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INTRODUCTION AND OVERVIEW

In this document we report on research to develop and study
mathematical models for production smoothing in a dynamic production
environment. This effort was part of a larger study whose goal was
to investigate the production planning practices for an electronic
equipment manufacturing firm, and in particular to explore possible
mechanisms for improvement. To motivate the presentation of our
research, we need to indicate the nature of this production
environment. -

The production process can be viewed as a multi-stage system.
In its most aggregate form there are two stages: component
fabrication and equipment assembly. Customer demand has significant
uncertainty and variability over the cumulative manufacturing lead
time. Nevertheless, customers demand a high level of service. The
manufacturing process is not totally reliable; in particular, there
is significant yield uncertainty in component fabrication. Finally,
production capacity for both component fabrication and assembly
(including final test) is very capital intensive. As a consequence,
it is expensive and/or difficult to adjust the production level.

As a consequence of these characteristics, one must consider a
make-to-stock system that would smooth production and provide short
and reliable delivery times to customers. We considered a
hierarchical planning system (Hax and Meal, 1975) with two levels:
one to set the aggregate production level (e.g 400 lots/month) and
one to schedule the daily lot starts (e.g. one lot of item j, two

lots of item k ...). Our study then focused on the design of such a




make~-to-stock systen.

Key questiéns in the design of a make-to-stock system are what
items should be stocked, at what point(s) in the production process
should stock be accumulated, and what stock level is needed to
provide satisfactory service and permit adequate production
smoothing. Our research addresses these questions. To answer these
questions, we must specify the rules or algorithms that will set the
aggregate output rate and determine the daily production starts. We
develop mathematical models, termed production smoothing models, to
set the aggregate output rate. (For a review of production
smoothing models, see Silver 1967.) We then give a mechanism for
"disaggregating" the aggregate output into production starts for
individual items. The analysis of these models determines the stock
ieve](s) necessary for a desired service level. In addition, from
these models one can quantify the tradeoff between the smoothness of
aggregate production and the stock level.

In the next section we describe the production smoothing models
and give their analysis. We first present a model for a one-stage
production systen. We then give two extensions to this model to
treat a two-stage production system. To compare the models and
evaluate their performance, we report in section 3 on a
computational study based on data gathered from the electronic
equipment manufacturer. In particular, we simulate the models over
a wide range of parameter settings to assess their accuracy and to

generate insight into their behavior.




DEVELOPMENT AND ANALYSIS OF PRODUCTION SMOOTHING MODELS

We develop here a set of production smoothing models that can
be used to look at the tradeoffs between production smoothing and
inventory requirements. We assume that production smoothing is done
at an aggregate level for families ofiproducts that have similar
processing requirements. For now, we.will make the following
simplifications:

we ignore lot-sizing considerations;

we assume no uncertainty in the build time for the

products;

we assume no constraint on production capacity;

other simplifications will be introduced as needed.
The models should permit focus on the production smoothing/inventory
considerations in the light of forecast uncertainty, demand
variability, and yvield uncertainty. We will use a simulation to
examine the consequences of the simplifying assumptions.

We model the production activity in a very gross way. We are
not concerned with detailed scheduling issues, but rather with the
planning issues. We assume that the production system can be
decomposed into a series of stages where we may maintain an
inventory between successive stages and in finished goods (see
Figure 1). Then we assume a known and fixed lead time for each
stage: all production started at a stage at time t finishes that
stage at time t+2, for & being the lead time of the stage. We are
concerned both with setting the aggregate production level for each

stage, and with deciding how to disaggregate it into a production
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level for individual items. Furthermore, we want to understand how
much inventory }s needed as safety stock, and where it is needed.
We desire to keep the aggregate production levels as smooth as
possible at each stage, and to keep the safety stocks as low as
possible, while providing satisfactory customer service. We have
developed a production smoothing mode} to illuminate these
tradeoffs.

To present the production smoothing models, we first describe
the aggregate forecast process that drives the production smoothing
models. We then consider production smoothing for one production
stage. We use the production smoothing model for one stage as the

building block for developing two distinct models for smoothing two

production stages.

Forecast Process

A key input to the production smoothing process is the forecast
of aggregate demand. We assume that this forecast is by month for
up to the next 12 months, and that it is revised monthly. To model
the process of forecast revision, we define F¢(s) as the forecast
made at month t of aggregate demand in month s (s>t). Tﬁen. we
define 8¢(s) by
(1) F¢(s) = Fg-1(s) + &8¢(s)
so that 8¢(s) denotes the change at time t in the aggregate forecast
for time s. We assume that 8¢(s) is a random variable with the
following characteri;tics:

E [81-_(8)] = 0 ’



Var [§¢(s)] = o2(s-t) ,
and 8¢(s) and 8§¢r(s) are independent for all t # t'

We denote the aggregate demand in month t as F¢(t): the
'forecast' of demand in t made at time t. From (1), we can express
the aggregate demand as

k
(2) Fyg(t) = Fg_p(t) + i§1 8¢t-k+i(t)

where Fy_x(t) is the initial forecast for demand in t made k months

ago. The k-month forecast error is given by _
k
Fe(t) - Fe_g(t) = T S¢-k+il(t)
i=1
k k-1
and has zero mean and variance equal to ¥ c2(k-1i) = r o2(j).
i=1 j=0

Thus, the forecast not only is unbiased, but also improves over

time.

We assume that the demand process, D(t) = F¢(t), is stationary

with E [D(t)] = D, and Var [D(t)] = ag for all t. (We will use D(t)

and F¢(t) interchangeably to denote aggregate demand in month t.)

From (2) we now can compute the variance of F¢_k(t):
Var [Fe-g(t)] = op - L c2(j)

Thus, the variance of the initial forecast depends upon the forecast
horizon length k. The longer is the forecast horizon, the smaller

is the forecast variance; presumably, for a longer forecast horizon,
there is less information available on aggregate demand and there is

more likelihood to use D as the forecast.
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We now develop a production smoothing model for one pfoduction
stage. We assume that the production stage produces one family and
produces it to stock, i.e., a finished goods inventory. We use a
production smoothing model to set an aggregate production rate (e.g.
aggregate starts per month) for the family for each month. To set
the actual production starts we must disaggregate the aggregate
production plan according to the net regquirements for individual
items.

