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INTRODUCTION AND OVERVIEW

In this document we report on research to develop and study

mathematical models for production smoothing in a dynamic production

environment. This effort was part of a larger study whose goal was

to investigate the production planning practices for an electronic

equipment manufacturing firm, and in particular to explore possible

mechanisms for improvement. To motivate the presentation of our

research, we need to indicate the nature of this production

environment.

The production process can be viewed as a multi-stage system.

In its most aggregate form there are two stages: component

fabrication and equipment assembly. Customer demand has significant

uncertainty and variability over the cumulative manufacturing lead

time. Nevertheless, customers demand a high level of service. The

manufacturing process is not totally reliable; in particular. there

is significant yield uncertainty in component fabrication. Finally,

production capacity for both component fabrication and assembly

(including final test) is very capital intensive. As a consequence,

it is expensive and/or difficult to adjust the production level.

As a consequence of these characteristics, one must consider a

make-to-stock system that would smooth production and provide short

and reliable delivery times to customers. We considered a

hierarchical planning system (Hax and Meal, 1975) with two levels:

one to set the aggregate production level (e.g 400 lots/month) and

one to schedule the daily lot starts (e.g. one lot of item j, two

lots of item k ... ). Our study then focused on the design of such a

_V�I_��_ · 1_----_1�_1�11___-
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make-to-stock system.

Key questions in the design of a make-to-stock system are what

items should be stocked, at what point(s) in the production process

should stock be accumulated, and what stock level is needed to

provide satisfactory service and permit adequate production

smoothing. Our research addresses these questions. To answer these

questions, we must specify the rules or algorithms that will set the

aggregate output rate and determine the daily production starts. We

develop mathematical models, termed production smoothing models, to

set the aggregate output rate. (For a review of production -

smoothing models, see Silver 1967.) We then give a mechanism for

"disaggregating" the aggregate output into production starts for

individual items. The analysis of these models determines the stock

level(s) necessary for a desired service level. In addition, from

these models one can quantify the tradeoff between the smoothness of

aggregate production and the stock level.

In the next section we describe the production smoothing models

and give their analysis. We first present a model for a one-stage

production system. We then give two extensions to this model to

treat a two-stage production system. To compare the models and

evaluate their performance, we report in section 3 on a

computational study based on data gathered from the electronic

equipment manufacturer. In particular, we simulate the models over

a wide range of parameter settings to assess their accuracy and to

generate insight into their behavior.
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DEVELOPMENT AND ANALYSIS OF PRODUCTION SMOOTHING MODELS

We develop here a set of production smoothing models that can

be used to look at the tradeoffs between production smoothing and

inventory requirements. We assume that production smoothing is done

at an aggregate level for families of products that have similar

processing requirements. For now, we will make the following

simplifications:

we ignore lot-sizing considerations;

we assume no uncertainty in the build time for the

products;

we assume no constraint on production capacity;

other simplifications will be introduced as needed.

The models should permit focus on the production smoothing/inventory

considerations in the light of forecast uncertainty, demand

variability, and yield uncertainty. We will use a simulation to

examine the consequences of the simplifying assumptions.

We model the production activity in a very gross way. We are

not concerned with detailed scheduling issues, but rather with the

planning issues. We assume that the production system can be

decomposed into a series of stages where we may maintain an

inventory between successive stages and in finished goods (see

Figure 1). Then we assume a known and fixed lead time for each

stage: all production started at a stage at time t finishes that

stage at time t+1, for being the lead time of the stage. We are

concerned both with setting the aggregate production level for each

stage, and with deciding how to disaggregate it into a production
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level for individual items. Furthermore, we want to understand how

much inventory is needed as safety stock, and where it is needed.

We desire to keep the aggregate production levels as smooth as

possible at each stage, and to keep the safety stocks as low as

possible, while providing satisfactory customer service. We have

developed a production smoothing model to illuminate these

tradeoffs.

To present the production smoothing models, we first describe

the aggregate forecast process that drives the production smoothing

models. We then consider production smoothing for one production

stage. We use the production smoothing model for one stage as the

building block for developing two distinct models for smoothing two

production stages.

Forecast Process

A key input to the production smoothing process is the forecast

of aggregate demand. We assume that this forecast is by month for

up to the next 12 months, and that it is revised monthly. To model

the process of forecast revision, we define Ft(s) as the forecast

made at month t of aggregate demand in month s (s>t). Then, we

define St(s) by

(1) Ft(s) = Ftl(S) + St(s)

so that St(s) denotes the change at time t in the aggregate forecast

for time s. We assume that St(s) is a random variable with the

following characteristics:

E [St( )] = O ,
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Var [(s)] = 2 (s-t) ,

and t(s) and t(s) are independent for all t # t'

We denote the aggregate demand in month t as Ft(t): the

'forecast' of demand in t made at time t. From (1), we can express

the aggregate demand as

k

(2) Ft(t) = Ft-k(t) + E 6 t-k+i(t)
i=1

where Ftk(t) is the initial forecast for demand in t made k months

ago. The k-month forecast error is given by

k

Ft(t) - Ft-k(t) = E &t-k+i(t)
i=l

k k-1
and has zero mean and variance equal to E a2(k-i) = E o2 (j).

i=1 j=o

Thus, the forecast not only is unbiased, but also improves over

time.

