are then

rescaled to the original problems LD and LP, respectively. Note also that the value of

y = .8 was chosen somewhat arbitrarily; instead, one could replace .8 by any constant

ye (0, 1) . The step length in Step 5 would have to be adjusted, however.

Next, note that after the algorithm leaves Step 4, the next direction function d(A) will

be the same as the current direction function. Thus, there is no need to re-solve the least

squares problem in Step 3 at the next iteration. Furthermore, at the next iterate, we will

have Ild(e t)112 >2 8 in Step 3, so we could just go straight to Step 5 directly.

Note that at Step 5, we could replace z = e - .38 d/ Ildl12 by z = e - ad where a is

determined by a line-search that (inexactly) minimizes the potential function F(e - ad, t)

over the range a E (.38/1d1 2 , o) . Also, the choice of A in step 4 could be chosen by a

line-search of A with the potential function F(e, [e + d(A)]) where A E (0, et)
q

111

13

Finally, note that the algorithm need not be started with a dual feasible solution. In

fact, it need only be started by a lower bound B on the primal objective value. One would

then replace the expression for d(A) in Step 3 by

_T- -T - q-
d(A)=[I-A (AA)Al c- A ,

T-
as the two expressions are equivalent. Also, one would replace eTt by c x - B in Steps 3,

4, and 5. The algorithm must eventually compute feasible dual variables, unless B is the

optimal value of LP.

Finally, note that solving for in Step 4 is equivalent to solving a quadratic form in

the quantity) and so can be done exactly (within roundoff error) by using the quadratic

formula. This is reminiscent of the dual-variable update procedure presented in Anstreicher

[1], that also solves for a vector of appropriate norm in order to update dual variables.

From Remark 3.1, and the invariance of the potential function F(x, s) (modulo an

additive constant) under scaling, we have:

Lemma 3.2. If (x °, so) are the initial values of x and s in Algorithm 1 and

F(xO, sO) O(n L), then Algorithm 1 solves LP in O(n L) iterations.

Proof: From Remark 3.1, each iteration reduces the potential function F(x,s) by at least

8 = .18, and q = n + < 2n, so q = O(n). Thus after O(n L) iterations,

Algorithm 1 solves LP .

4. A Primal-Dual Potential Function Algorithm that solves LP in O(-nL) Iterations.

In this section, we modify the ideas and the algorithm presented in Section 3, by using

the primal-dual potential function G(x, s) of (2.2) with q = n + fi-n. Our principal

motivation for this algorithm is again the work of Gonzaga [7]. The resulting algorithm

converges in O(fin L) iterations, and is an algorithm similar to the O('n L) iteration

algorithm of Ye [18]. There is a strong connection between the algorithm of this section and

Ye's algorithm, which is discussed at the end of the section.

IiI

14

We begin the analysis by returning to the analysis developed at the start of Section 3.

We assume that x and (, s) are our primal and dual feasible solutions, that x > 0 and

that the LP has been rescaled so that x = e, so that the current duality gap is e s

We compute the direction function d(A) as in (3.1), and compute d = d(eTs) which is

the projected gradient of G(x, s) in the x-coordinates, at (x, s) = (e, s) . Then if
T-

Ild(e s)112 2 .22, we can achieve a constant decrease in the potential function G(x, s) by

taking a step in the direction - d(es) from the current primal feasible point e , as

Proposition 4.1 shows.

T
Proposition 4.1. Let d = d(e s). Then if 11dl12 > .22,

G(e - (1/6)d/ 11dl12 , s) < G(e,s) -. 02

Proof: The proof is exactly the same as for Proposition 3.1. At the end of the proof we use

o = 1/6 to obtain the result. ·

If lid(e s) 112 < .22, however, we seek to modify our dual solution.
T-Note that at A = e s

s(A) = (q)(e + d(A))

is "close" to a scaled version of the vector e ,because IId(A)11 2 < .22 . Thus, s(A) is

nicely centered, as the next two Lemmas demonstrate.

