Combinatorial Analogs of Brouwer's Fixed PointTheorem on a Bounded Polyhedronby
Robert M. Freund
Sloan W.P. No. 1720-85 October 1985

Abstract

In this paper, we present a combinatorial theorem on a bounded polyhedron for an unrestricted integer labelling of a triangulation of the polyhedron, which can be interpreted as an extension of the Generalized Sperner lemma. When the labelling function is dualproper, this theorem specializes to a second theorem on the polyhedron, that is an extension of Scarf's dual Sperner lemma. These results are shown to be analogs of Brouwer's fixed point theorem on a polyhedron, and are shown to generalize two combinatorial theorems on the simplotope as well.

The paper contains two other results of interest. We present a projective transformation lemma that shows that if $x=\left\{x \in R^{n} \mid A x \leq e\right\}$ is a bounded polyhedron, then $x^{\prime}=\left\{x \in R^{n} \mid(A-e o y) x \leq e\right\}$ is combinatorially equivalent to x if and only if y is an element of the interior of the polar of x. Secondly, the appendix contains a pseudomanifold construction for a polyhedron and its dual that may be of interest to researchers in triangulations based on primal and dual polyhedra.

Key words: polyhedron, triangulation, pseudomanifold, fixed-point,
integer label, simplex.

In an article published in 1928, Emanuel Sperner demonstrated a purely combinatorial lemma on the n-simplex that implied the fixedpoint theorem of Brouwer for continuous functions. The connection between combinatorial theorems and topological theorems was further investigated by Tucker [24], who developed a combinatorial lemma that implied the antipodal point theorems of Borsuk and Ulam, and of Lusternik and Schnirelman [19]. Kuhn [15] and Fan [5] later examined combinatorial results on the n-cube that imply Brouwer's fixed point theorem.

With the development of fixed-point computation algorithms stemming from Scarf's seminal work [21], there has been a resurgence of research in combinatorial analogs of Brouwer's theorem. Such analogs of Brouwer's theorem on the simplex include Scarf's "dual" Sperner lemma [22], the Generalized Sperner lemma [10], and of course, the original Sperner lemma [23]. Analogs of Brouwer's theorem on the cube include a pair of dual lemmas presented in [6], one of which is analogous to the constructive algorithm in van der Laan and Talman [17]. Recently, these combinatorial results have been extended to simplotopes (see Freund [7] and van der Laan, Talman, and Van der Heyden [18]), for which the simplex and cubical theorems are special cases.

In this paper, we present a combinatorial theorem on a bounded polyhedron for an unestricted labelling of a triangulation of the polyhedron, which can be interpreted as an extension of the Generalized Sperner lemma. This theorem is the main theorem of section 3, theorem 1. When the labelling function is dual-proper.
theorem 1 specializes to a second combinatorial theorem on the polyhedron, that is an extension of Scarf's dual Sperner lemma. These results are shown in section 3 , and their relationship to results on the simplex and simplotope are also shown. Section 4 contains a combinatorial proof of theorem 1 , and hence of theorem 2 .

In section 5 , we address the issue of an extension of sperner's lema to a bounded polyhedron. We present such an extension as theorem 5 of the section. However, the proof of theorem 5 is based on Brouwer's theorem; it is an open question whether a purely combinatorial proof of theorem 5 can be demonstrated.

The paper contains two other results of interest. In section 3, we present a projective transformation lemma, that shows that if $X=\left\{x \in R^{n} \mid A x \leq e\right\}$ is a bounded polyhedron, then $x^{\prime}=\left\{x^{\prime} \in R^{n} \mid(A-e o y) x^{\prime} \leq e\right\}$ is combinatorially equivalent to x if and only if y is an element of the interior of the polar of x. This lemma is used in the proof of theorem 1 , but it may also have applications elsewhere. Secondly, the appendix contains a pseudomanifold construction for a polyhedron and its dual that may be of interest to researchers in triangulations based on primal and dual polyhedra.

Let R^{n} denote real n-dimensional space, and define e to be the vector of $1^{\prime} s$, namely $=(1, \ldots, 1)$ Let $x \cdot y$ and $x o y$ denote inner and outer product, respectively. Let ϕ denote the empty set, and let $|S|$ denote the cardinality of a set S. For two sets S, T, let $S \backslash T=\{x \mid x \in S, \quad x \notin T\}$, and let $S \Delta T=\{x \mid x \in S \cup T, x \notin S \cap T\}$. If $x \in S$, we denote $S \backslash\{x\}$ by $S \backslash x$ to ease the notational burden. Let v^{0}, \ldots, v^{m} be vectors in R^{n}. If the matrix

$$
\left[\begin{array}{ccc}
v^{0} & \ldots & v^{m} \\
1 & \ldots & 1
\end{array}\right]
$$

has rank $(m+1)$, then the convex hull of v^{0}, \ldots, v^{m}, denoted $\left\langle v^{0}, \ldots, v^{m}\right\rangle$ is said to be a real m-dimensional simplex, or more simply an m-simplex. If $\sigma=\left\langle v^{0}, \ldots, v^{m}\right\rangle$ is an m-simplex and $\left\{v^{j} 0, \ldots, v^{j} k\right\}$ is a nonempty subset of $\left\{v^{0}, \ldots, v^{m}\right\}$, then $\tau=\left\langle v^{j} 0, \ldots, v^{j k}\right\rangle i s$ a $k-f$ ace or face of σ.

Let x be a cell in R^{n}, i.e. a nonempty bounded polyhedron in R^{n}. Let T be a finite collection of m-simplices otogether with all of their faces. T is a finite triangulation of x if
i) $\underset{\sigma \in T}{\cup} \sigma=x$,
ii) $\sigma, \tau \in T$ imply $\sigma \cap \tau \in T$, and
iii) If σ is an (m-1)-simplex of T, σ is a face of at most two m-simplices of T.

An abstract complex consists of a set of vertices K^{0} and a set of finite nonempty subsets of K^{0}, denoted K, such that
i) $v \in K O$ implies $\{v\} \in K$, and
ii) $\Phi \neq x \subset y \in K$ implies $x \in K$.

An element x of K is called in abstract simplex, or more simply a simplex. If $x \in K$ and $|x|=n+1$, then x is called an $n-s i m p l e x$, where $|\cdot|$ denotes cardinality. Technically, an abstract complex is defined by the pair (K^{0}, K). However, since the set K^{0} is implied by K, it is convenient to denote the complex by K alone. An abstract complex K is said to be finite if K^{0} is finite.

An n-dimensional pseudomanifold, or more simply an
n-pseudomanifold, where $n \geq 1$, is a complex K such that
i) $x \in K$ implies there exists $y \in K$ with $|y|=n+1$ and $x \subset y$, and
ii) if $x \in K$ and $|x|=n$, then there are at most two n-simplices of K that contain x.

Let K be an n-pseudomanifold, where $n \geq 1$. The boundary of K, denoted ∂K, is defined to be the set of simplices $x \in K$ such that x is contained in an (n-1)-simplex $y \in K$, and y is a subset of exactly one n-simplex of K.

Let x be an m-cell in R^{n}, and let T be a finite triangulation of x. For each nonempty face τ of each m-simplex of \quad of define $\bar{\tau}=\{v \mid v$ is a vertex of $\tau\}$. Then the collection $K=\{\bar{\tau} \mid \tau$ is a nonempty face of a simplex of T \} is an m-pseudomanifold, and is called the m-pseudomanifold corresponding to T.

If A and b are a matrix and $a \operatorname{vector,~let~} A_{i}$ and b_{i} denote the $i^{\text {th }}$ row and component of A and b respectively, and let A_{B} and b_{B} denote the submatrix and subvector of A and b corresponding to the rows and components of A and b indexed by B, respectively.

A vector x is lexicographically greater than or equal to y, written $x \geqslant y$, if $x=y$ or the first nonzero component of $x-y$ is positive. A matrix A is lexicographically greater than or equal to a matrix B, written $A\rangle_{r} B$, if $\left.(A-B)_{i}\right\rangle_{r}$ for every rowiof (A-B).

Consider a bounded polyhedron X of the form $X=\left\{x \in R^{n} \mid A x \leq b\right\}$, where A and b are a given (mxn)-matrix and m-vector, respectively. Let T be a inite triangulation of x, let K° denote the set of vertices of T, and let K be the pseudomanifold corresponding to T. Let $M=\{1, \ldots, m\}$ be the set of constraint row indices, and let L() : $K^{0} \rightarrow M$ be a labelling function that assigns a constraint row index i to each vertex v of K°. Our interest lies in ascertaining the combinatorial implications of such a labelling function, under boundary conditions or not, in the spirit of and as ageneralization of other combinatorial theorems on the simplex, cube, and simplotope $[5,6,7,9,15,17,18,22,24]$. Toward this goal, we will make the following assumptions on x, some of which will be relaxed later on: A1 (Bounded). x is bounded, i.e., there is a vector
$\lambda \geq 0, \lambda \neq 0$, such that $\lambda A=0$.
A2 (Solid). x has an interior, i.e., there exists $x^{\circ} \in x$ such that $A x^{\circ}<b$.

A3 (Nonredundant). There is no redundant constraint governing x,
i.e. there is no $i \in M$ and $\lambda \geq 0$, with $\lambda_{i}=0$ such that $\lambda A=A_{i}$ and $\lambda \cdot b \leq b_{i}$. If X is solid, this means that for every $i \in M$, there exists $x \in X$ such that $A_{i} x=b_{i}$ and $A_{k} x<b_{k}$ for every $k \in M \backslash i$. A4 (Centered). x contains the origin in its relative
interior, i.e. $b \geq 0$.
A5 (Centered and Scaled). $\quad x$ contains the origin in its relative interior, and the rows of A have been scaled so that each b_{i} equals 0 or 1 .

Assume for the remainder of this section that x is bounded, solid, nonredundant, and centered and scaled. Then, in particular, b=e. Let $x^{\circ}=\left\{y \in R^{n} \mid y=\lambda A, \quad \lambda \geq 0 \lambda \cdot b=1\right\}$. Then x^{0} is bounded, solid, and centered. Furthermore, x^{0} can alternately be described as $x^{0}=\left\{y \in R^{n} \mid y \cdot x \leq 1\right.$ for all $x \in x\}$, whereby x^{0} is seen to be the polar of x (see [20]). x^{0} is also a combinatorial dual of x, i.e., there is a one-to-one inclusion reversing mapping from the k-faces of x to the ($n-k-1$)-faces of x^{0}, see [12].

Because x is nonredundant, each row of A is an extreme point of x^{0}. Furthermore, every point $y \in x^{\circ}$ can be expressed as a convex combination of $(n+1)$ extreme points of x^{0}, i.e., $(n+1)$ rows of A. A point $y \in x^{\circ}$ is called a regular point of x° if y cannot be expressed as a convex combination of n or fewer rows of x°. Because x is bounded, x° is solid, and so almost every point in x° is a regular point of x^{0}, i.e., the set of points in x^{0} that are not regular are a set of measure zero, and x^{0} has positive measure. Figure 1 illustrates the above remarks. In the figure, y^{1} is a regular point, and y^{3} is not a regular point. The circled numbers on the boundary of x in the figure indicate the row constraint index for the facets indicated.

For a subset $\alpha \subset M$, define $S_{\alpha}=\left\{y \in R^{n} \mid y=\lambda_{\alpha} A_{\alpha}, \lambda_{\alpha} \geq 0, \quad \lambda_{\alpha} \cdot b_{\alpha}=1\right\}$, i.e., S_{α} is the convex hull of the rows of A indexed over α. We have $S_{\alpha}=x^{0}$ for $\alpha=M$, and $S_{\alpha} \subset x^{0}$ for all $\alpha \subset M$. For every $y \in x^{\circ}$ define $G_{y}=\left\{\alpha \subset M \mid y \in S_{\alpha}\right\}$. Then G_{y} consists of the row index sets of vertices of cells S_{α} that contain the point y. Referring to figure 1 again, we see that G^{1} consists of the four sets $\{1,3,4\},\{1,3,5\}$, $\{1,2,4\}$, and $\{1,2,5\}$, plus all other subsets of M that contain one

Figure 1
of these four sets. Likewise, the minimal members of $\mathrm{G}_{\mathrm{y}}{ }^{4}$ are $\{1,2,5\},\{1,3,5\}$, and $\{1,4,5\}$. Regarding $G_{y}{ }^{3}$, the minimal members of $G_{y}{ }^{3}$ are $\{1,2,3\},\{2,4\}$. amd $\{2,3,5\}$.

Now let T be a finite triangulation of x, let K be the pseudomanifold corresponding to T, and let $L(\cdot): K^{\circ} \rightarrow M$ be a labelling function from K°, the set of vertices of K, to M, the set of constraint row indices of x. For a simplex $\sigma \in K$, let $L(\sigma)=\{i \in M \mid i=L(v)$ for some $v \in K\}$. For a given subset S of x, define $C(S)=\left\{i \in M \mid A_{i} x=b_{i}\right.$ for all $\left.x \in S\right\}$. For a point $x \in X$, define $C(x)=$ $C(\{x\})$. The mapping $C(\cdot)$ identifies the "carrier" hyperplanes of the set S or point x.

With the above notation in hand, we can state our main theorem: Theorem 1. Let x be a polyhedron that is bounded, solid, nonredundant, and centered and scaled. Let T be a finite triangulation of x, let K be the pseudomanifold corresponding to T, and let $L(\cdot): K^{0} \rightarrow M$ be a labelling function. Then
(i) for any regular point $y \in X^{\circ}$, there are an odd number of simplices $\sigma \in K$ such that $(L(\sigma) \cup C(\sigma)) \in G y$, and hence at least one.
(ii) for any point $y \in$ int x°, there is at least one simplex $\sigma \in K$ such that $(L(\sigma) \cup C(\sigma)) \in G_{y}$.

To illustrate the theorem, let us continue with the example of figure 1. Figure 2 shows a triangulation T of x and a labelling of K°. Regarding y^{1}, a regular point of x^{0}, there are five simplices σ of K for which $(L(\sigma) \cup C(\sigma)) \in G_{y}{ }^{1}=\{\{1,3,4\},\{1,3,5\},\{1,2,4\}$, $\{1,2,5\}\}$, namely $\{t\},\{w, v\},\{a\},\{f, g, k\}$, and $\{p, q, u\}$. Note that $L(\{w, v\})=\{1,3\}, C(\{w, v\})=\{5\}$, and hence
(2)

Figure 2
$(L(\{\omega, v\}) \cup C(\{u, v\}))=\{1,3,5\} \in G^{1}$. Regarding y^{4}, there are three simplices $\sigma \in K$ for which $(L(\sigma) \cup C(\sigma)) \in G_{y}=\{\{1,2,4\}$, $\{1,3,5\},\{1,4,5\}\}$, namely $\{p, q, u\},\{w, v\}$, and $\{x, t, z\}$. In the case of the pentagon x in figure 1 , theorem 1 actually makes eleven assertions about the oddness of certain instances of labels, one assertion for each of the eleven regions composing x^{0}.

The assertions of theorem 1 do not depend on any special restrictions of the labelling $L(\cdot)$ on the boundary of x. If we restrict the labelling $L(\cdot)$ on the boundary of x, we can obtain a stronger form of theorem 1. A labelling $L(\cdot): K^{0} \rightarrow M$ is called dual proper if $L(v) \in C(v)$ for all $v \in \partial X, v \in K^{\circ}$. If $L(\cdot)$ is dualproper, $L(v)$ must index a binding constraint at $v i f \quad v i e s$ on the boundary of x. This restriction was first introduced by scarf [22] for the simplex. The denotation here is consistent with the notion of a dual proper labelling as used in [7]. A triangulation T of X is said to be bridgeless if for each $\sigma \in T$, the intersection of all faces of x that meet σ is nonempty. This concept is illustrated in Figure 3 , for $n=2$. In the figure, each of the simplices σ_{1}, σ_{2}, and σ_{3} fails the intersection property. Essentially, if T is bridgeless, then no simplex σ of T meets too many faces of x that are disparate.

If $L(\cdot)$ is dual-proper and T is bridgeless, we have the following stronger version of theorem 1:

Cases where the intersection of the faces that meet σ are empty

Theorem 2. Let x be a polyhedron that is bounded, solid, nonredundant, and centered and scaled. Let T be a finite triangulation of x and let K be the pseudomanifold corresponding to T. Let $L(\cdot): K^{\circ} \rightarrow M$ be a labelling function on K°. If $L(\cdot)$ is dualproper and T is bridgeless, then:
(i) for any regular point $y \in x^{\circ}$, there are an odd number of simplices $\sigma \in K$ such that $L(\sigma) \in G_{y}$, and hence at least one.
(ii) for any point $y \in$ int x^{0}, there is at least one simplex $\sigma \in K$ such that $L(\sigma) \in G_{y}$.