We assume that the demand process, D(t) = Ft(t), is stationary

with E [D(t)] = D, and Var [D(t)] = D for all t. (We will use D(t)

and Ft(t) interchangeably to denote aggregate demand in month t.)

From (2) we now can compute the variance of Ftk(t):

k-1
Var [Ft-k(t)] = -D E a2(j)

j=o

Thus, the variance of the initial forecast depends upon the forecast

horizon length k. The longer is the forecast horizon, the smaller

is the forecast variance; presumably, for a longer forecast horizon,

there is less information available on aggregate demand and there is

more likelihood to use D as the forecast.
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Production Smoo'thing for One Stage

We now develop a production smoothing model for one production

stage. We assume that the production stage produces one family and

produces it to stock, i.e., a finished goods inventory. We use a

production smoothing model to set an aggregate production rate (e.g.

aggregate starts per month) for the family for each month. To set

the actual production starts we must disaggregate the aggregate

production plan according to the net requirements for individual

items.

To smooth production, we must maintain an inventory stock since

the aggregate production rate, being a smoothed average of the

aggregate demand rate, will deviate from the aggregate demand rate

over short time intervals. To determine the aggregate inventory

requirements we need to analyze the behavior of the production

smoothing model. In particular, we expect that the more we smooth

production, the greater will be the stock requirements. But since

customer service is determined by the stocks for individual items,

we also need to understand how the aggregate plan is to be

disaggregated.

The production smoothing model is given by

(3) P(t+l) = n+ [Ft(t+l,t+t+n) - P(t+l,t+t-1) - I(t) + SS]

where t denotes the current time period, and

P(t+i) = the planned aggregate production started at time t+i-I

to be completed by time t + i;

x = the lead time for production;
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rule in terms of its control parameters, n and SS, and will try to

show that it is both an interesting and reasonable rule to consider.

In this respect, it is very-similar to the study by Cruickshanks et

al (1984). First, it is simple and does permit analysis of its

behavior. In particular, we will see that under suitable

assumptions we obtain the disaggregation implications fro this rule.

Second, there is evidence that linear rules of this form are optimal

or near optimal for not only quadratic cost functions but also for

more general cost functions (Schneeweiss 1971, 1974). Third, while

the rule may not be the optimal form, we nevertheless can find the

optimal parameter choice for this form.

We need to be careful to express all variables in (3) in common

units. In particular, the units need be aggregate measures of

production capacity. For instance, for the manufacture of

integrated circuits it might be natural to express planned

production in wafer starts. However, the actual inventory is likely

to be known in terms of chips for individual items. Thus, we need

translate, using yield factors, this actual inventory into the

equivalent wafer starts for the items and then aggregate over all

items in the family. Similarly, for the assembly of electronic

equipment, we might express planned production in terms of required

assembly hours; for a parts fabrication facility, the units might be

machine hours required on the bottleneck facility.

To analyze (3) we use the inventory balance equation,

(4) I(t) = I(t-1) + P(t) - D(t)

where P(t) is the actual family production completed at time t and

D(t) is the family demand at time t. We assume that

·9 �----_--1_�_�
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Ft(t+l,t+t+n) = Ft(t+l) + ... + Ft(t++n ) ;

P (t+l,t+1-1) = P (t+l) + ... + P (t+-1) ;

I(t) = aggregate inventory on-hand at start of

time period t;

SS = target safety stock level;

n = window length.

Thus, in period t we set P(t+l), the planned production to be

completed periods later. We assume that the lead time is

deterministic, but that there is uncertainty in the production yield

so that actual production completed at time t+i will deviate from

P(t+t). In (3), the term within the brackets represents the

forecast over the time interval t+l, ... t+.+n minus the cumulative

production planned for completion by time t+X-1 and minus an

inventory adjustment (the difference between the actual and target

inventory). We term the quantity within the brackets to be the net

requirements over the time interval t+t, t+1+1, ... t+l+n. Thus, we

set P(t+t) to be the average of the net requirements over this time

window t+t, ... t+t+n where n is an integer decision variable equal

to the length of the time window. The value of n will determine the

level of production smoothing. The safety stock target, SS, is also

a decision variable that is set to provide acceptable customer

service on all items in the family.

We note that this production smoothing model is a linear rule.

In this respect it is similar to the linear-decision-rule model

developed by Holt et al. (1955,1956). However, our decision rule

differs from that of Holt et al. in that it is not a consequence of

minimizing some cost function. Rather, we just pose this decision
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(5) P(t) = P(t) - (t)

where (t) is a random variable that reflects the yield uncertainty.

We assume that c(t) is independent and identically distributed over

time, has zero mean and has variance ap

Now we use (3) to consider the difference P(t+l) - P(t+1-1):

(6) P(t+l) - P(t+1-1) = n+1 {Ft(t+l+n) + t(t+l,t+l+n-1)

- Ft-l(t) - P(t+1-1)

+ P(t) - I(t) + I(t-1)}

where t(t+l,t+l+n-1) = 6t(t+l) + ... + t(t+t+n-1).