Lemma 4.2. If s =(q)((e + d)), where d12 < .22, then Il s- (- e 112 < .565 e s

Proof. If s =(q)((e + d)), then

e s = -(n + e d) > -(n- 11d11) > (n - f/-Jd112)
q q q

2 (n- 22'n) a(.78n)
q q

Thus,

Next note that

s e = (e+d)) (n+ed)
n qq n

Thus,

Ils (- e 112 11dII 2 + 5 lldll 2 + IId2]

Combining (4.1) and (4.2) yields the desired result. ·

Lemma 4.3. If s= A(e + d),
q

where Ild12 < .22, then

n
I n(sj)
j=1

n In - .367.

Let r s TThen e r=n and lir- ell2 = n 11s - (e11i 2 .565,

from Lemma 4.2.

Thus, from Proposition A.1 of the Appendix,

n
ln(rj)

j=1

n
(rj- 1) -

j=1

(rj 1) 2

2(1 - .565)

2
lr - ell2

.87
(.565)2 -. 367

.87

15

(4.1)

< .44A
q (4.2)

Proof:

n

j=l

T
A< e s

q-.8

A VA i
qd

16

Next note that

n n T(T
X ln(sj) = z ln(rj) +n n n n .367.lnjsj) n ~t n In - .367.
j=1 ij=1

Suppose that lid(e s) 112 < .22. Just as in Section 3 (but with .8 replaced by .22), we
T-

seek a value of A E (0,e s) for which Jld(A)112= .22. Because lim Ild(A)ll 2= +
A--0

Tunless c x is constant on the feasible region of LP (and so x = e solves LP), then such

a value A must indeed exist. We then set s= s() and i = (A) where s(A) and

Ir(A) are given by (3.4) and (3.5). s and it are feasible for the dual LD. The next

Lemma demonstrates that replacing s by s results in a fixed decrease in the potential

function G(x, s) of at least .02, if q = n + i-n.

Lemma 4.4 (Potential Function Decrease From Change of Dual Variables)

Suppose q = n + V, and Ild(e s) 112 < .22., and that c x is not constant on the
T-

feasible region of LP. Let AE (0,e s) satisfy l1d(A)112= .22 and let

s= s(A) and it = nr(A). Then, (, s) are feasible for LD, and

G(e,s) - G(e,s) - .02.

Proof: As in Section 3, it is straightforward to check that A + s = c, and

Ild(A)112= .22 implies that s> 0, so (t, s) are dual feasible. Now wecompute

T- n T- n
G(e,s)- G(e,s) = qln(eTs) - X ln(;j) - q ln(e s) + I n (si)

j=l j=l

qln q ln(sj) + , ln(sj). (4.3)
\e s/ j=l j=1

However, from Lemma 4.3, we have

111

ln(sj) n n(- .367 .

max
• max I In (sj) T

I s>O, e s=

Combining (4.3), (4.4) and (4.5) yields

G(e, s) - G(e, s) q ln(eT
\e sn

= (q- n) In

e = | (n +
Td(

e d())

- n)

e s

T-~es;
+

(qT (n +q

+ .367 + nn |)

.367

T\e s
T-e s

n + .22n
q

1 q- n- .22f-
q

G(e,s) - G(e,s) (q-n) ln + .367
\e s/

< -(q-n)(q-n-.22V-n + .367
q

.78n= + .367 <
n +

.78n- + .367
2n

< - .02.

n

Also,

17

n
I ln(sj)
j=1

(4.4)

T- =nes j=n (4.5)

However,

Thus,

= e J (n + .22if)q

Then

(4.6)

(4.7)

T

'~ild(A)112)

Intuitively, the proof of Lemma 4.4 works for two reasons. First, s is "close" to the

vector as shown in Lemmas 4.2 and 4.3. Thus, the barrier function I ln(sj)
=well-controlled. Second, by requiring that we adjust downward from e to a point

well-controlled. Second, by requiring that we adjust A downward from e s to a point

where IId(A)112 = .22, we guarantee that e Ts is sufficiently less than
T-

e s

Summarizing Proposition 4.1 and Lemma 4.4, we have:

Remark 4.1. Suppose q = n + i-. Then

T-
a) If Ild(e)112 > .22, we can decrease G(x, s) by .02 by taking a step in the

primal variables in the direction - d(e s) .

b) If IId(e s)112 <

s by s

.22 , we can decrease G(x, s)

= s(A) where A E (0,e s) satisfies

by .02 by replacing

IId(A)112 = .22 .

