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A Temporal and Spatial Locality Theory
for Characterizing Very Large Data Bases

Introduction

This paper summarizes some recent theoretical results in formally

defining and measuring database locality and demonstrates the application of

the techniques in a case study of a large commercial database. Program

locality has a long history of theoretical investigation and application in

virtual memory systems and processor caches. Database locality has also been

investigated but has proven less tractable and reported research results are

mixed with respect to the strength of database locality. Nevertheless,

engineering pragmatism has incorporated mechanisms analogous to virtual memory

into disk caches and database buffer management software on machines as small

as the personal computer and as large as the largest mainframe. The research

presented here is aimed at formally defining and better understanding database

locality.

This paper starts with a brief overview of the locality concept and

program locality models, identifies the different stages at which database

locality might be observed, highlights the differences between database and

program locality, and summarizes prior database locality research results.

Next a technique is presented for adapting the program'locality model to both

temporal and spatial dimensions at all stages of database processing.

Finally, a case study of a large commercial database provides the context for

elaborating on the application of the database locality model and the inter-

pretation of the results.
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Program Locality

Program locality refers to the tendency of programs to cluster references

to memory, rather than dispersing references uniformly over the entire memory

range. Denning and Schwartz [1972, p. 192] define the "principle of locality"

as follows:

(1) during any interval of time, a program distributes its referen-
ces non-uniformly over its pages; (2) taken as a function of time
the frequency with which a given page is referenced tends to change
slowly, i.e. it is quasi-stationary; and (3) correlation between
immediate past and immediate future reference patterns tends to be
high, whereas correlation between disjoint reference patterns tends
to zero as the distance between them tends to infinity.

Denning[1980] estimated that over two hundred researchers had investigated

locality since 1965. Empirical work has shown that programs pass through a

sequence of phases, during which memory references tend to cluster in a

relatively small set of pages -- the working set. Transitions between phases

can bring a rapid shuffling of the pages in the working set before the program

stabilizes again. Reasons advanced for the existence of program locality

include the sequential nature of instructions, looping, subroutine and block

structure, and the use of a stack or static area for local data.

The seminal work on program locality is the working set model developed

by Denning[1968] and presented at the original Gatlinburg Symposium on

Operating Systems Principles. The elegant simplicity of the model permits the

extensive exploration of the load that programs place upon a virtual memory

system and the means for balancing that load in a multi-programming situation.

The working set model postulates a reference string, r(t), generated by a

process (the execution of a program). Each element in the reference string

corresponds to the virtual address of a word fetch or store to the memory

system. The virtual memory is usually considered to be composed of equal

2

III



sized pages, which may be stored either in primary or secondary memory as

determined by the memory management system.

The working set model uses two basic measures of load placed on the

memory by a program -- the working set size (the quantity of memory demanded),

and the missing page rate (the frequency and volume of data that must be

retrieved from secondary storage). The sequence of overlapping, equal-sized

intervals of width along the reference string is examined. The working set

at each point t along r(t) consists of the pages referenced in the interval

r(t-6+l) ... r(t). The average working set size, s(B), is the average of the

number of pages in the working set at each point along the reference string.

The missing page rate, m(8), is the frequency with which r(t+l) is missing

from the working set at t. Generally, increasing the interval width increases

the working set size but decreases the missing page rate, resulting in a

tradeoff between the two resources.

Most work on program locality assumes a fixed page size. Madnick[1973]

addresses the issue presented by counter-intuitive results when page size was

experimentally varied. The age size anomaly occurs when reducing the page

size more than proportionally increases the missing page rate with the working

set size held constant. Madnick suggests that the locality phenomenon should

be viewed in two dimensions -- temporal and spatial. The temporal dimension

measures the degree to which references to the same segments of memory cluster

along the reference string. The spatial dimension measures clustering along

the address space of the program. In program locality, where processor

architecture requires a fixed page size, the spatial dimension is often

ignored. The application of locality theory to database systems, however,

requires attention to the spatial dimension.
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The study of program locality benefits from the stylized interface