We use (4), (5) and the substitution Ft(t) = D(t) to simplify (6) to

P(t+l) - P(t+1-1) = n+1 {Ft(t+l+n) + t(t,t+±+n-1)

- P(t+t-l) + (t)}

from which we obtain

(7) P(t+.) = i F t(t+l+n) + c(t,t+)+n-1) + (t)}

+ --- (P(t+1-1)}
n+l

Thus, we see that the production smoothing model (3) is equivalent

to (7), which is a simple smoothing equation. Planned production

for time period t+t is a weighted average of the planned production

for the previous time period t+1-1, and the initial forecast for

t+t+n, modified by the change in the cumulative forecast over the

interval (t,t+l+n-1) and by the realized yield deviation for the

production completed in t. The window length n determines the

weights so that 1/(n+l) is the smoothing parameter.

The significance of (7) is not only its interpretation as a

simple smoothing equation, but also its usefulness for

_ __ __�_ �1�� 1_---_·^_-_·1111__11I�-
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characterizing the long-term behavior of this production smoothing

model. From (7), we can show that in steady-state

(8) E[P(t+t)] = D

and

2 2
(9) Var[P(t+l)] = (D + ap) / (2n + 1)

We defer the details of this derivation to the appendix. We can

also use (7) to characterize the production 'step',

[P(t+l) - P(t+-1)], as well as study other cases in which the

demand process is not stationary (e.g., the demand process has a

trend component or a seasonal component).

From (8) and (9) we see that the window length n does not

affect the expected aggregate production rate, but does control the

variability of the aggregate production rate. As we increase n, the

production variance decreases and the aggregate production becomes

smoother. Thus, the choice of n dictates the degree of production

smoothing given by (3).

Aggregate Inventory Behavior

In addition to the aggregate production level, we also want to

understand the behavior of the aggregate inventory level. This is

necessary tQ see the effect of the production smoothing on customer

service for individual items. To do this, we focus on I(t+l): the

planned aggregate inventory level at time t+1. At time t, I(t+l) is

defined as the current inventory at time t, plus planned production

to be completed over t+l, ... t+X, minus the cumulative demand

forecast through t+X:
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(10) I(t+l) = I(t) + P(t+l,t+l) - Ft(t+l,t+l).

By using (3) to substitute for P(t+l,t+x-1) in (10), we obtain

(11) I(t+l) = SS + Ft(t+l+l,t+l+n) - nP(t+) .

From (11), we see that
(12) E[I(t+.)] = SS

In addition, we can show its variance (after substantial algebra)

to be

n 2 2 2
(13) Var[I(t+)] = 2n+ ( + )

n-1 2 +j
n+l 2

j=0 i=0

This characterization of the planned aggregate inventory level will

be useful in determining the customer service level for a

specification of the target safety stock SS and of the smoothing

parameter n. While the expectation of planned inventory level

equals the target safety stock, its variance depends on the window

length n. From (13) we argue that the variance of the planned

inventory level essentially increases linearly with the window

length n, since the second term in (13) is dominated by the first

(linear) term.

Disaggregation and Customer Service

To determine the proper choice for the target safety stock SS,

we need to know how the aggregate inventory is spread over the

individual items or equivalently, how the aggregate production level

· _··�� _______�__�I_�_�_
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is disaggregated into item production. We must set the production

starts for each item so that the planned production level for the

family is achieved; that is,

E P(k,t+X) = P(t+l)
k

where P(t+l) is given by (3) and P(k,t+l) is the production level

for item k started at time t for completion by time t+1. This

implies that the planned inventory level for item k at time t+X,

call it I(k,t+l), must satisfy

(14) E I(k,t+l) = I(t+I)
k

where I(t+1) is given by (10).

To characterize the service level for item k in period t+1 for

a particular disaggregation, we can express its planned inventory as

I(k,t+t) = I(k,t) + ~ [P(k,t+i) - Ft(k,t+i)]
i=1

where I(k,t) is current inventory and Ft(k,t+i) is the current

demand forecast for month t+i . The actual inventory at time t+t

will be

I(k,t+t) = I(k,t) + E [P(k,t+i) - D(k,t+i)]
i=l

where for time t+i, P(k,t+i) is actual production and D(k,t+i) is

demand, and where negative inventory denotes a backorder. We assume

that the difference I(k,t+l) - I(k,t+l), which reflects the yield

uncertainty and cumulative forecast error for k over the lead time

of time periods, is a normally-distributed random variable with

2
zero mean and a variance ck. Consequently, we can use zk =

I(k,t+t) / k to indicate the service level for k at time t+t from



14

a particular disaggregation (14). zk denotes the number of standard

deviations of safety stock protection provided by I(k,t+l).

Now suppose we set P(kit+1), or equivalently I(k,t+2), so that

the likelihood of stockout in period t+1 is the same for all items.

Thus, we want zk = z for all items k,lor equivalently

(15) I(k,t+l) = z rk

for all k. By substituting (15) into (14), we find that

z = I(t+t) / E rk 
k

Thus, we can use (12) and (13) to characterize the service level (as

specified by z) for a choice of SS and n. We see that z is a random

variable, and thus the service level will vary from month to month.