This leads to the following algorithm for solving LP. Let (A, b, c) be the data for the

LP, let x and (r, s) be initial primal and dual solutions, where x > 0 and let > 0

be the optimality tolerance. We have:

Algorithm 2. (A, b, c, x, s, r, It)

SteD 0. Initialize.

Set q=n+ -n, y = .22

Step 1. Test for Optimality

-T-
If xs < gt, stop.

c=Xc, t =Xs

18

is

Step 2. Rescale

111

Set A AX,

19

Step 3. Compute direction function

d(A) = [I- A (AX (q). e

T-
If ld(et)112 > y, go to Step 5. Otherwise go to Step 4.

Step 4. Recompute Dual Variables

Solve for A E (0, eTt) such that is the smallest value of A for which

Ild(a)112 =

Set t qe+d()) and = (XA) -[1 e-

Set r=rands=X t,and go to Step 1.

Step 5. Take step in Primal variable space.

Set d = d(e Tt). Set a= 1 + -

Set z = e - a d/ ldl12 .

Set x = Xz, and return to Step l.

Note that in Step 5, a = (1/6) because y = .22.

Regarding the complexity of Algorithm 2, we have:

Theorem 4.1 (Complexitvy of Algorithm 2). If (x °, so) are the initial values of x and s in

Algorithm 2 and G(xo , so) < O(L), then Algorithm 2 solves LP in O(v¶ L)

iterations.

Proof: The proof is an immediate consequence of Proposition 2.1. From Remark 4.1 and the

invariance of the potential function G(x, s) under scaling, we have that at each iteration

G(x, s) is reduced by at least = .02. Because q=n + Ai, then (q - n) = -, and so by

Proposition 2.1, Algorithm 2 converges in O(i'ii L) iterations. U

20

Note Algorithm 2 is almost the same as Algorithm 1, but with a different value of y in

Step 0 and consequently a different step length a in Step 5. The smaller value of y in

Algorithm 2 suggests that it will update dual variables less frequently than in Algorithm 1,
T

and so will control the influence of the duality gap A = x s on the projected gradient

direction d(A) less exactly. Perhaps this is a contributing factor to the improved

complexity bound.

Most of the remarks that follow Algorithm 1 at the end of Section 3 are also valid for

Algorithm 2. If the algorithm recomputes dual variables in Step 4, one can then proceed
T

directly to Step 5 because d(e s) > y at the end of Step 4 and there is no need to

recompute the least-squares solution of Step 3. As in Algorithm 1, one can augment Steps 4

and 5 by a line-search of the potential function G(x, s) . Also, one need not start the

algorithm with a dual feasible solution. In fact, only a lower bound on the optimal objective

value is needed (see Section 3 for details).

The algorithm of Ye [18] was the first (and at this point, the only other) algorithm

with a complexity bound of O(i-n L) iterations that does not explicitly require a

condition that the iterates lie near the central trajectory. His algorithm is similar to

Algorithm 2 in many ways. First, both algorithms use primal scaling only, compute a

direction function based on the projected gradient of the potential function, and take either a

step in the primal space or a step in the dual slack space. However, the control sequence for

when to take a primal versus a dual step is different in the two algorithms. Even if both

algorithms utilize a line-search, they still may perform differently. This is because of the

control logic for when to take a primal or a dual step.