between the processor and memory. The processor requests a fetch or store

passing a virtual address to the memory; the memory fetches or stores the word

at that address and returns the result to the processor. If an instruction

references more than one word, the processor generates a sequence of requests

for memory access. The reference string corresponds to the sequence of

addresses that appear on the processor-memory bus. The address space is also

generally linear and anonymous. The same virtual address may be reused for

different semantic purposes at different times without informing the memory

due to programs being overlaid or new records read into buffers. Logically

different programs and data appear the same to the memory. The simplicities

of the processor-memory interface are not naturally present in interfaces to

database systems.

Database Locality

Database references begin with external demand for access to data. This

may take the form of ad hoc queries, execution of transaction programs, or

batch processes that prepare reports or update files. External demand is

mediated by an application program that generates a series of data manipula-

tion language (DML) requests in the course of its execution. The simplest

form of application program, such as IBM's Query Management Facility (QMF),

takes a request presented in the DML (SQL in this case) and passes it to the

DBMS, presenting the response to the user in readable format. When the DML

request is received by the DBMS, it is analyzed and transformed by an inter-

pretation, or binding, stage into a sequence of internal functional steps

referencing internally defined data objects, such as searching an index or
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retrieving a row from a table. The transformation from DML to internal

functions may be compiled, as in the bind operation of IBM's DB2, or performed

each time the request is executed. The execution of internal functions

results in accesses to data in buffers controlled by a storage manager, which,

in turn, must read or write blocks of data in secondary storage. This

sequence of processing stages presents five different points at which database

load may be measured: (1) external, (2) application, (3) interpretation, (4)

functional, and (5) storage. Each stage has different distinctive charac-

teristics and is normally described in different terms. The methodology

presented here permits the load at each stage to be described in commensurable

units.

The storage stage of database processing is analogous to program memory

paging, and most of the published work on database locality has concentrated

there. Easton [1975, 1978] found support for the existence of locality in the

database of IBM's Advanced Administrative System (AAS). Rodriguez-Rosel

[1976] found sequentiality, but not locality by his definition, in disk block

accesses generated by an IMS application. Loomis and Effelsberg [1981],

Effelsberg [1982] and, Effelsberg and Haerder [1984] find mixed evidence of

locality in buffer references by several applications using small CODASYL

databases. Concentrating on the storage stage means that the locality

observed will be that of the external demand filtered through the database

system's internal logic. The sequentiality observed by Rodriguez-Rosel, for

example, may be more the characteristic of IMS's search strategy than the

application's use of data. Observing locality in external demand requires a

different approach. By examining accesses to entities drawn from a single

entity set, McCabe [1978] and Robidoux [1979] found evidence of locality.
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Circumstantial evidence also suggests that the disk accesses observed by

Easton were one-to-one mappings of entities in AAS.

The reference string in program locality consists of a sequence of word

references. Each element corresponds to an equal amount of useful work. The

requests generated by the first three stages of database processing are,

however, anything but uniform in size. Table 1 summarizes database stages,

types of requests generated, and data objects operated upon.

Stage Type of Request Data Operated Upon

1 external application task implicit in task definition

2 application DML statement instantiation of schema

3 interpretation internal function internal objects

4 functional buffer reference contents of buffer

5 storage disk access disk blocks

Table 1

To achieve a common unit of measure, permitting comparison of locality

measures across stages of processing, each type of request must be transformed

into a sequence of elemental data references. Since the byte is usually the

basic unit of data storage, byte references will be used here. Clearly, an

actual reference to a single byte alone will be rare. A reference to a data

field consisting of a number of bytes can be transformed into a sequence of

byte references. The order of bytes within a field is immaterial as long as a

consistent practice is maintained. The same principle can be applied to

convert a request for access to multiple fields within one or more records

(attributes within a row) into a sequence of field references and thence into
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a byte reference string. The order of fields should match the order specified

in the request.