Theorem 2 can be deduced from theorem 1 as follows:
Proof of Theorem 2: Assuming theorem 1 is true, it suffices to show that for each $y \in$ int x°, that if $(L(\sigma) \cup C(\sigma)) \in G_{y}$, then $C(\sigma)=\varnothing$. Suppose not. Then there exists $\bar{\sigma} \in K$ such that $(L(\bar{\sigma}) \cup C(\bar{\sigma})) \in G y$ and $C(\bar{\sigma}) \neq \varnothing$. Because $C(\bar{\sigma}) \neq \Phi, \bar{\sigma} \in \partial x$, whereby each vertex vof $\bar{\sigma}$ must satisfy $L(v) \in C(v)$. If $L(v)=i$, then v, and hence $\bar{\sigma}$, meets the facet F_{i} defined by $F_{i}=\left\{x \in X \mid A_{i} X=b_{i}\right\}$. Therefore $\bar{\sigma}$ meets every facet F_{i} for $i \in L(\bar{\sigma})$. Furthermore, $\bar{\sigma}$ meets every facet F_{i} for $i \in C(\bar{\sigma})$. Denoting $\alpha=(L(\bar{\sigma}) \cup C(\bar{\sigma}))$, we have $\bar{\sigma}$ meets F_{i} for every $i \in \alpha . \quad$ Thus $\cap_{i \in \alpha} F_{i} \neq \varnothing$, because T is bridgeless. Let $\bar{x} \in \sum_{i \in \alpha}^{\cap} F_{i}, i . e . \quad A_{\alpha} \bar{x}=b_{\alpha}$. Since $\alpha \in G_{y}$, there exists $\lambda_{\alpha} \geq 0$ for which
$b_{\alpha} \cdot \lambda_{\alpha}=1$ and $y=\lambda_{\alpha} A_{\alpha}$. However, $y \cdot \bar{x}=\lambda_{\alpha} A_{\alpha} \bar{x}=\lambda_{\alpha} b_{\alpha}=1$. But since $y \in$ int x^{0}, there exists $\theta>0$ such that $(y+\theta y) \in x^{0}$.

Thus $(1+\theta) y \in x^{0}$ and $(1+\theta) y \cdot \bar{x}=1+\theta>1$. However, for any $y \in x^{\circ}$, $x \in x, y \cdot x \leq 1$, contradicting $(1+\theta) y \cdot \bar{x}>1$. Thus $C(\bar{\sigma})=\varnothing$, and the theorem is proved. [X]

Theorems 1 and 2 (without the oddness assertion) are equivalent to the fixed point theorem of L.E.J. Brouwer [2], stated below: Brouwer's theorem on a bounded polyhedron. Let x be a nonempty bounded polyhedron, and let $f(\cdot): X \rightarrow X$ be a continuous function. Then there exists a fixed point of f(.), i.e. a point $x^{*} \in x$ such that $f\left(x^{*}\right)=x^{*}$.

In order to demonstrate the equivalence of theorems 1 and 2 to Brouwer's theorem, we will use the following lemma, which relates the equilivance of polyhedral representations under projective transformation.

Projective Transformation Lemma. Let $X=\left\{x \in R^{n} \mid A x \leq b\right\}$ be a polyhedron that is bounded, solid, and centered and scaled, and let $x^{0}=\left\{y \in R^{n} \mid y=\lambda A, \lambda \geq 0, b \cdot \lambda=1\right\}$. For any given $y \in$ int x^{0}, the set $X^{\prime}=\left\{x^{\prime} \in R^{n} \mid(A-e o y) x^{\prime} \leq b\right\}$ is combinatorially equivalent to x, and $x^{\prime 0}=x^{0}-y$. The mapping $g(x)=x /(1-y \cdot x)$ maps faces of x onto the faces of X^{\prime} and is inclusion preserving. Furthermore, T is a triangulation of x if and only if T^{\prime} is a triangulation of x^{\prime}, where T^{\prime} is the collection of simplices $\sigma^{\prime}=g(\sigma)$ for every $\sigma \in T$.

PROOF: Since $y \in \operatorname{int} x^{0}, y \cdot x<1$ for all $x \in x$. Consider the mapping $g(\cdot): \quad X \rightarrow X^{\prime}$, given $b y(x)=x /(1-y \cdot x)$. It is easy to verify that $g(\cdot)$ maps x onto x^{\prime} continuously, that $x \in x$ satisfies $A_{i} x=b_{i}$ if and only if $(A-e o y)_{i g}(x)=b_{i}$, and $g^{-1}(\cdot)$ is given by $g^{-1}\left(x^{\prime}\right)=$ $x^{\prime} /\left(1+y \cdot x^{\prime}\right)$. Thus x and x^{\prime} are combinatorially equivalent. That T^{\prime} is a triangulation of x^{\prime} follows from the fact that $g(\cdot)$ maps affine sets to affine sets and convex sets to convex sets. The mappings g(.) and $g^{-1}(\cdot)$ are, of course, projective transformations. [X]
theorem:
Let $x, T, L(\cdot)$ and K be given as in theorem 1 . Let $y \in$ int x° be given, define x^{\prime} and T^{\prime} as in the projective transformation lemma, let K^{\prime} be the pseudomanifold corresponding to T^{\prime}, and define $L^{\prime}\left(V^{\prime}\right)=$ $L\left(g^{-1}\left(v^{\prime}\right)\right)$ for $v^{\prime} \in K^{\circ}{ }^{\prime}$. For each $v^{\prime} \in K^{\prime} O$, define $h\left(v^{\prime}\right)=A_{L}^{\prime}\left(v^{\prime}\right)-y$, and extend $h(\cdot)$ in a $P L$ manner over all of x^{\prime}. Define $f\left(x^{\prime}\right)=$ argmin $\left\|z^{\prime}-x^{\prime}+h\left(x^{\prime}\right)\right\|_{2}$, where $\|\cdot\|_{2}$ denotes the Euclidean norm. $z^{\prime} \in X^{\prime}$

Because $h(\cdot)$ is continuous, $f(\cdot)$ is continuous
and so contains a fixed point \bar{x}^{\prime}. Let $\bar{\sigma}^{\prime}$ be the smallest simplex σ^{\prime} in T^{\prime} that contains \bar{x}^{\prime}, and let $\gamma=L\left(\bar{\sigma}^{\prime}\right), B=C\left(\bar{\sigma}^{\prime}\right)$, and $\alpha=\gamma \cup B . \quad$ Then the Karush-Kuhn-Tucker conditions state that \bar{x}^{\prime} -$\bar{x}^{\prime}+h\left(\bar{x}^{\prime}\right)=-\bar{\lambda}_{B}(A-e o y)_{B}$, for some $\lambda_{B} \geq 0$. Furthermore, $h\left(\bar{x}^{\prime}\right)=$ $\bar{\lambda}_{\gamma}(A-e o y) \gamma$ for some particular $\bar{\lambda}_{\gamma} \geq 0, \bar{\lambda}_{\gamma} \cdot e_{\gamma}=1$. Therefore, $\bar{\lambda}_{B}(A-e o y)_{\beta}+\bar{\lambda}_{\gamma}(A-e o y)_{\gamma}=0$, whereby $\bar{\lambda}_{\alpha}(A-e o y)_{\alpha}=0$ has a nonnegative and nonzero solution. Upon rescaling the multipliers $\bar{\lambda}_{\alpha}$ so that they sum to unity, we have $\bar{\lambda}_{\alpha} A=y, \bar{\lambda}_{\alpha} \geq 0, \bar{\lambda}_{\alpha} \cdot e_{\alpha}=1$. Thus $\alpha \in G_{y}$ and $\left(L\left(\bar{\sigma}^{\prime}\right) \cup C\left(\bar{\sigma}^{\prime}\right)\right)=\alpha$, whereby the simplex $\bar{\sigma} \in T$ defined by $\bar{\sigma}=g^{-1}\left(\bar{\sigma}^{\prime}\right)$ has $(L(\bar{\sigma}) \cup C(\bar{\sigma}))=\alpha \in G y$, proving the result. [X]

The construction of the function f(•) was introduced by Eaves [3] to convert the stationary point problem of h(.) to a fixed point problem on $f(\cdot)$.

Proof of Brouwer's theorem from Theorem 1: Let x be a polyhedron that is bounded, solid, nonredundant, and centered and scaled, and let $f(\cdot): X \rightarrow X$ be a continuous function. Let T be a finite triangulation of x and K be the pseudomanifold corresponding to T. Let $L(\cdot)$ be a labelling function on K° defined so that $L(v)$ equals any index i for which $A_{i}(v-f(v)) \geq 0$. Because x is bounded, such an index must exist. Let y be a given regular point of x^{0}. Then there exists a simplex $\sigma \in K$ such that $(L(\sigma) \cup C(\sigma)) \in G y$. Taking a limit of sequences of such σ as the mesh of T goes to zero, we conclude that there exists $\bar{x} \in x, \alpha \in G y$, and $B \subseteq \alpha$ such that $A_{B}(\bar{x}-f(\bar{x})) \geq 0$, and $(B \cup C(\bar{x})) \geq \alpha$. Let $\gamma=C(\bar{x})$. Because $A_{\gamma}(\bar{x}-f(\bar{x}))$ $\geq 0, A_{\alpha}(\bar{x}-f(\bar{x})) \geq 0$. However, since $\alpha \in G_{y}$, there exists $\lambda_{\alpha} \geq 0$ with the property that $e \cdot \lambda_{\alpha}=1$ and $\lambda_{\alpha} A_{\alpha}=y$. Thus $y \cdot(\bar{x}-f(\bar{x}))=\lambda_{\alpha} A_{\alpha}(\bar{x}-$ $f(\bar{x})) \geq 0$. However, because y is regular $G_{y}=G_{z}$ for all z sufficiently close to y. Thus $z \cdot(\bar{x}-f(\bar{x})) \geq 0$ for all z sufficiently close to y, whereby $\bar{x}-f(\bar{x})=0$, proving Brouwer's theorem. [X] The equivalence of Brouwer's theorem and theorem 2 (without the oddness assertion) can be accomplished in a manner that parallels the above arguments.

Relation of Theorems 1 and 2 to combinatorial results on the simplex and simplotope.

We show how theorems 1 and 2 specialize to known results on the simplex and the simplotope. The three major combinatorial results on the simplex, namely Sperner's lemma [23], Scarf's dual Sperner lemma [22], and the Generalized Sperner lemm [10], all assert the existence of an odd number of simplices with certain label configurations. However, when these three results are extended to the cube and simplotope, the oddness assertion disappears, and the dimension of the specially labelled simplices of interest is reduced (see [7] and [18]). The inability to assert that there are an odd number of specially labelled simplices stems from the constructive proofs of these simplotope theorems. Herein, by casting the simplex and simplotope theorems as instances of theorems 1 and 2 for particular values of $\bar{y} \in x^{\circ}$, we will see that the oddness assertion holds on the simplex precisely because \bar{y} is a regular point in x°, and the oddness assertion on the simplotope (and hence the cube) does not hold, precisely because \bar{y} is not a regular point in X^{0}.

$$
\text { Let } s^{n}=\left\{x \in R^{n} \mid x \leq e,-e \cdot x \leq 1\right\} \text {. Then } s^{n} \text { is an } n-d i m e n s i o n a l
$$

simplex. By defining

$$
A^{n}=\left[\begin{array}{c}
I \\
-e^{T}
\end{array}\right] \text { and } b=\left[\begin{array}{l}
e \\
1
\end{array}\right]
$$

we can write S^{n} as $S^{n}=\left\{x \in R^{n} \mid A^{n} x \leq b\right\}$. Let T be a triangulation of S^{n}, K the pseudomanifold corresponding to T, and $L(\cdot): K^{\circ} \rightarrow M$, where $M=$ $\{1, \ldots, m\}=\{1, \ldots, n+1\}$, because $m=n+1$. For $x=s^{n}$, the set x° $=\left\{y \mid y=\lambda A^{n}, \lambda \geq 0, e \cdot \lambda=1\right\}$ is an $n-s i m p l e x$ that contains the
origin, and any $y \in$ int x° is a regular point in x^{0}. In particular, $\bar{y}=0$ is a regular point in x°, and $G \bar{y}=\{M\}=\{\{1, \ldots, n+1\}\}$. Because S^{n} is bounded, solid, nonredundant, and centered and scaled, we can apply theorem 1 , and assert that there are an odd number of simplices $\sigma \in K$ with the property that $(L(\sigma) \cup C(\sigma)) \in G \bar{y}, i . e ., L(\sigma)$ $\cup C(\sigma)=\{1, \ldots, n+1\}$. This is precisely the Generalized Sperner lemma [10], and is seen to follow as a specific instance of theorem 1.

Now suppose that the labelling $L(\cdot)$ is dual-proper, i.e. for each $v \in \partial S^{n}, L(v)=i$ must be chosen so that $A_{i} v=b_{i}$. Furthermore, suppose that no simplex of T meets every facet F_{i} of S^{n}, where $\mathrm{F}_{\mathrm{i}}=\left\{\mathrm{x} \in \mathrm{S}^{\mathrm{n}} \mid \mathrm{A}_{\mathrm{i}} \mathrm{X}=\right.$ $\left.b_{i}\right\}, i=1, \ldots, n+1$. Then it can be shown that for any simplex $\bar{\sigma}$ of T, the intersection of all faces of $\mathrm{S}^{\boldsymbol{n}}$ that meet $\bar{\sigma}$ is nonempty, i.e. T is bridgeless, whereby the conditions of theorem 2 are satisfied. Thus there exists an odd number of simplices $\sigma \in K$ such that $L(\sigma) \in G \bar{y}$, i.e. $L(\sigma)=\{1, \ldots, \quad n+1\}$. This latter result is precisely Scarf's dual Sperner lemma [22], and it is seen to follow as a specific instance of theorem 2.

We now turn our attention to theorems on the simplotope. A simplotope S is defined to be the cross-product of n simplices, $S=$ $s^{m_{1}} \quad x \ldots x s^{m} p$, where, for simplicity, we will assume that each $m_{j} \geq 1, j=1, \ldots, \quad$ Any point $x \in S$ is a vector in R^{N}, where $N=\sum_{j=1}^{p} m_{j}$, and x can be written as $x=\left(x^{1} ; \ldots ; x^{p}\right)$, where each
 vectors $x^{j}, j=1, \ldots, \quad$. Defining A^{n} as above, let us define a as the $(N+p) x(N)$ matrix:

$$
A=-\left[\begin{array}{llll}
A^{m_{1}} & & & 0 \\
& \cdot & & \\
& & & \\
& & & \\
0 & & & A^{m_{p}}
\end{array}\right]
$$

where A^{m} j is as described previously.
Then S can be described as $S=\left\{x \in R^{n} \mid A x \geq b\right\}$ where $b \in R^{N}+p$ and $b=e$.
Define $M=\left\{(j, k) \mid j=1, \ldots, p, k=1, \ldots, m_{j}+1\right\}$. The rows of A can be indexed by the ordered pairs $(j, k) \in M$ where row ($j, k)$ of A is in fact row number $\left.\sum_{i=1}^{j-1}\left(m_{i}+1\right)+k\right)$ of A. Likewise, a vector $\lambda \in R^{N+p}$
will be indexed by the ordered pairs (jook) $\in M$. Let T be a triangulation of S, let K be the pseudomanifold corresponding to T, and let $L(\cdot): K^{\circ} \rightarrow M$ be a labelling function. For $X=S, X$ is bounded, solid, non redundant, and centered and scaled, and so the conditions of theorem 1 are met. We have $x^{0}=\left\{y \in R^{n} \mid y=\lambda A, e \cdot \lambda=1\right.$,
$\lambda \geq 0\}$ and $\bar{y}=0 \in X^{\circ}$. However, $y=0$ is not a regular point of \underline{Y}. To see this, pick any one index j from among $j \in\{1, \ldots, p\}$.

Then set

$$
\bar{\lambda}_{(i, k)}=\left\{\begin{array}{l}
0 \text { if ifij} \\
1 /\left(m_{j}+1\right) \text { if } i=j
\end{array}\right.
$$

for each (ink) $\in M$, and note that $\bar{\lambda} \geq 0, e \cdot \bar{\lambda}=1$, and $\bar{\lambda} A=0=\bar{y}$. If we define $\alpha_{j}=\left\{(j, 1), \ldots,\left(j, m_{j}+1\right)\right\}$, we see that $0 \in S_{\alpha_{j}}$, but $\left|\alpha_{j}\right|=m_{j}+1<N+1$, so long as $n>1$. Thus $\bar{y}=0$ is not a regular point of x°. Thus, by theorem 1 , we can only assert that there
 However $G \bar{y}=\left\{\alpha \subset M \mid \bar{y} \in S_{\alpha}\right\}=\left\{\alpha \subset M \mid \alpha=\alpha_{j}\right.$ for some $\left.j \in\{1, \ldots, p\}\right\}$. Thus there exists a simplex σ of K such that $(L(\sigma) \cup C(\sigma)) \geq\{(j, 1), \ldots$, $\left.\left(j, m_{j}+1\right)\right\}$ for $\operatorname{some} j \in\{1, \ldots, p\}$. This is precisely theorem 1 of [7] or lemma 3.2 of [18].

Figure 4 illustrates the theorem for $m_{1}=m_{2}=1$, and $n=2$. With $\bar{y}=0, G \bar{y}=\{\{(1,1),(1,2),(2,1)\},\{(1,1),(1,2),(2,2)\},\{(2,1)$, $(2,2),(1,1)\},\{(2,1),(2,2),(1,2)\}$. There are six simplices of S with $(L(\sigma) \cup C(\sigma)) \in G_{y}$, namely $\sigma_{1}, \ldots, \sigma_{6}$ in the figure. The set x^{0} is the convex hull of the points $(1,0),(-1,0)(0,1)$ and $(0,-1)$, the diamond shown in the figure. As the figure shows, $\bar{y}=0$ is not a regular point.