The expected service level depends only on the safety stock target

SS. But the amount of variability in the service level depends on

the smoothing parameter n; the more that we smooth production, the

greater will be the variability in service from month to month.

We have assumed here that it will always be possible to

disaggregate production to satisfy (15). This is not guaranteed.

Indeed, if current inventories are 'out-of-balance', the

simultaneous satisfaction of (14) and (15) may imply negative

production (P(k,t+l) < 0) for items with large current inventories.

Obviously, this is not possible. However, we expect that the

assumption of 'balanced' inventories will be appropriate for the

family of items that we produce to stock; we will test this

assumption with the simulation exercise. We note that a similar

assumption of 'balanced' inventories is made by Eppen and Schrage

(1981) and by Federgruen and Zipkin (1984) in their studies on

centralized ordering policies for multilocation distribution
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systems.

Two-Stage Models

In this section we extend the one-stage model to a production

operation with two stages, e.g. fabrication and assembly. For such

an operation we may have not only a finished goods inventory, but

also an intermediate inventory between the two stages (see Figure

1). The intermediate inventory permits one to decouple, at least

partially, the production of the upstream stage (parts fabrication)

from that for the downstream stage (assembly). Thus, the production.

smoothing model needs to set aggregate production rates for both

stages. In addition, we will need to characterize how each stage

disaggregates the aggregate production plan.

We mention three approaches for production smoothing for two

stages. The first approach is to view the two stages as one stage

without an intermediate inventory, and then to use the previous

model; we will not discuss this approach any further, but will

include it in the simulation study of the various models. The

second and third approach use the intermediate inventory to permit

some decoupling of the stages. They differ in terms of how the

upstream stage smooths its production. In the second model,

production smoothing by the upstream stage relies on information

about the intermediate inventory, and on forecasts of the production

level for the downstream stage. In the third model, production

smoothing by the upstream stage is based on the echelon inventory.

The notation will be very similar to that for the one-stage
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model. We let 1 and 2 denote the lead times for the upstream and

downstream stage, respectively, and define 1t= 1+1 2. Then at time t

we want to find for the upstream stage Q(t+t1 ), planned production

that starts in t to be completed by t+1 1, and for the downstream

stage P(t+12), planned production that starts in t to be completed

by t+t 2. We use J(t+1l) to denote the planned intermediate

inventory, and I(t+1 2) to denote the planned finished-goods

inventory, at the times t+1 1 and t+1 2, respectively.

We present these models for the simplest two-stage production

environment. We assume that there is a one-to-one mapping between

items produced in the upstream stage and items produced by the

downstream stage. That is, each item from the upstream stage

receives further processing at the downstream stage and results in a

unique end item. Furthermore, we assume that the production units

are defined so that one unit of downstream production starts

requires as input one unit of completed upstream production.

Although we present the models for this setting, we can extend it to

more complex environments, such as when the downstream stage

performs assembly of sets of components produced by the upstream

stage.

To extend the one-stage model to a two-stage system requires

the specification and analysis of a production smoothing rule for

each stage. We desire to do this in a way that permits one to see

how the planning at one stage impacts the other stage, and how the

intermediate inventory can be used to decouple the stages. We

discuss first the downstream stage, since it will be simpler.



17

Downstream Stage

The production smoothing model for the downstream stage is

identical to that given for a one-stage system. Namely, we set the

planned production level at time t for completion by time t+. 2 by

the rule

(16) P(t+t 2) = n+ {(Ft(t+l,t+1 2+n) - P(t+l,t+1 2-1)

- I(t) + 2} ,

where n is the window length and SS 2 is the finished-goods safety-

stock target. Thus, as in (3) we set the planned production to

equal the average of the net requirements over the time window t+1 2 ,

... t+ 2 +n. We assume that sufficient component inventory is

available to permit the execution of (16). As a consequence, the

analyses from the previous section of the planned inventory apply

directly to P(t+1 2) given by (16) and to I(t+t 2 ) as implied by (16).

The extension of (3) to the upstream stage is less clear. This

is because the demand on the upstream stage is not independent, but

is set by the production by the downstream stage: P(t+12) is the

demand on the intermediate inventory at time t. Consequently, to

extend (3) we need an appropriate forecast of the planned production

for the downstream stage over the smoothing window for the upstream

stage. We suggest below two approaches.

Upstream Stage: Production to Intermediate Inventory

The first approach is to smooth the upstream production using

an explicit forecast of the downstream production over the smoothing
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window. The production smoothing rule is

(17) Q(t+t 1) = m+1 {Pt(t+X 2 +l,t+X+m) - Q(t+l,t+t 1-1)

- J(t) + SS 1}

where m is the window length, Pt(t+t 2+1,t+X+m) = Pt(t+1 2+1) + ... +

Pt(t+g+m) and Pt(t+1 2+i) is a forecast made at time t of P(t+1 2+i)

for i=l, ... t1 +m. J(t) denotes the actual intermediate inventory

at time t, net of the downstream production started at time t; that

is,

(18) J(t) = J(t-1) + Q(t) - P(t+X2)

and SS1 is the target safety stock for the intermediate inventory.