An Illustrative Example

To clarify the process of transforming a request string into a uniform

reference string, let us consider an simple example with two tables: one to

represent stocks and another to represents holdings by an account in a stock.

In SQL these tables might be defined as follows:

CREATE TABLE STOCKS
(SYMBOL CHAR(8) NOT NULL, -- Key
NAME CHAR(40))

CREATE TABLE HOLDINGS
(ACCOUNT CHAR(8) NOT NULL, -- Key
STKSYM CHAR(8) NOT NULL, -- combined
SHARES INTEGER)

Assume that account "82-40925" holds stock in General Motors and Delta Air

Lines. Processing the external request "Show holdings for account 82-40925"

an application program might generate the following query:

SELECT SHARES, STOCKS.NAME
FROM STOCKS, HOLDINGS
WHERE ACCOUNT - '82-40925'
AND STOCKS.SYMBOL - HOLDINGS.STKSYM

ORDER BY STOCKS.NAME

The field references seen at the application level by this query would be:

HOLDINGS.SHARES[ACCOUNT-'82-40925',STKSYM-'DAL'] 4 bytes
STOCKS.NAME SYMBOL-'DAL'] 40 bytes
HOLDINGS.SHARES[ACCOUNT-'82-40925',STKSYM-'GM'] 4 bytes
STOCKS.NAME[SYMBOL'GM'] 40 bytes

Using the data types from the table definitions, this query can be transformed

into a sequence of 88 byte references . Each byte reference can be identified
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by a database address consisting of:

* file or table identifier,
* field or attribute identifier,
* record or row identifier (primary key above), and
* byte number within field or attribute.

The method of transformation and the form of the database address will differ

from stage to stage and from one type of database system to another. Although

byte reference strings are the basis of the database locality models presented

here, it is not necessary to collect tapes full of individual byte reference

traces for analysis. The point is that all requests can be transformed

conceptually into a uniform string of byte references for analysis.

Database temporal locality measures

Given a uniform reference string, a working set model can be developed

for database locality. Each element, r(t), of the reference string is the

database address of the byte referenced at point t. The parameter deter-

mines the width of the observation interval along the reference string. At

each point t 8, the working set WS(t,P) consists of the union of the

database addresses in the string r(t-8+1) ... r(t). For 0 t > the

interval is considered to begin at r(1l). For t<O the working set is defined

to be empty. The working set size, w(t,9), is the total number of distinct

database addresses in WS(t,8). The average working set size is defined as

T
s(O) - (1/T) *· w(t,8)

t-1

where T is the length of the reference string. We now define the binary

variable

1 if r(t+l) is not in WS(t,9)

0 otherwise.
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The missinz ratio is then

T
m(O) - (1/T) *· A(t,e)

t-1

The volume ratio, v(6), is defined as the average number of bytes that must be

moved into the working set for each byte referenced. For purely temporal

locality v(8) - m(6).

The definitions of s(6) and m(#) follow Denning and Schwartz [1972, pp.

192-194]. The properties of the working set model elaborated in that paper

also can be shown to hold for the database byte reference string. Some of

these properties are:

(P1) 1 - s(l) s(8-1) s(8) < min(8, size of database)

(P2) s(8) - s(O-l) + m(O-1)

(P3) 0 < m(0+l) m(8) < m(O) - 1

The interval width, , is measured in bytes referenced. The working set as

defined here is composed of individual bytes. Since the page size effect has

been completely eliminated, these measures reflect purelv temporal locality.

The average working set size, s(B), is measured in bytes and can be shown to

be concave down and increasing in . The missing ratio, m(8), on the other

hand, decreases with . The tradeoff curve of s(8) against m(@) can be

determined parametrically.

Spatial locality measures

To introduce the spatial dimension, the reference string must be trans-

formed. Let a be the spatial dimension parameter and Pa[r] be a function

which transforms any database byte address into a segment number. Then the
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spatial reference string of order a is defined by:

ra(t) - Pa[r(t) ] .

The limiting case of a-O is defined to be purely temporal locality:

ro(t) - r(t).