Suppose now that the labelling $L(\cdot): K^{0} \rightarrow M$ is dual proper, i.e. for each $v \in \partial S$, $L(v)$ must be chosen so that $A_{i} x_{0} b_{i}$. Furthermore, suppose that no simplex $\sigma \in K$ meets each facet $\mathrm{F}_{\mathrm{f}}(\mathrm{j}, \mathrm{k})=$ $\left.\left\{x \in S \mid A_{(j, k}\right)^{x=b}(j, k)\right\}$, for all $(j, k) \in \alpha_{j}$, for any $j=1, \ldots, \quad$ p. Then it can be shown that the requirements of theorem 2 aremet. This being the case, the logic employed herein can be used to show that there exists a simplex $\sigma \in K$ such that $L(\sigma) \geq \alpha_{j}$ for some $\mathcal{j} \in\{1$, .., p\}. This latter statement is precisely theorem 2 of [7], and thus is a specific instance of theorem 2 of this paper.

The Sperner lemma, and its extension to the simplotope [7,17], does not appear to be a specific instance of theorems 1 or 2 . Sperner's lemma can be derived from the Generalized Sperner lemma, see [6], but this derivation fails to carry over to the simplotope. In the last section of this paper, we present another combinatorial theorem on a bounded polyhedron, that specifies to Sperner's lemma on the simplex.

Figure 4

Our final remarks of this section are concerned with relaxing the assumptions presented earlier. The assumption that x is bounded is central to Brouwer's theorem, and to the counting arguments regarding endpoints of paths of simplices, as will be seen in the proof of theorem 1 in the next section. The assumptions that x is solid and centered and scaled can be eliminated, but the definition of x^{0} must then be changed. Let us first consider the case when $x=$ $\left\{x \in R^{n} \mid A x \leq b\right\}$ is solid but not centered and scaled. For any given $x^{0} \in \operatorname{int} x, X^{\prime}=\left\{x \in R^{n} \mid A x \leq b-A x^{0}\right\}$ is just a translation of x by $-x^{\circ}$, and can alternatively be written as $X^{\prime}=\left\{x \in R^{n} \mid \bar{A} x \leq e\right\}$, where $\bar{A}_{i}=A_{i} /\left(b_{i}-A_{i} x^{0}\right)$. x^{\prime} now is centered and scaled, and so the assertions of theorem 1 apply. In this case, the set $x^{0}=\left\{y \in R^{n} \mid y=\lambda \bar{A}, \quad e \cdot \lambda=1, \quad \lambda \geq 0\right\}=\left\{y \in R^{n} \mid y=\lambda A, \lambda \geq 0, \lambda \cdot(b-\right.$ $\left.\left.A x^{0}\right)=1\right\}$, and for $\alpha \subset M, S_{\alpha}=\left\{y \in R^{n} \mid y=\lambda_{\alpha} A_{\alpha}, \lambda_{\alpha} \geq 0 \lambda_{\alpha} \cdot\left(b-A x^{0}\right)_{\alpha}=1\right\}$. Thus theorem 1 (and hence theorem 2) can be modified to include the case when x is not centered and scaled.

Next, let us consider the case when x is neither solid nor centered and scaled, and let k be the dimension of x. Then in order to center and scale x, a point $x^{\circ} \in$ rel int x can be found using, for example, the methodology in [8]. Once $x^{0} \in$ rel int x has been given, X can be rewritten as $X=\left\{x \in R^{n} \mid D x=d, B x \leq b\right\}$, where $D x^{0}=d$ and $s=b-B x^{\circ}>0$. Furthermore, by scaling the rows of (B, b), we can ensure that $s=b-B x^{0}=e$. Let C be any matrix whose rows form an orthonormal basis for the subspace $N=\left\{x \in R^{n} \mid D x=0\right\}$, and let $x^{0}=$ $\left\{y \in R^{n} \mid y=\mu D+\lambda B, s \cdot \lambda=1, \lambda \geq 0\right\}$. Then the transformation $f(\cdot)=x \rightarrow R^{k}$
given by $f(x)=C x-C x^{0}$ maps x onto $x^{\prime}=\left\{z \in R^{k} \mid B C^{T} z \leq s\right\}$, and the transformation $g(y)=C y$ maps the set x^{0} into the set $x^{\prime} 0=$ $\left\{v \in R^{k} \mid v=\lambda B C^{T}, \lambda \geq 0, \lambda \cdot s=1\right\}$. There is a one-to-one correspondence between each given point v in $x^{\prime} O$ and the subset $\left\{y \in R^{n} \mid y=C T_{v}+D_{\mu}\right.$ for some $\mu\}$ of x^{0}. The sets x^{\prime} and $x^{\prime O}$ conform to the conditions of theorem 1. For a given point $y \in x^{\circ}$, there is a unique point $v \in X^{\prime} O$ such that $y=C^{T} v+D_{\mu}$ for some μ. The point y in x° is called a regular point of x^{0} if $y=C^{T} v+D^{T}$ and v is a regular point of $x^{\prime o}$.

Furthermore, for any $y \in x^{\circ}$, define $G y=G_{v}$ where v is uniquely determined by the relation $y=C^{T}{ }_{V+D} T_{\mu}$ for some u.

This transformation, together with the above remarks on centering and scaling, can be used to prove the following extension of theorem 1:

Theorem 3. Let x be a nonempty bounded polyhedron of dimension k in R^{n} that is nonredundant, of the form $x=\left\{x \in R^{n} \mid D x=d, B x \leq b\right\}$. Let x^{0} be a given point in rel int x, and let $s=b-B x^{\circ}>0$ be given. Let T be a finite triangulation of x and let K be the pseudomanifold corresponding to T. Let $L(\cdot): K^{\circ} \rightarrow M$, where $M=\{1, \ldots, m$ indexes the rows of B, and let $C(\sigma)=\left\{i \in M \mid B_{i} x=b_{i}\right.$ for all $\left.x \in \sigma\right\}$ for each $\sigma \in T$. Let x^{0} be defined as in the remarks above. Then:
(i) If y is a regular point of x^{0}, there exists an odd number of simplices $\sigma \in T$ with the property that (L(σ) u $C(\sigma)) \in G_{y}$, and hence at least one.
(ii) If $y \in$ rel int x°, then there exists at least one simplex $\sigma \in T$ with the property that $(L(\sigma) \cup C(\sigma)) \in G y .[X]$

Theorem 3 obviously implies theorem 1 as a special case. The above remarks outline how to prove theorem 3 as a consequence of theorem 1, using the transformation $f(\cdot)$. Theorem 3 is the most general combinatorial theorem we will consider. The theorem still retains the nonredundancy assumption. This assumption is retained for convenience. Because redundant constraints do not contribute to either the geometric or combinatorial properties of a polyhedron, the fact they are assumed away does not detract from the generality of the results.

This section contains a combinatorial proof of theorem 1 . The ideas behind the proof derive from relatively straightforward concepts that are easy to follow in two dimensions. In higher dimensions, they become more encumbered due to the possible presence of degeneracy in x. Hence, in order to motivate the proof along more intuitive lines, we start by showing an example of the proof in two dimensions. We then proceed to the more general case.

Example of proof in two dimensions
Let x and x° be as shown in figure 1 , let T and $L(\cdot)$ be as shown in $F i g u r e$ 2, and let K be the pseudomanifold corresponding to T. Define \bar{K} to be the pseudomanifold consisting of simplices $\sigma \in K$ "joined" with the indices of $C(\sigma)$, i.e.

$$
\begin{aligned}
& \overline{\mathrm{K}}=\{\bar{\sigma} \mid \bar{\sigma} \neq \phi, \bar{\sigma} \subseteq(\sigma \cup \mathrm{C}(\sigma)), \sigma \in \mathrm{K}\}, \text { and } \\
& \bar{K}^{\circ}=\mathrm{K}^{\circ} \cup\{1, \ldots, \mathrm{~m}\}=K^{\circ} \cup M .
\end{aligned}
$$

The construction of \bar{K} is shown in Fgure 5 . Note that

$$
\partial \bar{K}=\{B \mid B=C(x) \text { for some } x \in K\} .
$$

For each $i \in M$, extend $L(\cdot): K^{\circ} \rightarrow M$ to $L(\cdot): \bar{K}^{\circ} \rightarrow M$ by the association $L(i)=i$ for $i \in M$. For each $y \in x^{\circ}$, let $\# G y$ denote the number of simplices $\bar{\sigma} \in \bar{K}$ with the property that $L(\bar{\sigma}) \in G y$. In order to prove theorem 1 , it suffices to show that $\# G y$ is odd for all regular points $y \in x^{0}$. Now let $B \subset M=\{1, \ldots, 5\}$ with $|B|=n=2$. Let $R_{B}=\{B \cup\{j\}, j \in M$, $j \notin B\}$. For example, for $B=\{1,3\}, R_{B}=\{\{1,2,3\},(1,3,4\},(1,3,5\}\}$.

The pseudomanifold \bar{K}

Figure 5

Let $\# R_{B}$ be the number of simplices $\bar{\sigma} \in \bar{K}$ with the property that $L(\bar{\sigma})$ $\in R_{B}$, and let q_{B} be the number of simplices $\bar{\sigma} \in \partial \bar{K}$ with the property that $L(\bar{\sigma})=B$. A parity argument, first introduced by Kuhn [16], and later used by Gould and Tolle [11], states that the parity of \#RB and the parity of q_{B} is the same for any given B, with $|B|=n$. This implies, in particular, that
(i) if $B \in \partial \bar{K},|B|=2$, then $\# R_{B}$ is odd, and
(ii) if $B \notin \partial \bar{K},|B|=2$, then $\# R_{B}$ is even.

The first statement follows from the fact that if $B \in \partial \bar{K}$, then $L(B)=B$, and there is no other simplex $\bar{\sigma} \in \partial \bar{K}$ with $L(\bar{\sigma})=\beta$ (if so, then $\bar{\sigma}=L(\bar{\sigma})=B$, a contradiction $)$. Thus $q_{B}=1$, an odd number,
whereby \# R_{B} is odd. As an example, let $B=\{4,5\}$. Note that $B \in \partial \bar{K}$. There arefive simplices $\bar{\sigma} \in \bar{K}$ with $L(\bar{\sigma}) \in R_{B}$, namely $(4, p, u\}$, $\{x, t, z\},\{w, x, s\},\{e, j, 2\}$, and $\{e, j, i\}$, an odd number. The second statement follows from the fact that if $B \notin \bar{K}$, there can be no simplices $\bar{\sigma} \in \partial K$ with $L(\bar{\sigma})=B$ (for if so, then $\bar{\sigma}=L(\bar{\sigma})=B$, \quad a contradiction). Thus $q_{B}=0$, an even number, and hence $\# R_{B}$ is an even number. As an example, let $B=\{1,4\}$, and hence $B \notin \partial \bar{K}$. There are four simplices $\bar{\sigma} \in \bar{K}$ with $L(\bar{\sigma}) \in R_{B}$, namely $\{a, 3,4\},\{f, g, k\}$, $\{x, t, z\}$, and $\{t, 1,2\}$.

Now consider the set x°, now shown in figure 6 , subdivided into the eleven regions $\tau_{k}, k=1, \ldots, 11$. For any $y \in \operatorname{int} \tau_{1}$, y is a regular point of x°. Also, for any $y \in \tau_{1}, G_{y}=\{\{1,4,5\},\{2,4,5\}$, $\{3,4,5\}\}$, i.e. $G_{y}=R_{\beta}$, where $B=\{4,5\}$. Because $B \in \partial \bar{K}, \quad b y$ (i) above, \# R_{B} is odd, whereby \#Gy is odd, because $R_{B}=G_{y}$. This proves

The subdivided cell X°.

Figure 6
theorem 1 for all $y \in \operatorname{int} \tau_{1}$. For $y \in \operatorname{int} \tau_{1}$, those simplices $\bar{\sigma} \in \bar{K}$ for which $L(\bar{\sigma}) \in G y$ are $\{p, u, 4\},\{s, x, w\},\{x, t, z\},\{e, i, j\}$, and $\{e, j, 2\}$. The main fact that has been used is that all $y \in i n t \tau_{1}$ are "sufficiently close" to the face $\left\langle A_{4}, A_{5}\right\rangle$ so that y int
$\underset{j \neq 4,5}{n}$ conv $\left\langle A_{4}, A_{5}, A_{j}\right\rangle$, whereby $G_{y}=\{\{4,5, j\} \mid j \neq 4, j \neq 5, j \in M\}$,
i.e. $G_{y}=R_{\{4,5\}}$.

We next will show that if y and z are in the interior of adjacent regions τ_{i} and τ_{j} of x°, that the parity of \#Gy equals the parity of $\# G_{z}$. Since the parity of $\# G_{y}$ is odd for y int τ_{i}, then this will mean that the parity of $\# G_{y}$ is odd for $y \in$ int τ_{k}, $k=2, \ldots, 11$, proving assertion (i) of theorem 1. Assertion (ii) follows from a closure argument.

Therefore, consider any two adjacent regions τ_{i} and τ_{j}, in x^{0}, for example τ_{4} and τ_{5}. For any $y \in \operatorname{int} \tau_{4}$ and $z \in$ int τ_{5}, $G_{y}=\{\{1,2,4\},\{2,4,5\},\{2,3,4\},\{1,3,4\},\{3,4,5\}$, and $\mathrm{G}_{\mathrm{z}}=\{\{1,2,4\},\{2,4,5\},\{2,3,4\},\{1,3,4\},\{1,3,5\},\{2,3,5\}\}$. Note that $G_{y} \Delta G_{z}=\{\{1,3,5\},\{2,3,5\},\{3,4,5\}\}=R_{\{3,5\}}$.

Furthermore, the face of $\tau_{4} \cap \tau_{5}$ that separates τ_{4} from τ_{5} is generated by the line segment $\left\langle A_{3}, A_{5}\right\rangle$. It is no coincidence that the set $\{3,5\}$ appears in each of the last two statements. Every simplex $\left\langle A_{3}, A_{5}, A_{j}\right\rangle, j \notin\{3,5\}$ contains either τ_{4} or τ_{5} but not both. This shows that $R\{3,5\} \subset G_{y} \Delta G_{z}$. But because the line segment < $A_{3}, A_{5}>$ is the unique line segment separating τ_{4} from τ_{5}, then any α that lies in $G_{y} \Delta G_{z}$ must contain $\{3,5\}$, i.e. $\alpha \geq\{3,5\}$, whereby $G_{y} \Delta G_{z} \subseteq R_{\{3,5\}}$. Thus $G_{y} \Delta G_{z}=R_{\{3,5\} \text {. For any collection } D}$
of subsets of M, let \#D denote the number of simplicies $\bar{\sigma} \in \bar{K}$ such that $L(\bar{\sigma}) \in D$. Note that

$$
\begin{aligned}
& G_{y}=\left(G_{y} \backslash \bar{G}_{z}\right) \cup\left(G_{y} \cap G_{z}\right), \text { whereby } \\
& \# G_{y}=\#\left(G_{y} \backslash G_{z}\right)+\#\left(G_{y} \cap G_{z}\right),
\end{aligned}
$$

because these two sets are disjoint. Similarly, we have:

$$
* G_{z}=\#\left(G_{z} \backslash G_{y}\right)+\#\left(G_{y} \cap G_{z}\right) .
$$

We obtain:

$$
\begin{aligned}
\# G_{y} & -\# G_{z}=\#\left(G_{y} \backslash G_{z}\right)-\#\left(G_{z} \backslash G_{y}\right) \\
& =\#\left(G_{y} \backslash G_{z}\right)+\#\left(G_{z} \backslash G_{y}\right)-2 \#\left(G_{z} \backslash G_{y}\right) \\
& =\#\left(G_{y} \Delta G_{z}\right)-2 \#\left(G_{z} \backslash G_{y}\right) \\
& =\# R\{3,5\}-2 \#\left(G_{z} \backslash G_{y}\right) .
\end{aligned}
$$

However, $\#$ R $\{3,5\}$ is even, because $\{3,5\} \notin \partial \bar{K}$. Therefore $\# G_{y}-\# G_{z}$ is even, i.e. $\# G_{y}$ and $\# G_{z}$ have the same parity. This completes the proof of Theorem 1 for the example of figures 1 and 2.

The important facts leading to the proof that $\# G y$ and $\# G_{z}$ have the same parity if y and z are interior to adjacent regions τ_{i} and τ_{j} of X° are as follows: If τ_{i} and τ_{j} are adjacent, there is a unique index set β such that the $(n-1)-s i m p l e x S_{\beta}=\left\{y \in R^{n} \mid y=\lambda_{\beta} A_{\beta}\right.$, $\left.\lambda_{B} \geq 0, e \cdot \lambda_{B}=1\right\}$, separates τ_{i} from τ_{j}. Furthermore, S_{B} cannot lie on ∂x°, whereby $B \notin \bar{\partial} K$. Finally, $G_{y} \Delta G_{z}=R_{B}$. Therefore $\# G_{y}-\# G_{z}=\# R_{B}-2 \#\left(G_{y} \backslash G_{z}\right)$, which is an even number. Proof of Theorem 1

Let $X, T, L(\cdot)$, and K be as given in theorem $1 . X$ is said to be centrally regular if $y=0$ does not lie in the affine hull of n or fewer rows of A. Note that if X is centrally regular, then $y=0$ must be a regular point of x°. The remark below allows us to assume, without loss of generality, that x is centrally regular.

Remark 1. If theorem 1 is true when the polyhedron x is centrally regular, then theorem 1 is true independent of x being centrally regular.

Proof: Suppose x is not centrally regular, but that x satisfies the hypotheses of theorem 1. Then x° is solid, and almost every point $y \in x^{\circ}$ does not lie in the affine hull of any set of n or fewer rows of A. Let \bar{y} be any such point x^{0}. Then \bar{y} must be a regular point in x^{0}.