We note here that P(t+12+i) will be the demand on the upstream stage

at time t+i. Hence, Pt(t+1 2+1,t+l+m) denotes the demand forecast

for the upstream stage over the time interval t+1, ... t+ll+m.

Using (18) we can rewrite (17) as a simple smoothing equation

that is analogous to (7):

(19) Q(t+ 1l) = m+l {Pt(t+l+m) + [Pt(t+12,t+l+m-1)

- Pt-l(t+1 2 ,t++m-l)] + l(t) +

_m_ {Q(t+1-1) )

where el(t) = Q(t) - Q(t) . Thus, planned production for the

upstream stage is a weighted average of the production level from

the previous period and the initial forecast of cumulative net

requirements in time t+l+m.

To specify Pt(t+1 2+i), we note that (16) is equivalent to a

simple smoothing equation
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(20) P(t+1 2) = n+1 {Ft(t+1 2+n) + t(t,t+X 2+n-1) + 2(t)}

+ { (P(t+12-1))

where St( ) is the forecast revision as defined before, and

C2(t) = P(t) - P(t). Now the forecast of P(t+12 +1) made at time t

should be

1 n
(21) Pt(t+X 2+t) = (---) Ft(t+1 2+n+1) + (n+1) P(t+12 )

since the expected forecast revision is zero and the expected-yield

variation is zero. Similarly we can use (21) to forecast P(t+12+i)

for i=2, ... R1+m:

(22) Pt(t+1 2+2) = (n;) Ft(t+t 2+n+2) + ( 1) Pt(t+12+1)

1 n 
Pt(t+l+m) = (-) Ft(t+l+m+n) + ( -) Pt(t+I +m - l )

In spite of the fact that the smoothing equations for the upstream

stage [(17) and (19)] have the same form as those for a single-stage

system [(3) and (7)], we have not analyzed fully the random variable

for planned production Q(t+1 1). This is because the planned

upstream production Q(t+l1 ) is a smoothed average of the downstream

planned production, which itself is a smoothed average of customer

demand. We have not been able to 'decode' this double smoothing in

a way to find the variance of Q(t+t1 ), or any other measure of

production smoothing. (However, it is easy to show that E[Q(t+ 1] =

D.) We will need to use simulation to see exactly the behavior of

this smoothing model. Despite this lack of an analytic result, we

do expect that the behavior of this smoothing model for the upstream
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stage will closely parallel that predicted for a single-stage

system. In particular, due to the double smoothing, we expect that

the variability of the upstream production will depend upon the sum

of the window lengths, m+n.

The planned intermediate inventory at time t+. 1 is given by

J(t+ 1) = J(t) + Q(t+l,t+l 1) - Pt(t+1 2 +l,t+t),

which can be rewritten as

J(t+ll) = SS 1 + Pt(t+1+l,t+l+m) - mQ(t+t 1 )

by substituting from (17) for Q(t+l,t+t1 -l). Again, although it is

clear that E[J(t+t 1)] = SS 1, we have not been able to characterize

analytically the variability in the planned intermediate inventory.

Nevertheless, we need the planned intermediate inventory to specify

how the upstream aggregate planned production Q(t+ 1 ) is

disaggregated into planned production for individual items, e.g.

Q(k,t+t 1) for item k.

For this model we disaggregate the upstream production to try

to equalize the service levels from the intermediate inventories

across all items. To do this, we set Q(k,t+t 1 ) such that

£ Q(k,t+tl) = Q(t+11), and such that the planned intermediate
k
inventory for item k, J(k,t+ll), provides the same level of

protection against stockout for all k. Define aklto be the

variance of the deviation between the planned intermediate inventory

and the actual intermediate inventory at time t+1 1:
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~2
akl1= Var[J(k,t+l1) - J(k,t+l 1)]

1
= Var[ E {Q(k,t+i) - Q(k,t+i)

i=l

Pt(k,t+1 2 +i) + P(k,t+1 2 +i)}]

~2 
Then, for given &ki we disaggregate Q(t+l1) so that the planned

intermediate inventory for k is given by

J(k,t+tl) = z kl'

where z is

z = J(t+t 1) / E kl'
k

Unfortunately, though, we are not able to determine analytically

^2
ak1' since we cannot determine the forecast error for downstream

production, Var[Pt(k,t+12+i) - P(k,t+1 2+i)]. Hence, we would either

need to estimate it empirically or substitute the known forecast

error for demand, Var[Ft(k,t+1 2+i) - D(k,t+t 2+i)], for the forecast

error for downstream production.