To smooth production, we must maintain an inventory stock since .
the aggregate production rate, being a smoothed average of the
aggregate demand rate, will deviate from the aggregate demand rate
over short time intervals. To determine the aggregate inventory
requirements we need to analyze the behavior of the production
smoothing model. In particular, we expect that the more we smooth
production, the greater will be the stock requirements. But since
customer service is determined by the stocks for individual items,
we also need to understand how the aggregate plan is to be
disaggregated. -

The production smoothing model is given by

(3) P(t+g) = 5%; [Fe(t+1,t+2+n) - P(t+1,t+2-1) - I(t) + SS8]

where t denotes the current time period, and

P(t+i) = the planned aggregate production started at time t+i-g
to be completed by time t + 1i;
2 = the lead time for production;



rule in terms of its control pafameters, n and SS, and will try to
show that it is both an interesting and reasonable rule to consider.
In this respect, it is very-similar to the study by Cruickshanks et
al (1984). First, it is simple and does permit analysis of its
behavior. In particular, we will see, that under suitable
assumptions we obtain the disaggregat;on implications frérthis rule.
Second, there is evidence that linear rules of this form are optimal
or near optimal for not only quadratic cost functions but also for
more general cost functions (Schneeweiss 1971, 1974). Third, while
the rule may not be the optimal form, we nevertheless can find the
optimal parameter choice for this form.

We need to be careful to express all vapiables in (3) in common
units. In particular, the units need be aggregate measures of
production capacity. For instance, for the manufacture of
integrated circuits it might be natural to express planned
production in wafer starts. However, the actual inventory is likely
to be known in terms of chips for individual items. Thus, we need
translate, using yield factors, this actual inventory into the
equivalent wafer starts for the items and then aggregate over all
items in the family. éimilarly, for the assembly of electronic
equipment, we might express planned production in terms of required
assembly hours; for a parts fabrication facility, the units might be
machine hours required on the bottleneck facility.

To analyze (3) we use the inventory balance equation,
(4) I(t) = I(t-1) + P(t) - D(t)

.where P(t) is the actual family production completed at time t and

D(t) is the family demand at time t. We assume that




Fe(t+1) + ... + Fe(t+2+n)

Fe(t+1,t+2+n) =
P (t+1,t+2-1) = P (t+1) + ... + P (t+2-1) ;
f(t) = aggregate inventory on-hand at start of
time period t;
SS = target safety stock level; ’
n = window length. )

Thus, in period t we set P(t+2), the planned production to be
completed 2 periods later. We assume that the lead time is
deterministic, but that there is uncertainty in the production yield
so that actual production completed at time t+2 will deviate from
P(t+2). In (3), the term within the brackets represents the
forecast over the time interval t+1, ... t+f2+n minus the cumulative
production planned for completion by time t+2-1 and minus an
inventory adjustment (the difference between the actual and target
inventory). We term the quantity within the brackets to be the net
requirements over the time interval t+g£, t+2+1, ... t+2+n. Thus, we
set P(t+2) to be the average of the net requirements over this time
window t+f, ... t+f2+n where n is an integer decision variable equal
to the length of the time window. The value of n will determine the
level of production sm;othing. The safety stock target, SS, is also
a decision variable that is set to provide acceptable customer
service on all items in the family.

We note that this production smoothing model is a linear rule.
In this respect it is similar to the linear-decision-rule model
developed by Holt et al. (1955,1956). However, our decision rule
differs from that of Holt et al. in that it is not a consequence of

minimizing some cost function. Rather, we just pose this decision
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(5) P(t) = P(t) - e(t)

where g¢(t) is a random variable that reflects the yield unéertainty.
We assume that €(t) is independent and identically distributed over
time, has zero mean and has variance oi

Now we use (3) to consider the difference P(t+2) - P(t+2-1):

Lo {Fe(t+2+n) + 8§¢(t+1,t+2+n-1)

(6) P(t+2) - P(t+a-1) 1

[}

- Feop(t) - P(t+2-1)

L P(t) - I(t) + I(t-1)}

where §¢(t+1,t+2+n-1) d¢(t+1) + ... + S¢(t+f+n-1).

We use (4), (5) and the substitution F¢(t) = D(t) to simplify (6) to’

P(t+g2) - P(t+2-1) = a%i {Ft(t+l+n) + Bt(t,t+l+n-1)
- P(t+2-1) + e(t)} ,

from which we obtain

(7) P(t+g) = E%I (F (t+2en) + § (t,t+z+n-1) + €(t)}

+ 237 (P(tr2-1))

Thus, we see that the production smoothing model (3) is equivalent
to (7), which is a simple smoothing eqﬁation. Planned production
for time period t+f2 is a weighted average of the planned production
for the previous time period t+2-1, and the initial forecast for
t+2+n, modified by the change in the cumulative forecast over the
interval (t,t+2+n-1) and by the realized yield deviation for the
production completed in t. The window length n determines the
weights so that 1/(n+1) is the smoothing parameter.

The significance of (7) is not only its interpretation as a

simple smoothing equation, but also its usefulness for
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characterizing-the long-term behavior of this production smoothing

model . From (7), we can show that in steady-state
(8) E[P(t+2)] = D
and
2 2
(9) Var[P(t+2)] = (aD + ap) / (2n + 1)
We defer the details of this derivation to the appendix. We can

also use (7) to characterize the production 'step',

[P(t+2) - P(t+2-1)], as well as stﬁdy other cases in which the
demand process is not stationary (e.g., the demand process hé; a
trend component or a seasonal component).

From (8) and (9) we see that the window length n does not
Aaffect the expected aggregate production rate, but does control the
variability of the aggregate production rate. As we increase n, the
production variance decreases and the aggregate production becomes
smoother. Thus, the choice of n dictates the degree of production

smoothing given by (3).