Now let $x^{\prime}=\left\{x^{\prime} \in R^{n} \mid(A=e \circ \bar{y}) x^{\prime} \leq b\right\}, x^{\prime} 0=\left\{y^{\prime} \in R^{n} \mid y^{\prime}=\lambda(A-e \circ \bar{y}), \lambda \geq 0\right.$, $\lambda \cdot e=1\}$. From the projective transformation lemma, the mapping $g(\cdot): X \rightarrow X^{\prime}$ given by $g(x)=x /(1-\bar{y} \cdot x)$ maps x onto x^{\prime}, and maps T to the triangulation T^{\prime} and K to the pseudomanifold K^{\prime}. For each $v^{\prime} \in K^{\prime} o$, define $L^{\prime}\left(v^{\prime}\right)=$ $L\left(g^{-1}\left(v^{\prime}\right)\right)$. Notice that $x^{\prime 0}=x^{0}-\bar{y}$, and that 0 is a regular point in $x^{\prime 0}$. Therefore, because the system $X^{\prime}, T^{\prime}, L^{\prime}(\cdot)$, and K^{\prime} is combinatorially equivalent to our original system and by hypothesis theorem 1 is true for this new system, theorem 1 is true for the original system. [X]

We therefore will assume for the remainder of this section that x is centrally regular.
x is said to be nondegenerate if $A_{\alpha} x=b_{\alpha}$ has no solution $x \in x$ when $|\alpha| \geq n+1$ and $\alpha \subset M$. In order to prove theorem 1 , we will first assume that x is nondegenerate. This assumption will be relaxed subsequently. The remark below lists some of the properties that are consequences of the property of nondegeneracy in conjunction with the assumption that x is centrally regular.

Remark 2. If x satisfies the assumptions of theorem 1 and x is nondegenerate and centrally regular, then:
(a) every extreme point of x meets exactly n facets of x.
(b) every facet of x° is an ($n-1$)-simplex S_{β}, where $B=C(x)$ for some extreme point of x, and for every extreme point $x \in X$, S_{β} is a facet of X°, where $B=C(x)$.
(c) for every $\alpha \subset M$ with $|\alpha|=n+1, S_{\alpha}$ is an $n-s i m p l e x$.
(d) for every $B \subset M$ with $|\beta|=n, S_{\beta}$ is an ($n-1$)-simplex, whose affine hull contains no other rows A_{i}, $i \in M \backslash B$.

Proof: (a) is a direct consequence of the definition of nondegeneracy and the fact that an extreme point x of x must meet at least n facets of x, because the dimension of X is n.

To prove (b), let F be a facet of x^{0}. Then there exists a supporting hyperplane H of X° such that $H \cap X^{\circ}=F$. This hyperplane can be written as $H=\left\{y \mid y^{T} x=\theta\right\}$ for a particular (x, $)$. Hence $F=$ S_{B}, where $B=\left\{i \mid A_{i} x=\theta\right\}$ and $A_{i} x<\theta$ for $i \in M \backslash B$. Because $0 \in$ int x°, θ must be positive and we can assume $\theta=1$. Therefore $x \in X$, and $A_{\beta} x=b_{\beta}$, whereby $|B| \leq n$, since X is nondegenerate. But since F is an ($n-1$)cell, we must have $|\beta| \geq n$, and hence $|\beta|=n$, and F is an ($n-1$)simplex. Conversely, let x be an extreme point of x and let $B=C(x)$. Then $|B|=n$, from (a), and the hyperplane $\left\{y \in R^{n} \mid y^{T} x=1\right\}$ supports x° and contains S_{B}, since $A_{i} X=1$ for each $i \in B$. Thus S_{B} is a face of X^{0}. Since A_{B} must have linearly independent rows, the rows of A_{B} are affinely independent, whereby S_{β} is an ($n-1$)-simplex.

To prove (c), let $\alpha \subset M,|\alpha|=n+1$. If the matrix

$$
z=\left[\begin{array}{l}
A_{\alpha}^{T} \\
e_{\alpha}^{T}
\end{array}\right]
$$

does not have rank $n+1$, then there exists $(x, \theta) \neq(0,0)$ such that $A_{\alpha} x=e_{\alpha} \theta$, a contradiction. Therefore Z has full rank, whereby the set S_{α} is an $n-s i m p l e x$.

For (d), let $B \subset M,|B|=n$, then $\alpha=B \cup\{i\}$ satisfies (c) for any $i \in M \backslash B$, whereby S_{B} is an $(n-1)-s i m p l e x$ and A_{i} does not lie in the affine hull of S_{B}. [X]

Our next task is to construct the extended pseudomanifold \bar{K}, defined by

$$
\begin{aligned}
& \bar{K}^{\circ}=\mathrm{K}^{0} \cup \mathrm{M} \\
& \overline{\mathrm{~K}}=\left\{\bar{\sigma} \in \bar{K}^{\circ} \mid \bar{\sigma} \neq \phi, \bar{\sigma} \subset(\sigma \cup \mathrm{C}(\sigma)) \text { for some } \sigma \in \mathrm{K}\right\} .
\end{aligned}
$$

This construction is illustrated in figure 5. We have the following lemma:

Lemma 1. If X is nondegenerate, \bar{K} is an n-pseudomanifold, and $\partial \bar{K}=$ $\{B \subset M \mid B \subseteq C(x)$ for some $x \in x, B \neq \varnothing\}$. B is an (n-1)-simplex in ∂K if and only if S_{B} is a facet (and an ($n-1$)-simplex) of x^{0}.

PROOF: $\quad x$ is nondegenerate, and so by Corrollary Al of the appendix, \bar{K} and $\partial \bar{K}$ are as stated. The second statement of the lemma follows from part (b) of remark 2. [X]

The construction of \bar{K} will be generalized later in this section to include degenerate bounded polyhedra as well. This construction resembles the construction of an antiprism in Broadie [1], but is combinatorial in nature and so does not depend on the geometric projection property used in his work.

We now extend $L(\cdot): K^{\circ} \rightarrow M$ to $L(\cdot): \bar{K}^{\circ} \rightarrow M$, by defining $L(i)=i$ for $i \in M$.
For each $B \subset M,|B|=n$, define $R_{B}=\{B \cup\{j\} \mid j \in M \backslash B\}$. For any collection D of subsets of M, let \#D denote the number of simplices
$\bar{\sigma} \in \bar{K}$ with the property that $L(\bar{\sigma}) \in D$. We have the followihng result:

Lemma 2: Let $B \subset M$ with $|B|=n$.
(a) If $B \in \partial \bar{K}$, then $\# R_{B}$ is odd, and
(b) If $B \notin \partial \bar{K}$, then $\# R_{B}$ is even.

PROOF: Let q_{B} be the number of simplices $\bar{\sigma} \in \partial \bar{K}$ with the property that $L(\bar{\sigma})=B . \quad A$ parity argument, first introduced by Kuhn [16] and later used by Gould and Tolle [11], states that the parity of *Rg and the parity of q_{B} is the same for any $B \subset M$ with $|B|=n$. If $B \in \partial \bar{K}$ and $|\beta|=n$, then $L(\beta)=\beta$, and $q_{\beta}=1$, whereby \#R is odd. If $B \notin \partial \bar{K}$, then $q_{B}=0$, and hence $\# R_{B}$ is even. [X]

Consider a regular point $y \in x^{0}$. Then $|\alpha|=n+1$ for every $\alpha \in G y$. Furthermore, because y is regular, $y \in \operatorname{int} S_{\alpha}$, for every $\alpha \in G y$, and thus $y \in$ int $\cap_{\alpha \in G y}^{n} S_{\alpha}$, whereby $\cap_{\alpha \in G_{y}}^{n} S_{\alpha}$ is an n-cell, and every element of the interior of this cell is a regular point in x°. If y, z are two regular points in x°, then define the relationship $y \approx z$ if $G=G_{z}$. The relation \approx is an equivalence relation on the regular points of x^{0}. Furthermore, because Gy can take on only a finite number of values, this equivalence relation divides the regular points y of x° into p mutually disjoint sets of the form int $\left.\underset{\alpha \in G_{y_{k}}}{n} \quad S_{\alpha}\right)$, for p distinct values of $y, y=y_{1}, \ldots, y_{p}$.

For $k=1, \ldots, p$, define $\tau_{k}=\cap_{\alpha \in G_{y_{k}}} S_{\alpha}$, and each τ_{k} is thus an $n-c e 11$ in x°, and (int τ_{k}) $\cap \tau_{i}=\phi$ for all $i \neq k$. Furthermore, a limiting argument easily demonstrates that $\underset{k=1}{\cup} \tau_{k}=x^{0}$. Figure 6

Figure 7
illustrates the above remarks. It is our aim to prove that the collection $\bar{M}=\left\{\tau_{1}, \ldots, \tau_{k}\right\}$ constitutes a PL subdivision of x° (see Eaves [4]).

Lemma 3. Let x satisfy the assumptions of theorem 1 and suppose X is nondegenerate. Let $\bar{M}=\left\{\tau_{1}, \ldots, \tau_{p}\right\}$. Then $\left(\bar{M}, X^{\circ}\right)$ is a subdivided n-manifold. Furthermore, if y and z lie in adjacent n-cells of X°, then $G_{y} \Delta G_{z}=R_{B}$ for some $B \subset M,|B|=n$, and $B \notin \partial \bar{K}$.

PROOF: In order to show that $\left(\bar{M}, X^{0}\right)$ is a subdivided n-manifold, it suffices to show that if F is a facet of an n-cell τ_{i}, then either F c ∂x°, or F is a facet of an n-cell $\tau_{j}, j \neq i$. Let τ_{i} be given, let F be a facet of τ_{i}, and suppose that $F \notin \partial x^{\circ}$. Let $\bar{y} \in$ rel int F,
 $\bar{y} \in F$, there exists $\alpha \in G^{\prime}$ ' with the property that $\bar{y} \in \partial S_{\alpha}$. Because $\bar{y} \in \operatorname{rel}$ int F, there exists a unique subset $\beta \subset \alpha,|\beta|=n$, with the property that $\bar{y} \in S_{\beta}$, and $\bar{y} \in$ rel int S_{β}. Thus $\bar{y}=\bar{\lambda}_{\beta} A_{\beta}$, for some $\bar{\lambda}_{\beta}>0, e_{\beta} \cdot \bar{\lambda}_{\beta}=1$, and $\bar{\lambda}_{\beta}$ is uniquely determined. Let H be the
 as $H=\left\{y \in R^{n} \mid y \cdot \bar{x}=\bar{\theta}\right\}$ for some $(\bar{x}, \bar{\theta}) \neq(0,0)$ and unique up to scalar multiple. Because $S_{B} \subset H, A_{B} \bar{x}=e_{\beta} \bar{\theta}$. Because H is a supporting hyperplane of τ_{i}, then without loss of generality, we can assume that $y \cdot \bar{x} \geq \bar{\theta}$ for all $y \in \tau_{i}$. Because $\bar{y} \in \operatorname{rel}$ int S_{β}, and $\bar{y} \in$ rel int F, $\bar{y}+t \bar{x} \in \operatorname{int} \tau_{i}$ for all $t>0$ and sufficiently small. From remark $1(d), A_{j} \notin H$ for any $j \in M \backslash B$, $i . e . A_{j} \bar{x} \neq \bar{\theta}$ for any $j \in M \backslash B$. Let $P=\left\{j \in M \mid A_{j} \bar{x}>\bar{\theta}\right\}$ and $N=\left\{j \in M \mid A_{j} \bar{x}<\bar{\theta}\right\}$. Then, P, N, and B are disjoint subsets of M. Furthermore, because we can assume that x is centrally regular, the set $\left\{i \mid A_{i} \bar{x}=\bar{\theta}\right\}$ can contain at most n elements, whereby
$B=\left\{i \mid A_{i} \bar{x}=\bar{\theta}\right\}$ and $M=P \cup N \cup B . \quad$ For all $\left.\quad \mathrm{V}\right\rangle 0$ and sufficiently small, $\bar{y}+\operatorname{t} \bar{x} \in \operatorname{int} \underset{-}{S_{B}\{j\}}$ for each $j \in P$. Thus for $y=\bar{y}+t \bar{x}, G y \geq(B \cup\{j\})$
for $t>0$ and sufficiently small for $j \in P$. But $\bar{y}+t \bar{x} \in \tau_{i}$ for all $t>0$ and sufficiently small. Thus, since $G_{y}=G_{y}$, for all $t>0$ and sufficiently small, ($B \cup\{j\}) \in G^{\prime} \cdot$ Also, it is easy to verify $S_{B \cup\{j\}}{ }^{\cap} \tau_{i}=F$ for all $j \in N$, whereby $(B \cup\{j\}) \notin G y$, for $j \in N$. Now consider $y=\bar{y}-t \bar{x}$ for $t>0$ and sufficiently small. Then $\bar{y}-t \bar{x} \in S_{B \cup\{j\}}$ for all $j \in N$, whereby ($B \cup\{j\}$) $\epsilon G y$ for $\bar{y}=y \overline{-} t x$ and $t>0$ and sufficiently small. Furthermore, since $y \in$ int S_{α} for all $\alpha \in G_{y}$, such that $B \notin \alpha,(\bar{y}-t \bar{x}) \in S_{\alpha}$ for all $\alpha \in G_{y}{ }^{\prime}$, $B \notin \alpha$, and $t>0$ and sufficiently small. Also, for $t>0$ and sufficiently small, $(\bar{y}-t \bar{x}) \notin S_{B \cup\{j\}}$ for any $j \in P$. Therefore,
$(G y, \backslash(\underset{j \in P}{u} B \cup\{j\}) \cup(\underset{j \in N}{u} B \cup\{j\})) \quad \subset G y$, for $\bar{y}=y-t \bar{x}$ and $t>0$ and sufficiently small. Suppose that $\alpha \in G y$ for $y=\bar{y}-t \bar{x}$ and $t>0$ and sufficiently small. If $\beta \notin \alpha$, then $\bar{y} \in S_{\alpha}$. If $\bar{y} \in S_{\alpha}$, and $\beta \notin \alpha$, then $\bar{y} \in S_{\gamma}$ for some $\gamma \subset \alpha, \gamma \neq B$, and hence \bar{y} is not in the relative interior of F. Thus $\bar{y} \in$ int S_{α}, whereby $\bar{y}+t \bar{x} \epsilon$ int S_{α} for all $t>0$ and sufficiently small, and hence $\alpha \in G_{y}$. Thus we have for all t> 0 and sufficiently small:

$$
\begin{equation*}
G_{y}=G_{y^{\prime}} \backslash(\underset{j \in P}{\cup} B \cup\{j\}) \cup(\underset{j \in N}{\cup} B \cup\{j\}) \tag{*}
\end{equation*}
$$

for $y=\bar{y}-t \bar{x}$, and y is therefore a regular point of x°. Let τ_{k} be the unique n-cell of $\left(\bar{M}, x^{\circ}\right)$ containing $y=\bar{y}+t \bar{x}$ for $t>0$ and sufficiently small. There thus exists $t>0$ such that $\hat{y}=\bar{y}-t \bar{x}$ is a regular point of x°, and $\tau_{k}=\cap_{\alpha \in G \hat{y}} \quad S_{\alpha}$. \quad Thus $\tau_{k} \cap H=\tau_{i} \cap H$, and so F is a facet of τ_{k}. and from $(*)$, we have

$$
G_{y} \cdot \Delta G_{y}=\bigcup_{j \in P \cup N}^{U}(B \cup\{j\})=\underset{j \in M \backslash B}{U}(B \cup\{j\})=R_{B} .
$$

Finally, note that B cannot be an element of $\partial \bar{K}$, for otherwise S_{B} would be a facet of x° (by lemma 1) and H would be a supporting hyperplane for X^{0}, which cannot be true. [X]

The last intermediate result we will need to prove theorem 1 under nondegeneracy is:

Lemma 4. If x satisfies the assumptions of theorem 1 and X is nondegenerate, then for each $B \in \partial \bar{K}$ with $|B|=n, \cap_{j \in M \backslash B} S_{B \cup\{j\}}=$ τ_{k} for some $k \in\{1, \ldots, p\}$.

PROOF: Let $B \in \partial \bar{K},|B|=n$. Thus S_{B} is a facet (and is an (n-1)-simplex) of x^{0}, by lemma 1 . By remark $2(b)$, there is an extreme point \bar{x} of X such that $B=C(\bar{x})$. Thus $A_{B} \bar{x}=e_{B}$ and $A_{j} \bar{x}<1$ for all $j \in M \backslash B$. Let $\bar{y} \in$ rel int S_{B}, and let $\tau=\cap_{j \in M \backslash B} S_{B \cup\{j\}}$. $\operatorname{Then}(\bar{y}-t \bar{x}) \in S_{B \cup\{j\}}$ for all $t>0$ and sufficiently small, whereby τ is an $n-c e l l$ and $(\bar{y}-t \bar{x})$ ϵ int τ for all $t>0$ and sufficiently small. Suppose $(\bar{y}-t \bar{x}) \in S_{\alpha}$ for all $t>0$ and sufficiently small, and $|\alpha|=n+1$. If $\alpha \neq B \cup\{j\}$ for some $\{j\} \in M \backslash B$, there exists $i \in B$ such that $i \notin \alpha$, whereby, $\bar{y} \notin S_{\alpha}$. But $(\bar{y}-t \bar{x}) \in S_{\alpha}$ for all $t>0$ and sufficiently small, a contradiction. Thus for $y=\bar{y}-t \bar{x}$, and $t>0$ and sufficiently small, $G y=\underset{j \in M \backslash B}{U} \quad B \cup\{j\}$, and y is a regular point of x°, whereby $\tau=\tau_{k}$ for some $\mathrm{k} \in\{1, \ldots, \mathrm{p}\} . \quad[\mathrm{X}]$

We now have:
Proof of theorem 1 when x is nondegenerate:
Let $B \in \partial \bar{K}$ with $|B|=n$. Then by lemma $4, \underset{j \in M \backslash B}{\cap} S_{B \cup\{j\}}=\tau_{k}$ for some $k \in$ $\{1, \ldots, p\}$. Therefore for every $y \in \operatorname{int} \tau_{k}, G_{y}=\underset{j \in M \backslash B}{n} B \cup\{j\}=R_{B}$.
By lemma 2, \#R R_{B} is odd, and hence $\# G_{y}$ is odd. For any two adjacent $n-$ n-cells $\tau_{i}, \tau_{j}, G_{y} \Delta G_{z}=R_{B}$ for some $\beta \notin \partial K,|\beta|=n$, for any $y \in \operatorname{int} \tau_{i}$, $z \in \operatorname{int} \tau_{j}$, by lemma 3 . We have:
$G_{y}=\left(G_{y} \backslash G_{z}\right) \cup\left(G_{y} \cap G_{z}\right)$, whereby
\# $G_{y}=\#\left(G_{y} \backslash G_{z}\right)+\#\left(G_{y} \cap G_{z}\right)$, because these two sets are disjoint.
Similarly, we have $\# G_{z}=\#\left(G_{z} \backslash G_{y}\right)+\#\left(G_{y} \cap G_{z}\right)$.
Therefore, $\# G_{y}-\# G_{z}=\#\left(G_{y} \backslash G_{z}\right)-\#\left(G_{z} \backslash G_{y}\right)$

$$
\begin{aligned}
& \left.=\# G_{y} \backslash G_{z}\right)+\#\left(G_{z} \backslash G_{y}\right)-2 \#\left(G_{z} \backslash G_{y}\right) \\
& =\#\left(G_{y} \Delta G_{z}\right)-2 \#\left(G_{z} \backslash G_{y}\right) \\
& =\# R_{B}-2 \#\left(G_{z} \backslash G_{y}\right) .
\end{aligned}
$$

However, \# R_{B} is even, by lemma 2. Thus \#Gy and \# G_{z} have the same parity. Therefore, for any two adjacent n-cells τ_{i} and τ_{j}, \#Gy and \#Gz have the same parity for all $y \in i n t \tau_{i}, z \in i n t \tau_{j}$. Furthermore, for at least one τ_{k}, \#Gy is odd, by choosing $\tau_{k}=\underset{j \in M \backslash B}{\cap} S_{B U}\{j\}$ where $B \in \partial \bar{K}$. Thus $\# G y$ must be odd for all $y \in i n t \tau_{k}$ for all k, because $\underset{k=1}{\mathrm{~g}} \tau_{\mathrm{k}}=\mathrm{X}^{0}$ is a connected set. But $\mathrm{y} \in \operatorname{int} \tau_{k}$ for some k if and only
if y is a regular point of x°. Thus $\# G y$ is odd for all regular points of x°.

Therefore, if y is regular, there exists an odd number of simplices $\bar{\sigma} \in \bar{K}$ such that $L(\bar{\sigma}) \in G_{y}$. Each simplex $\bar{\sigma}$ is of the form $\sigma \mathcal{C}(\sigma)$ where $\sigma \in K$, and $L(\sigma) \cup C(\sigma)=L(\bar{\sigma})$ for all $\bar{\sigma} \in \bar{K}$. Thus there exists an odd number of simplices $\sigma \in K$ with the property $L(\sigma) \cup C(\sigma) \in G y$. This proves
assertion (i) of theorem 1. Assertion (ii) follows from an elementary closure argument. [X]

The proof of theorem 1 when x is nondegenerate has depended critically on being able to create a pseudomanifold \bar{K} whose boundary bears a combinatorial equivalence to the boundary of x^{0}. This combinatorial equivalence is driven by the fact that every row A_{i} of A is an extreme point of x°, every facet of x^{0} is an $(n-1)-s i m p l e x$, and that x is nondegenerate. These observations suggest a more general combinatorial result, whose development will aid in proving theorem 1 for the more general (degenerate or nondegenerate) case.

Let Z be a polyhedron of the form $Z=\left\{z \in R^{n} \mid z=\lambda E, \lambda \geq 0, \lambda \cdot e=1\right\}$. Let $M=\{1, \ldots, m\}$ index the rows of E. For each $\alpha \subset M$, define $T_{\alpha}=$ $\left\{z \in R^{n} \mid z=\lambda_{\alpha} E_{\alpha}, \quad \lambda_{\alpha} \geq 0, \lambda_{\alpha} \cdot e_{\alpha}=1\right\} . \quad A$ point $z \in Z$ is said to be a regular point of Z if $z \notin T \alpha$ for any $\alpha \subset M$ with $|\alpha| \leq n$. For every $z \in Z$, we define $G_{z}=\{\alpha \subset M \mid z \in T \alpha\} . \quad Z$ is said to be special if
(i) every row of E is an extreme point of Z,
(ii) $z=0 \in$ int Z and $z=0$ does not lie in the affine hull ot T_{α} for any α with $|\alpha| \leq n$, and
(iii) no hyperplane H in R^{n} meets more than n extreme points of Z.

Let \bar{K} be a finite pseudomanifold with vertex set $\bar{K}^{\circ} \supseteq M$.
We say that \bar{K} agrees with Z if
(i) $B \in \partial \bar{K}$ implies $B \subset M$ and T_{B} is a face of Z, and
(ii) if $B \subset M$ and T_{B} is a face of Z, then $B \in \partial \bar{K}$.

We have the following result:

Lemma 5. If Z is special, \bar{K} agrees with Z, and $L(\cdot): \bar{K}^{\circ} \rightarrow M$ is a given labelling such that $L(i)=i$ for each $i \in M$, and z is a regular point in Z, then there are an odd number of simplices $\bar{\sigma} \in \bar{K}$ with the property that $L(\bar{\sigma}) \in G_{z}$.

PROOF: If Z is special, define $X=\left\{x \in R^{n} \mid E x \leq e\right\}$. Then x is solid and centered and scaled, and because Z is special, x is nonredundant bounded, nondegenerate, and centrally regular. In this case, we have $x^{0}=Z$, where $x^{0}=\left\{y \in R^{n} \mid y=\lambda E, \lambda \geq 0, e \cdot \lambda=1\right\}$. Therefore Remark 2 pertains. Furthermore, lemma 2 is valid, because the proof of lemma 2 only depends on the fact that \bar{K} agrees with x°, and not on how \bar{K} was constructed from K and T. Finally, lemmas 3 and 4 hold true. Therefore, if z is a regular point of Z, i.e. z is a regular point of x°, there exists an odd number of simplices $\bar{\sigma} \in \bar{K}$ with the property that $L(\bar{\sigma}) \in G_{Z} . \quad[X]$
(The statement of lemma 5 can be regarded as a combinatorial version of the No Retraction Theorem (see Hirsch [13], e.g.). To see this, suppose Z is as given in the lemma, and let T be a triangulation of Z that does not refine any facet of Z. Then the set of vertices of T consist of $\bar{K}^{\circ}=\left\{E_{i} \mid i \in M\right\} \cup K^{\circ}$, where K° are vertices of T in the interior of Z. Any simplex $\sigma \in T$ can be written in the form $\sigma=\left\langle v^{0}, \ldots, v^{k}, E_{i_{1}}, \ldots, E_{i_{p}}\right\rangle$, where each $v^{i} \in K^{0}$, and each E_{i} is a row of E. If we let $\bar{\sigma}=\left\{v^{0}, \ldots, v^{k}, i_{i}, \ldots, i_{p}\right\}$, then the collection \bar{K} of all such $\bar{\sigma}$ is a pseudomanifold that agrees with Z. If $L(\cdot)$ is a labelling $\bar{K}^{\circ} \rightarrow M$, then for each $v \in K^{\circ}$, let $f(v)=E_{L}(v)$, and for each E_{i}, let $f\left(E_{i}\right)=E_{i}$. Then if $f(\cdot)$ is extended to a PL function f(.) maps Z into Z continuously and leaves the boundary fixed. According to lemma 5 , for each regular point $z \in Z$, there exists an
odd number of simplices $\bar{\sigma} \in \bar{K}$ such that $L(\bar{\sigma}) \in G_{z}$. But this means that $z=f(x)$ for at least one $x \in \sigma$, where σ is the real simplex corresponding to $\bar{\sigma}$. Thus $f(\cdot)$ maps Z onto Z, proving the No Retraction Theorem.)

When x is degenerate, then the preceding proof of theorem is not valid. In particular, if x is degenerate, the construction of \bar{K} does not result in an n-pseudomanifold. (To see this, suppose x is degenerate, and let \bar{x} be an extreme point of x for which $|C(x)|>n$. Then, since $\{\bar{x}\} \in K,\{\bar{x}\} \cup C(x) \in \bar{K}$, but this set contains at least $n+2$ elements, and so is not an $n-s i m p l e x$ in \bar{K}.)

The typical method for side-stepping degeneracy is to perturb the constant coefficients of the constraints of x by a vector of infinitesimals. In our case, however, such a perturbation of x has adverse consequences. The perturbation will alter the combinatorial properties of ∂x, which is undesirable in a combinatorial analysis such as this. Also, if T is a triangulation of x, it is unclear how to amend T so that the amended version is a triangulation of the perturbed X. In any case, the combinatorial structure of T may change, which again is undesirable.

The usual perturbation of x is performed by changing each righthand side coefficient b_{i} to $b_{i}+\varepsilon^{i}$. We will instead perturb x°, by using this same construction in a dual form. Our first task, however, is to repair \bar{K}. We proceed as follows. A subset $\alpha \subset M$ is said to be consistent if there exists $x \in x$ with the property that $C(x)=\alpha$. For any matrix D or vector d, let (D) or (d) denote the number of leading zero columns or components of D or d, respectively. Let $B=[b, I]$. If $\alpha \subset M$ is consistent, a subset
$B \subseteq \alpha$ is said to be a basis for α if $A X+Y=B$ has a solution \bar{X}, \bar{Y} with $\bar{Y} \quad 0,\left(\bar{Y}_{\alpha}\right) \geq 1, \bar{Y}_{B}=0$, i.e., $\left(\bar{Y}_{B}\right)=m+1$, and $|B|=\operatorname{rank} A_{\alpha}$. Instead of constructing the pseudomanifold \bar{K} by joining each simplex $\bar{\sigma}$ of K with its carrier set $C(\bar{\sigma})$, we now construct \bar{K} by joining each $\bar{\sigma}$ of K with every subset B of its carrier set $C(\bar{\sigma})$ that forms a basis for this carrier set. We obtain the following theorem:

Theorem 4. Let x be a solid, bounded, and nonredundant polyhedron. Let T be a triangulation of x and let K be the pseudomanifold corresponding to T. Let $\bar{K}^{\circ}=K^{\circ} \cup M$, and define $\bar{K}=\left\{\bar{\sigma} \subseteq \bar{K}^{\circ} \mid \bar{\sigma} \neq \phi, \bar{\sigma}\right.$ $=\sigma \cup B$, where $\sigma \in K$ and B is a basis for $C(\sigma)$. . Then \bar{K} is an n-pseudomanifold, and $\partial \bar{K}=\{\beta \subset M \mid \beta \neq \varnothing$, and B is a basis for $\alpha=C(x)$ for some $x \in X\}$. [X].

The proof of this theorem is rather laborious, and so is relegated to the appendix. The boundary elements of \bar{K} correspond in a natural way to subsets of faces of x°, in a manner that we will soon see. Theorem 4 thus gives a constructive procedure for triangulating the boundary of x^{0}. The procedure of joining simplices σ of x with bases $B \subset M$ is similar to the construction of an antiprism, see Broadie [1]. This construction of \bar{K} is also closely related to the construction of a primal-dual pair of subdivided manifolds, as in Kojima and Yamamoto [14], although \bar{K} is combinatorial while the primal-dual pair of manifolds is not.

Our next task is to perturb the n-cell X°. Define $A_{i}^{\varepsilon}=A_{i} /\left(1+\varepsilon^{i}\right)$ for $i \in M$, and define A^{ε} to be the matrix whose $i^{t h}$ row is A_{i}^{ε}. Define $x^{\circ \varepsilon}=\left\{y \varepsilon R^{n} \mid y=\bar{\lambda} A^{\bar{\varepsilon}}, \lambda \geq 0, e \cdot \lambda=1\right\}$ and $S_{\alpha}^{\varepsilon}=\left\{y \in R^{n} \mid y=\lambda_{\alpha} A_{\alpha}^{\varepsilon}, \quad \lambda_{\alpha} \geq 0\right.$, $\left.e_{\alpha} \cdot \lambda_{\alpha}=1\right\}$.
Lemma 6. If $\alpha \subset M$ and $|\alpha| \geq n+1$, then $A_{\alpha}^{\varepsilon} x=\theta e_{\alpha}$ has no nontrivial solution for all sufficiently small positive ε.

PROOF: We will actually prove a stronger statement, that if $\alpha \subset M$ and $|\alpha|=n+1$, then $A_{\alpha}^{\varepsilon}=\theta e_{\alpha}$ can only have a solution for at most n values of ε. The proof is by contradiction. Therefore let $\varepsilon_{1}, \ldots, \varepsilon_{n+1}$ be n distinct values of ε for which $A_{\alpha}^{\varepsilon} x=\theta e_{\alpha}$ has a nontrivial solution. If $\theta \neq 0$ in all of these solutions, then by rescaling, we can assume that $A_{\alpha}^{\varepsilon} x=e_{\alpha}$ has a solution for all $\varepsilon=\varepsilon_{1}, \ldots, \varepsilon_{n+1}$. Therefore $A_{\alpha} x=B[\varepsilon]$ has a solution for $\varepsilon=\varepsilon_{1}, \ldots, e_{n+1}$ where $B=[e, I]$ and $[\varepsilon]=\left(1, \varepsilon, \varepsilon^{2}, \ldots, \varepsilon^{m}\right)$. Let Q be the matrix

$$
\left.\left[\begin{array}{rrlc}
1 & & 1 & \cdots \\
1 \\
\varepsilon_{1}^{1} & \varepsilon_{2}^{1} & \cdots & \varepsilon_{n+1}^{1} \\
\cdot & \cdot & & \cdot \\
\cdot & \vdots & & \vdots \\
\cdot & \varepsilon_{1}^{m} & \varepsilon_{2}^{m} & \cdots
\end{array}\right) \varepsilon_{n+1}^{m}\right]
$$

Then there exists a solution X to $A_{\alpha} X=B_{\alpha} Q$. But, since $m>n$, an induction argument establishes that the rank of Q is $n+1$, as is the rank of B_{α}. However, the rank of A_{α} is at most n, whence $A_{\alpha} X=B_{\alpha} Q$ cannot have a solution, because the rank of $B_{\alpha} Q$ is also $n+1$. It only remains to show that if $A_{\alpha}^{\varepsilon} x=\theta e_{\alpha}$ has a nontrivial solution, it has a solution with $\theta \neq 0$. Suppose that $A_{\alpha}^{\varepsilon} x=\theta e_{\alpha}$ has a nontrivial solution $(x, \theta)=(\bar{x}, 0)$, and suppose that there is no
solution to $A_{\alpha}^{\varepsilon} x=e_{\alpha}$. Then there exists λ_{α} with the property that $\lambda_{\alpha} A_{\alpha}^{\varepsilon}=0, \lambda_{\alpha} \cdot e_{\alpha}=1, i . e$. the zero vector is an element of the affine hull of S_{α}^{ε}. Denoting this affine hull by H^{ε}, we also have $A_{\alpha}^{\varepsilon} \bar{x}=0$, whereby H^{ε} has dimension at most $n-1$. Thus there exists a subset B of α such that $|\beta| \leq n$ and the affine hull of S_{α}^{ε} is spanned by affine combinations of the rows $A_{i}^{\varepsilon}, i \varepsilon \beta$. Therefore H^{ε} is the affine hull of S_{β}^{ε}. But $\bar{y}=0 \varepsilon H^{\varepsilon}$, and hence $\bar{y}=0$ lies in the affine hull of n or fewer rows of S_{β}^{ε}, and hence of S_{β}. This contradicts the assumption that X is centrally regular, and the proof is now complete. [X]