Upstream Stage: Production to Echelon Inventory

The second approach for smoothing the upstream production is

based on the notion of echelon inventory. The echelon inventory for

a production stage equals all inventory, including work-in-process,

that is downstream of the stage. In a two-stage system, the echelon

inventory for the upstream stage is the intermediate inventory, plus

the work-in-process within the downstream stage, plus the finished-
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goods inventory. Each period this echelon inventory is increased by

the amount of production completed by the upstream stage, and is

decreased by the amount of customer demand. We set the planned

production level for the upstream stage to be the average of the net

requirements on the echelon inventory over the interval t+l,t+1+1,

... t+l+m, where m is the window length:

(23) Q(t+ 1 ) = l {Ft(t+l,t+t+m) - P(t+l,t+t 2)

- Q(t+l,t+l1-1) - I(t) + SS 2

- J(t) + SS1 }

To explain the bracketed term, note that (I(t) - SS 2) + P(t+l,t+1 2)

+ (J(t) - SS 1) is the current echelon inventory (exclusive of safety

stocks), and Q(t+l,t+1 1-1) is the planned input to the echelon

inventory over (t+l,t+1 1 -1). The sum of the current echelon

inventory and the planned input over (t+l,t+1 1-l) should cover

customer demand over (t+l,t+1 1+1 2-l) since 2 is the lead time for

the downstream stage. Production at the upstream stage that is

started at t will be input into echelon inventory at time.t+ 1 . but

will not be available for customer demand until t+1 1+1 2 = t+R. Now,

since Ft(t+l,t+l+m) = Ft(t+l,t+1-1) + Ft(t+l,t+l+m), we see that the

bracketed term in (23) corresponds to the net requirements on the

echelon inventory over (t+l,t+l+m). As we have done previously, we

set planned production to be the average of the net requirements on

the appropriate inventory over the chosen smoothing window.

The analysis of (23) is identical to that for (3) for the one-

stage system where we replace n by m, P(t+l) by Q(t+t 1), SS by

(SS1+SS2) and I(t) by ((t) + P(t+l,t+1 2) + J(t)). In particular,

�_ __
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we can rewrite (23) as

1
Q(t+£ 1) = m+l {Ft(t+t+m) + t(t,t+l+m-1)

m
+ el(t) + 2(t)} + (m Q(t+l1 -1))

from which we can obtain

E[Q(t+l1) ] D

and

Var[Q(t+l1 )] = ( D + + ) / (2m+1)

2 2
where p = Var[e2 (t) = P(t) - P(t)] and aQ = Var[e l(t) = Q(t) -

Q(t)] . Thus, as expected, the aggregate upstream production rate

equals, on average, the demand rate, while its variance is inversely

proportional to the window length for smoothing.

While the characterization of the planned intermediate

inventory J(t+l1) is not immediate for this model, it is for the

planned echelon inventory at time t+R 1, I(t+l 1) + P(t+Z1 +l,t+t) 

J(t+t1 ). In fact, the analysis for the planned echelon inventory

parallels that for the planned inventory for the one-stage system.

(10) - (13). To see this, we write the counterpart to (10) to

define the planned echelon inventory:

(24) I(t+l 1) + P(t+ll+l,t+l) + J(t+t 1) = I(t) + P(t+l,t+z 2) + J(t)

+ Q(t+l,t+l 1) - Ft(t+lt.11)

Then, we use (23) to substitute for Q(t+l,t+ 1-1) in (24) to obtain

I(t+ + P(t) + P(t+l+l,t+) + J(t+) =SS 1 + SS 2 + Ft(t+tl+l,t+l-m)

- m Q(t+ 1)

From this, we find that the mean echelon inventory equals SS1 + SS2
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+ 12D, while its variance is given by

m2 2 2 2
2m+l ( + + Q)

12+m- I +j
m j+l 2 It1+j

+ E [1 - 2(m_ ) ] [aD E- v 2 (i)]
j=om+1 i=O

To disaggregate Q(t+1 1) we need to find the planned production for

each item k, Q(k,t+l1 ) such that

E Q(k,t+l ) = Q(t+ 1)

We can do this in a similar manner to that for the one-stage system.

Namely, we set Q(k,t+ 1) so that the planned echelon safety stock

for item k, defined as I(k,t+t1) + P(k,t+ 1l+l,t+l) + J(k,t+1 1 ) -

I1D(k), equals Zkl where z is given by

I(t 1) E P(t+ 1 +l,t+) + J(t+t D

E 0 kl

and kl equals the variance of

l 1
[Q(k,t+i) - Q(k,t+i)] + [Ft(k,t+i) - D(k,t+i)]

i=l

In words, kl is the variance of the deviation between the planned

echelon inventory for time t+t 1 and the actual echelon inventory for

time t+t1 for item k. Thus, this disaggregation equalizes the

planned echelon safety stocks for all items, where we have

normalized by the standard deviation of the cumulative upstream

yield uncertainty and forecast error over the lead time t 1. The

rationale for this disaggregation scheme is to try to spread the

planned echelon safety stock (i.e. either in the intermediate or
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finished-goods inventory), 'evenly' over the items. By 'evenly!, we

intend for each item's echelon safety stock to provide the same

level of protection against uncertainty both from the forecast

errors and from yield uncertainty in the upstream stage over its

lead time 1.

As before, the measure of the lerel of protection from the

disaggregation, z, is a random variable. Its mean is given by

(SS 1 +SS2 ) / a akl, while its variance is directly proportional to

(25).

It will be convenient to term the first (produce to

intermediate inventory) approach as the decoupled model and to term

the second (produce to echelon inventory) as the nested model. In

the first case, the intermediate inventory decouples the stages.