Let Size[ra] denote the size of the segment containing a byte reference. Seg-

ments may be of constant size, in which case qa may be used for any segment

size. Alternatively, segments may be defined of varying sizes. If com-

parisons are to be made across the spatial dimension, we require

Size[ra+l(t)] > Size[ra (t)] for all r.

Although the reference string now consists of segment numbers each reference

is still to a single byte. The temporal parameter is measured along the

reference string in byte references. The working set of order a at t,

WSa(t,e), is defined as the union of the segments included in the reference

substring ra(t-8+1) ... r(t). The working set size, wa(t,O), is the total of

the sizes of the segments in WSa(t,O). The average working set size, sa(O),

and the missing ratio, m(O), are defined as in purely temporal locality. The

volume ratio is defined to be:

T

va(O) - (1/T) *· Size[ra(t)].Aa(t,B)
t-1l

For constant segment size we have

v,() - q.ma(O).

The missing ratio measures the rate at which segments enter the working set;

the volume ratio measures the average quantity of data moving into the working

set for each byte reference.

The properties of the working set model mentioned above, when adapted to
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constant segment size spatial locality, are:

(P1') qa sa(l) < s(-l) sa(6) < min(q.a, size of database)

(P2') sa(e) - sa(#-l) + a(8-1)

(P3') 0 ma(9+1) < m(8) < m,(O) - I

(P4) 0 < v(O+l) v() < v,(O) - qa

From these properties we can derive an alternative method for calculating the

average working set size from the volume ratio:

qa for - 1
Sac() - -1

qa + E vo(i) for > 1
i-1

The constant segment size spatial locality measures are the same as the

traditional Denning working set measures with a change in unit of measure.

The adoption of a common unit of measure and the addition of the volume ratio

allow direct comparisons along the spatial dimension.

Interpreting the measures

Having defined the locality measures formally, let us consider what they

represent. The reference string corresponds to the sequence of bytes that

must be accessed to service a series of requests. The length of the reference

string generated by a process, T, measures the total useful work performed by

the database system for that process. The temporal parameter determines the

measurement interval in units of byte references. It serves as an intervening

parameter to determine the tradeoffs among the measures. The spatial parame-

ter a can be used to test the effect of ordering and grouping data in dif-

ferent ways. In its simplest form, a can be thought of as a blocking factor.
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The average working set size, s(8), estimates the quantity of buffer

memory required to achieve a given degree of fast access to data without

resort to secondary storage. If several processes are sharing a database

system, as is the usual case, the sum of working set sizes can be used to

determine total memory demand and to assist the database system in load

leveling to prevent thrashing.

The missing ratio, ma(#), measures the average rate at which segments

must be retrieved from outside the working set. Generally, m(9) decreases

with 8, while sa(8) increases, requiring a tradeoff of retrieval rate with

buffer memory size. The product Tma(8) measures the expected number of

accesses to secondary memory required by a process reference string. On many

large computer operating systems, such as IBM's MVS, there is a large cost for

each disk read and write initiated -- both in access time on the disk and

channel, and in CPU time (perhaps 10,000 instructions per I/O).

The volume ratio, v,(), measures the average number of bytes that must

be transferred into the working set for each byte of data referenced. If

there is a bandwidth constraint on the channel between secondary storage and

buffer memory, Tva(#) can be used to estimate the load placed on that

channel.

In summary, the three locality measures describe different kinds of load

implicit in the demand characterized by a reference string. In the following

sections an actual application will be analyzed to demonstrate how these

measures are determined and used to characterize a database.
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A case study

SEI Corporation is the market leader in financial services to bank trust

departments and other institutional investors in the United States and Canada.

The company operates a service bureau for three hundred institutional clients

of all sizes, managing a total of over 300,000 trust accounts. The processing

workload completely consumes two large IBM mainframes -- a 3084 and a 3090-

400, using the ADABAS database management system. The applications software

has developed over a period of fifteen years, originally on PR1ME computers.