5. On the Optimality of q = n + I-i in Algorithm 2

In Section 4, we have presented an O(T-n L) iteration algorithm for LP, by choosing

the value q = n + iif in the primal-dual potential function G(x, s) of (2.2). In this

section, we consider modifying Algorithm 2 in two ways: by setting q = n + nt, where

t > 0, and by setting y = .22n- k where k >0. We will prove:

21

Theorem 5.1 (Complexity of Algorithm 2 with q = n + nt)

If q = n + nt is used in Algorithm 2 and y is chosen by:

Y= I

.22 if t > 1/2

.22nt-1 / 2 if t < 1/2

then the complexity of the algorithm if O(nr L) iterations, where

Remark 5.1. The value of t that minimizes the complexity bound of

iterations is t = 1/2, and so Algorithm 2 with q = n + Vi~ and

in this measure. A different discussion of the suggested optimality of

different context) can be found in Todd and Ye 14].

r = max (t, - t}.

the number of

y = .22 is optimal

q = n + n (in a

Remark 5.2. Algorithm 2 can be executed with q = n + 1, with a complexity of bound

O(n L) iterations, by setting t = 0 and y = .22/-nii. This improves the complexity

bound of Gonzaga [7], whose results imply an O(n2 L) iteration bound if q = n + 1 for a

primal potential function as in (2.1).

We will first prove Theorem 5.1 for the case t > 1/2 . The case t < 1/2 is a bit more

involved.

Proof of Theorem 5.1 for t > 1/2:

Suppose Algorithm 2 is implemented with q = n + nt and = .22. Then if the

algorithm takes a primal step (Step 5), Proposition 4.1 ensures that the potential function

G(x, s) decreases by at least 8 = .02, as this result is independent of the value of q.

Suppose instead that Algorithm 2 takes a dual step (Step 4). By rescaling if necessary,

we assume that the current primal and dual slack vectors are (x, s) = (e, s) and let s be

22

the recomputed dual slack vector. Retracing the proof of Lemma 4.4, we reach line (4.7)

which states:

G(e,s) - G(e,s) < - (q - n) (q - n-. 2 2) +.367 (5.1)
q

t t
n (n t - .22T) + 367

t
n+ n

.78n2t< + .367
n +nt (5.2)

If t < 1, the denominator above is bounded from above by 2n , so

G(e, s) - G(e, s) < -. 39n + .367 < - .39 + .367 < - (.02). If t 1, the denominator above

isboundedfromaboveby 2nt,so G(e, s) - G(e, s) < -. 39nt +.367 < - (.02) if t 1. In

either case, we obtain a dual improvement of at least 8 = .02. Thus the overall complexity

of the algorithm, from Proposition 2.1, is O(nt L).

We now proceed to piece together the proof Theorem 5.1 in the case t < 1/2. By

rescaling if necessary, we assume that the current primal and dual slack vectors are

(x, s) = (e, s). We first analyze a primal step.

T-
Proposition 5.1 (Primal Step Improvement) Let d = d(e s). Suppose

t-1/. 1lld112 = .22n t 1/2. Then by setting a = 1- , +

we obtain

G(e - ad/lldll 2 , s) < G(e,s)-.02n 2 t 1

Proof. The proof proceeds identically to that of Proposition 3.1, which is of the same form

(with . 8 replaced y = .22nt-1/2) . Tracing the proof of Proposition to line (3.2) we

obtain.

2
G(e - a /11dl1 2 , s) - G(e, s) - alldl12 + -a2(1 - a)

23

However, ldll22 Y = .22n t Substituting this value of y in Proposition A.2 of the

Appendix, we obtain

G(e - ad /11ldl2, s) - G(e, s) < -. 02 n 2 t

We now analyze a dual step improvement. We proceed by modifying Lemmas

4.2 and 4.3.

Lemma 5.2. If s = (e + d), where 1ldll2 < Y < 1, then
q

1ts _e s e112 <

Lemma 5.3. If s = (e+ d), where lldl12 < < 1/3, then
q

In(sj) nln21 e where yi= = 11 2(1-]) 1-y

The proofs of Lemmas 5.2 and 5.3 are identical to the proofs of Lemmas 4.2 and 4.3, with

y substituted for .22 in Lemmas 4.2 and 4.3, and substituted for .565 in Lemma 4.3.

We now are in a position to prove a result regarding potential function improvement if

we take a dual step.

