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ABSTRACT

We present an algorithm, analogous to Karmarkar's algorithm, for the

linear programming problem: maximizing c x subject to Ax < b , which

works directly in the space of linear inequalities. The main new idea in

this algorithm is the simple construction of a projective transformation of

the feasible region that maps the current iterate x to the analytic

center of the transformed feasible region.

Key words: Linear Program, Projective Transformation, Polytope, Center,

Karmarkar's algorithm.
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1. Introduction. Karmarkar's algorithm [4] is designed to work in the

T
space of feasible solutions to the system Ax = O, e x = 1, x 0.

Although any bounded system of linear inequalities Ax b can be linearly

transformed into an instance of this particular system, it is more natural

to work in the space of linear inequalities Ax b directly. From a

researcher's point of view, the system Ax b is often easier to

conceptualize and can be "seen" graphically, directly, if x is two- or

three-dimensional, regardless of the number of constraints. Herein, we

present an algorithm, analogous to Karmarkar's algorithm, that solves a

T
linear program of the form: maximize c x , subject to Ax b , under

assumptions similar to those employed in Karmarkar's algorithm. Our

algorithm performs a simple projective transformation of the feasible

region that maps the current iterate x to the analytic center of the

transformed feasible region.

T
2. Notation. Let e be the vector of ones, namely e = (1,1...) T If

s is a vector in Em, then S refers to the diagonal matrix whose

diagonal entries are the components of s, i.e.,

s= 51 0
S 

·

If I is a subset of in, then e+ = {x e 3lx > 0}.
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3. The Algorithm. Our interest is in solving the linear program

P: maximize c x = U

subject to Ax < b

where A is a matrix of size m x n.

We assume that the feasible region I = {x e IRnAx < b) is bounded,

has a nonempty interior, and that U, the optimal value of P. is known in

advance. Furthermore, we assume that we have an initial point x e int 

whose associated slack vector s o = b - Axo satisfies:

eTS O A = O and sO = e. (1)

Condition (1) may appear to be restrictive, but we shall exhibit an

elementary projective transformation that enables us to assume (1) holds,

without any loss of generality. The first condition of (1) is simply the

necessary and sufficient condition for x O to be the center of the system

of linear inequalities Ax b (see, e.g., Sonnevend [5]), which is

reviewed below. The second condition is that the rows of A have been

scaled so that at x the slack on each constraint is one. The algorithm

is then stated as follows:

For k= 0,1,..., do:

Step k: Define sk = b - Axk , vk = U cTxk, and = (1/m) e,

and k =ATXk.
-1 T -1 T

Set Ak = A -eyk , ck =c vkyk . bk = b - eykxk

~T -1and Uk = U - VkXk-
(Ak)-l ck

Define the search direction dk =

ck(AkAk) k
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a dk

xk+1 = Xka 1 d ., where a > 0 is a steplength, e.g.,
Xk+l Xk+ + yT1 + (adk)

a = 1/3.

Note immediately that all of the effort lies in computing (ATAk) -lck.

Expanding, we see that

T T -2 T- T T T- T)
(Ak) = [A Sk A + y(-e SkA + eTey) - (A Ske)(y )]

is computed as two rank-1 updates of the matrix ATSk2A. Thus, as in

Karmarkar's algorithm, the computational burden lies in solving

T -2 -1
(A Sk A) ck efficiently.

To measure the performance of the algorithm, we will use the potential

function

m
F(x) = m en (U - cx) - en (b - Ax)i ,

i=l

which is defined for all x in the interior of the feasible region.

We will show below that this algorithm is an analog of Karmarkar's

algorithm, by tracking how the algorithm performs in the slack space.

Thus, let us rewrite P as

TP: maximize c x = U
X,s

subject to Ax + s = b

and define the primal feasible space as

(;Y) = {(x;s) a in x ImmAx + s = b, s 0}.
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We also define the slack space alone to be

= s e mls 2 0, s = b - Ax for some x e IRn}.

We first must develop some results regarding projective

transformations of the spaces and .

4. A Class of Projective Transformations of and R. Let x be a point

T-
in the interior of , so that Ax + s = b and s > O. Let v = U - c x.

T
Suppose we have a given vector y that satisfies y (x - x) < 1 for all

x e [. Then the projective transformation (z;r) = g(x;s) given by:

= + ( - x) and
1 - y(x - X

is well-defined for all (x;s) ().

shows that for (x;s) e (;:) , the z

must satisfy:

-T
(c - vy) z 

(S 1 A - eyT )z + r =

-1
r s (2)

1 - yT(x - )

Furthermore, direct substitution

and r defined by (z;r) = g(x;s)

-T_U - vy x

: (S b - ey x)

and r 0.