In addition to the aggregate production level, we also want to
understand the behavior of the aggregate inventory level. This is
necessary tq see the effect of the production smoothing on customer
service for individual items. To do this, we focus on I(t+2): the
planned aggregate inventory level at time t+2. At time t, I(t+g) is
defined as the current inventory at time t, plus planned production
to be completed over t+l, ... t+f, minus the cumulative demand

forecast through t+2:
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(10) I(t+2) = I(t) + P(t+1,t+2) - Fe(t+1,t+2).
By using (3) to substitute for P(t+1,t+2-1) in (10), we obtain

(11) I(t+2) = SS + F¢(t+2+1,t+2+n) - nP(t+2)

From (11), we see that }
(12) E[I(t+2)] = SS '

\

In addition, we can show its variance (after substantial algebra)

to be
(13) var[I(t+2)] = =P2_ . (62 + o2)
2n+1 ° D P
n-1 : 2+]
j+1
P f -2 1 Lo - £ e2(1)]
j=0 i=0

This characterization of the planned aggregate inventory level will
be useful in determining the customer service level for a
specification of the target safety stock SS and of the smoothing
parameter n. While the expectation of planned inventory level
equals the target safety stock, its variance depends on the window
length n. From (13) we argue that the variance of the planned
inventory level essentially increases linearly with the window
length n, since the second term in (13) is dominated by the first

(linear) term.

To determine the proper choice for the target safety stock SS,
"we need to know how the aggregate inventory is spread over the

individual items or equivalently, how the aggregate production level
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is disaggregated into item prodﬂction. We must set the production
starts for each item so that the planned production level for the
family is achieved; that is,

Y P(k,t+2) = P(t+2)
where P(t+§) is given by (38) and P(k,y+z) is the production level
for item k started at time t for compietion by time t+f2. This

implies that the planned inventory level for item k at time t+%,

call it I(k,t+8), must satisfy

(14) Y I(k,t+2) = I(t+R)
k

where I(t+2) is given by (10).
To characterize the service level for item k in period t+& for
a particular disaggregation, we can express its planned_inventory as
- 2
I(k,t+2) = I(k,t) + .Z [P(k,t+i) ~ Fg¢(k,t+i)]

i=1

where I(k,t) is current inventory and F¢(k,t+i) is the current

demand forecast for month t+i . The actual inventory at time t+2
will be
-~ ~ 2 -~
I(k,t+2) = I(k,t) + Y [P(k,t+i) - D(k,t+i)]
i=1

where for time t+i, P(k,t+i) is actual production and D(k,t+i) is
demand, and where negative inventory denotes a backorder. We assume
that the difference I(k,t+2) - I(k,t+2), which reflects the yield
uncertainty and cumulative forecast error for k over the lead time
of % time periods, is a normally-distributed random variable with

. 2
zero mean and a variance o, . Consequently, we can use zyk =

k

I(k,t+2) / ok to indicate the service level for k at time t+2 from
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a particular disaggregation (14): Zy denotes the number of standard
deviations of safety stock protection provided by I(k,t+2).

Now suppose we set P(k,t+2), or equivalently I(k,t+2), so that
the likelihood of stockout in period t+f2 is the same for all items.
Thus, we want zy = z for all items k,}or equivalently

(15) I(k,t+2) = z ok

for all k. By substituting (15) into (14), we find that

z = I(t+2) / L ok
k

Thus, we can use (12) and (13) to characterize the servicé level (as
specified by z) for a choice of SS and n. We see that z is a random
variable, and thus the service level will vary from month to month.
The expected service level depends only on the safety stock target
SS. But the amount of variability in the service level depends on
the smoothing parameter n; the more that we smooth production, the
greater will be the variability in service from month to month.

We have assumed here that it will always be possible to
disaggregate production to satisfy (15). This is not guaranteed.
Indeed, if current inventories are 'out-of-balance', the
simultaneous satisfaction of (14) and (15) may imply negative
production (P(k,t+&) < 0) for items with large current inventories.
Obviously, this is not possible. However, we expect that the
assumption of 'balanced' inventories will be appropriate for the
family of items that we produce to stock; we will test this
assumption with the simulation exercise. We note that a similar
assumption of 'balanced' inventories is made by Eppen and Schrage
"(1981) and by Federgruen and Zipkin (1984) in their studies on

centralized ordering policies for multilocation distribution
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systems.

In this section we extend the one-stage model to a production
operation with two stages, e.g. fabrication and assembly. For such
an operation we may have not only a finished goods inventory, but
also an intermediate inventory between the two stages (see Figure
1). The intermediate inventory permits one to decouple, at least
partially, the production of the upstream stage (parts fabrication)
from that for the downstream stage (assembly). Thus, the production.
smoothing model needs to set aggregate production rates for both
stages. In addition, we will need to characterize how each stage
disaggregates the aggregate production plan.

We mention three approaches for production smoothing for two
stages. The first approach is to view the two stages as one stage
without an intermediate inventory, and then to use the previous
model; we will not discuss this approach any further, but will
include it in the simulation study of the various models. The
second and third approach use the intermediate inventory to permit
some decoupling of the stages. They differ in terms of how the
upstream stage smooths its production. In the second model,
production smoothing by the upstreanm stagé relies on information
about the intermediate inventory, and on forecasts of the production
level for the downstream stage. In the third model, production
smoothing by the upstream stage is based on the echelon inventory.

The notation will be very similar to that for the one-stage
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model. We let X; and 2y denote £he lead times for the upstream and
downstream stage, respectively, and define 2=23+25. Then at time t
we want to find for the upstream stage Q(t+2y), planned production
that starts in t to be completed by t+2y, and for the downstreanm
stage P(t+23), planned production that startsiin t to be completed
i
by t+2o. We use J(t+g71) to denote thé planned intermediate
inventory, and I(t;lg) to denote the planned finished-goods
inventory, at the times t+2; and t+fp, respectively.

We present these models for the simplest two-stage p:oduction
environment. We assume that there is a one-to-one mappiné between
items produced in the upstream stage and items produced by the
downstream stage. That is, each item from the upstream stage
receives further processing at the downstream stage and results in a
unique end item. Furthermore, we assume that the production units
are defined so that one unit of downstream production starts
requires as input one unit of completed upstream production.
Although we present the models for this setting, we can extend it to
more complex environments, such as when the downstream stage
performs assembly of sets of components produced by the upstream
stage.