Lemma 5.4 (Dual Step Improvement). Suppose q = n + nt where 0 < t < 1/2 .
T- t-1/2 T

Suppose ljd(e s)12 < Y .22n , and that c x is not constant on the feasible region

of LP. Let E (O,eTs) satisfy IId(A)112 = y and let t C = r(A) and s = s(A) .

Then (r, s) are feasible for LD, and

G(e,s) - G(e,s) - .02n 2 t 1

24

Proof: Parallelling the proof of Lemma 4.4, we obtain

G(e,s) - G(e,s)
T n(

e s

n
-

j=1

n
In(sj) + I In(sj)

j=1

Combining the above with inequality (4.5) and Lemma 5.3, we obtain

G(e, s) - G(e, s) < q in e) - nln
\e sl

+ 2
2(1 -)

+ nln(e)
n

e n) (+ 2 (5.4)
2(1-f3) '

(5.4)

where 3= 2y .
1-y

that

H2
However, 2(1 -)

2

(l-y)(13y) and y =.22n t- l1 / 2

2 <

2(1 -)

2
2y2

(.78) (1- .66)

Next, notice that exactly as in the proof Lemma 4.4, we have that

e = /eT=((n

and hence ()
\e sl

+ eTd(A)) (e l (n + d(A)112)= n+

n + .22n t

q

.22nt-1/2 + 1/2)

t t
n -n .22nt

q

< nt (n t - .22nt)
q

39n2t -1
(5.6)

(5.3)

< .22 , so

.365n 2 t-1
(5.5)

whereby (q- n) In)e ;
\e j

.78n2 t

2n

25

Combining (5.4), (5.5) and (5.6) yields

G(e,s) - G(e,s) < -. 39n2t-1 + 365n2t-1 < -(.02)n2t-1

Proof of Theorem 5.1 for t < 1/2: From Proposition 5.1 and Lemma 5.4, we have that we can

achieve a decrease in G(x, s) of at least = .02n2t -1 . Thus, the overall complexity of

the algorithm, from Proposition 2.1, is 0(ntnl 2t L) = O(nlt L).

Remark 5.3. The choice of y in Theorem 5.1 obviously influences the complexity bound.

One can easily verify that the potential function improvement in a primal step is O(2).

Thus, a large value of y is desirable. However, if y > O(nt- 1/2) and t < 1/2, then

a potential function improvement in a dual step cannot be guaranteed. The formula for y

in Theorem 5.1 is the largest (and best) value of y with respect to minimizing the

complexity bound of the algorithm.

6. Concluding Remarks

Algorithm Complexity. The overall complexity of Algorithm 2 is O(n3-5 L)

operations, because at each of the i~i L iterations an m x m system of equations must be

solved, which requires O(n3) operations. However, by solving the system inexactly

using, for example, the updating algorithm of Gonzaga 6] as presented in [7], it should be

possible to reduce the overall complexity by a factor of Ti to O(n3 L) iterations.

However, this modification will probably not be very useful in practice, as it limits the use

of a line-search of the potential function.

Problems in Arbitrary Form. Algorithms 1 and 2 are stated for LP problems in standard

form. For problems in other forms, the implementation of the algorithm is still

straightforward. Suppose that we wish to solve:

minimize cTx

s.t. Ax =b

Gx-v =h

v O

26

This is a quite general form and encompasses problems with upper and lower bounds, etc., by

creating G, h with appropriate submatrices of the identify matrix, etc. The primal-dual

potential function then is

T n n
H(v, s)=ln(v s) - l; ln(vj)- In(sj)

j=1 j=1

where (0c, s) must satisfy dual interior feasibility, namely

AT7 + GTs = c

s>O .

Scaling is done with

rescaled to

minimize

the primal slack variables. If (x, v) are primal feasible, the LP is

cTx

s.t. Ax = b
-- 1 _-1
V Gx-t=V h

t0

and the projection of the gradient of H(v, s) in the rescaled space is then computed.

27

Appendix

Proposition A.1. (see Karmarkar [81 and Todd and Ye 141).

(i)

(ii)

In (1 + x) < x for x > -1.

If Ixl < a < ,then In (1 + x) x
2

x

2(1 - ct)

Proof. (i) follows from the concavity of the log function.