Thus, we can define the linear program

P - :
y,x

-T -
maximize c z = U

subject to Az + r = b

r 2 0,

where
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-1 T
A (S -1 A - eyT)

b = (S b - eyTx)

(3)
c = (c - vy),

U = (U - vyT).

Associated with this linear system we define

(Z;9) = (z;r) IRn x mz + r = b, r 0}

and define Z and 9A analogously.

Note that the condition yT(x - x) < 1 holds for all x e I if and

only if y lies in the interior of the polar of (O - x) , defined as

(- x 0) = {y a nyTx 1 for all x e ( - x)}.

It can be shown that because is bounded and has a nonempty interior,

that

(9 - x) = ({y e mly = A for some X )O satisfying XTs = 1},

0 T -
and that y e int ( - x)© (and hence y(x - x) < 1 for all x e ) if

y = ATX where Ts= 1 and X > O . In this case we have the following:

Lemma 1. If y = ATX where > O and XTs = 1 , then the

transformation (z;r) = g(x;s) is well-defined, and has an inverse, given

by (x;s) = h(z;r) , where

-z-x Sr
x = x + z s = r (4)

1 + y (z - ) 1 + y(z -x)
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If (z;r) = g(x;s) , then (x;s) e (9) if and only if (z;r) e (Z;!).

Furthermore, any of the constraints in c x U , Ax b is satisfied at

_T
equality if and only if the corresponding constraint of c z < U,

Az b is satisfied at equality.

(The transformation g(-;-) is a slight modification of a projective

transformation presented as an exercise in Grunbaum [3] , on page 48. If

/ is a polytope containing the origin in its interior, then its polar fo

is also a polytope containing the origin in its interior. Grunbaum notes

that a translation of 39 by y int t results in a projective

transformation of given by

= {z Ie Rnz = x for some x e .
T1 -yx

Our transformation g(-;-) is a translation of this transformation by x.)

Recall that the center of the system of inequalities Ax b is that

m
point x e that maximizes 1i (b - Ax)i, or equivalently,

i=l
m
2 en (b - Ax)i, see, e.g., Sonnevend [5]. Under our assumption of

i=l

boundedness and full dimensionality, it is straightforward to show that x

is the center of the system Ax b if and only if,

T -1e -1A =O where s = b - Ax , and s > O.

We next construct a specific y that will ensure that x becomes the

center of the projected polytope X. If we define

= (1/m)S -le and y = ATX,
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T-
then because X > 0 and X s = 1, we know that y lies in the interior

of (-x) 0 , and yT(x-x) < 1 for all x e . We have:

Lemma 2. Let (x;s) (3:;) be given, and suppose s > O. Let

X = (l/m)S le be used to define y = ATX. Then

y int ( - x)0 , and by defining g(-;-) by (2), we ha,

(i) (x,e) = g(x;s) ,

(ii) x is the center of the system Az < b , where A, b are

defined as in (3),

(iii) The set !% is contained in the standard simplex in m ,

= r 6 mJeTr = m , r > 0}.

ve:

namely

Part (i) of Lemma 2 is obvious. To see (ii), note that e is the

slack vector associated with x in Pyx . and so we must show that

e A = O. This derivation is

T- T--l T T-- T T-
e A e(S -A ey) = eS A - (1/m)eeeTS A = 0.

For part (iii) , note that for any r 

T T T- T - T- T l T( /m)ee T -1AxZ
e r = e (b- Az) = e b = e (S b _ eyx) = e(S -lb eT(1/m)ee

eT l(b - A) = eTs -s = T

Lemma 2 demonstrates that the projective transformation g(-;-)

transforms the slack space to a subspace of the standard simplex, and

transforms the current slack s to the center e of the standard simplex.

Thus the projective transformation g(-;-) corresponds to Karmarkar's

projective transformation. We also have:
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Lemma 3. The potential function of problem P x defined as
y,x '

--T m
G(z) = en (U- cz) - en (b- Az)i

i=l

m
differs from F(x) by the constant en (si).

i=1

Thus, as in Karmarkar's algorithm, changes in the potential function

are invariant under the projective transformation g(-;-).

5. Analysis of the Algorithm. Here we examine a particular iterate of the

algorithm. To ease the notational burden, the subscript k is suppressed.

Let x be the current iterate. Let s = b - Ax > O and v = U - cTx.

T en the vector y = Ah -1

Then the vector y = ATX is constructed, where X = (1/m)S e, and the

problem P is transformed to Px where A, b, c, U are given as in

(3). The slack vector s is transformed by g(-;-) to the center e of

the standard simplex, as in Karmarkar's algorithm. Changes in the

potential function are invariant under this transformation, by Lemma 3.

We now need to show that the direction d given by

-T- -1-
d (A A) c

c (A A) c

corresponds to Karmarkar's search direction. Karmarkar's search direction

is the projected gradient of the objective function in the transformed

problem. Because the feasible region of P is bounded, A (and hence

-T- -1
A) has full column rank. Thus (A A) exists, and so Az + r = b is

equivalent to z = (A A) (b - r). Substituting this last expression in

P , we form the equivalent linear program:
y~
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minimize (A(ATA) c) Tr

subject to (I - A(ATA) A T)r = (I - A(ATA)- A)b

r > 0.

(This transformation is also used in Gay [2].) The objective function

vector A(ATA) c of this program lies in the null space of d , so that

the normed direction

-A(ATA) 

c (ATA) c

is Karmarkar's normed direction. In the space Z , this direction p

corresponds to

-T- -1-
d (A A) c

c (AA) c

i.e., d is the unique direction d in in satisfying Ad + p = 0.

Thus we see that the direction d given in the algorithm corresponds

to Karmarkar's normed direction p. Following Todd and Burrell [7], using

a steplength of a = 1/3 will guarantee a decrease in the potential

function F(x) of at least 1/5. Furthermore, as suggested in Todd and

Burrell [7], performing a linesearch of F(-) on the line x + ad

a > 0, is advantageous.

The next iterate, in space, is the point x + ad . We

projectively transform back to space using the inverse transformation

h(-;-) given by (4), to obtain the new iterate in space, which is

ad
x 

1 + y (ad)
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6. Remarks:

a. Getting Started.

We required, in order to start the algorithm, that the initial point

xO must satisfy condition (1). This condition requires that x be the

center of the system of inequalities Ax b and that the rows of this

system be scaled so that b - Ax 0 = e . If our initial point x does not

satisfy this condition, we simply perform one projective transformation to

transform the linear inequality system into the required form. That is, we

T
set s = b - Ax0 , vo = U - c x0 and define

YO = (1/m)A SO1e

Ao = oA - ey

bo = Solb - ey XO

cO = c - VoY

and UO = U- VoY 

Then, exactly as in Lemma 2, x is the center of the system Aox b 0

and e = b - Ax , and eTA = O. Our initial linear program, of course,

becomes

T
maximize CoX = U0

subject to A 0 b0

b. Complexity and Inscribed/Circumscribed Ellipsoids.

The algorithm retains the exact polynomial complexity as Karmarkar's

principal algorithm, namely it solves P in O(m4L) arithmetic

operations. However, using Karmarkar's methodology for modifying
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(2A-k) - ', the modified algorithm should solve P in O(m3 5L)

arithmetic operations. One of the constructions that Karmarkar's algorithm

uses is that the ratio of the largest inscribed ball in the standard

simplex, to the smallest circumscribed ball, is 1/(m - 1) . In our system,

this translates to the fact that if x lies in the interior of

O = {x e n Ax < b} , then there are ellipsoids Ein and EoUt , each

centered at x , for which Ein C C Eo t , where M is the transformed

polytope {z e RnIAz < b}, and (E in- x) = (1/(m - 1))(E t - x). This

result was proven for the center of by Sonnevend [5]. We can

explicitly characterize Ein and Eout by

nd E {z ea un(z - 1)}

and Eou t = {z en(z -x)TATA(z - x) m(m - 1)},

-- -1 T T-l -1where, of course, A (S A - ey) , and y = (/m)AS e , s = b - Ax.

Using this ellipsoid construction, we could prove the complexity bound

for the algorithm directly, without resorting to Karmarkar's results. But

inasmuch as this algorithm was developed to be an analog of Karmarkar's for

linear inequality systems, it is fitting to place it in this perspective.

c. Other Results.

The methodology presented herein can be used to translate other

results regarding Karmarkar's algorithm to the space of linear inequality

constraints. Although we assume that the objective function value is known

in advance, this assumption can be relaxed. The results on objective

function value bounding (see Todd and Burrell [7] and Anstreicher [1]),

dual variables (see Todd and Burrell [7] and Ye [8]), fractional
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programming (Anstreicher [1]), and acceleration techniques (see Todd [6]),

all should carry over to the space of linear inequality constraints.
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