Five years ago the company used six dozen PRiME 750's and 850's to process a

smaller workload. At the time of this study approximately two thirds of the

accounts had been migrated to the IBM mainframes. Extrapolated to the

complete workload, the database requires approximately 230 IBM 3380 actuators

(140 gigabytes). Of this total, 40% is occupied by the "live" current month

database, 20% by an end of month partial copy retained for at least half of

the month, and 40% by a full end of year copy needed for three months after

the close of the year. Each of these databases is actually divided into ten

to fifteen sub-databases because of limitations imposed by ADABAS. The

locality model and measures described in this paper are being used to gain

additional understanding of the nature of the database and its usage in order

to find opportunities for improving performance and reducing unit cost of the

applications.

Approximately 60% of the live and year-end databases are occupied by the

"transactions" file, containing records of events affecting an account. On

average there are approximately ten transactions per account per month,

although the number can range from none into the thousands for a particular

account. At the end of each month, except for year end, all the files in the
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live database, except transactions, are copied into the month end database. A

limited volume of retroactive corrections are made to the copy. Transactions

are read from the live database. End of month reports are prepared for the

client. In addition, statements are prepared for the beneficiaries, invest-

ment advisors, and managers of each account. Statements may cover a period of

from one to eighteen months. A statement schedule file determines the

frequency and coverage of the statements prepared. The statement preparation

application program prepares custom format statements according to specifica-

tions contained in client-defined "generator" files. The end of year proced-

ure is similar to end of month, except that the entire database is copied,

transactions are read from the copy, and the workload is much larger. Full

year account statements frequently are prepared at the end of the calendar

year, along with a large volume of work required by government regulations.

Access to the transactions file for statements and similar administrative

and operational reports uses a substantial amount of system resources.

Statement preparation alone consumes 20% of total processor time during a

typical month. Preparation of a statement requires a sequential scan of the

transactions entered for an account within a range of dates. An SQL cursor to

perform this scan might be defined as follows:

DEFINE CURSOR trans
FOR SELECT A, ..., An
FROM TRANSACTIONS
WHERE ACCOUNT - :acct
AND EDATE BETWEEN :begdate AND :enddate

ORDER BY EDATE

Each transaction would then be read by:

FETCH CURSOR trans INTO :v1, ..., :vn

The group of fields selected requires approximately 300 bytes -- substantially
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all of the stored transaction record. These records are blocked by ADABAS

into 3000 byte blocks.

The PRIME version of this application stored transactions in individual

indexed files by client "processing ID" and month of entry. A processing ID

was a group of several hundred accounts. At the end of each month, before

producing statements, the current transactions file for each processing ID was

sorted by account and entry date, and a new file begun for the next month.

Managing the large number of small files was perceived to be a problem.

During the IBM conversion, a database design exercise was performed, resulting

in consolidation of the monthly and ID-based transactions files into a single

file in ADABAS. Multiple clients were also combined together into ADABAS

databases covering up to 30,000 accounts. The transactions file in each of

these databases contains five to ten million records. The dump to tape, sort,

and reload process to reorganize a single transactions file takes over twenty

hours of elapsed time, with the database unavailable for other work. Reor-

ganization is attempted only once or twice a year, and never during end of

month or end of year processing. Thus, the physical order of the file is

largely driven by entry sequence. As a result, instances of more than one

transaction for an account in a block are rare.

As the migration of clients from the PRIME system to the IBM version has

progressed over the past three years, the estimate of machine resources to

process the full workload has increased five-fold. A surprising observation

is that the limiting factor is CPU capacity, although the application itself

does relatively little calculation and a lot of database access. The resolu-

tion to this riddle seems to lie in the large amount of CPU time required to

execute each disk I/O. The transaction file has been the center of con-
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siderable controversy. One school of thought holds that some form of buffer-

ing of data would eliminate much of the traffic to the disk. The buffering

might be done by the application program, or the interface programs that call

the DBMS, or it might be done by adjusting the buffer capacity in the DBMS

itself, or by adding disk cache to the hardware. The analysis to follow will

show how the database locality model can be used to characterize this database

application and gain insight into the impact of various buffering strategies.

Predictive estimation of locality measures

There are two ways to apply the locality model to a case: empirical

measurement and predictive estimation. The empirical approach uses a request

trace from a workload sample to calculate the curves for s(8), m(#), and v(B).

The database locality model can be applied at each stage of database process-

ing. At the application level a trace of calls to the DBMS, such as the

ADABAS command log, can be used. Similarly, disk block I/O traces can be used

at the storage level. Request traces from inside the DBMS -- at the inter-

pretation, internal, and buffer stages -- are substantially more difficult to

obtain unless the database system has been fully instrumented. The empirical

approach can also only be used with observed workload samples. Application of

the model to planning and design requires techniques for predictive estimation

of the measure curves from specifications and predicted workload. In this

section we will show how to develop predictive estimators of the locality

measures from patterns of data access.

The sequential scan is a fundamental component of any data access. Each

FETCH CURSOR statement, or its counterpart in another DML, retrieves a

sequence of fields from a logical record (a row in the table resulting from
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the SELECT statement the cursor definition). A series of FETCH CURSOR

statements occurring between the OPEN CURSOR and CLOSE CURSOR statements

constitutes another level of sequential scan (all transactions for a statement

in the case study). Although sequentiality might seem to be the antithesis of

locality, since each item of data in a scan may be different from all others,

we shall see that exploitation of the spatial dimension can result in con-

siderable locality even for the sequential case.

To derive formulas for the locality measures of a sequential scan, we

first recast the problem in formal terms. Let r be the number of bytes of

data accessed with each FETCH. We can reasonably assume that there are no

repeated references to the same data within a single FETCH. Assume that all

the data referenced in a fetch comes from single record of length . Each

FETCH is then a sequential scan of r bytes in any order from a record of

length a2 r. Let us consider the class of segment mapping functions that

will place whole records into segments of constant size b . Each mapping

function can be defined as an ordering of records by some fields in each,

followed by the division of the ordered records into equal-sized segments of b

bytes. For example, we might segment transaction records, ordered by account

and entry date, into blocks of ten records, or 3000 bytes each. It is

important to remember that in this type of analysis the ordering is only

conceptual and need not correspond to the physical order or blocking of the

file.

Given the definitions of r, , and b above, we can proceed to derive

formulas for the locality measures. First note that each of the r bytes in a

FETCH is from the same record, and by extension, from the same segment.

Therefore, only the first byte reference of each string of r can be missing
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from the prior working set even if 8-1. Now let f(8) denote the likelihood

that a record is missing from the working set when its first byte is referenc-

ed. We then have

qa b

ma() - (l/r) f ()

va ) 3- (b/r) f ()

and from the alternative method for calculating average working set size

Sa(9e) b + (b/r) F( - 1)

where

F(8) E f (i)
i- 

Note that F(6)-8 when f(8)-1. For the limiting case of purely temporal

locality for a sequential scan we can apply these formulas by using b-r-1 and

f/()-1. Since no byte of data is ever referenced twice, each byte in the

working set must be unique. The working set size will always be equal to the

interval width 8, and the missing ratio 100%, independent of 8. The volume

ratio will be unity.

Application of locality measures to the case study

Table 2 shows the results for several examples of sequential access in

the context of the case study. Case 1 is the purely temporal locality base

case. Case 2 shows access to whole records or rows without blocking. Each

segment is defined to be a single transaction record of 300 bytes. No assump-

tions are made about the ordering of records, but we assume that they are

never referenced twice: f(6)-l. In case 3 we examine the effect of blocking

where only one logical record of 300 bytes is referenced out of each block of

3000 bytes. This case might occur where the segment mapping function placed

18
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only one transaction record in each segment (the remainder of the block might

be filled with other data). Alternatively, we might use this case to model

the situation where records are so widely dispersed that there is essentially

zero likelihood of repeatedly referencing a block. Again f(8)-I, since the

block is never reused. Case 4 shows the effect of accessing all the data in a

3000 byte block, by using a segment mapping function that orders records in

processing sequence -- by account and entry date here. Since all records in a

block are accessed together, only the first record in a block will be missing

and f(/)-(b/r)' l. Note that this ordering is performed by the mapping

function. We do not assume any physical ordering. In fact, the results

depend only on the clustering of data into segments, not on the ordering of

segments or of data within segments.

access case f(a) m(M) v() s(M)

1 purely temporal 1 100% 1 8
(b-l)

2 whole records 1 .33% 1 300 + ( - 1)

(b-300)

3 one record per block 1 .33% 10 3000 + 10(8 - 1)
(b-3000, r-300)

4 whole blocks r/b .03% 1 3000 + ( - 1)
(b-3000, r-300)

Sequential access to transaction records
Table 2

Cases 1, 2, and 4 show the effect of increasing block size when all data

in each block is accessed. The volume ratio is one, since only data needed is

accessed. The missing ratio drops inversely with block size, independent of

interval width 8. The minimum, and optimal, buffer size is one block. As we
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would expect, there is no benefit to obtained from the larger buffer sizes

which result from increasing . Cases 3 and 4 show the opposite extremes for

blocked records. In Case 3 only one record out of each block is used; in Case

4 all the records are used. The missing ratio, the volume ratio, and the

working set size growth factor all differ by a factor of b/r.

Although Case 3 above is a simple approximation of the effect of a

mapping function that orders transactions in order of entry, the model can be

further refined. Since a transaction is entered for an account approximately

every other day, we can expect a uniform distribution of account transaction

records across the file. Let a be the number of accounts in the file. Then

p - (b/). (l/a)

is the likelihood that a given block will contain a record for a particular

account. We then have

f(8) [1 - P- where k - floor(O/r)

The expression for k represents the number of records fully contained in the

interval width 8. Here f/() is the probability, at the point when a record is

first referenced, that it is contained in none of the blocks containing any of

the k most recently referenced records. Vander Zanden, et al. [1986] discuss

alternative formulations of this expression when a uniform distribution does

not apply.

Table 3 shows representative values for access to a single transactions

file with 30,000 accounts, typical of the ADABAS databases in the case study.

Interval widths, /r, are shown in multiples of the logical record size, r.
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e/r m(#) v(e) s(e)
(Kbytes)

1 .33% 10 3

100 .32% 9.7 300
200 .31% 9.4 600
300 .30% 9.0 800
400 .29% 8.8 1,100
500 .28% 8.5 1,300

1000 .24% 7.2 2,400
2000 .17% 5.1 4,200

b-3000 r- -300 a-30000

Transaction record access with uniform distribution.
Table 3

Since ADABAS uses an LRU block replacement algorithm, the average working set

size, s(8), can be used to estimate the buffer memory required to achieve a

reduction in I/O load. From Table 3 it is evident that increasing the buffer

memory sufficiently can reduce I/O load resulting from the dispersed file by

approximately 30% (for 2.4 megabytes) or 50% (for 4.2 megabytes). Such a

large buffer size is not unreasonable on current generation mainframes with

over 100 megabytes of memory. The observed improvement from use of large

buffer memory allocations in the case study situation was comparable to the

predictions.

Conclusion

A very large database, such as described in the above application,

imposes an inertia on the organization. The cost of change is large, and the

wrong choice can make matters substantially worse. Thus, gaining a good

understanding of the application is important. The predictive estimation

21



techniques demonstrated here permit the analysis of load at the logical level

from specifications of the type of access in each application and predicted

application demand. At the same time these locality measures allow con-

sideration of various tradeoffs, such as the impact buffer size on I/O load.

Comparison of predicted load to observed load generated at the application

level can be used to test the predictive model and to highlight inefficiency

in the application software. Comparison to observed buffer size and retrieval

rate at the buffer stage can also be used for model validation and for

performance evaluation of the database system. Most importantly, the locality

measures presented provide a consistent way to characterize and understand a

complex database environment.
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