We also have:
Lemma 7. For all sufficiently small positive ε,
(a) $x^{\circ \varepsilon}$ is special,
(b) $x^{\circ \varepsilon}$ agrees with \bar{K}, and
(c) any regular point y of x° is a regular point of x°, and if y is a regular point of $x^{\circ}, y \in S_{\alpha}$ if and only if $y \in S_{\alpha}^{\varepsilon}$.
PROOF: Let $x^{\varepsilon}=\left\{x \in R^{n} \mid A^{\varepsilon} x \leq b\right\}=\left\{x \in R^{n} \mid A x \leq B[\varepsilon]\right\}$, where $B=[e, I]$, and $[\varepsilon]=\left(1, \varepsilon, \varepsilon^{2}, \ldots, \varepsilon^{m}\right)$. Because X^{ε} is nondegenerate for all sufficiently small positive ε, the faces of $x^{\circ \varepsilon}$ are all simplices. Furthermore, since x is nonredundant, the rows A_{i} of A are all extreme points of X°, whereby the rows A_{i}^{ε} of A^{ε} are all extreme points of $x^{\circ \varepsilon}$. Furthermore, because $\bar{y}=0 \in$ int $x^{\circ}, \bar{y}=0 \in$ int $x^{\circ} \mathcal{E}$ for all sufficiently small positive ε. Finally, because the conditions of lemma 6 are met, whenever $\alpha \subseteq M$ and $|\alpha| \geq n+1, A_{\alpha}^{\varepsilon} x=\theta e \alpha$ has no nontrivial solution for all $\varepsilon>0$ and sufficiently small. Thus for all sufficiently small positive ε, no hyperplane meets more than n extreme points of $x^{\circ \varepsilon}$. Thus $x^{\circ \varepsilon}$ is special, proving (a). Part (b) follows from the fact that $B \in \partial \bar{K}$ if and only if $A X+W=B$ has a solution
with $W_{B}=0$ and and $\left.W_{M \backslash B}\right\rangle 0$; if and only if $A x+W=B[\varepsilon]$ has a solution with $W_{B}=0$ and $W_{M} \backslash B>0$ for all sufficiently small positive ε; if and only if $\left\{y \in R^{n} \mid y=\lambda_{B} A_{B}, \quad \lambda_{B} \geq 0, \lambda_{B} \cdot B_{B}[\varepsilon]=1\right\}$ is a face of $\left\{y \in R^{n} \mid y=\lambda A\right.$, $\lambda \geq 0, \lambda B[\varepsilon]=1\}$ for all sufficiently small positive ε; if and only if $\left\{y \mid y=\lambda_{B} A_{B}^{\varepsilon}, \lambda_{B} \geq 0, \lambda_{B} \cdot e=1\right\}$ is a face of $\left\{y \in R^{n} \mid y=\lambda_{A} \varepsilon, \lambda \geq 0, \lambda \cdot e=1\right\}$, 1.e. if and only if S_{β}^{ε} is a face of $x^{\circ \varepsilon}$. For part (c), note that \bar{y} is a regular point of X° if and only if y meets no S_{B} for $B \subseteq M$, $|B|=n$, and so \bar{y} meets no $S_{B}^{\varepsilon}, B \subseteq M,|B|=n$, for all sufficiently small positive ε. [X]

Our last intermediary result is:
Lemma 8. Let x, T, K, and $L(\cdot)$ satisfy the assumptions of theorem 1, and let y be a regular point of x^{0}. Then there is a one to one correspondence between simplices $\bar{\sigma} \in \bar{K}$ that satisfy $L(\bar{\sigma}) \in \operatorname{Gy}$, and simplices $\sigma \in K$ that satisfy $(L(\sigma) \cup C(\sigma)) \in G_{y}$. PROOF: Let $\bar{\sigma} \in \bar{K}$ have the property that $L(\bar{\sigma}) \in G_{y}$. Then $\bar{\sigma}$ is of the form $\bar{\sigma}=\sigma \cup B$ where $\sigma \in K$ and $B \subseteq C(\sigma)$, and because $|B| \leq n$ and $|L(\bar{\sigma})|=n+1, \quad|\sigma| \geq 1$, whereby $\sigma \neq \phi$. Now $L(\bar{\sigma}) \in G y$ if and only if $(L(\sigma) \cup B) \in G_{y}$. Because $B \subseteq C(\sigma)$, this means $L(\sigma) \cup C(\sigma) \in G_{y}$. We thus must show that if $\bar{\sigma}_{1}=\left(\sigma_{1} \cup B_{1}\right) \in G_{y}$ and $\sigma_{2}=\left(\sigma_{2} \cup B_{2}\right) \in G y$ and $\bar{\sigma}_{1} \neq \bar{\sigma}_{2}$, then we cannot have $\sigma_{1}=\sigma_{2}$. Suppose $\sigma_{=}=\sigma_{1}=\sigma_{2}$ and $B_{1} \neq B_{2}$. Then $B_{1} \subset C(\sigma)$ and $B_{2} \subset C(\sigma)$. Let $L=L(\sigma)$. Then there exists $\lambda_{1}, \lambda_{2}, \mu_{1}, \mu_{2} \geq 0 . \quad$ such that:

$$
\begin{align*}
& \lambda_{1} A_{L}+u_{1} A_{B_{1}}=y \tag{1}\\
& \lambda_{2} A_{L}+u_{2} A_{B_{2}}=y
\end{align*}
$$

Because B_{2} is a basis for $\alpha=C(\sigma) \quad i=1,2,\left|B_{1}\right|=\left|B_{2}\right|$ and there exists a sqaure matrix π such that $A_{B_{2}}=\pi A_{B_{1}}$, and π must be
nonsingular, whereby $A_{B_{1}}=\pi^{-1} A_{\beta_{2}}$. If $t=d i m \sigma$, then $|L| \leq t+1$ and $\left|B_{i}\right|=n-t, i=1,2$. Because y is a regular point, $|L|=t+1$, and $\left|L \cup \beta_{i}\right|=n+1$. Furthermore, $\lambda_{i}>0, \mu_{i}>0, i=1,2$, for otherwise y is not regular. Combining (1) and (2) above, we obtain

$$
\begin{equation*}
\left(\lambda_{1}-\lambda_{2}\right) A_{L}+\left(u_{1}-u_{2} \pi\right) A_{B_{1}}=0 \tag{3}
\end{equation*}
$$

If $\lambda_{1}-\lambda_{2} \neq 0$, or $u_{1}-u_{2} \pi \neq 0$, then we could use (3) to reduce the number of positive components in (1) or (2), violating the fact that y is a regular point. Thus $\lambda_{1}=\lambda_{2}$ and $\mu_{1}=\mu_{2} \pi$, and $\mu_{1} \pi^{-1}=\mu_{2}$.

Furthermore, because B_{i} is a basis for $\alpha=C(\sigma)$ and each $B_{i} \subseteq \alpha$, there must exist $\bar{X}_{1}, \bar{X}_{2}, \bar{Y}_{1}, \bar{Y}_{2}$ such that

$$
\begin{aligned}
& A_{B_{1}} \bar{X}_{1}=B_{B} \\
& A_{B_{2}} \bar{X}_{1}+\bar{Y}_{1}=B_{B}, \bar{Y}_{1} \geqslant 0, \bar{Y}_{1} \neq 0 \\
& A_{B_{2}} \bar{X}_{2}=B_{B} \\
& A_{B_{1}} \bar{X}_{2}+\bar{Y}_{2}=B_{B}, \bar{Y}_{2} \nRightarrow 0, \bar{Y}_{1} \neq 0 .
\end{aligned}
$$

Therefore $B_{B_{1}}=A_{B_{1}} \bar{X}_{1}=\pi^{-1} A_{B_{2}} \bar{X}_{1}=\pi^{-1} B_{B_{2}}-\pi^{-1} \bar{Y}_{1}=\pi^{-1} A_{B_{2}} \bar{X}_{2}-$ $\pi^{-1} Y_{1}=A_{B_{1}} \bar{X}_{2}-\pi^{1} \bar{Y}_{1}=B_{B_{1}}-\bar{Y}_{2}-\pi^{-1} \bar{Y}_{1}$, and hence $\bar{Y}_{2}=-\pi^{-1} \bar{Y}_{1}$. Because $u_{1}, \mu_{2}>0,0<\mu_{1} \bar{Y}_{2}=\mu_{2} \pi \bar{Y}_{2}=-\mu_{2} \bar{Y}_{1}<0$, a contradiction. Thus $B_{1}=B_{2}$.

Next, suppose $\sigma \in K$ and $(L(\sigma) \cup C(\sigma)) \in G_{y}$. Let $\alpha=C(\sigma)$, and let $\delta=L(\sigma)$. We need to find a basis B for α with the property that $(\delta \cup \alpha) \in G_{y}$. Because $(\delta \cup \alpha) \in G_{y}$, there exists $\bar{\lambda}_{\delta} \geq 0, \bar{\lambda}_{\alpha} \geq 0$ with the property that $\bar{\lambda}_{\delta} A_{\delta}+\bar{\lambda}_{\alpha} A_{\alpha}=y$, and $e_{\delta} \bar{\lambda}_{\delta}+e_{\alpha} \bar{\lambda}_{\alpha}=1$. Furthermore, there exists $\bar{x} \in X$ with the property that $C(\bar{x})=C(\sigma)=\alpha$, ie. $A_{\alpha} \bar{x}=$ b_{α}. Let $B=[b, I]$ and let $\bar{z}=\bar{\lambda}_{\alpha} A_{\alpha}$ and consider the following lexiconlinear programs:

$$
\left.\left.\begin{array}{l}
\text { lex } \max \quad \bar{z} \cdot X \\
\text { subject to } A_{\alpha} X+Y=B_{\alpha} \\
\left.-\quad Y_{\alpha}\right\rangle
\end{array}\right\} \begin{array}{cc}
\quad \text { lex } \quad \min & \lambda_{\alpha} \cdot B_{\alpha} \\
\text { subject to } \lambda_{\alpha} A_{\alpha}=\bar{z} \tag{D}\\
& \lambda_{\alpha} \geq 0
\end{array}\right\}
$$

Note that $X=(\bar{x} ; 0), Y=(0 ; I)$ is feasible for P and $\lambda_{\alpha}=\bar{\lambda}_{\alpha}$ is feasible for D, whereby there exists basic optimal solutions ($\left.X^{*}, Y^{*}\right), \lambda_{\alpha}^{*}$ to P and D, respectively, with basis $B \subset \alpha$. Therefore, $\bar{\sigma}=(\sigma \cup B) \in \bar{K}$. Let v^{*} be the optimal value of P and D. Then because $X=(\bar{x} ; 0), Y=(0 ; I)$ is feasiblefor P and $\lambda_{\alpha}=\bar{\lambda}_{\alpha}$ is feasible for $D, v_{1}^{*} \geq \bar{z} \cdot \bar{x}=\bar{\lambda}_{\alpha} A_{\alpha} \bar{x}=\bar{\lambda}_{\alpha} b_{\alpha} \geq v_{1}^{*}$, whereby $v_{1}^{*}=\bar{\lambda}_{\alpha} e_{\alpha}$. Thus B is a basis for α, and $\bar{\lambda}_{\delta} A_{\delta}+\lambda_{\beta}^{*} A_{\beta}=\bar{\lambda}_{\delta} A_{\delta}+\bar{\lambda}_{\alpha} A_{\alpha}=y$, and $\bar{\lambda}_{\delta} e_{\delta}+\lambda_{\beta}^{*} e_{\beta}=$ $\bar{\lambda}_{\delta} \mathrm{e}_{\delta}+\bar{\lambda}_{\alpha} \mathrm{e}_{\alpha}=1$, and so $L(\bar{\sigma})=(L(\sigma) \cup B) \in \operatorname{Gy}$. Thus for every $\sigma \in K$ with $(L(\sigma) \cup C(\sigma)) \in G_{y}$, there exists $B \subset M$ with $\bar{\sigma}=(\sigma \cup B) \in \bar{K}$ and $L(\bar{\sigma}) \in G_{y}$. This completes the proof. [X]
Proof of Theorem 1. Let x, T, K, and $L(\cdot)$ satisfy the assumptions of theorem 1. Then for all sufficiently positive ε, χ°. agrees with \bar{K}, by lemma 7. Therefore, by lemma 5 , if $z \varepsilon$ is a regular point of $x^{\circ} \mathcal{E}$, $\# G_{z} \varepsilon$ is odd. If y is a regular point of x°, then y is a regular point of $x^{\circ \varepsilon}$ for all sufficiently small positive ε, and hence \#Gy is odd. Thus there are an odd number of simplices of $\bar{\sigma} \in \bar{K}$ with the property that $L(\bar{\sigma}) \in G y$. By lemma 8 , there are an odd number of simplices $\sigma \in K$ with the property that $(L(\sigma) \cup C(\sigma)) \in G y$.

Sperner's lemma

Theorems f and 2 have been shown to generalize combinatorial results on the simplex and simplotope that have unrestricted labels and dual-proper labels, respectively. In this section, we present a theorem that generalizes the results on the simplex and simplotope for proper labels, including Sperner's lemma [23].

Let X, T, and $L(\cdot)$ satisfy the assumptions of theorem 1 , and let $x^{0}=\left\{y \varepsilon R^{n} \mid y=\lambda A, \lambda \geq 0, \lambda \cdot e=1\right\}$. For any $y \in$ int x^{0}, let $D_{y}=\left\{(\alpha, B) \in \operatorname{MxM} \mid \lambda_{B} A_{B}-\lambda_{\alpha} A_{\alpha}=y\right.$ has a solution λ_{β}, λ_{α} such that $\lambda_{\beta} \geq 0, \lambda_{\alpha} \geq 0$, and $\left.e_{\alpha} \cdot \lambda_{\alpha}+e_{\beta} \cdot \lambda_{\beta}=1\right\}$. We have:

Theorem 5. Let $x=\left\{x \in R^{n} \mid A x \leq b\right\}$ be bounded, solid, nonredundant, and centered and scaled. Let T be a triangulation of x, let K be the pseudomanifold corresponding to T, and let $L(\cdot): K^{\circ} \rightarrow M$ be a labelling function. Then if $y \in$ int x°, there exists at least one simplex $\sigma \in K$ with the property that $(L(\sigma)), C(\sigma)) \in D_{y}$.

PROOF: Let $X, T, L(\cdot)$, and K be given as in theorem 5. Let $\bar{y} \in$ int x° be given, and define X^{\prime} and T^{\prime} as in the projective transformation lemma, let K^{\prime} be the pseudomanifold corresponding to T^{\prime}, and define $L\left(v^{\prime}\right)=L\left(g^{-1}\left(v^{\prime}\right)\right)$ for $v^{\prime} \in K^{\circ}$, where $g(\cdot)$ is as defined in the projective transformation lemma. For each $v^{\prime} \in K^{\prime}{ }^{\prime}$, define $h^{\prime}\left(v^{\prime}\right)=$ $A_{L}^{\prime}\left(v^{\prime}\right)+\bar{y}$, and extend $h(\cdot)$ in a PL manner over all of x^{\prime}. Define $f\left(x^{\prime}\right)=\underset{z^{\prime} \in X^{\prime}}{\arg } \min \left\|z^{\prime}-x^{\prime}+h\left(x^{\prime}\right)\right\|_{2}$, where $\|.\|_{2}$ denotes the Euclidean norm. $z^{\prime} \in X^{\prime}$

Because $h^{\prime}(\cdot)$ is continuous, $f^{\prime}(\cdot)$ is continuous and so contains a fixed point \bar{x}^{\prime}. Let $\bar{\sigma}^{\prime}$ be the smallest simplex σ^{\prime} in T^{\prime} that contains \bar{x}^{\prime}, and let $\alpha=L\left(\bar{\sigma}^{\prime}\right), B=C\left(\bar{\sigma}^{\prime}\right)$. Let $\bar{\sigma}=g^{-1}\left(\bar{\sigma}^{\prime}\right)$. Then $\alpha=L(\bar{\sigma})$ and $B=C(\bar{\sigma})$. The Karush-Kuhn-Tucker conditions state that
$\bar{x}^{\prime}-\bar{x}^{\prime}+h\left(\bar{x}^{\prime}\right)=\bar{\lambda}_{B}(A-e o \bar{y})_{B}$ for some $\bar{\lambda}_{B} \geq 0$. Furthermore, $h\left(\bar{x}^{\prime}\right)=$ $-\bar{\lambda}_{\alpha} A_{\alpha}-\bar{y}$ for some particular $\bar{\lambda}_{\alpha} \geq 0, e_{\alpha} \cdot \bar{\lambda}_{\alpha}=1$. Therefore, $\bar{\lambda}_{B} A_{B}-\bar{\lambda}_{\alpha} A_{\alpha}=\left(e \cdot \bar{\lambda}_{B}+e \bar{\lambda}_{\alpha}\right) \bar{y}$. After normalizing the vectors $\bar{\lambda}_{B}$ and $\bar{\lambda}_{\alpha}$ so that the sum of the component of both vectors is one, we see that $(\alpha, \beta)=(L(\bar{\sigma}), C(\bar{\sigma})) \in D_{y} .[X]$

The proof of theorem 1 using Brouwer's theorem, presented in Section 2, derives from the existence of an outward normal of the function h. The existence of an inward normal of $h(\cdot)$ is equivalent to the existence of a fixed point of $f(\cdot)$, see Eaves [3]. When $y=0$, the function $h^{\prime}(\cdot)$ in the proof above is just $-h(\cdot)$ and the existence of an inward normal of $h(\cdot)$ is the same as the existence of an outward normal of $h^{\prime}(\cdot)$.

To show that Sperner's lemma derives from theorem 5, let S^{n}, A^{n} be defined as in section 2 , let T be a triangulation of S^{n}, K be the pseudomanifold corresponding to T, and $L(\cdot): K^{0} \rightarrow M$ be a labelling function, where $M=\{1, \ldots, n+1\}$. $L(\cdot)$ is said to be proper if for each $v \in K^{\circ}$, $L(v)$ is the index of an element of $M \backslash(v)$, i.e. $L(v)$ is the
 $x^{0}=\left\{y \in R^{n} \mid y=\lambda A^{n}, \lambda \geq 0, e \cdot \lambda=1\right\}$ is an $n-s i m p l e x$ that contains the origin, and so $y=0 \in i n t x^{0}$. The conditions of theorem 5 are met, and so there exists a simplex $\sigma \in K$ with the property that ($L(\sigma)$, $C(\sigma)) \in D_{y}$ for $y=0$. Let $\alpha=L(\sigma), B=C(\sigma) ;$ then there exists $\lambda_{\alpha}, \lambda_{\beta}$ such that $\lambda_{\beta} A_{\beta}^{n}=\lambda_{\alpha} A_{\alpha}^{n}, \lambda_{\beta} \geq 0, \lambda_{\alpha} \geq 0, e_{\beta} \cdot \lambda_{\beta}+e_{\alpha} \cdot \lambda_{\alpha}=1$. Because L(.) is proper $\alpha \cap \beta=\varnothing$. Note that for any $i, j \in M, i \neq j$, $A_{i} \cdot A_{j} \leq 0$. Thus $A_{\beta}^{n}\left(A_{\alpha}^{n}\right)^{T} \leq 0$ and so $0 \geq \lambda_{\beta} A_{\beta}^{n}\left(A_{\alpha}^{n}\right)^{T} \lambda_{\alpha}=\left(\lambda_{\alpha} A_{\alpha}^{n}\right)$ $\left(\lambda_{\alpha} A_{\alpha}^{n}\right)^{T} \geq 0$ whereby $\lambda_{\alpha} A_{\alpha}^{n}=0$, thus $\alpha=M=\{1, \ldots, n+1\}$, and so $L(\sigma)=\{1, \ldots, n+1\}$. This is precisely Sperner's lemma, without the
oddness assertion.
The logic used above can also be used to prove theorem 3 of [7] (see also van der Laan and Talman [17]), which generalizes Sperner's lemma to the simplotope.

Theorem 5 does not contain an assertion of the oddness of the number of simplices under consideration. The basic constructs used to prove theorem 1 combinatorially do not appear to carry over directly to the case of theorem 5. It is an open question whether there exists a combinatorial proof of theorem 5 which asserts the existence of an odd number of simplices $\sigma \in K$ for which $(L(\sigma), C(\sigma)) \in D_{y}$, when y is regular.

Appendix A. A Pseudomanifold Extension Theorem

Let $x=\{x \in R \mid A x \leq b\}$ be bounded, solid, and nonredundant, let T be a triangulation of X, and let K be the pseudomanifold corresponding to T. Let $M=\{1, \ldots, m\}$ be the set of constraint row indices. We wish to construct an n-pseudomanifold \bar{K}, where each $n-s i m p l e x ~ \bar{\sigma}$ of \bar{K} consists of a simplex σ of K together with a subset β of $C(\sigma)$, the carrier indices of σ.

In order to construct $\overline{\mathrm{K}}$ for arbitrary polyhedra, we need to work with the lexicographic system $A X+Y=B, Y \geqslant 0$, where $B=[b, I]$. For a given vector v, define (v) to be the number of leading zeroes of v. For a matrix V, let (V) denote the number of leading zero columns of V. An index set $\alpha \subset M$ is said to be consistent if there exists $x \in X$ with $C(x)=\alpha$. A subset $\beta \subset \alpha$ is said to be a basis for α if there exists \bar{X}, \bar{Y} such that $A \bar{X}+\bar{Y}=B, \bar{Y} \nless 0,\left(\bar{Y}_{\alpha}\right) \geq 1$, and $\left(\bar{Y}_{\beta}\right)=m+1$, and $|\beta|=\operatorname{rank}\left(A_{\alpha}\right)$. Let us construct $\overline{\mathrm{K}}$ as follows:
let $\bar{K}^{\circ}=K^{\circ} \cup M$, where $M=\{1, \ldots, m\}$, and
let $\bar{K}=\{\delta \subset \sigma \cup \beta \mid \delta \neq \phi, \sigma \in K, \alpha=C(\sigma)$, and β is a basis for $\alpha\}$. Our aim is to prove:

Theorem 4. Let χ be solid, bounded, and nonredundant. Let T be a triangulation of X and let K be the pseudomanifold corresponding to T. Let $\bar{K}^{\circ}=K^{\circ} \cup M$, and define $\overline{\mathrm{K}}=\left\{\bar{\sigma} \subset \overline{\mathrm{K}}^{0} \mid \bar{\sigma} \neq \phi, \bar{\sigma} \subset \sigma \cup \beta\right.$, where $\sigma \in \mathrm{K}$ and β is a basis for $\left.C(\sigma)\right\}$. Then \bar{K} is an n-pseudomanifold, and $\partial \bar{K}=\{\beta \subset M \mid \beta \neq \phi$, and β is a basis for some α, where α is consistent\}.

When χ is nondegenerate, we have:

Corollary Al. Let $X=\left\{x \in R^{n} \mid A x \leq b\right\}$ be a solid, bounded, nonredundant, and nondegenerate polyhedron. Let T be a triangulation of X, and let K be the pseudomanifold corresponding to T. Let $\overline{\mathrm{K}}^{\circ}=\mathrm{K}^{\circ} \cup \mathrm{M}$, and define $\overline{\mathrm{K}}=\{\bar{\sigma} \subset \overline{\mathrm{K}} \mid \bar{\sigma} \neq \phi, \bar{\sigma} \subset \sigma \cup \beta$, where $\sigma \in \mathrm{K}$ and $\beta=\mathrm{C}(\sigma)\}$. Then $\overline{\mathrm{K}}$ is an n-pseudomanifold, and $\partial \bar{K}=\{\beta \subset M \mid \beta \neq \phi, \beta=C(x)$ for some $x \in \chi\}$.

Proof of Corollary Al from Theorem 4. If X is nondegenerate, then if α is consistent, the rows of A_{α} are linearly independent, the only basis β for α is $\beta=\alpha$, and the result then follows. [X]

In order to prove theorem 4, we proceed as follows. Throughout, it is assumed that X is solid, bounded, and nonredundant.

Proposition Al. If α is consistent, then there exists X^{*}, Y^{*} such that $A X^{*}+Y^{*}=B, Y^{*} \geqslant 0$, and $\left(Y_{\alpha}^{*}\right) \geq 1$, i.e., the first column of Y_{α} is zero.

PROOF: Consider the lexico-linear program:

$$
\left.\begin{array}{rl}
\operatorname{lex} \min Z=e_{\alpha} Y \\
\text { s.t. } A X+Y=B \\
Y & \succcurlyeq 0
\end{array}\right\} P \text {, }
$$

where e_{α} is the vector with $\left(e_{\alpha}\right)_{j}$ equal to one if $j \in \alpha$ and equal to zero otherwise. Because α is consistent, there exists \bar{x}, \bar{y} such that $A \bar{x}+\bar{y}=b, \bar{y} \geq 0$, and $\bar{y}_{\alpha}=0$. Then define $\bar{x}=[\bar{x}, 0], \bar{Y}=[\bar{y}, I]$, and note that \bar{X}, \bar{Y} is feasible for P. Furthermore, since $e_{\alpha} Y 0$ for any feasible X, Y, the above has an optimal solution, $X *, Y *$. If $\left(e_{\alpha} Y^{*}\right)_{1}>0$, then there exists $\pi * \leq e_{\alpha}$ such that $\pi * A=0,(\pi * B)_{1}>0$, by duality. Thus $0<(\pi * B)_{1}=\pi * b=\pi * A \bar{x}+\pi * \bar{y} \leq e_{\alpha} \bar{y}=0$, a contradiction. Thus $\left(e_{\alpha} Y^{*}\right)_{1}=0$, whereby $\left(Y_{\alpha}^{*}\right) \geq 1$. \quad

Lemma Al. Let \bar{X}, \bar{Y} satisfy $A \bar{X}+\bar{Y}=B, \bar{Y} \geqslant 0$, and let $\alpha=\left\{i \mid \bar{Y}_{i 1}=0\right\}$, $\beta=\left\{i \mid \bar{Y}_{i}=0\right\}$. Then there exists $\beta^{\prime} \supset \beta$ such that β^{\prime} is a basis for α.

PROOF: First note that $|B|=\operatorname{rank}\left(A_{\beta}\right)$. To see this, observe that $A_{\beta} \bar{X}=B_{\beta}$, whereby since $\operatorname{rank}\left(B_{\beta}\right)=|B|, \operatorname{rank}\left(A_{\beta}\right) \geq|\beta|$, but since $\operatorname{rank}\left(A_{\beta}\right) \leq|\beta|$, we must have $\operatorname{rank}\left(A_{\beta}\right)=|\beta|$. Therefore $|\beta|=\operatorname{rank}\left(A_{\beta}\right) \leq \operatorname{rank}\left(A_{\alpha}\right)$. And if $\beta^{\prime} \supset \beta$, then $\left|\beta^{\prime}\right|=\operatorname{rank}\left(A_{\beta^{\prime}}\right) \leq \operatorname{rank}\left(A_{\alpha}\right)$.

Let $c=\operatorname{rank}\left(A_{\alpha}\right)-|\beta|$. If $c=0$, then let $\beta^{\prime}=\beta$, and the lemma is proved. Suppose the lemma is true for $\operatorname{rank}\left(A_{\alpha}\right)-|\beta|=0, \ldots, c-1$, and consider the case $\operatorname{rank}\left(A_{\alpha}\right)-|\beta|=c$. Let $\delta=\alpha \backslash \beta$, and $\tau=M \alpha$, i.e., $\tau=\left\{i \mid \bar{Y}_{i 1}>0\right\}$. Because $c>0$, there exists $\hat{j} \in \delta$ with $A_{\hat{j}}$ independent
of the rows of A_{β}. There thus exists $d \in \mathbb{R}^{n}$ such that $A_{\beta} d=0$, and $A_{j} d=1$. Now, let

$$
v=1 \text { ex } \min \left\{\frac{\bar{Y}_{i}}{A_{i} d}\right\}=\frac{\bar{Y}_{\hat{i}}}{A_{\hat{i}}^{d}} \quad \text { for some } \quad \hat{i} \in M .
$$

We note that $(v)=\left(\bar{Y}_{\hat{i}}\right) \geq 1$, and $\hat{i} \notin \beta$, whereby $v \neq 0$. Let $X^{\prime}=\bar{X}+d o v$, $Y^{\prime}=B-A X^{\prime}$, whereby $Y_{i}^{\prime}=\bar{Y}_{i}-\frac{A_{i} d}{A_{\hat{i}}{ }^{d}} \bar{Y}_{\hat{i}}$. It then follows that $Y_{B}^{\prime}=\bar{Y}_{B}=0$, $Y_{\hat{i}}{ }^{\prime}=0$, and $\left(Y_{\alpha}^{\prime}\right) \geq 1,\left(Y_{\tau}^{\prime}\right)=0$, and $Y^{\prime} \geqslant 0$. Upon setting $\bar{\beta}=\beta \cup\{\hat{i}\}$, we have that $\operatorname{rank}\left(A_{\alpha}\right)-|\bar{B}|=c-1$. We thus have reduced the problem to one where $\operatorname{rank}\left(A_{\alpha}\right)-|\bar{\beta}|<c$, which by induction, means that there exists β^{\prime} with $\beta^{\prime} \supset \beta$, and β^{\prime} is a basis for α.

Lemma A2. Let α be consistent and β be a basis for α. Let $k \in \beta$. Let $\beta \backslash k \cup j$ be a basis for α, with $j \neq k$. Then the choice of j is unique.

PROOF: Because β is a basis for α, there exists \bar{X}, \bar{Y} such that $A \bar{X}+\bar{Y}=B, \bar{Y} \succcurlyeq 0, \alpha=\left\{i \mid \bar{Y}_{i 1}=0\right\}, \beta=\left\{i \mid \bar{Y}_{i}=0\right\}$, and $|\beta|=\operatorname{rank}\left(A_{\beta}\right)=\operatorname{rank}\left(A_{\alpha}\right)$. Now suppose there are two such $j \neq k$ such that $\beta \backslash k \cup j$ is a basis for α. Then, by reordering if necessary assume that $j=1$ and $j=2$. Then there exist $X^{1}, Y^{1}, X^{2}, Y^{2}$, such that:

$$
A X^{\ell}+Y^{\ell}=B, Y^{\ell} \succsim 0, \alpha=\left\{i \mid Y_{i 1}^{\ell}=0\right\}, B \backslash k \cup \ell=\left\{i \mid Y_{i}^{\ell}=0\right\}, \ell=1,2 .
$$

Define $\quad D^{\ell}=A\left(\bar{X}-X^{\ell}\right)=Y^{\ell}-\bar{Y}, \ell=1,2$. Then we have:

$$
\begin{array}{ll}
D_{i}^{\ell}=0, \quad i \in \beta \backslash k, & \ell=1,2, \\
D_{\ell}^{\ell}=-\bar{Y}_{\ell}<0 & , \quad \ell=1,2,
\end{array}
$$

and

$$
\mathrm{D}_{\mathrm{k}}^{\ell}=\mathrm{Y}_{\mathrm{k}}^{\ell} \succ 0 \quad \ell=1,2
$$

Also, because $\operatorname{rank}\left(A_{\beta}\right)=\operatorname{rank}\left(A_{\alpha}\right)$, and $|\beta|=\operatorname{rank}\left(A_{\beta}\right)$, there exists a unique matrix Π such that $\pi A_{\beta}=A_{\alpha}$. For any $i \in \alpha$, we have $D_{i}^{\ell}=A_{i}\left(\bar{X}-X^{\ell}\right)=\Pi_{i} A_{\beta}\left(\bar{X}-X^{\ell}\right)=\pi_{i k} D_{k}^{\ell}$. If we then define $\pi_{i}=\Pi_{i k}$ for all $i \in \alpha$, then we have $D_{i}^{\ell}=\pi_{i} D_{k}^{\ell}$ for all $i \leqslant \alpha$.

Because $D_{\ell}^{\ell}<0$ and $D_{k}^{\ell}>0$, we must have $\pi_{\ell}<0, \ell=1,2$. Al so, because
$D_{k}^{\ell}=\frac{1}{\pi_{\ell}} D_{\ell}^{\ell}$, we can write $D_{i}^{\ell}=\pi_{i} D_{k}^{\ell}=\frac{\pi_{i}}{\pi_{\ell}} D_{\ell}^{\ell}, \ell=1,2$.
Now, $Y_{2}^{1}=\bar{Y}_{2}+D_{2}^{1}=\bar{Y}_{2}+\frac{\pi_{2}}{\pi_{1}} D_{1}^{1}=\bar{Y}_{2}-\frac{\pi_{2}}{\pi_{1}} \bar{Y}_{1} \succcurlyeq 0$. Thus, $\frac{\bar{Y}_{1}}{\pi_{1}} \succcurlyeq \frac{\bar{Y}_{2}}{\pi_{2}}$. Using a parallel argument with Y^{2}, we obtain $\frac{\bar{Y}_{2}}{\pi_{2}} \geqslant \frac{\bar{Y}_{1}}{\pi_{1}}$, whereby $\frac{\bar{Y}_{2}}{\pi_{2}}=\frac{\bar{Y}_{1}}{\pi_{1}}$, whereby $Y_{2}^{1}=Y_{1}^{2}=Y_{1}^{1}=Y_{2}^{2}=0$.
Thus $A_{(B \backslash k \cup\{1\} \cup\{2\})} X^{1}=B_{B \backslash k \cup\{1\} \cup\{2\}}$. But since $1,2 \in \alpha$, the matrix $A_{\beta} \backslash k \cup\{1\} \cup\{2\}$ has rank equal to $|B|=\operatorname{rank}\left(A_{\alpha}\right)$, but $\operatorname{rank}\left(B_{\beta} \backslash k \cup\{1\} \cup\{2\}\right)=|\beta|+1$, a contradiction. Thus j is uniquely determined.

Lemma A3 If α is consistent and β is a basis for α, and $i \in B$, then
exactly one of the following statements are true:
i) there exists $j \in \alpha, j \neq i$ such that $\beta \backslash i u j$ is a basis for α, or
ii) ($\beta \backslash i$) is a basis for some $\alpha^{\prime} \subset \alpha$, where α^{\prime} is consistent.

PROOF: Let d be chosen so that $A_{B} d=-e^{i}$, where e^{i} is the $i \frac{\text { th }}{}$ unit vector. There exists \bar{X}, \bar{Y} such that $A \bar{X}+\bar{Y}=B, \bar{Y} \geqslant 0$,
$\alpha=\left\{k \mid \bar{Y}_{k l}=0\right\}, \beta=\left\{k \mid \bar{Y}_{k}=0\right\}$. Upon examining $A_{\alpha} d$, we can either have $A_{\alpha} d \neq 0$ or $A_{\alpha} d \leq 0$. We have two cases:

for some j. Furthermore, since $A_{\alpha} d \nsubseteq 0, j \in \alpha$. We must have $(v)=\left(\bar{Y}_{j}\right) \geq 1$. Let $X^{\prime}=\bar{X}+d o v, Y^{\prime}=B-A X^{\prime}$. Then $Y^{\prime} \geqslant 0$, and $Y_{k}^{\prime}=0$ for all $k \in B \backslash i \cup j$. Also, $\left(Y_{\alpha}^{\prime}\right) \geq 1$, and $\left\{k \mid Y_{k}^{\prime}=0\right\}=\beta \backslash i \cup j$. Thus the conditions of (i) are satisfied.