To extend the one-stage model to a two-stage system requires
the specification and analysis of a production smoothing rule for
each stage. We desire to do this in a way that permits one to see
how the planning at one stage impacts the other stage, and how the
intermediate inventory can be used to decouple the stages. We

discuss first the downstream stage, since it will be simpler.
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The production smoothing model for the downstream stage is
identical to that given for a one-stage system. Namely, we set the
planned production level at time t for completion by time t+25 by

|

the rule

1
(16) P(t+22) = 77 {Fe(t+l,t+2p+n) - P(t+1,t+2p-1)

- I(t) + $Sp)

where n is the window length and SS, is the finished—goods safety~-
stock target. Thus, as in (83) we set the planned production to
equal the average of the net requirements over the time window t+2p,

t+fg+n. We assume that sufficient component inventory is
available to permit the execution of (16). As a conseqdence, the
analyses from the previous section of the planned inventory apply
directly to P(t+2p) given by (16) and to I(t+%3) as implied by (16).

The extension of (3) to the upstream stage is less clear. This
is because the demand on the upstream stage is not independent, but
is set by the production by the downstream stage: P(t+fp) is the
demand on the intermediate inventory at time t. Consequgntly, to
extend (3) we need an appropriate forecast of the planned production
for the downstream stage over the smoothing window for the upstream

stage. We suggest below two approaches.

D T T o e e e el o BB e o e o e s i v e e e D e e e s e st e et et e e s e s S St S s S o . s o i

The first approach is to smooth the upstream production using

an explicit forecast of the downstream production over the smoothing
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window. The production smoothing rule is

1
(17) Q(t+2g) = =77 {Pe(t+ag+l, tegem) - Q(t+1,t+21-1)

- S(t) + SSI}

where m is the window length, Pg(t+Ro+1,t+2+m) = Pg(t+2p+1) + ... +
Pe(t+2+m) and P¢(t+2o+i) is a forecast made at time t of P(t+2o+1)
for i=1, ... f3+m. J(t) denotes the actual intermediate inventory

at time t, net of the downstream production started at time t; that

is, o
(18) J(t) = J(t-1) + Q(t) - P(t+zp)

and SS; is the target safety stock for the intermediate inventory.
We note here that P(t+fp+i) will be the demand on the upstream stage
at time t+i. Hence, P¢(t+fo+1,t+2+m) denotes the demand forecast
for the upstream stage over the time interval t+1, ... t+2i+m.

Using (18) we can rewrite (17) as a simple smoothing equation

that is analogous to (7):

(19) Q(t+2q) = =i {Pe(t+a+m) + [Pe(t+ep, teg+m-1)

- Pr_og(t+2p,t+2+m-1)] + €4(t)} +

—22 (Q(tr2q-1)) :

where €1(t) = Q(t) - a(t) . Thus, planned production for the
upstream stage is a weighted average of the production level from
the previous period and the initial forecast of cumulative net
requirements in time t+f+m.

To specify Py(t+fo+i), we note that (16) is equivalent to a

simple smoothing equation
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1
(20) P(t+2s) = 531 {Fe(t+2o+n) + 8¢(t,t+R22+n-1) + €2(t)}
+ =2 (P(t+R,-1
n+1 2-1)}
where §¢( s ) is the forecast revision as defined before, and

€a(t) = P(t) - P(t). Now the forecast of P(t+fp+1) made at time t

should be

(21) Py(tegg+rl) = (:37) Fel(teaprm+l) + (71) P(t+zz)

since the expected forecast revision is zero and the expected yield

variation is zero. Similarly we can use (21) to forecast P(t+fo5+1i)
for i=2, ... R1+m:
1 n
(22) Pr(t+2o+2) = (HII) Fe(t+2o+n+2) + (ﬁ:i) Pe(t+2o+1)
1 n -
Py(t+2+m) = (H:I) Fe(t+f2+m+n) + (ﬁ;i) Pe(t+2+m-1)

In spite of the fact that the smoothing equations for the upstream
stage [(17) and (19)] have the same form as those for a single-stage
system [(8) and (7)], we have not analyzed fully the random variable
for planned production Q(t+24). This is because the planned
upstream production Q(t+f2;) is a smoothed average of the downstream
planned production, which itself is a smoothed average of customer
demand. We have not been able to 'decode' this double smoothing in
a way to find the variance of.Q(t+£1), or any other measure of
production smoothing. (However, it is easy to show that E[Q(t+2;] =
ﬁ.) We will need to use simulation to see exactly the behavior of

this smoothing model. Despite this lack of an analytic result, we

do expect that the behavior of this smoothing model for the upstream
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stage will closely parallel that‘predicted for a single-stage
system. In particular, due to the double smoothing, we expect that
the variability of the upstream production will depend upon the sum
of the window lengths, m+n.

The planned intermediate inventory at time t+2q is given by

i
i
i

J(t+£1) = J(t) + Q(t+1,t+21) - Pt(t+£2+1,t+x),
which can be rewritten as
J(t+21) = S8S1 + Pe(t+2+1,t+2+m) - mQ(t+2q1)

by substituting from (17) for Q(t+1,t+f2;-1). Again, although it is
clear that E[J(t+24)] = SSy, we have not been able to characterize
analytically the variability in the planned intermediate inventory.
Nevertheless, we need the planned intermediate inventory to specify
how the upstream aggregate planned production Q(t+f;1) is
disaggregated into planned production for individual items, e.g.
Q(k,t+2q) for item k.

For this model we disaggregate the upstream production to try
to equalize the service levels from the intermediate inventories
across all items. To do this, we set Q(k,t+2;) such that
r Q(k,t+29) = Q(t+21), and such that the planned intermediate
?nventory for item k, J(k,t+%3), provides the same level of
protection against stockout for all k. Define &ilto be the

variance of the deviation between the planned intermediate inventory

and the actual intermediate inventory at time t+2%j:



21

g2 = var[J(k,t+e,) - 3(k,t+21)]
214 -~
= Var[ ¥ {Q(k,t+i) - Q(k,t+i)
i=1
- Pt(k.t+12+i) + P(k,t+22+i)}]

|

Then, for given &ii we disaggregate th+21) so that the planned

intermediate inventory for k is given by

J(k,t+21) = z &,

where z is

z = J(t+21) / L &,
k

Unfortunately, though, we are not able to determine analytically
;kl’ since we cannot determine the forecast error for downstream
production, Var[P¢(k,t+22+i) - P(k,t+2p+i)]. Hence, we would either
need to estimate it empirically or substitute the known forecast

error for demand, Var[F¢(k,t+f2+i) - D(k,t+2p+i)], for the forecast

error for downstream production.