The upstream stage produces to this inventory based on a forecast of

downstream usage, while the downstream stage draws its raw materials

from this inventory. In the second case, both the upstream and

downstream stages produce to the same forecast, namely the demand

forecast. But the stages are 'nested' in that the upstream stage

produces to the echelon inventory which contains the downstream

stage and its inventory.

COMPUTATIONAL STUDY

To examine the proposed production smoothing models. we

conducted a computational study based on data gathered on the set of

items produced in one manufacturing facility. The purpose of the

computational study is threefold: to understand how much inventory
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is needed in a make-to-stock system and where that inventory should

be positioned; to compare the effectiveness of the different

production smoothing models for a two-stage system; and to.

determine, via a comparison to a simulation, the accuracy of the

approximate analyses of these smoothing models. We first describe

the test data, then the simulation program that we have developed,

and finally the computational results.

Test Scenario

To test the production smoothing models we abstracted a test

scenario based on data gathered from a manufacturing operation. For

the results given here, we have disguised this data to protect the

identity of the manufacturing firm. However, the reported results

are representative of the results obtained using the actual data.

In Table I we give the mean demand rate (units per month) and

its standard deviation for the family of items. Of the 38 items in

this family, we consider only 25 as candidates for the make-to-stock

system. We exclude all items that have a start rate of less than

200 units per month, since it would be too risky to plan to stock

these low-demand items.

We assume that there are two production stages and that each

item requires processing from both stages. The lead time for the

first stage is three months ( 1=3) and is one month for the second

stage ( 2 =1). The first stage processes each item in a lot of

exactly 500 units. The second stage can process lots of any size.

We will find it convenient to express the simulation results in

�·1_ __1___1__·_1_11_1_____�-___-·----�
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terms of the lots for the

For the sample of 25

per month (500 units/lot)

demand aD is 28.5 lots per

For the test scenario

unbiased, and that for eac

revision step is given by

a2(o) = 2(1) 

a2(2)

a2(3)

cr2(4) = 2(5) =

acr2 ( j )

upstream stage (500 units/lot).

items, the mean monthly demand is 81 lots

and the standard deviation of aggregate

month ( = 811).

we assume that the forecast process is

h item k, the variance of the forecast

2
.1 QD

2
.13 D

.2 oD

.23 aD

0 for j > 5.

Thus, any forecast for 6 or more months ahead equals the mean

monthly demand, and is not revised until there is 5 or less months

to go.

We assume that there is no uncertainty in the production yield

in each stage. There are two reasons for this. First, we had no

data from which to estimate the parameters of the yield uncertainty.

Second, we had observed in an earlier study of a comparable

production operation that the uncertainty in the forecast errors

dominated that in the yield realization. Hence, we hope that by

including only the uncertainty in the forecast errors we will

capture the primary behavior of the smoothing models. Nevertheless,

given information on yield uncertainty, we could easily incorporate

this into our study.
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We can find ok , the variance of the cumulative forecast error

for item k over a given lead time 1, from the above specification of

the variance of the forecast revision steps and from the knowledge

of D for item k (Table 1). For instance, if t=3 then

2 2 2 2 2 2 2
ak 2 a (0) + ( (0) + (1)) + a () r(2))= .63a D

For later reference, we note that the sum over the 25 make-to-stock

items of the standard deviations of the cumulative forecast errors,

E ak' is 25 lots when t=1 month, 63 lots when =3 months, and 86
k

lots when =4 months.

Simulation Program

We have written in PL-1 a program to simulate the production

planning process for a two-stage production system. The simulation

is a discrete-time simulation where the time unit is one month.

Each month the simulation generates customer demand and a demand

forecast for the next twelve months for each item. The end

inventories for the items are increased by completed downstream

production and are depleted by the demand amount. Backorders are

created when insufficient inventories exist. The simulation then

applies a specified production smoothing model [e.g. (3)] and its

disaggregation to determine the production starts for the downstream

stage. The intermediate inventories for the items are increased by

completed upstream production and are depleted by usage from the

production starts by the downstream stage. Note that the

intermediate inventory cannot have backorders; rather, if

insufficient inventory exists, then the downstream production starts

___1__1�1__�^____11_�l�_l_-__--�
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need to be reduced. Finally, the simulation then applies a

specified production smoothing model [e.g. (17)] and its

disaggregation to determine-the production starts for the upstream

stage. This process is then repeated each month for the run length

of the simulation. Note that, in effect, the simulation acts as if

the events, customer demand, production starts, and completed

production, occur at the start (or end) of every month.

For our tests the simulation is run for 1000 months where the

first 40 months are for initialization and various statistics are

collected over the remaining 960 months. The simulation relies on a

common demand and forecast time series in order to increase the

comparability of simulation runs for different smoothing models.

Thus, any differences in performance between two simulation runs

will be due to the smoothing models and not due to any differences

in the realization of the demand or forecast process. To generate

the demand and forecast time series, the forecast revision process

obtains Ft(s) as a lognormal random variable with mean Ftl(s) and

with variance 2 (s-t) [see (1)].

In the previous section we develop the disaggregation procedure

with no restrictions on the sign of the production outcome. Indeed,

this procedure may suggest the impossible, namely negative

production for an item with an excessively high inventory. The

simulation does not permit negative production. Rather, if the

disaggregation results in this outcome for a particular item, then

the production starts for that item are set to zero and the

disaggregation procedure is repeated for the remaining items.