Case 2 $\quad A_{\alpha} d \leq 0$. Let $v=$ lex min $\left\{\frac{\bar{Y}_{k}}{A_{k} d>0}{\underset{M}{k}}^{A_{k}}\right\}$. (This set is not empty, since otherwise X is unbounded.) Then $v=\frac{\bar{Y}_{j}}{A_{j} d}$ for some $j \notin \alpha$, and hence $(v)=\left(\bar{Y}_{j}\right)=0$. Let $X^{\prime}=\bar{X}+\frac{1}{2} d o v, Y^{\prime}=B-A X^{\prime}$. Then for $k \in M$, $Y_{k}^{\prime}=\bar{Y}_{k}-\frac{1}{2} \frac{A_{k} d}{A_{j} d} \bar{Y}_{j}$, and $Y^{\prime} \geqslant 0$. For $k \in \beta \backslash i, Y_{k}^{\prime}=0$. Also, $Y_{i}^{\prime}=\frac{\bar{Y}_{j}}{2 A_{j} d}>0$, and $\left(Y_{i}^{\prime}\right)=0$, i.e., $Y_{i l}^{\prime}>0$. Likewise, for $k \notin \alpha,\left(Y_{k}^{\prime}\right)=0$, i.e., $Y_{k 1}^{\prime}>0$. Define $\beta^{\prime}=\beta \backslash i, \alpha^{\prime}=\left\{i \mid Y_{i 1}^{\prime}=0\right\}$. Then $\alpha^{\prime} \subset \alpha$. Since β is a basis for α, there is a unique Π such that $\Pi A_{B}=A_{\alpha}$. Now for each $k \in \alpha^{\prime}, \quad Y_{k}^{\prime}=\bar{Y}_{k}-\frac{A_{k}{ }^{d}}{A_{j} d} \bar{Y}_{j}$, whereby $\quad\left(Y_{k}^{\prime}\right) \geq 1$ implies $A_{k} d=0$. Likewise $k \in \alpha^{\prime}$ if and only if $A_{k} d=0$. Now $A_{k} d=\Pi A_{B} d=-\Pi_{k i}=0$ if and only if $k \in \alpha^{\prime}$. Thus each A_{k} is a linear combination of the rows of $A_{B \backslash i}$. Thus β^{\prime} is a basis for α^{\prime}.

It only remains to show that (i) and (ii) cannot take place simultaneously. If (i) holds, then there exists \bar{X}, \bar{Y}, such that $A \bar{X}+\bar{Y}=B, \quad \bar{Y} \geqslant 0, \quad \beta=\left\{k \mid \bar{Y}_{k}=0\right\}, \alpha=\left\{k \mid \bar{Y}_{k 1}=0\right\}$, and X^{\prime}, Y^{\prime} with $A X^{\prime}+Y^{\prime}=B, Y^{\prime} \geqslant 0, B \backslash i \cup j=\left\{k \mid Y_{k}^{\prime}=0\right\}, \alpha=\left\{k \mid Y_{k 1}^{\prime}=0\right\}$. Defining $D=A\left(\bar{X}-X^{\prime}\right)$, we have $D=Y^{\prime}-Y$. Let I be the unique solution to $\pi A_{\beta}=A_{\alpha}$. Then $D_{k}=A_{k}\left(\bar{X}-X^{\prime}\right)=\Pi_{k} A_{\beta}\left(\bar{X}-X^{\prime}\right)=\Pi_{k i} D_{i}$, for $k \in \alpha$, because $D_{\beta \backslash i}=Y_{\beta \backslash i}^{\prime}-\bar{Y}_{\beta \backslash i}=0-0=0$. Now, $D_{i}=Y_{i}^{\prime}>0$, and $D_{j}=-\bar{Y}_{j}<0$, whereby since $D_{j}=\Pi_{j i} D_{i}$, we must have $\Pi_{j i}<0$.

If (ii) also holds, then there exists X^{\prime}, Y^{\prime} with $A X^{\prime}+Y^{\prime}=B, Y^{\prime} \succcurlyeq 0$, $\beta \backslash i=\left\{k \mid Y_{k}^{\prime}=0\right\}, \alpha^{\prime}=\left\{k \mid Y_{k 1}^{\prime}=0\right\}, \alpha^{\prime} \subset \alpha$. Again letting $D=A\left(\bar{X}-X^{\prime}\right)=Y^{\prime}-\bar{Y}$, we have $D_{k}=\Pi_{k i} D_{i}$ and $D_{i}>0$, for $k \in \alpha$. Now, since $i \notin \alpha^{\prime}$ (otherwise A_{β} would not have independent rows) we must have $D_{i 1}>0$, whereby since $D_{k}=\Pi_{k i} D_{i}$ for all $k \in \alpha$, and $Y_{k}^{\prime}=\bar{Y}_{k}+D_{k}=\bar{Y}_{k}+\Pi_{k i} D_{i}$, we have $\Pi_{k i}=0$ for all $k \in \alpha^{\prime}, \Pi_{k i}>0$ for all $k \in \alpha \backslash \alpha^{\prime}$. Thus $\left\{k \in \alpha \mid \Pi_{k i}<0\right\}=\phi$, contradicting the fact that $\Pi_{j i}<0$ from above. Thus exactly one of (i) and (ii) holds. 区

Lemma A^{4} If $\alpha^{\prime} \supset \alpha$ and α^{\prime} and α are consistent, and $\operatorname{rank}\left(A_{\alpha^{\prime}}\right)=\operatorname{rank}\left(A_{\alpha}\right)+1$, and β is a basis for α, then there exists $\beta^{\prime} \supset \beta$ that is a basis for α^{\prime}. Furthermore, β^{\prime} is uniquely determined.

PROOF: Let \bar{X}, \bar{Y} satisfy $A \bar{X}+\bar{Y}=B, \bar{Y} \succcurlyeq 0, \alpha=\left\{i \mid \bar{Y}_{i 1}=0\right\}, \beta=\left\{i \mid \bar{Y}_{i}=0\right\}$, Then some element of $A_{\alpha}{ }^{\prime} \backslash \alpha$ is independent of the rows of A_{α}, whereby some element of $A_{\alpha^{\prime} \backslash \alpha}$ is independent of the rows of A_{β}. Let $j \in \alpha^{\prime} \backslash \alpha$ be given, and let d be any vector such that $A_{\beta} d=0, A_{j} d=1$. Then let $v=\operatorname{lex} \min \left\{\frac{\bar{Y}_{i}}{A_{i} d>0}\right\}=\frac{\bar{Y}_{k}}{A_{k} d} \quad$ for some $\quad k \in \alpha^{\prime} \backslash \alpha$. Then upon setting
$X^{\prime}=X+d o v, Y^{\prime}=B-A X^{\prime}$, we have $Y_{j}^{\prime}=\bar{Y}_{j}-\frac{A_{j} d}{A_{k}{ }^{d}} \bar{Y}_{k}, Y_{j}^{\prime} \geqslant 0$ for all j, $Y_{\beta \cup k}^{\prime}=0$. Now $B \cup k \subset \alpha^{\prime}$, and $\operatorname{rank}\left(A_{B \cup k}\right)=\operatorname{rank}\left(A_{\alpha^{\prime}}\right)$, whereby $\beta^{\prime}=\beta \cup k$ is a basis for α^{\prime}.

Now suppose that $\beta^{1} \neq \beta^{2}$ are both bases for α^{\prime} that contain β. For ease of notation, suppose $\beta^{1}=\beta \cup\{1\}, \beta^{2}=\beta \cup\{2\}$, where $\{1,2\} \subset \alpha^{\prime} \backslash \alpha$. Then consider β^{1}. $\beta^{1} \backslash\{1\} \cup\{2\}$ is a basis for α^{\prime}, whereby by lemma 3 , there does not exist $i \in \beta$ such that $\beta^{1} \backslash\{i\}$ is a basis for some $\alpha \subset \alpha^{\prime}$. But $\beta^{1} \backslash\{1\}$ is a basis for $\alpha \subset \alpha^{\prime}$, a contradiction. Thus β^{1} is uniquely determined. 区

With lemmas A1, A2, A3, and A4 as preparation, we can now prove Theorem 4.

PROOF of Theorem 4: Let $\delta \subset \bar{\sigma} \cup \beta$ be a simplex of \bar{K}, where $\bar{\sigma} \epsilon K, \alpha=C(\bar{\sigma})$, and β is a basis for α. Then if $k=\operatorname{rank}\left(A_{\alpha}\right)$, there exists an ($n-k$)-simplex $\bar{\tau} \in K$ with $\bar{\tau} \supset \bar{\sigma}$ such that $C(\bar{\tau})=C(\bar{\sigma})=\alpha$. Thus, $\delta \subset \bar{\sigma} \cup \beta \subset \bar{\tau} \cup \beta$, and $\bar{\tau} \cup \beta \in \bar{K}$, and $|\bar{\tau} \cup \beta|=n-k+1+k=n+1$. Thus every simplex of \bar{K} is contained in an n-simplex of $\overline{\mathrm{K}}$.

Now let $v \in K^{\circ}$. Then $\{v\} \in K$, and let $\alpha=C(v)$. By proposition A1, there exists \bar{X}, \bar{Y} such that $A \bar{X}+\bar{Y}=B, \bar{Y} \succcurlyeq 0$, and $\left(Y_{\alpha}\right) \geq 1$. By lemma $A 1$, with $\beta=\left\{i \mid \bar{Y}_{i}=0\right\}$, there exists $\beta^{\prime} \supset \beta$ such that β^{\prime} is a basis for α. Then $\left|\beta^{\prime}\right|=\operatorname{rank}\left(A_{\beta^{\prime}}\right)=\operatorname{rank}\left(A_{\alpha}\right)$. Now there exists $\sigma \in K$ such that $v \in \sigma, C(\sigma)=\alpha$, and σ is an ($n-k$)-simplex, where $k=\operatorname{rank}\left(A_{\beta^{\prime}}\right)=\left|\beta^{\prime}\right|$. Thus, $\sigma \cup \beta^{\prime}$ is an n-simplex of \bar{K}, and $\{v\} \subset \sigma \subset \bar{\sigma} \cup \beta^{\prime}$. Thus every vertex of K is a zero simplex of \bar{K}.

Likewise let $i \in M$. Then, since x has no redundant equations, there exists $x \in X$ with $A x+y=b, y \geq 0, y_{i}=0, y_{j}>0$ for $j \neq i$. There thus exists X, Y with $A X+Y=B, Y \succcurlyeq 0,\{i\}=\left\{j \mid Y_{j 1}=0\right\}$, by proposition $A 1$, and by lemmaAl, we may assume $Y_{i}=0, Y_{j} \neq 0$, for $j \neq i$. Let σ be the smallest simplex of T that contains x. Then $C(\sigma)=\{i\}$, and σ is an
(n-1)-simplex; thus $|\sigma|=n$. Therefore $\sigma \cup\{i\} \in \bar{K}$, whereby $\{i\}$ is a zero-simplex of $\overline{\mathrm{K}}$. Thus $\overline{\mathrm{K}}^{\circ}$ is precisely the set of zero-simplices of $\overline{\mathrm{K}}$.

Now let $\bar{\sigma} \cup \beta$ be an n-simplex of \bar{K}. Thus $C(\bar{\sigma})=\alpha$ and β is a basis for α, and $\operatorname{rank}\left(A_{\beta}\right)=\operatorname{rank}\left(A_{\alpha}\right)=|\beta|$. Now let $s \in \bar{\sigma} \cup \beta$ and consider an $(n-1)-\operatorname{simplex} \bar{\sigma} \cup \beta \backslash s \cup t$, where $t \neq s$. It is our aim to show that the choice of t is unique. Regarding s, we have either $s \in \bar{\sigma}$, i.e., $s=v$ for some $v \in K^{\circ}$, or $s \in \beta$, i.e., $s=i \in M$ for some i.

Case $1 \mathrm{~s}=\mathrm{v} \in \bar{\sigma}$. Then $\bar{\sigma} \in \mathrm{K}_{\alpha}$, a k -pseudomanifold where $\mathrm{K}_{\alpha}=\{\bar{\sigma} \in \mathrm{K} \mid \mathrm{C}(\bar{\sigma}) \geq \alpha\}$, and where $n-k=\operatorname{rank}\left(A_{\alpha}\right)$, and $\bar{\sigma}$ is a k-simplex. If $\bar{\sigma} \backslash v \notin \partial K_{\alpha}$, there exists a unique $v^{\prime} \epsilon K_{\alpha}^{\circ}, \quad v^{\prime} \neq v$, such that $\bar{\sigma} \backslash v u v^{\prime}$ is a $k-s i m p l e x$ in K_{α}. Thus $t=v^{\prime}$ and t is uniquely determined. If $\bar{\sigma} \backslash v \in \partial K_{\alpha}$, then there exists $\alpha^{\prime} \supset \alpha$ such that $\bar{\sigma} \backslash v \in K_{\alpha}$, and K_{α}, is a (k-1)-pseudomanifold, and $\operatorname{rank}\left(A_{\alpha^{\prime}}\right)=n-k+1$. By lemma $A 4$, there exists a unique $j \in M$ such that $\beta^{\prime}=\beta \cup\{j\}$ is a basis for α^{\prime}. Thus $t=j$ and is uniquely determined.

Case $2 \mathrm{~s}=\mathrm{i} \in \mathrm{B}$. From lemma A3, either there exists $j \in \alpha, j \neq i$, such that $\beta \backslash i \cup j$ is a basis for α and j is uniquely determined according to lemma $A 2$, or $\beta \backslash i$ is a basis for some $\alpha^{\prime} \subset \alpha$, where α^{\prime} is consistent. In the former case, $t=j$. In the latter case, let τ be the unique simplex in K_{α}, that contains $\bar{\sigma} \in K_{\alpha}$. Then $\bar{\tau}=\bar{\sigma} U\{v\}$ for a unique $v \in K^{\circ}$. Thus $t=v$ and t is uniquely determined.

Because t can never attain more than one value, \bar{K} is an n-pseudomanifold. Furthermore, the only instance where t cannot exist occurs when $\bar{\sigma}$ is an extreme point of X, and $|\beta|=n$, and $s=v$ where $\sigma=\{v\}$. Thus $\partial \overline{\mathrm{K}}=\{\delta \subset \mathrm{M}|\delta \neq \phi, \delta \subset \beta,|\beta|=\mathrm{n}$, and β is a basis for some α, where α is consistent \} 区

References

[1] M.N.Broadie, *A theorem about antiprisms," Linear Algebra and its applications, vol. 66, pp.99-111, 1985.
[2] L.E.J. Brouwer, "Uber abbildung von Mannigfaltigkeiten," Math. Ann. 71 (1910), 97-115.
[3] B.C.Eaves, "On the Basic Theorem of Complementarity, Math. Programming 1 (1971), 168-75.
[4] B.C.Eaves, "A short course in solving equations with PL homotopies," SIAM-AMS Proc. 9 973-143, 1976.
[5] K.Fan, "Combinatorial properties of certain simplicial and cubical vertex maps," Archiv der Mathematik XI 368-377 (1960).
[6] R.M.Freund, "Variable dimension complexes, part II: A unified approach to some combinatorial lemmas in topology," Mathematics of Operations Research $9,498-509,1984$.
[7] R.M. Freund, "Combinatorial theorems on the simplotope that generalize results on the simplex and cube," to appear in Mathematics of Operations Research.
[8] R.M. Freund, R. Roundy, and M.J. Todd, "Identifying the set of always-active constraints in a system of linear inequalities by a single linear program," submitted to SIAM Review.
[9] D. Gale, "The game of hex and the Brouwer fixed point theorem," American Mathematical Monthly, $86 \quad 10$.
[10] C.B. Garcia. "A hybrid algorithm for the computation of fixed points," Management Science 22 (1976), 606-613.
[11] F.J. Gould and J.W. Tolle, "A unified approach to complementarity in optimization," Discrete Mathematics $\quad 7 \quad 225-271$, 1974.
[12] B. Grunbaum, Convex polytopes, Wiley, New york, 1967.
[13] M.W. Hirsch, "A proof of the nonretractibility of a cell onto its boundary, Proc. of AMS 14 (1963), 364-365.
[14] M. Kojima and Y. Yamamoto, "Variable dimension algorithms:
Basic theory, interpetations and extensions of some existing methods; Mathematical Programming 24 (1982a) 177-215.
[15] H.W. Kuhn, "Some combinatorial lemmas in topology," IBM J. Res. Develop. 4 518-524 (1960).
[16] H.W. Kuhn, "Simplicial approximation of fixed points," Proceedings of the National Academy of Science, U.S.A. 61 1238-1242.
[17] G. van der Laan and A.J.J. Talman, "On the computation of fixed points in the product space of unit simplices and an application to noncooperative N person games," Mathematics of Operations Research 7 1 (1982) 1-13.
[18] G. van der Laan, A.J.J. Talman, and L. Van der Heyden, "Variable dimension algorithms for unproper labellings," to appear in Mathematics of Operations Research.
[19] S. Lefschetz, Introduction to topology, Princeton University Press, Princeton, New Jersey, 1949.
[20] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970.
[21] H. Scarf, "The approximation of fixed points of a continuous mapping, SIAM J. Applied Mathematics $15 \quad 5$ (1967a) 1328-1343.
[22] H. Scarf, "The computation of equilibrium prices: An exposition." Cowles Foundation discussion paper no. 473, Cowles Foundation for Research in Economics at Yale University, Novermber, 1977.
[23] E. Sperner, "Neuer Beweis fur die Invarianz der Dimensionszahl und des Gebietes," Abh. Math. Sem. Univ. Hamburg 6.
[24] A.W. Tucker, "Some topological properties of disk and sphere," proceedings of the first Canadian Mathematical Congress, Montreal, 285-309 (1945).