The second approach for smoothing the upstream production is
based on the notion of echelon inventory. The echelon inventory for
a production stage equals all inventory, including work-in-process,
that is downstream of the stage. In a two-stage system, the echelon
inventory for the upstream stage is the intermediate inventory, plus

the work-in-process within the downstream stage, plus the finished-
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goods inventory. Each period this echelon inventory is increased by
the amount of production completed by the upstream stage, and is
decreased by the amount of customer demand. We set the plénned
production level for the upstream stage to be the average of the net
requirements on the echelon inventory over the interval t+2,t+2+1,

t+2+m, where m is the window length:

(23) Q(t+2y) = ﬁ%I {Fe(t+1,t+2+m) - P(t+1,t+%5)

- Q(t+1,t+2q-1) - E(t) + 8S,
- I(t) + $Sq}

To explain the bracketed term, note that (i(t) - SSp) + P(t+1,t+23)
+ (E(t) - 851) is the current echelon inventory (exclusive of safety
stocks), and Q(t+1,t+21-1) is the planned input to the echelon
inventory over (t+1,t+f24-1). The sum of the current echelon
inventory and the planned input over (t+1,t+21y-1) should cover
customer demand over (t+1,t+2;+25-1) since 23 is the lead time for
the downstream stage. Production at the upstream stage that is
started at t will be input into echelon inventory at time t+2;, but
will not be available for customer demand until t+f24+25 = t+2. Now,
since Fe(t+1l,t+2+m) = Fge(t+1,t+2-1) + Fge(t+2,t+2+m), we see that the
bracketed term in (23) corresponds to the net requirements on the
echelon inventory over (t+2,t+f2+m). As we have done previously, we
set planned production to be the average of the net requirements on
the appropriate inventory over the chosen smoothing window.

The analysis of (23) is identical to that for (3) for the one-
stage system where we replace n by m, P(t+2) by Q(t+2y), SS by

(8SS1+SSp) and I(t) by (i(t) + P(t+1,t+22) + J{(t)). In particular,
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we can rewrite (23) as

-

1
Q(t+2q) = n31 {Fe(t+2+m) + S¢(t,t+2+m-1)

+€1(t) + €a(t)) + T3 (Qt+21-1)}

from which we can obtain

[ =]

E[Q(t+21)] =

and

Var[Q(t+21)] = (op + op + ag) / (2m+1)

where c§ = Var[ea(t) = P(t) - ;(t)] and ag = Var[eq(t) = Q(t) -
6(t)] . Thus, as expected, the aggregate upstream production rate
equals, on average, the demand rate, while its Qariance is inversely
proportional to the window length for smoothing.

While the characterization of the planned intermediate
inventory J(t+%£q) is not immediate for this model, it is for the
plénned echelon inventory at time t+fy, I(t+2q) + P(t+23+1,t+2) -+
J(t+21). In fact, the analysis for the planned echelon inventory
parallels that for the planned inventory for the one-stage systenm.

(10) - (13). To see this, we write the counterpart to (10) to

define the planned echelon inventory:

~

(24) I(t+g ) + P(tre +1,t+2) + J(t+2 ) = I(t) + P(t+1,t+2,) + J(t)

+ Q(t+1,t+£1) - Ft(t+1.t*!1)

Then, we use (23) to substitute for Q(t+1,t+f2 -1) in (24) to obtain

1

I(t+2,) + P(t+g_+1,t+2) + J(t+R, ) = SS_. + 8§  + Ft(t+21+1,t+z*m)

1 2
- m Q(t*‘x

1 1 1

)

From this, we find that the mean echelon inventory equals SS; + SS;
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+ 2,D, while its variance is given by

2
2
m 2 2 2
(25) Zmrl - (GD *op * GQ)
L. +m-1 . 2.+]
2 m +1 2 1 .
+ L I1 - 237" [ef - 'L e2(1)]
. m+1 D .
J:O i=0

v
§
i

i
To disaggregate Q(t+2;) we need to find the planned production for

each item k, Q(k,t+24) such that

L QU tery) = Q(try)

We can do this in a similar manner to that for the one-stage system.
Namely, we set Q(k,t+2;) so that the planned echelon safety stock
for item k, defined as I(k,t+2;7) + P(k,t+2q+1,t+2) + J(k,t+2q) -

215(k), equals zo where z is given by

k1

I(t+g ) + P(t+re +1,t+2) + J(t+2,) - 2 D

1
A E e e e e e e e e e - . —— - — i ——— " —— - — — —
r o
K k1
and cil equals the variance of
21 ~
r [Q(k,t+i) - Q(k,t+i)] + [F¢(k,t+i) - D(k,t+i)]
i=1

In words, ail is the variance of the deviation between tlhe planned
echelon inventory for time t+%2; and the actual echelon inventory for
time t+&y for item k. Thus, this disaggregation equalizes the
planned echelon safety stocks for all items, where we have
normalized by the standard deviation of the cumulative upstream
yield uncertainty and forecast error over the lead time 21. The
rationale for this disaggregation scheme is to try to spread the

planned echelon safety stock (i.e. either in the intermediate or



finished-goods inventory), 'evenly' over the items. By 'evenly', we

intend for each item's echelon safety stock to provide the same
level of protection against uncertainty both from.the forecast
errors and from yield unceriainty in the upstream stage over its
lead time £1.

As before, the measure of the le%el of protection from the
disaggregation, z, is a random variabie. Its mean is given by
(8S$1+SSp) / ¥ oki,» while its variance is directly proportional to
(25).

It will be convenient to term the first (produce to
intermediate inventory) approach as the decoupled model and to term
the second (produce to echelon inventory) as the nested model. In
the first case, the intermediate inventory decouples the stages.

The upstream stage produces to this inventory based on a forecast of
downstream usage, while the downstream stage draws its raw materials
from this inventory. In the second case, both the upstream and
downstream stages produce to the same forecgst, namely the demand
forecast. But the stages are 'nested' in that the upstream stage

produces to the echelon inventory which contains the downstream

stage and its inventory.
COMPUTATIONAL STUDY

To examine the proposed production smoothing models. we
conducted a computational study based on data gathered on the set of
items produced in one manufacturing facility. The purpose of the

computational study is threefold: to understand how much inventory
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is needed in a make-to-stock system and where that inventory should
be positioned; ;o compare the effectiveness of the different
production smoothing modelé for a two-stage system; and to
determine, via a comparison to a simulation, the accuracy of the
approximate analyses of these smoothing models. We first describe

the test data, then the simulation program that we have developed,

and finally the computational results.