Similarly, the disaggregation procedure assumes that sufficient
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raw material is available to make the desired production starts.

For the upstream stage, the simulation retains this assumption.

However, for the downstream stage, the simulation will not start

more production of a particular item than is available in its

intermediate inventory (i.e. we do not permit backordering on the

intermediate inventory). Rather, if the desired production for an

item exceeds the available raw material, we set its production equal

to the raw material level and then repeat the disaggregation

procedure for the remaining items (after we reduce the planned

aggregate production by the amount preset for the excluded item).

For the simulation we impose a lot size of 500 units for all

items for the upstream stage. Thus, for each item the monthly

production starts must be a multiple of 500 units. To accomplish

this we have to modify the disaggregation procedure to reflect this

restriction. The modification is to compute the desired number of

units to start, divide by 500 to convert to lots, and then round to

the nearest integer. We assume no such restriction for the

downstream stage, although we could impose a fixed lot size, if

appropriate.

The simulation also has the capability to limit the aggregate

production for each stage. For instance, the upstream stage might

not be capable of starting more than 90 lots per month. In this

case, we would modify the production smoothing model to set

production starts equal to the minimum of the desired start rate

from the model and the capacity limit, say 90 lots. However. in the

computational work that we report, we do not use this capability,

but assume that there are no limits to the production at each stage.
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The disaggregation of upstream production for the decoupled

(produce to intermediate inventory) approach requires an item

forecast of downstream production. We generate this forecast via an

item-level version of (21) - (22), with one modification. We

replace the actual production starts for item k, P(k, t+1t2), in (21)

by the amount that would be started if there were no shortages in

the intermediate inventory. This modification is necessary because

stockouts in the intermediate inventory perturb the actual

production starts from their desired level; hence, the actual_

production starts may not be an accurate reflection of future

production by the downstream stage.

Computational Results

In this section we present and discuss our computational work.

We do this in two parts. First, we consider the application of a

one-stage model and study its behavior on the test scenario.

Second, we consider the two versions of the two-stage model and

compare them against each other and versus the one-stage model for

the test scenario.

To apply the one-stage model to the test scenario, we assume a

make-to-stock system with a finished-goods inventory but with no

intermediate inventory. In effect, we combine the two stages in the

test scenario into one stage with a production lead time = 4

months. Each month we use (3) to set the aggregate production start

rate, which is disaggregated based on the finished-good inventories

via (14)-(15).
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We used the simulation to compare the "actual" behavior (as

found from the simulation) of the one-stage model with the predicted

behavior from our analysis of the one-stage model, e.g. (9), (13).

We report our results in Table 2. We have run the simulation for

window lengths n=0,1,2, ... 6 and for safety stock targets of SS = 80,

120 and 150 lots (recall that ak = 86 lots for = 4 months). To

show the consequences from production smoothing, we report the

standard deviations of aggregate production P(t) and of the actual

aggregate inventory position I(t). As a measure of service we report

the fill rate, which equals the fraction of demand that is satisfied

by inventory without any delay.

From the simulation results in this table we can see how the

two decision parameters, the window length and the safety stock

target, affect the reported performance measures. Namely, the

window length essentially determines the measures of production

smoothing [the standard deviations of P(t) and I(t)], while the

safety stock target determines the fill rate. This is consistent

with the analysis of the production smoothing model. Furthermore.

the analytic results (9), (13) are reasonably accurate predictions

of the actual (simulated) values. 1 This indicates that the

approximations made by the analysis (i.e. ignoring lot-sizing. and

assuming that inventories remain balanced so that the proposed

disaggregation is always feasible) do not give significant errors in

this test scenario.

Finally, from Table 2 we see the implications of a make-to-

stock system for this family of items. The average production

starts needed for the sample of items in the test scenario is 81



33

lots per month. We see that maintaining a finished-goods inventory

of 80 lots (about one month of demand), on average, will result in a

90% fill rate. Increasing this safety stock by 50% to 120 lots

improves service to a 95% fill rate. To get to a 98% fill rate

requires an investment in another 30 lots. The choice of window

length for the production smoothing mdel dictates the extent of

production smoothing. With no smoothing (n=0), the monthly

production start rate, while equal to 81 lots on average, has a

standard deviation of nearly 30 lots. Thus, we expect production

starts to exceed 120 lots 16% of the time, and similarly to fall

below 50 lots 16% of the time. Substantial production smoothing is

possible by increasing the window length, but with decreasing

returns. For instance, a window length of n=2, which corresponds to

using a six-month cumulative forecast (6=n+l), reduces, the standard

deviation of production starts by almost 60% over no smoothing. The

cost from increased production smoothing is a slight degradation in

fill rate, and an increased variability in the actual inventory

position.

We examined the two-stage models to see what improvement is

possible by inserting an intermediate inventory between the stages.

To examine the smoothing behavior, we first simulated the two

smoothing models for a fixed safety stock but with varying window

lengths. As with the one-stage system, the smoothing behavior is

effectively independent of the safety stock targets for reasonable

stocking levels. