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ABSTRACT

This paper studies the estimation of the density-weighted average

derivative of a general regression function. Let y denote a dependent

variable. x a vector of explanatory variables, g(x)=E(yvx) the true regression

function and h(x) the marginal density of x. The density-weighted average

derivative of the regression function is =Efh(x)(ag/8x)l. We present a

computationally simple. N consistent, asymptotically normal estimator a of

., that relies on no functional form assumptions on g(x), h(x) or the joint

distribution of (y.x). An estimator of the asymptotic variance of AN is
N

proposed. N provides a practical solution to the problem of estimating up

to scale when g(x) can be written as g(x)=F(x'g). as with many models of

limited dependent variables. .aN also provides a solution to the problem of

nonparametricaly testing linear first derivative constraints on g(x).

The estimator AN is a sample anaiogue of the product-moment

representation of the average derivative. that employs kernel estimates of the

densitv of x. Extensions of classical U-statistic theorems are used to

establish asymptotic normality of 6N. and a jackknifing procedure is used to

remove asymptotic bias. The correctly-scaled weighted average

Efh(x)ag/axj/EIh(x) is shown o be estimated by certain linear instrumental

variable coefficients of y regressed on x. Issues in the estimation of more

general weighted average derivatives are addressed. The relationship of the

results to classical central limit theorems, as well as results on slow

convergence rates of pointwise nonparametric estimators is discussed.



SEMIPARAMETRIC ESTIMATION OF WEIGHTED AVERAGE DERIVATIVES

bv J. L. Powell. J. H. Stock and T. M. Stoker

1. Introduction

In this paper we consider the estimation of the density-weighted average

derivative of a general regression function. Let y denote a dependent variable

and x a vector of independent variables, where x is distributed with density

h(x) and the true regression function is E(y!x)=g(x). Our interest is in

estimation of the weighted average derivative vector d=Ejh(x)ag/ax]. The

approach we take is semiparametric: we propose an estimator of the finite

parameter vector whose properties are valid without restricting the joint

distribution of (y,x). In particular, no functional form assumptions are

applied to h(x) or g(x).

The primary interest in weighted average derivatives arises from their

role in several semiparametric estimation problems in econometrics. One

important example is the "scaled coefficient" problem of Ruud(1986) and

Stoker(1986), where the conditional expectation is restricted to the single

index form g(x)=F(x'B), for some function F. For example. this form arises in

many models with limited dependent variables. Here the weighted average

derivative is proportional to the coefficients , so an estimator of will

measure up to scale. Average derivatives are also useful in testing linear

constraints on the first derivatives of g(x); Stoker(1985) discusses these

sorts of applications.1

A second issue of interest which our approach addresses is the practical

question of how to summarize empirically the "typical effects" of changes in x

on y. In practice. standard OIS coefficients of y regressed on x carry this

interpretation. in accordance with the widespread use of the linear model in
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empirical work. However, it is well known that OLS coefficients are

inconsistent for average derivatives when the true model between y and x is

nonlinear and/or the specification of x omits important behavioral variables.

A general estimator of can be interpreted as a measure of typical effects

regardless of whether the true model g(x) is linear or not. and thus is robust

to one of the two sources of bias of OLS coefficients. In this context can

be scaled to a true weighted average IV=4/Eth(x)=Eh(x)bg/ax/Eth(x)], and

we point out how 6IV is estimated by certain instrumental variables

coefficients of y regressed on x.

Formally. in this paper we propose an estimator N of the weighted

average derivative =E[h(x)(ag/ax)j] where h(x) is a continuous density

function that vanishes on the boundary of the values of x

but is otherwise unrestricted. and where N is the sample size. We show that H

is a N- consistent. asymptotically normal estimator of . We give an estimator

of the asymptotic variance-covariance matrix of N.

The estimator N. is a sample analogue of a product-moment representation

of density-weighted average derivatives, that is corrected for asymptotic

bias. The representation involves derivatives of the density of x, which are

nonparametrically estimated using the kernel density estimation technique of

2
Parzen(1962) and others. The estimator N is based on the appropriate average

of the (pointwise) nonparametric estimators and is computed directly from the

observed data, requiring no computational techniques for maximization or other

types of equation solving.

The verification of the properties of N combines two classical tools of

statistical theory. The asymptotic normality of averaged kernel density

derivatives is based on an application of Hoeffding's(1948) projection method

for U-statistics. The correction for asymptotic bias extends Bierens'(1985)

proposal by applying the conceptual logic of Quenouiiie's(1949) jackknife to
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several averaged kernel estimators computed using differing bandwidths. While

our primary interest is in the properties of 3N' the methods are generally

applicable to procedures based on averaged pointwise kernel estimators.

In Section 2. we present our notation and briefly review some properties

of kernel estimators. Section 3 proposes our estimator for density-weighted

average derivatives. and establishes N consistency and asymptotic normality.

Section 4 addresses two topics: the correctly-scaled instrumental variables

estimator. and the special role that the density h(x) plays as a weighting

function in our estimation procedure. Section 5 concludes by discussing the

role of our results in statistical theory, and topics for future research.

2. Notation, Assumptions and Technical Background

2.1 The Basic Framework and Examples

We consider an empirical problem where y denotes a dependent variable and

x a k-vector of independent variables. The data consists of N observations

(yixi), i=l .....N. which is assumed to be an i.i.d. random sample from a

distribution that is absolutely continuous with respect to a -finite measure

v, with (Radon-Nikodym) density H(y,x). The marginal density of x is denoted

as h(x), and the regression function of y given x is denoted as g(x)-E(yix).

Our interest is in the estimation of the density-weighted average derivative

vector

(2.1) 8 _ E h(x) 5x 3

We consider alternative weighting functions (other than h(x)) in Section 4.2.

The weighted average derivative arises in several semiparametric

estimation problems. Examples 1 and 2 indicate two problem areas where

estimation of is valuable.
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Example 1: Estimation of Scaled Coefficients - Suppose that g(x) can be

written in "single index" form as g(x)=F(x'l), for some unknown function F and

coefficients . This structure implies that the pointwise derivatives of g(x)

are proportional to , as ag/ax=[dF/d(x')]. is then proportional to the

coefficients B, since =Eih(x)ag/axj=E[h(x)dF/d(x'B)j=Y . An estimate of is

therefore an estimate of up to scale. regardless of the form of the unknown

function F. The correctly scaled weighted average 6Iv=3/E[h(x) is likewise

4
proportional to the coefficients .4 See Ruud(1986) and Stoker(i986) for

specific examples of this structure, including many standard limited dependent

variables models.