For (ii) note that if I x I
2x
2< 1, n(1 +x) =

3 4
x x

+ +...
3 4

2
x D

2
= X--

2(1 - xl)

Proposition A.2 (See Freund [4], Proposition 4.1) If

2
f(a) = -ya + a

2(1 - a)

where y < .22, then

with a = 1-
¥1 +2y

x3 !lX4
2 2

2
> x- x

2(1 - a) ·

02y2
f(a) - 2

(.22)

Proof: Direct substitution shows f(a) = - 1 - y + 1 + 2y . However, the function

1+y- 1+2 y
2

'V

is decreasing in y . Therefore, if

1 + -1 +2y
2

(1.22 - 1 + 2(.22

(.22)2

f(a)
2 =

y .22,

.02

(.22)2

f

.

III

28

References

1 Anstreicher, K.M. 1986. A monotonic projective algorithm for fractional linear
programming. Algorithmica 1, 483-498.

[2 Anstreicher, K.M. 1987. A standard form variant, and safeguarded linesearch, for the
modified Karmarkar algorithm. Yale School of Organization and Management, New
Haven, Conn.

[3 Bayer, D. A., and J.C. Lagarias. 1987. The nonlinear geometry of linear programming,
I. Affine and projective scaling trajectories, II. Legendre transform coordinates and central
trajectories. Transactions of the American Mathematical Society, forthcoming.

[4] Freund, R. 1988. Projective transformations for interior point methods,
part I: Basic theory and linear programming. M.I.T. Operations Research Center working
paper OR 179-88.

[5] Gay, D. 1987. A variant of Karmarkar's linear programming algorithm for problems in
standard form. Mathematical Programming 37, 81-90.

[6] Gonzaga, C.C. 1987. An algorithm for solving linear programming problems in O(n3 L)
operations. Memorandum UCB/ERL M87/10. Electronics Research Laboratory, University of
California, Berkeley, California.

[7] Gonzaga, C.C. 1988. Polynomial affine algorithms for linear programming. Report
ES-139/88, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.

[8] Karmarkar, N. 1984. A new polynomial time algorithm for linear programming.
Combinatorica 4, 373-395.

[9] Megiddo, N. 1986. Pathways to the optimal set in linear programming. Research
Report RJ 5295, IBM Almaden Research Center, San Jose, Ca.

[10] Monteiro, R.C., and I. Adler. 1987. An O(n3 L) primal-dual interior point algorithm
for linear programming. Dept. of Industrial Engineering and Operations Research,
University of California, Berkeley.

[11] Renegar, J. 1988. A polynomial time algorithm, based on Newton's method, for linear
programming. Mathematical Programming 40,59-94.

[12] Rinaldi, G. 1985. The projective method for linear programming with box-type
constraints. Instituto di Analisi dei Sistemi ed Informatica del CNR, Viale Manzoni 30,
00185 Rome, Italy.

[13] Todd, M.J., and B. Burrell. 1986. An extension of Karmarkar's algorithm for linear
programming using dual variables. Algorithmica 1 409-424.

[14] Todd, M.J., and Y. Ye. 1987. A centered projective algorithm for linear programming.
Technical Report 763, School of ORIE, Cornell University, Ithaca, New York.

[15] Vaidya, P. 1987. An algorithm for linear programming which requires
O(((m + n)n2 + (m + n)1 5n)L) arithmetic operations. AT&T Bell Laboratories, Murray Hill,
N.J.

29

[16 Ye, Yinyu. 1987. Interior algorithms for linear, quadratic, and linearly constrained
convex programming. Ph. D. thesis, Department of Engineering Economic Systems, Stanford
University, Stanford, Ca.

[17 Ye, Yinyu. 1988. A class of potential functions for linear programming. Presented at
the Joint Summer Research Conference: Mathematical developments arising from linear
programming algorithms, Bowdoin College, Brunswick, Me.

[18] Ye, Yinyu. 1988. A class of potential functions for linear programming. Department of
Management Sciences, The University of Iowa, Iowa City, Iowa.