Test_Scenario

To test the production smoothing models we abstracted a test
scenario based on data gathered from a manufacturing operation. For
the results given here, we have disguised this data to protect the
identity of the manufacturing firm. However, the reported results
are representative of the results obtained using the actual data.

In Table 1 we give the mean demand rate (units per month) and
its standard deviation for the family of items. Of the 38 items in
this family, we consider only 25 as candidates for the make-to-stock
system. We exclude all items that have a start rate of less than
200 units per month, since it would be too risky to plan to stock
these low-demand items.

We assume that there are two production stages and that each
item requires processing from both stages. The lead time for the
first stage is three months (27=3) and is one month for the second
stage (fp2=1). The first stage processes each item in a lot of
exactly 500 units. The second stage can process'lots of any size.

We will find it convenient to express the simulation results in
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terms of the lots for the upstream stage (500 units/lot).

For the sample of 25 items, the mean monthly demand is 81 lots
per month (500 units/lot) and the standard deviation of aggregate
demand op is 28.5 lots per month (“g = 811).

For the test scenario we assume that the forecast process is.
unbiased, and that for each item k, the variance of the forecast

revision step is given by

a2(0) = o2(1) = .1 oo

c2(2) = .13 6[2) i
o2(3) = .2 as

g2(4) = 02(5) = .23 cg

a2(j) = 0 for j > 5.

Thus, any forecast for 6 or more months ahead equals the mean
monthly demand, and is not revised until there is 5 or less months
to go.

We assume that there is no uncertainty in the production yield
in each stage. There are two reasons for this. First, we had no
data from which to estimate the parameters of the yield uncertainty.
Second, we had observed in an earlier study of a comparable
production operation that the uncertainty in the forecast errors
dominated that in the yield realization. Hence, we hope that by
including only the uncertainty in the forecast errors we will
capture the primary behavior of the smoothing models. Nevertheless,
given information on yield uncertainty, we could easily incorporate

this into our study.
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We can find ai , the variance of the cumulative forecast error

for item k over a given lead time 2, from the above specification of

the variance of the forecast revision steps and from the knowledge

of ag for item k (Table 1). For instance, if 2=3 then
2 i
0 = 6%(0) + (6%(0) + o%(1)) + (e2(0) + o%(1) + 0%(2)) - .6302.

For later reference, we note that the sum over the 25 make-to-stock
items of the standard deviations of the cumulative forecast errors,

v o is 25 lots when 2=1 month, 63 lots when £=3 months, and 86
k

lots when 2£=4 months.

We have written in PL-1 a program to simulate the production
planning process for a two-stage production systenm. The simulation
is a discrete-time simulation where the time unit is one month.
Each month the simulation generates customer demand and a demand
forecast for the next twelve months for each item. The end
inventories for the items are increased by completed downstream
production and are depleted by the demand amount. Backorders are
created when insufficient inventories exist. The simulation then
applies a specified production smoothing model [e.g. (3)] and its
disaggregation to determine the production starts for the downstream
stage. The intermediate inventories for the items are increased by
completed upstream production and are depleted by usage from the
production starts by the downstream stage. Note that the
“intermediate inventory cannot have backorders; rather, if

insufficient inventory exists, then the downstream production starts
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need to be reduced. Finally, tﬂe simulation then applies a
specified production smoothing model [le.g. (17)] and its
disaggregation to determine- the production starts for the upstream
stage. This process is then repeated each month for the run length
of the simulation. Note that, in effect, the simulation acts as if
the events, customer demand, productiLn starts, and completed
production, occur at the start (or end) of every month.

For our tests the simulation is run for 1000 months where the
first 40 months are for initialization and various statistics are
collected over the remaining 960 months. The simulation relies on a
common demand and forecast time series in order to increase the
comparability of simulation runs for different smoothing models.
Thus, any differences in performance between two simulation runs
will be due to the smoothing models and not due to any differences
in the realization of the demand or forecast process. To generate
the demand and forecast time series, the forecast revision process
obtains F¢(s) as a lognormal random variable with mean F¢_j;(s) and
with variance o2(s-t) [see (1)].

In the previous section we develop the disaggregation procedure
with no restrictions on the sign of the production outcome. Indeed,
this procedure may suggest the impossible, namely negative
production for an item with an excessively high inventory. The
simulation does not permit negative production. Rather, if the
disaggregation results in this outcome for a particular item, then
the production starts for that item are set to zero and the
disaggregation procedure is repeated for the remaining items.

Similarly, the disaggregation procedure assumes that sufficient
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raw material is available to make the desired production starts.

For the upstreéﬁ stage, the simulation retains this assumption.
However, for the downstream stage, the simﬁlation will not start
more production of a particular item than is available in its
intermediate inventory (i.e. we do not permit backordering on the
intermediate inventory). Rather, if the desired production for an
item exceeds the available raw material, we set its production equal
to the raw material level and then repeat the disaggregation
procedure for the remaining items (after we reduce,the planned
aggregate production by the amount preset for the excluded item).

For the simulation we impose a lot size of 300 units for all
items for the upstream stage. Thus, for each item the monthly
production starts must be a multiple of 500 units. To accomplish
this we have to modify the'disaggregation procedure to reflect this
restriction. The modification is to compute the desired number of
units to start, divide by 500 to convert to lots, and then round to
the nearest integer. We assume no such restriction for the
downstream stage, although we could impose a fixed iot size, if
appropriate.

The simulation also has the capability to limit the aggregate
production for each stage. For instance, the upstream stage might
not be capable of starting more than 90 lots per month. In this
case, we would modify the production smoothing model to set
production starts equal to the minimum of the desired start rate
from the model and the capacity limit, say 90 lots. However, in the
computational work that we report, we do not use this capability,

but assume that there are no limits to the production at each stage.
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The disaggregation of upstream production for the decoupled
(produce to intermediate inventory) approach requires an item
forecast of downstream production. We generate this forecést via an
item-level version of (21) - (22), with one modification. We
replace the actual production starts for item k, P(k, t+22), in (21)
by the amount that would be started if there were no shortages in
the intermediate inventory. This modification is necessary because
stockouts in the intermediate inventory perturb the actual
production starts from their desired level; hence, the actual_
production starts may not be an accurate reflection of future

production by the downstream stage.

e e B i e v S i e i D A S S i e Ot e e

In this section we present and discuss our computational work.
We do this in two parts. First, we consider the application of a
one-stage model and study its behavior on the test scenario.

Second, we consider the two versions of the two-stage model and
compare them against each other and versus the one-stage model fbr
the test scenario.

To apply the one-stage model to the test scenario, we assume a
make-to-stock system with a finished-goods inventory but with no
intermediate inventory. In effect, we combine the two stages in the
test scenario into one stage with a production lead time 2 = 4
months. Each month we use (3) to set the aggregate production start
rate, which is disaggregated based on the finished-good inventories

via (14)-(15).
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We used the simulation to compare the "actual" behavior (as
found from the‘simulation) of the one-stage model with the predicted
behavior from our analysis of the one-stage model, e.g. (9), (13).
We report our results in Table 2. We have run the simulation for
window lengths n=0,1,2,...6 and for safety stock targets of SS = 80,
120 and 150 lots (recall that Logx = 86 lots for &2 = 4 months). To
show the consequences from production smoothing, we report the
standard deviations of aggregate production P(t) and of the actual
aggregate inventory position }(t). As a measure of service we report
the fill rate, which equals the fraction of demand that is satisfied
by inventory without any delay.

From the simulation results in this table we can see how the
two decision parameters, the window length and the safety stock
target, affect the reported performance measures. Namely, the
window length essentially determines the measures of production
smoothing [the standard deviations of P(t) and i(t)], while the
safety stock target deiermines the fill rate. This is consistent
with the analysis of the production smoothing model. Furthermore,
the analytic results (9), (13) are reasonably accurate predictions
of the actual (simulated) values.l This indicates that the
approximations made by the analysis (i.e. ignoring lot-sizing. and
assuming that inventories remain balanced so that the proposed
disaggregation is always feasible) do not give significant errors in
this test scenario.

Finally, from Table 2 we see the implications of a make-to-
stock system for this family of items. The average production

starts needed for the sample of items in the test scenario is 81
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lots per month. We see that maintaining a finished-goods inventory
of 80 lots (aboht one month of demand), on average, will result in a
90% fill rate. Increasing this safety stock by 50% to 120 lots
improves service to a 95% fill rate. To get to a 98% fill rate
requires an investment in another 30 lots. The choice of window
length for the production smoothing m%del dictates the extent of
production smoothing. With no smoothing (n=0), the monthly
production start rate, while equal to 81 lots on average, has a
standard deviation of nearly 30 lots. Thus, we expect production
starts to exceed 120 lots 16% of the time, and similarly to fall
below 50 lots 16% of the time. Substantial production smoothing is
possible by increasing the window length, but with decreasing
returns. For instance, a window length of n=2, which corresponds to
using a six-month cumulative forecast (6=n+2), reduces, the standard
deviation of production starts by almost 60% over no smoothing. The
cost from increased production smoothing is a slight degradation in
fill rate, and an increased variability in the actual inventory
position.

We examined the two-stage models to see what improvement is
possible by inserting an intermediate inventory between the stages.
To examine the smoothing behavior, we first simulated thé two
smoothing models for a fixed safety stock but with varying window
lengths. As with the one-stage system, the smoothing behavior is
effectively independent of the safety stock targets for reasonable
stocking levels. Table 3 gives the results for the decoupled
approach (produce to intermediate inventory) while Table 4 gives the

results for the nested approach (produce to echelon inventory). In
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both cases the safety stock targets are SS; = 100 and SSp = 120.

Table 3 shows that for the decoupled approach the production
smoothing behavior for the downstream stage is as predicted and is
independent of the upstream stage. The production behavior for the
upstream stage, for which we do not have an analytic prediction,
reflects the effect of double smoothing: the upstream production is
set by smoothing the forecast of downstream production, which itself
is a smoothed average of the demand forecast. Consequently, for a
fixed window length for the upstream stage there is greater
smoothing as the downstream window length grows. In contrast with
the one-stage system, the fill rate provided by the safety stocks is.
very dependent on the level of production smoothing. In particular,
the fill rate declines dramatically with longer window lengths (more
smoothing) for the downstream stage. This is due to the fact that
the item forecasts of downstream production used by the upstream
stage become less accurate with longer window lengths for the
downstream stage.2 As a consequence, the intermediate inventory has
frequent stockouts, which ultimately results in poor customer
service.

In Table 4 we see the comparable production smoothing behavior
for the nested approach. Here, the analytic predictions of the
production smoothing for both stages are reasonably accurate.
Furthermore, the level of smoothing for the upstream stage is
totally independent of the downstream stage. And the fill rate is
virtually independent of the choice of smoothing parameters, as we
saw for the one-stage systeml

To explore the impact of the safety stock levels, we contrast
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in Table 5 the fill rates from the two approaches for a series of

safety stock choices. Due to the fact that the fill rate for the

decoupled approach is very sensitive to the level of production
smoothing, we simulated a set of cases with substantial smoothing

{m=3, n=2) and another set with limited smoothing (m=1, n=0). We

chose the safety stock levels to provide insight into the proper

positioning of these stocks and to allow comparison with the one-
stage model (Table 2). We did not permit the downstream safety
stock target to be set below 40 lots, since below that we have no
hope of providing reasonable service (recall that fox = 25 lots when
2= 1). Based on the results in Table 5, we make the following
observations:

a) For the nested approach (produce to echelon inventory), for a
fixed total safety stock (SS;+8S3), the fill rate is relatively
insensitive with slight improvement as more safety stock is
placed downstream.

b) For the coupled approach (produce to intermediate inventory)
the fill rate is very sensitive to both the amount of smoothing
and the positioning of the safety stock. As seen in Table 3,
service again deteriorates with increased smoothing. For a
fixed total safety stock, fill rate improves as more stock is
placed in the intermediate inventory as long as a minimal level
(SS2=40) is kept downstream; beyond this minimum, service will
be degraded.

c) In comparing the two approaches, we see that the nested
approach dominates the decoupled approach for the case with

substantial smoothing. When there is limited smoothing,
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however, the decoupled appfoach is slightly better, provided

the appropriate inventory positioning.

In comparing either of-the approaches for the two-stage model
with the one-stage model, we need more inventory with a two-stage
model than with a one-stage model forQa given fill rate. For

|
instance, a safety stock of 120 lots ;ith the one-stage model, gives
a 95-96% fill rate. The nested approach for the two-stage model
provides a 90%-92% fill rate for the same total safety stock; the
decoupled approach can provide a 94% fill rate but with limited
smoothing. However, it typically will cost less to hold stock in
the intermediate inventory than in the finished-goods inventory.
Thus, a two-stage model can be prefereable to the one-stage model if
the holding cost for the intermediate inventory is low enough
relative to the cost for the finished-goods inventory. For
instance, suppose a 90% fill rate is desired. We can achieve this
with the one-stage model with a finished-goods safety stock of 80
lots for window lengths n=2 and n=3. For comparable smoothing with
the two-stage model, we would need the nested approach with
smoothing windows m=3, n=2 and with intermediate safety stock of 80
lots and a finished-goods safety stock of 40 lots. Thus, the two-

stage model would be preferable if the holding cost for 80 lots of

intermediate inventory is less than that for 40 lots of finished-

goods inventory.
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- FOOTNOTES
1 -
Note that we report the standard deviation of actual inventory,
rather than that of planned inventory as given by (13). Since the
actual inventory is given by
~ 2’ ' A
I(t+g) = I(t+g) + L (P(t+i) - P(t+i)}
i=1
2
+ ¥ {F (t+i) - D(t+i)} ,
i=1 t

we can express its variance in terms of the variance of I(t+&) given
by (13).

2

To disaggregate upstream production for the decoupled approach, we
need an item forecast of downstream production. We obtained this
forecast via an item-level version of (21) - (22). By using an
alternate forecasting method, namely proportioning the aggregate
forecast by the expected demand level, we could avoid the
degradation in fill rate seen in Table 3. However, this alternate
forecast method resulted in system performance that was strictly
dominated by the nested model (Table 4).
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APPENDIX

e e S e o e e e s s e e o e ey ol e e s e e

By recursive substitution for P{(t) in (7) we obtain

P(t+2) = L (=37)( (t-1+2+n) +

i=0 t-1

ét_i(t—i, t-i+f+n-1) + e(t-1i)} ,

where we assume that an infinite time history exists. By aséhmption

we have that for all i

E[F (t-i+2+n) + §,_;(t-1, t-i+2+n-1) + e(t-i)]

[}
=)

t-1

and
. . . B 2
Var[F _,(t-i+g+n) + & . (t-i, t-i+g+n-1) + e(t-1)] = op *+ o,

Furthermore, we have assumed that these bracketed terms are

independent across time. Thus, we obtain

E[P(t+2)] = I (:35)(:20)1 5D
i=0
- D
Var[P(t+2)] = [ (ﬁ%f)z (agi)zi (GS + ci)
i=0

(ag + ag) / (2n +1)

]
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Figure 1: Two-Stage System
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TABLE 1: DEMAND FOR TEST SAMPLE.
_ 500 demand units equals one lot.
Starred items(*) are excluded from Make-to-Stock System.

DEMAND
ITEM CODE

STD.DEV

TABLE 1 CONTINUED ON NEXT PAGE.



TABLE 1 (continued)

DEMAND

ITEM CODE

STD.DEV




Window
Length

X,y | : x = standard deviation of Py; y = standard deviation of 'I\t; z = fill rate.

29.8, 30.1*
92

Safety Stock

29.8,30.2
.96

29.1,30.1,
.98

Predicted
Std.
Deviations

28.5,30.8

17.4,34.0
91

17.3,34.3
.96

17.2,34.1,
.98

16.4, 34.9

13.1,37.5
.90

13.1,37.9
.96

13.0, 37.6,
97

12.8,39.4

10.8,40.8
.90

10.8,41.3
.95

10.8,41.0,
97

10.8,43.6

9.3,44.0
.89

94,444

9.3,44.0,
97

9.5,47.4

8.3,46.8
.89

8.2,46.7,
97

8.6,51.0

7.6,49.0
.89

7.4,49.3,
97

7.9,54.4

Predicted fill
rate

Table 2: Results from One-Stage Model

.90

.98




downstream
window

length upstream

stage
prediction

upstream
window length

29.2,27.4,%124.1,15.9,.] 22.0,12.4, | 19.9, 10.6,
.99 98 93 .88

17.2,27.4, 1 159,159, | 14.7,12.4, | 13.6,10.5,
.99 .98 .93 .88

13.0,27.4, | 12.6,15.9, | 11.9,12.4, | 11.2,10.5,
.99 97 .92 .87

m=3 10.7,27.2, | 10.7,15.9, | 10.2,12.4, | 9.8,10.5,
99 97 92 .87

downstream

stage 28.5 16.5 12.8 10.8
prediction

Table 3: Production Standard Deviations for Two-
Stage Model: Production to Intermediate
Inventory (SS1 =100, SS2 = 120)

*Ix,y,| 1 x = standard deviationof Qt;y =
y2 standard deviation of Pt ; z =
customer fill rate.

** No analytic prediction is currently available.



downstream
window
length

upstream
window length

29.2,27.4*

29.2,15.9

29.2,12.4

29.2,10.6

upstream
stage

prediction

17.2,27.4

17.2,15.9

17.2,12.4

17.2,10.6

13.1,27.3

13.1,15.9

13.1,12.4

13.1,10.6

10.9,27.2

10.9,15.9

10.9,12.4

10.9,10.6

downstream
stage
prediction

28.5

16.5

12.8

10.8

Table 4: Production Standard Deviations for Two-Stage Model:
Production to Echelon Inventory (551 =100, 5S> =120)

* X,y

Note, the fill rate is .98 for all instances.

: X = standard deviation of Q¢; y = standard
deviation of Px.



FILL RATE FILL RATE
(m=3,n=2) (m=1,n=0)

PRODUCETO PRODUCE TO PRODUCE TO PRODUCE TO
ECHELON INTERMEDIATE ECHELON INTERMEDIATE
INVENTORY INVENTORY INVENTORY INVENTORY

Table 5: Comparison of Fill Rates for Two-Stage Models