Example 2: Tests of Linear Derivative Constraints - It is often of interest to

perform tests of hypotheses of the form c'(ag/ax)-c =0. where c is a k-vector

of known constants and c a known scalar. Letting a(x)=c'(ag/ax)-c 0 denote the

departure, the constraint can be summarized as a(x)=O. The density-weighted

average departure can be written as E[h(x)a(x)j=c'E[h(x)ag/axi-Eih(x)ic=

c'3-E[h(x)]co. which clearly must vanish if the constraint is valid. An

estimate of can therefore be used to construct an estimate of the mean

departure E[h(x)a(x)], and the asymptotic distribution of such an estimate can

be used to construct a test of Eh(x)a(x)j=O. The Eh(x)] term of the average

departure can be absorbed by considering the correctly scaled weighted

departure Eh(x)a(x)]/E[h(x)]=c'Iv-co0. so that a test of zero average

departure can be based directly on an estimate of 3IV' See Stoker(1985) for a

discussion of tests of this type, as well as many statistical and economic

examples of derivative constraints.

We now introduce the required assumptions on the the marginal density

h(x) and the regression function g(x).
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Assumption 1: The support n of h(x) is a convex (possibly unbounded) subset of

R with nonempty interior n . The underlying measure v can be written in

k
product form as v=v xv where v is Lebesgue measure on Rk. h(x) is

continuously differentiable in the components of x for all xQ ° .

Assumption 2: h(x)=O for all xdG. where d denotes the boundary of .

Assumption 3: g(x) is continuously differentiable in the components of x for

all xE6. where differs from by a set of measure 0. E(y2 ). E(xx'),

Ety(ah/ax)] and Eh(x)ag/axj exist.

Assumption 1 restricts x to be a continuously distributed random variable.

where no component of x is functionally determined by other components of x.

Assumption 2 is a boundary condition, that allows for unbounded x's where Q=Rk

and dGQ=. Assumption 3 states that the true regression function is a.e.

differentiable, and that the weighted average-derivative exists. Further

regularity conditions are given in Assumption Al of Appendix 1.

2.2 The Product-Moment Representation of 

Our approach to the estimation of is based on the product-moment

representation of the density-weighted average derivative. This representation

is based on the following multivariate application of integration by parts:

(2.2) E[h(x)2 dx = - 2 g(x) ax h(x)dx = -2 Ey
axj ax ax LaY

where the boundary terms in the integration by parts formula vanish by

Assumption 2. We formalize the result as Theorem 1:
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Theorem 2.1: Given Assumptions 1-3,

(2.3) = E[h(x) at=- -2 E[y a) = -2 Cov[y. 'h 

We give a formal proof of Theorem 2.1 in Appendix 1.

We propose to estimate by the sample analogue of (2.3), where ah/ax is

replaced by a consistent nonparametric estimate. Specifically, let h(x) be an

estimator of h(x), and let ah(x)/ax denote the associated estimator of its

derivative. Then an estimator of 3 can be formed as the sample product-moment

of (2.2), namely (-2/N) [yiah(xi)/axj. Our specific estimator N of uses

a kernel estimator of the marginal density h(x). We now review kernel density

estimators and some of their properties.

2.3 Kernel Estimators: Notation and Pointwise Convergence Properties

There are a number of methods for nonparametrically estimating an unknown

function, as surveyed by Prakasa--Rao(1983). Kernel estimators arise from a

particular method of local averaging. A kernel estimator of the density h(x)

can be written in the form:

1 N k [xW .
(2.4) h(x) -N iW

where the "kernel" W(.) is a density function and the "band (or window) width"

YN is a smoothing parameter that depends on the sample size N. The

contribution to h(x) of data points that are close to x is determined by W(.),

where "closeness" is determined by the bandwidth YN. The asymptotic

properties of h(x) refer to the limiting properties obtained as the sample

size N increases and the bandwidth Y N declines. We make the following

assumption on the kernel density W(.):
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Assumption 4: The support Gw of W(u) is a convex (possibly unbounded) subset

of Rk with nonempty interior, with the origin as an interior point. W(u) is a

differentiable function such that W(u)>O for all uEOQw , W(u)du=l and

fuW(u)du=0. W(u)=O for all uEdQw , where dQW denotes the boundary of Qw. W(u)

is a symmetric function: W(u)=W(-u) for all uEO .

We denote the derivative of W as V(u) aW/au. The symmetry of W implies that

V is anti-symmetric: V(-u)=-V(u) for all uEnW.

Detailed studies of the pointwise properties of kernel density estimators

can be found in the statistical literature. For our purposes, some of the

known pointwise properties on the convergence of h(x) to h(x) are of interest

for interpreting our results. First, h(x) is asymptotically unbiased for h(x)

k
as N-*o and N-0. Second, the variance of h(x) is O(1/NY N ), and therefore

k k k+2
converges to if NYN n-. Third. if N -n and NY -.0, the mean square error

N N N
k

of h(x) is (1/NY N ). While proofs of these properties can be found in the

literature, for completeness we summarize their derivations in Appendix 2.

These properties imply that the maximal rate of convergence of h(x) to h(x) is

INYN . which is strictly slower than N since YN 0.

The same slow pointwise convergence is also displayed by kernel density

derivative and kernel regression function estimators. The density derivative

estimator associated with h(x) from (2.4) is

(2.5) h(x) - V
ax N N

By analogous arguments to those in Appendix 2. the density derivative

k+l
estimator ah/ax obeys E(ah/ax)-ah/ax and MSE(ah/ax)=0(1/NyN ) as YN -0

NY k+IA and NY k3. Similarly, the kernel regression function estimatorN N
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(2.6) g(x) h(x) [ ] -
i=l [N N i

k k k+2
obeys E(g)-g(x) and MSE(g(x))=O(1/NY ) as Y -O, N - and NY 0

N N N N

Such slow rates of convergence imply that precise pointwise nonparametric

characterizations of density functions, regression functions and derivatives

of such functions will be feasible only for extremely large data sets. These

problems are particularly severe for higher dimensional applications (larger

k), reflecting a particular embodiment of the "curse of dimensionality" cited

by Huber(1985) and others.

We have raised these issues to place our results in a particular context.

In the next section, we produce a X consistent and asymptotically normal

estimator of the weighted average derivative . that is based on averages of

kernel density derivative estimators. Consequently, our results give an

example of how the slow convergence rates of pointwise estimators can be

speeded up when they are averaged to estimate a finite parameter vector,

thereby avoiding the "curse of dimensionality."

3. The Weighted Average Derivative Estimator

3.1 The Average Kernel Estimator and Its Interpretation

A natural estimator of the weighted average derivative =Eth(x)ag/axj is

the sample analogue of the product-moment representation (2.3) defined as

(3.1) 8N a Nx 
i=l

where h.(x) is the kernel density estimator
1

8
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1 N . k rx-X.
(3.2) hi(x) = - W -i ) - N-1 L Y

j=1 N N
i i

(Note that h(x) differs from h(x) of (2.4) by omitting xi in the estimation

of the density h(x), which we require for technical reasons.) Thus to compute

th
the i summand of N' the density is estimated as hi(x), the derivative is

estimated as ahi(x)/ax, and the summand formed as (ahi(xi)/ax)yi.

Provided that ahi(x)/ax is consistent for ah(x)/ax (in some sense), N

will be a consistent estimator of by the law of large numbers. In Section

3.2 we show that N[SN-E(6N)] has a limiting normal distribution. In Section

3.3, we introduce the estimator N' which is just AN corrected for asymptotic

bias, and show that (8a N-.) has a limiting normal distribution.

In order to obtain a further interpretation of N' first insert (3.2) in

(3.1) to obtain the explicit representation

(3.3) a 
N N(N-1) i=i N i -v j j-] y.j=l N N

jxi

The estimator N is easily rewritten in the standard "U-statistic" form as

- N-1 N I k i
(3.4) N 2 T I r 1 V TN - y

i=1 j=i+1 NN

using the fact that V(u)=-V(-u). O

The average kernel estimator 6N has a natural "slope" interpretation. Let

the subscript e denote a particular component of a k-vector, as in

xi=(xli .....xi..... i ) '. The gth component of can be written as
ii, ~K1 N

9



(3.5) N e-1 N-1 N k-1 x-i - - y -

i=1 j=i+l N N le xj

where we(u) = -ueaW/aue. w(u) is a weighting function, where an application

of integration by parts gives we(u)du=fW(u)du=l. Equation (3.5) shows that

SeN is a weighted average of the slopes (yi-Yj)/(xie-xje), i,j=l .... N, with

low weight given to observations with lxi.-x.jl large.11 Consequently, while our

approach to estimation uses the product-moment representation instead of

kernel estimates of the derivatives of the regression function g(x), the

estimator N embodies the intuitive feature of combining the slope

(derivative) estimates (yi-yj)/(xie-xje) for all i,j,e.

3.2 Asymptotic Normality of the Averaged Kernel Estimator

In this section we establish that N[~N - E(N )] has a limiting normal

distribution with mean 0 and variance-covariance matrix Z., and derive an

explicit formula for .' The results follow from general theorems on the

asymptotic behavior of U-statistics, that are extensions of the classical

theorems of Hoeffding(1948) (see Serfling(1980) for a recent reference). We

first prove the general results as Lemma 3.1 and Corollary 3.1 below, and then

apply them to the average kernel estimator N.

Begin by considering a general U-statistic of the form

-1 N-1 N
(3.6) UN [- N I PN(zi z)

(3.6) UN [ i=1 j=i+l N i '

where {z., i=1,...,N) is an i.i.d. random sample and N is a k-dimensional

symmetric kernel; i.e. PN(Zi[Zj)=PN(j,Z.). Also defineN i j 3 1.

10
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(3.7)

(3.8)

(3.9)

rN(z i ) = EPN(Zi,Zj)i1Zi

8N = EtrN(zi) = E[PN(ZiZj)]

2 N

UN = N + N rN 
i=I

where we assume that 8N exists. UN is called the "projection" of the statistic

UN (Hoeffding(1948)).

Our first result is Lemma 3.1, which establishes the asymptotic

12
equivalence of UN and UN:

Lemma 3.1: If EiIPN(zizj)i = o(N). then 4'(UN - UN) = (1).

Proof: We prove the equivalence by showing that NEiUN-UN! 2 =o(l), where

hUN U,,i (UN U ^(UN UN). =eo 
!UN-UNt (UN-UN)'(UN-UN). Define qN(ziz) N(zizj)rN(zi)-rN( N so

that

(3.10)
-1 N-i N

U _ Ui = [ N j=i+
i=l j=i+l

qN(zi'zj)

The expectation of the squared length of the vector UN-UN is

(3.11) E[HIUN - UNiI ]
N -2 N-1 N N-i N

2 i1 T i E[qN(Z i zj)1 q N(m z1 z m ) ]i=1 j=i+l l=l m=A+l

Because z.i, i=1,...,N are independent vectors, all terms with (i,j)r(l,m) have

zero expectations (if i and jm this is obvious, and writing out the

expectation for i=Q, jm gives a quick verification). Therefore,
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(3.12) E[IUN - UN 2 = 2 N Ni i EiiN(z iZ 
i=1 j=i+l

The number of terms in this double summand is O(N 2). The nonzero expectations

are each O(EiqN(zi.zj)ii )=O(EIpN(zizj) l )=o(N), the latter equality by

assumption. Consequently,

(3.13) NEIIJUN - l ] = N [ o(N)

= of1)

as required. QED

Because the projection UN is an average of independent random variables,

we can immediately establish the asymptotic normality of UN:

2 2, -
Corollary_ 3.1: If ELipN(zizj)il ] = o(N), ErN(zi)l < r < for some

r>O, and if RN - 4E([rN(zi)-GN][rN(zi)-8Nl' is nonsingular, then the limiting

distribution of R Ndistribution of R N- /2 (UN - N) is multivariate normal with mean 0 and

variance-covariance matrix I, where RN /2 is any square root of the inverse
N

of RN.

Proof: The follows directly from Lemma 3.1 and the Central Limit Theorem for

triangular arrays (c.f. Chung(1974) or Serfling(1980, section 1.9.3), among

others). QED

Lemma 3.1 and Corollary 3.1 provide sufficient technical machinery to

establish the asymptotic normality of the average kernel estimator N centered

about E(ON). Let zi = (yixi '), and rewrite (3.4) asabout~~~~~~ 1(N.Ltzi m(ix 

12



-1 N-1 N

(3.14) N [ 2 ] i- PN (izj)
i=i j=i-1

with

ki+l - x
(3.15) PN(Zi.zj) - N V

Also define

(x i )( E[(Yi g(xi))2 xi ] = Var(yiix i )
(3.16)

m(i) E(y 2
i ) = (x i) + [g(xi)

To apply Lemma 3.1, we require conditions on the bandwidth YN such that

2
E[ItpN(ziz!l j = o(N). We have

N

k+2V 2
= [. J _] JV(u)!I jmtxi)+mxi+yNu) h(xi)h(xi YN u)dxidu

-(k+2) = k+2)-IO(= O(N(NY

where the second equality uses the change-of-variables from (x.i Xj) to

-k
(xi, u=(xj-Xi)/YN), with Jacobian Y . Consequently, we have

2 k+ 2
EitpN(zi,zj )ij =o(N) if and only if N 0 as uY 0, the required

bandwidth condition for asymptotic normality of AN.

To characterize the bias and asymptotic variance of aN, note that for

PN(Zi'Zj) of (3.15) we have

13



(3.18) rN( i ) = EtPN(Zi Zj)zij

=rk -x -
J 0L-1 Y I YN- (Yi g(x)) h(x)dx

= j V(U) (Yi- g(xi+YNu)) h(Xi+YNU)du

a g(xi +YNU)
=J ax h(x i .Nu)W(u)du

ah(x-+¥ U)r iN
-J *Yi - (xi+YNU) ax --- W(u)du

where the third equality uses the change-of-variable u=(x-xi)/YN and the

fourth equality involves integration by parts, where the boundary terms vanish

by Assumptions 2 and 4. Consequently, if we define

ag(x i) ah(x i)
(3.19) r(zi) = -- h(xi) - [Yi - g(xi)] x

then E(l!r (zi)-r(zi)il)=O(y N) so that rN(zi)-r(zi)= (N). Moreover.

E[r(z i ) I=E[h(x)ag/xj=6..

The bias in the average kernel estimator N is therefore characterized as

(3.20) EtN) - 8 = ErN(zi) -

= E[r(zi)] - . + O(YN

= O(yN )

For N' the variance-covariance matrix RN of Corollary 3.1 is

(3.21) RN = 4 E([rN(zi)-E(rN(Zi)lrN(zi)-E(rN(zi)')

= 4 Er(zi)r(zi)'] - 461 + O(Y N )

-= X + O(YN )

where . is the variance-covariance matrix of 2r(zi). Explicitly, we have

14



(3.22) X =i 0 + 1

where

X Or = 4E[[i i)2 ah(xi) ah(x i
(3.23) = 4 E ly i - g(xi x ax

r 2 ag(xi ) g(
(3.24) = 4 E[h(x ag(x) ag(x) -Exi ax ax' 

We summarize this finding as Theorem 3.1:

k+2
Theorem 3.1: Given Assumptions 1-4 and Al, if YN # 0 and NYN ~ ~, then the

average kernel estimator AN of (3.1) is such that 4iN[N - E(4N)] has a

limiting multivariate normal distribution with mean 0 and variance-covariance

matrix of (3.22).

We now turn to a discussion of asymptotic bias. An estimator of the

variance-covariance matrix is given in Section 3.4.

3.3 Jackknifing the A__symtotic Bias

The limiting normal distribution of N6 N - E(3N)] arises from the

variation of the weighted average of kernel density derivatives. The bias

E(N)-8 is due the local averaging inherent to kernel estimators, and vanishes

as YN-O. However, the asymptotic bias N!E(N)- j = O(Z-YN) does not vanish.

since asymptotic normality requires that NYN 2 . In this section weN

indicate how to correct AN so that the asymptotic bias vanishes, without

affecting the variance of its limiting normal distribution.

The bias of a pointwise kernel estimator can be studied by expanding it

15
in a Taylor series in the bandwidth Y N' Bierens(1985) proposed eliminating

the bias for one-dimensional pointwise kernel estimators by differencing two

15



kernel estimators with appropriately chosen bandwidths, to subtract off the

leading term of the Taylor series expansion. In higher dimensional settings,

one must eliminate bias terms of order higher than one. Our bias elimination

extends this approach to the higher order case, which utilizes differencing

over multiple kernel estimators.

We begin by introducing conditions under which the bias can be expanded

as a Taylor series in the bandwidth Y N as

2 P-i. P P+i
(3.25) E(6N3 - = bYN + bY + + b y N + + O(

where P=(k+4)/2 if k is even and P=(k43)/2 if k is odd. By Young's version of

Taylor's Theorem (c.f. Serfling(1980), among others), this representation is

possible if the first P+1 derivatives of E( N ) with respect to YN exist at

yN=O. Write E(6N) as
N NI

(3.26) E (6) = - 2 I [ -i A] V lI-N -J yl h(X1)h(x2 )dx1dx 2

N,.,,, ,,~,;- · 1N N

= 2 [ -] f V(u) y h(x) h(x + YNu) d du

Expansion of the integral in (3.26) gives the representation (3.25). with1 6

k P+
(3.27) b = u V(u) y h(x)-- h(x) dx du

P el...J ue up+ axel"a e

Thus a sufficient condition for the existence of the expansion (3.25) is

Assumption 5: Let P=(k+4)/2 if k is even and P=(k+3)/2 if k is odd. All

partial derivatives of h(x) of order P+2 exist. The expectation

E[y(aPh(x)/axe!..ax )j exists for all p P+2. All moments of W(u) of order

P+1 exist.
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To understand the sufficiency of the moment condition on W(u). consider the

following application of integration by parts:

rtl j aW dut t -u
(3.28) J u du t j u u W(u) du. u e 'j

When is unbounded, (3.28) can be inserted directly into (3.27). If is

bounded, the region of integration for u in (3.27) may be a subset of 17

which would introduce boundary terms into (3.28). Nevertheless, it is clear

that the existence of the moments of W(u) guarantees the existence of the

integrals involving u and V(u) in (3.27).

The asymptotic bias of N arises from the terms up to order P-1 in

(3.25). Multiply the expansion by - to express the asymptotic bias as

b 1 hY 2b+ b + P (3-29) 4 E(aN)J = bYN+b 2N .N--1. .+ P N NO(Y

For Theorem 2, we require N -e. so that the 4YN through NY terms
N N

explode. and we can choose YN such that NY -O. Therefore. asymptotic bias

correction can be performed if the leading P-1 terms can be removed, while

retaining the order of the remainder.

The key insight for our approach is noting that the coefficients b ,
P

p=l,....P do not depend on the bandwidth YN' In particular, we remove the bias

by subtracting from AN a weighted sum of P kernel estimators with differing

bandwidths: Let spN denote the estimator

(3.30 -)_ _ [ ax (3.30) - Y iypN N i ax i

where h .(x) is the kernel density estimator with bandwidth a NYN:pl ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~p 
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N k xi
(3.31) h ix) = 1 [ay] t N kN

j=i pNY pN N
jei

with a pN=d N p=l,...,, O < 1/P, where d p=l,....P are distinct

positive constants. Let cN=(ClN .... cpN)' be defined as

(3.32) c D =] I[ 

N ,

Finally define the "jackknifed" estimator N of as
N

~N - E CpN pN
(3.33) NN

CpN
P

3N is the desired estimator without asymptotic bias. We can now establish

Theorem 3.2, the main result of this section:

Theorem 3.2: Given Assumptions 1-5 and Al, if N obeys NYN k+2- and NY 0,NAN N

then the "jackknifed" estimator 4N defined in (3.33) is such that 4-N(SN - 8)

has a limiting multivariate normal distribution with mean 0 and variance

covariance matrix of (3.22).

k+2-,, k+2 k+2 (1 )(k2)Proof: NY N implies that N(a pN N )k+2 =Nd so Theorem 2

implies that Ni pN - E(6pN)] has a limiting normal distribution for each

p=I....P. If N = (a N' 1N ....... PN') the Cramer-Woid device implies that

-N&S N - E(6N)] has a limiting normal distribution with mean 0 and variance-

covariance matrix Y-. Consequently, since 0 < < 1/P, we have cNO as YNO.

and 4i~[SN - E(S N) has a limiting normal distribution with mean 0 and variance
-2

covariance matrix =lim 1-E pN] [(I¢N')'I k]' y (, c N' ) ' 9I k ] where I k

is the kxk identity matrix.
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The result follows from im iN[E(SN) - .i = O. This is verified directly:

First evaluate (3.25) for each N as

E( pN) - b (3.35) I - I b

can [ ] = (Yn .. N y ) (D )'D ] + o(yP+I-'P
CN

-b. ]by P P1-PLE( pN) (K L N·

l N 2 + P+N N-~~~~~~-1 ~ ~P ~P-

where D exists because the constants d , p=1....,P, are distinct.

Consequently, we have that =N[E(6N)-3 J( N E(iN)-_cpNE( pN) J / (l - E c N ) } - 8 ) =

P+I-qP P 2P
O(~-N 1 ) = o(4jYN ). Since N is such that NYN BOX lim Sf[E(.N) - =

0. QED

Thus N is a consistent, asymptotically normal estimator of the

weighted average derivative , that depends on no specific functional form

assumptions on the true regression function g(x) or the density h(x). We refer

to N as a "jackknifed" estimator because the logic of, bias removal is in line

with Quenouille's(1949) jackknifing procedure for estimating bias (see

Efron(1982) for a recent exposition). In particular, Quenouilie's jackknife is

based on the fact that the bias in many estimators depends on sample size, and

that the bias can be estimated by taking differences in estimators computed

from samples of varying sizes. Our estimator N, is constructed by using the

bandwidth YN in the same role as the sample size in the classical jackknife

procedure.

While the justification for our asymptotic bias elimination is involved,

the actual correction is computationally straightforward and applicable to
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general empirical situations. All that is required is the existence of the

expansion (3.25) - knowledge of the values of the expansion coefficients b 

p=l,...,P is not required. For a k-dimensional problem, P additional

estimators are subtracted for asymptotic bias correction, where P is the

smallest integer greater than (k+3)/2.18

NIn basic terms, the asymptotic bias arises for the estimator N because

the kernel density estimator hi(x) is a local average estimator of the

nonlinear function h(x). Further insight into the structure of the corrected

estimator N is available by noting how the local averaging is altered in its

definition. Now AN can be written in "pseudo average kernel" form as:

-2 a~N a xh 1
(3.36)2 [ i-yN N tax i=l

with the density estimator hiN(x) defined as

hi(x) - CpNhpi(x) N k - X.1
(3.37) h (X) =- [

iN 1-I1 cNNN-i N N
P ji

using the "pseudo kernel" WN(u)=LW(u)- c Na -k W(u/apN)]/i-E cpN19 WN(u)

is the weighted difference of similar density functions with different

spreads, and will involve positive weights for some points nearby x and

negative weights for others. Thus the bias inherent to estimating nonlinear

functions with local averaging is removed by averaging with both positive and

negative weights, and varying the local weight pattern with sample size N.

20



3.4 Estimation of the Asymptotic Variance-Covariance Matrix

While one can propose several methods for estimating the asymptotic

variance-covariance matrix of N' we consider the direct sample analogue

estimator that employs kernel representations of the density h(x) and the

regression function g(x). In particular, recall that =4ELr(zi)r(zi)']-48',

where r(zi) is defined in (3.19). We consider the estimator

Ei r(zi)r(zi)' - ,
(3.38) X = 4 4 a

3 N N N

where r(zi) is the sample analogue of r(zi) defined as

ag(x.i) ah(xi)
(3.39) r(z ax h(x - Y gxi) axax h i 8x

where h(x) and g(x) are the kernel estimators defined in (2.4) and (2.6)

respectively. Clearly r(zi) is a pointwise consistent estimator of r(zi).

We conjecture that is a consistent estimator of , although we do not

establish it here. Consider the "estimator" = 4Er(zi)r(zi)'/N-436'. By the

weak law of iarge numbers we have plim ( - En) = 0. Consistency of Z. would

follow from plim ( - hi) = 0. We have not established the minimal regularity

conditions required for this condition. From the triangle inequality, it is

easy to see that sufficient conditions are that r(zi) is a uniformly weakiy

consistent estimator of r(zi) and that r(zi) is bounded in probability on .20

Given this consistency, hypothesis tests on the value of some or all of

the components of can be performed with standard Wald statistics using AN

^ 21 0
and . In particular, if R=S is a coefficient restriction of interest.

where R is a kxk matrix of full rank k <k then the limiting distribution of

N(R3N-3 )'-3 (R3N- ) is X with k degrees of freedom.

In general situations, the asymptotic distribution of N will have larger
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variance than that of a parametric estimator of . reflecting the efficiency

cost of using a nonparametric density characterization. We close this section

by noting that there are situations where N may have smaller asymptotic

variance than a parametric estimator.

To see this point, consider the product moment estimator when the density

h(x) is known exactly. In this case will be estimated up to sampling error

by:

* -2 N ah(x.)
(3.40) N N xN ax Yi

i=1

Clearly N is a strongly consistent estimator of by the strong law of large

numbers, and by the central limit theorem, j'N(N - 8) has a limiting normal

distribution with mean 0 and variance-covariance matrix

*

(3.41) X = 0 + 

where 0 is defined as in (3.23), and

r 2E [g(xi) ]2 ah(xi) ah(xi)
(3.42) 2= 4 E g(xi ax x x,) - 4 8'

*

For comparing N and N, recall that the asymptotic-covariance of 4N is

~8= 0+Z1 where E1 is defined in (3.24) as

(343) 1 4 [2 ag(xi) ag(xi)(3.43) Xl = 4 E h(x ax 4ax' 

The difference 1-2 is in general nondefinite, so that there exists

situations where N is more efficient than N' From the forms of 1 and 2

above, one circumstance is where g(x) is nearly a constant function, but where

h(x) is variable. In this case 1-Z 2 will have negative diagonal elements, so

that N will give a more precise estimate of 6 than N.

This counterintuitive feature arises because in a large sample the
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components of N differ from those of N by 2r(zi)-(-yiah(xi)/ax)j =

2[h(xi)ag(xi)/ax + g(xi)ah(xi)/ax, a term attributable to the kernel

estimation of h(x). Because of the generality of the our framework, these

components may be sufficiently negatively correlated with the leading

components (--yiah(xi)ax) to produce an efficiency gain from estimating the

density h(x).

4. Related Discussion

4.1 The Instrumental Variables Estimator

In this section we consider the estimation of the correctly scaled

average derivative Iv=ELh(x)ag/axi/E[h(x)j. 6IV is arguably a better measure

than of the "typical effects" of changes in x on y, since it is a true

weighted average of the "effects" ag/ax.

It is straightforward to show that IV is consistently estimated by

N/hN, where hN is any consistent estimator of Eh(x). Likewise,

N N/h N ~- IV will have a limiting normal distribution with mean 0 and

variance-covariance matrix {(Eh(x)]) 2 . Consequently, the use of any

consistent estimator hN of E[h(x)] will permit consistent, asymptotically

normal estimation of VIV'

One such estimator arises naturally as the estimated slope coefficients

of a linear regression of yi on xi. Begin by applying'Theorem 2.1 to
1 1

IkE[h(x)J. where Ik is the kxk identity matrix, as

(4.1) I k Eh(x)J = -2 E[ax x

Therefore, IkE[h(x)J is consistently estimated by the density-weighted average

derivative estimator replacing yi by xi as
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(4.2) xN N Xi

where the "pseudo kernel" density hiN(x) is defined in (3.37). Note also that

IV can be expressed as

(4.3) aIV = [Eax x']] x y]

Equation (4.3) motivates the following estimator of IV. Consider the

slope coefficients of the linear equation:

(4.4) y = d + ui i=,...N

estimated using the "pseudo kernel" density derivatives ahiN(Xi)/ax as

instrumental variables, or:

(4.5) dN = xN N =i L X x] [ail x ax 
T=1 i=1

The above remarks have established that dN is a ;N consistent, asymptotically

23
normal estimator of I summarized as:IV'

Corollary 4.1: Under the conditions of Theorem 3.2, dN is a consistent

estimator of IV' and QN(dN - IV ) has a limiting normal distribution with

mean 0 and variance-covariance matrix ({Eh(x)j ) 2 .

If Z is a consistent estimator of a, then ( 1xN') -z (xN is a consistent

estimator of (E[h(x)]} 22.

The omission of a constant term from the linear equation (4.4)

facilitates the instrumental variables formula (4.5), but is otherwise

inconsequential. The covariance representation of (2.3) of Theorem 2.1 is also
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valid for (4.1), so that the slope coefficient estimator from the linear

equation with yi regressed on x and a constant will also be a consistent and

asymptotically normal estimator of 3IV' where (1, ahiN(xi)/ax,), is used as

the instrumental variable.

4.2 Statistical Issues in Kernel Estimation of General Weighted Average

Derivatives

In this paper we have proposed an estimator of the density-weighted

average derivative 3=E[h(x)ag/axj, without addressing the question of why the

density h(x) is a natural weighting function. A useful extension of the

results would be to the estimation of the general weighted average derivative

3 =E[w(x)ag/axj, where w(x) is a known weighting function. Specific choices of
w

w(x) could be used to estimate average derivatives over specific subsets of

the data. Moreover, for w(x)=l, =E(ag/ax) is the unweighted average
w

derivative tudied by Stoker(1986). In this section we give an overview of the

issues inherent to estimating using kernel techniques, deferring formal
w

analysis to later research. This overview illustrates how our framework can be

applied, as well as some problems inherent to the case where w(x)=l.

We consider the case where w(x) is a bounded differentiable function with

support (with nonempty interior), restricted so that w(x)h(x) vanishes on

the boundary of n.24 By applying integration by parts, can be written in
w w

a product-moment representation as

(4.6) S = E w(x) = - E() a Y - E Y
w ax l h(x) ax 

A substantive difference between 3 and 3 of (2.3) is the appearance of the
w

density h(x) in the denominator of the first term above.

A consistent, asymptotically normal estimator of the second term of (4.6)

is given by the sample average of the components -[aw(xi)/ax]yi}, so we
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concentrate on the estimation of the first term of (4.6). Define a wN as the

sample analogue estimator, using kernel estimates of the density h(x) as

N w(Xi) hi (xi)
(4.7) ~ a

wN N -x Yi
i=l h i {Xi

where hi(x) is the kernel density estimator defined in (3.2). Write awN out as

(4.8) 3wN = Q1 + Q2 Q3

where

Q1 N
i=l

N

Q2 = - I
i=1

3 N N03 = - -
i=1

w(x i ) ah i (x i )

hi(xi) ax Yi

rw(xi) w(xi) ah(x i )

(ix ) h(x i ) ax i

x ax x i
hi(xi ) h(x i)

Focus first on the case where is contained in the interior of , such
w

that h(x) > E > 0 for all x E . Q is immediately amenable to analysis using

our U-statistic results. In particular, write Q1 in U-statistic form as

-1 N-1 N

i=1 j=i+l

1 1-
PN(zi zj) 2 _ _ N

. 2

PN (zizj)

k-fl x.-x { W(x ) w(x )y.

N - h(xi - h(xj)

Because h(x) is bounded away from 0 on . w(x)/h(x) is bounded, so that under

- as YN2O.regularity conditions we will have E[lIpN(zizj)iP J=o(N) if N - as Y N2
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Thus Lemma 3.1 and Corollary 3.1 can be applied. For Q2' consider the Taylor

series expansion:

(4.14) --- x_ [ (x) (x) -h(x) + +

1(x) h(x h(x) h(x)3

Since h(x) is bounded away from 0 on 0 , the leading term of this expansion

^2
will uniformly dominate (or that the remaining terms are O([hi(x)-h(x) )).

(4.14) can then be inserted into (4.10), with Q2 asymptotically equivalent to

a weighted average of hi(xi), i=l,...,N. In this case our U-statistic theorems

could be applied to show that Q2 is asymptotically normal. Moreover, under

regularity conditions one could show that Q3=op(l/4N), so that Q3 does not

impact on the asymptotic distribution of N . This outlines how the U-

statistic results could be used to show asymptotic normality of N' when the

support of w(x) lies strictly inside the support of h(x). The asymptotic bias

correction can applied directly as outlined in Section 3.3.

Notice however, for the case of the unweighted average derivative with

w(x)=l, the conditions for our results are not met. For w(x)=l, we will in

general have E[jpN(zi,zj)l ]=, so that Lemma 3.1 cannot be applied to Q'

Moreover, when w(x)=l, the higher order coefficients of (4.14) will in general

explode as x approaches the boundary of 0, eliminating this approach.

Consequently, our results are not applicable for this case.

The main point of these remarks is that our focus on the density-weighted

average derivative =Elh(x)ag/axi avoids estimating expectations of functions

which are ratios with the density h(x) in the denominator. Without careful

consideration, division by h(x) can induce fundamental violations of the

regularity conditions required for our approach. As outlined above, there is

ample reason to believe that our approach can be applied to estimation of 
w

where the support of w(x) is strictly inside the support of h(x). Our results
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are not directly applicable to the case where w(x)=l, the estimation of the

unweighted average derivative vector E(ag/ax).

5. Conclusion

In this paper we have proposed an estimator N of the density-weighted

average derivative =E[h(x)ag/axj. This estimator is based on averaging of

nonparametric kernel estimates of the density h(x), and can be computed

directly from the data, requiring no computational techniques for maximization

or other types of equation solving. We have shown that AN is iN consistent and

asymptotically normal, and proposed an estimator of its asymptotic variance-

covariance matrix. We have also proposed a general estimator dN of the

correctly-scaled weighted average aiv=E[h(x)ag/axj/E[h(x)], as the estimated

slope coefficients of the linear regression of y regressed on x, using

estimated density derivatives as instrumental variables. N and dN provide

fully implimentable solutions to several semiparametric estimation problems,

such as the "scaled coefficient" problem of estimating up to scale in any

single index model with g(x)=F(x'B).

The characterization of the asymptotic distribution of N uses an

extension of the classical U-statistic theory of Hoeffding(1948) as well as a

bandwidth jackknifing procedure along the lines proposed by Bierens(1985).

These two steps may provide a valuable approach in analyzing general

estimators based on nonparametric (kernel) characterizations of unknown

density and regression functions.

In broader statistical terms, our results have an interesting role in the

general theory of estimation, as a bridge between known distributional

properties of nonparametric estimators. On the one hand, nonparametric

pointwise estimates of density, density derivatives or regression functions,

such as kernel estimators, are consistent for the true values at rates that
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are necessarily slower than i. 2 5. On the other hand, the Central Limit

Theorem states that sample average statistics, which are clearly nonparametric

estimators, are FiN consistent for their expectations. Our results give a

nontrivial situation where averaging of nonparametric pointwise estimates

permits 'N consistency (and asymptotic normality) to be attained.2 6

This feature implies that semiparametric estimators can be placed on the

same footing as parametric estimators, in the following sense. The main

results of the classical Cramer-Rao theory state that maximum likelihood

techniques produce a -N consistent, asymptotically normal parameter estimator

for any (sufficiently regular) finitely parameterized statistical model, and

that the maximum-likelihood estimator is the best estimator in terms of

asymptotic efficiency. Our results give a situation where nonparametric

pointwise estimates can be used to estimate a finite parameter vector to yield

the same rate of convergence. In other words, for estimating density-weighted

average derivatives (the finite parameter vector ), all specific model

restrictions can be relaxed at an efficiency cost of a fixed percentage of the

data, that does not increase as the sample size increases. Thus, the enormous

data requirements for obtaining precise pointwise estimates are relaxed here,

because of the (semiparametric) focus on estimation of a finite vector of

parameters.

These remarks give our results as much of an "existence theorem" flavor

as a set of practical estimation instructions. Indeed, our results pose a

large number of practical future research questions as to the best way to

impliment the average derivative estimator. While we have established the

proper asymptotic behavior of the kernel bandwidth to establish attractive

statistical properties for N' future research is necessary to indicate the

best way to set bandwidth size in applications, such as whether there exist

desirable "cross-validation" techniques for averaged kernel estimators.
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Moreover, future research is necessary to indicate specific instructions for

choosing the weights in the jackknifing procedure, to best control the bias in

estimation.
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Appendix 1: Regularity Conditions and Proof of Theorem 2.1

Further regularity conditions are summarized as:

Assumption Al:

i) For all y, x and Y, W(u)[y - g(x + Yu)]h(x + Yu) 0 as ui -u.

ii) h, ah/ax, g and ag/ax are Lipschitz continuous in their arguments.

Proof of Theorem 2.1: Let x denote the first component of x, and x the other

components, so that x=(xl,xo')'. For a given value of x , denote the range of0 0

x1 as (x )=(x l(X x ' ) 'E}. Now apply Fubini's Theorem (c.f.

Billingsley(1979), among others) to write E(h(x)ag/aX 1 ) as

~ax1(AI.1) dlg1x) fitx))'dx agex (h(x)) 2dx dxo )

ax )1(X

The result follows from the validity of the following equation:

(AI.2) Zg x1 (h(x)) 2dx = - 2 g(x) ah(xl h(x)dx
ax1 ax hx)dx 1

w(xO ) w(xo)

By inserting (A1.2) into (AI.1), E(h(x)ag/axl)=-2E(g(x)ah/axl) is established,

and by iterated expectation, E(g(x)ah/axl)=E(y(ah/axl)).

To establish (A1.2), note first that the convexity of implies that

w(xo) is either a finite interval [a,b] (where a, b depend on x ), or an

infinite interval of the form [a,-), (--,b] or (-.,~). Supposing first that

w(xo)=[a,b], integrate the LHS of (A1.2) by parts (c.f. Billingsley(1979)) as
0
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(A.3) b 2 2h(
(A1.3) J ax (h(x)) d = - 2 g(x) ah h(xdx

axa 1

+ g(b,x )(h(b,x ) ) - g(a,x )(h(a,xo))

The latter two terms represent gh2 evaluated at boundary points, which vanish

by Assumption 2, so that (A1.2) is established for w(xo)=[a,b].

For the unbounded case w(xo)=[a,-), note first that the existence of

E(h(x)y), E(h(x)ag/axl) and E(g(x)ah/ax ) respectively imply the existence of

E(h(x)g(x)lx ), E(h(x)ag/axlix o) and E(g(x)ah/axlIx o ) (c.f. Kolmogorov(1950)).

Now consider the limit of (A1.3) over intervals [a,b], where b-, rewritten as

(A1.4) lim g(b,xo)(h(b,xo = g(a,x )(h(a,x )) + lim ax h(x)2 dx1
b-e g beo- a 1

+ 2 im Ib g(x) h(x) dx
b-#c 1a1

= g(a,x)(h(a,x )) + h (x )E[ h(x)lxo + 2 h (Xo)E[g(x) x 

2
so that C lim g(b,x )h(b,x ) exists, where ho(xo) is the marginal density

of x . Now suppose that C>0. Then there exists scalars E and B such that O<E<C
o

2 2
and for all b > B, g(b,xo)h(b,xo) -CI<E. Therefore g(xx )h(x,xo) >

(C-E)I where I is the indicator function of B,-). But this implies

that h (Xo)E(g(x)h(x)lx ) = fg(xl,x )h(xl,x ) dx1 > (C-E) I [B,)dx = 

which contradicts the existence of E(g(X)h(x)Ix ). Consequently, C>O is ruled
o

out. C<0O similarly contradicts the existence of E(g(x)h(x)Jx ).

2 2
Since C lim g(b,xo)h(b,xo ) = 0, and g(a,xo)h(a,xo ) = 0 by Assumption

2, equation (A1.2) is valid for w(x )=[a,-). Analogous arguments establish the

validity of (A1.2) for w(xo)=(--,a] and w(xo)=(-,).

The covariance representation E[y(ah/ax)j=Cov(y,ah/ax) is implied by

E(ah/ax)=0, which follows by applying (A1.2) with g(x)=l. QED
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Appendix 2: Pointwise Convergence Properties of Kernel Estimators

In this Appendix, we present brief derivations of the pointwise convergence

properties of the kernel density estimator (2.4). First note that h(x) is

asymptotically unbiased if Y N0, as

N k
E(h(x)) -N = 1

(A2.1) N il N N

: I W(u)h(x - Nu)du - h(x) I W(u)du = h(x) as YN 0O

where the second equality employs the standard algebraic device for studying

kernel estimators, namely a change of variables from z to u=(x-z)/Y N, with

k
Jacobian J(dz/du)=YN

Our primary interest is in the rate of convergence of h(x) to h(x). To

obtain the maximal rate, we bound the mean square error of h(x) by first

examining its bias and then its variance. The (absolute) bias can be written

as

IE[h(x)] - h(x)l = W(u) h(x - YNu) - h(x) du

(A2.2) N sup h jll W(u) du

x

= O(YN )

provided that h(x) obeys a Lipschitz condition. The variance of h(x) can be

written as

2
Var[h(x)] = E(h(x) - E[h(x)j)

E [N [x-x W -- E[h(x)] ) Y [y W [ ] - EIh(x)I]

i=1 N N
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N N k rx-x1 kkrxi12 N-l j-1 E W - E[h(x)j][[] - Eth(x)]

N k 2

N2 i__ (j 2k [YX N (Ei (x)])

i 2
-:7- / W (u) (X-YNu) du - ([h(x)
N N

k
= O(l/NYN ) + (1/N)

= O(l/NY N )

since YN-O. Thus

2
MSE(h(x)) = Efh(x) - h(x)2

= Var(h(x)) + (E[h(x)] - h(x))

= 0(1/NYN k) + ( 2

O(i/NY k)
N

k k 2 k
provided that N -+w and (NY ) y =NY -,O. Thus the maximum rate of

convergence of h(x) to h(x) is NY < JN, since Y - is required. The

properties of kernel regression function estimators and density derivative

estimators discussed in Section 2.3 are verified by analogous derivations.
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Notes

1. These examples are formally reviewed in Section 2.

2. Prakasa-Rao(1983) provides a survey of these methods.

3. For binary response models, Manski(J986) refers to this assumption as

"index sufficiency." Note that any intrinsic single index model with

E(ylX)=FL[F2(X)' ] for some vector X is included in this example by setting

x=F2(X). For instance, the model E(yiX)=X1 lexp(P2X2) is included by setting

x=(ln X1,X2)', and by the following remarks, is proportional to =(1B2) ' .

4. This scaling retains the property that if g(x)=a+x'8, then iV =B.

5. Continuity of x is essential in this context because of the generality

of the dependent variables considered. For exam , for the binary response

model, Manski(1985) points out how continuity of the regressors is useful for

identification with index restrictions.

We make use of many integrals over and affine transformations of .

Since all of these integrals utilize Lebegue measure, for clarity we indicate

the argument of integration instead of the appropriate measure. For instance,

we will write fh(x)dx instead of fh(x)dvx
x

-6. This condition is used for the application of integration by parts, but

is otherwise inconsequential. Because we are estimating nonparametrically,

including functionally related variables is superfluous.

7. Other methods of semiparametric estimation of can be proposed. For

instance, a more direct approach could begin by forming nonparametric

estimators of the density h(x) and the regression function g(x), say h(x) and

g(x). An estimate of could then be defined as the sample average of the

derivatives of the estimated function, namely (1/N) h(xi)ag(xi)/ax. This

estimator cannot be written as a U-statistic, and so our approach is not

directly applicable (see Section 3.2); the relationship of this approach to

our approach raises interesting questions for future research.

8. Other methods include nearest neighbor estimation, as studied by

Stone(1977) and others. For a review of nonparametric estimators in the

context of econometric problems, see McFadden(1986).

9. See, for example, Spiegelman and Sacks(1980), Stone(1984) and

Bierens(1983).

10. This represents the main use of the symmetry of W(.). We can dispense

with the symmetry of W by using a "symmetrized" representation of the kernel,
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as described in Serfling(1980, p.172). We assume the symmetry of W only to

avoid nonessential complications in the notation and exposition.

11. Equations (3.3-5) point out that computing 3N involves a calculation

of order N2 for sample size N. In general, the weight we of (3.5) is

nonmonotonic in the difference ilxi-x.jl, where 11.11 denotes the standard

Euclidean norm on R , namely Ilujl 'iEu 2 The fact that we integrates to 1

implies that slopes associated with tIxi-xjlI suitably large are allocated small

weight. For instance, if k=1 and W(u)=O(u), the univariate normal density

function, then w(u)=u 2(u), and w[(x -x )/yN is increasing in Ixi-xjI for
i1 N 13

IXi-xj<2YN and decreasing for Ixi-xjl> 2YN. A similar structure exists for

W(u) equal to the k-variate normal density function.

12. Lemma 3.1 is a straightforward extension of the results given in

Serfling(1980, p. 186-188), generalizing his results to the case in which

PN(Zi,Zj) varies with N.

3. This also utilizes condition i) of Assumption Al.

14. This utilizes condition ii) of Assumption Al.

15. For a general approach to bias reduction by series expansion, see Cox

and Hinkley(1974).

16. All boundary terms in the derivatives vanish by Assumptions 2 and 4.

17. This is because u=(x2-xl)/YN by the original change-of-variables.

18. Often the choice of kernel W(u) will permit asymptotic bias correction

with a smaller number of additional estimators. For instance, if is

unbounded and W(u) is the k-dimensional normal density (with covariance matrix

Ik), then the odd moments of W(u) in (3.28) are zero, so that b of (3.27) is

zero when p is even. If this case, correction will require substracting off

one estimator for every b term with p odd, or roughly half the additional

estimators required in Theorem 3.

19. WN(u) is not a true kernel density because it depends explicitly on

sample size N.

20. Bierens(1983) establishes conditions under which g(x) is uniformly

consistent for g(x). His results suggest that uniformity with require that the

kernel estimators comprising r(z) be computed with bandwidth YN' where
-2k+2

NYN + as YN O. Of course, under this condition for any given sample sizeN N
one could take YN=Y N, however the asymptotic theory would require that r(z) be

recomputed with more slowly shrinking bandwidths as the sample size increases.

21. For the single index framework where g(x)=F(x'P), scale-free

restrictions on the value of correspond with restrictions on the components
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of (c.f. Stoker(1986)).

22. It is easy to verify that asymptotic bias correction can be performed

after scaling by hN: N/hN has an asymptotic normal distribution centered at

E(N)/Elh(x)], and the asymptotic bias is corrected by subtracting off the cN

weighted average of apN/ hN p=l,...,P.

23. If dN denotes the slope coefficient estimator using the true kernel

density derivative estimators ahi(xi)/ax as instrumental variables, then dN is

a consistent, asymptotically normal estimator of E(gN)/E[h(x)], which can be

bias corrected to yield an estimator of BIV' as indicated in note 22 above.

24. This does not permit w(x) to be an indicator function over a convex

subset of , however w(x) could be a (say Gaussian) smoothed version of an

indicator function.

25. See Stone(1977) and McFadden(1986) among others.

26. Stock(1985) proves asymptotic normality for a specific average kernel

estimator (centered around its mean), and analyzes the asymptotic bias via

simulation.

27. See, for example, Rice(1984) and Marron(1985).
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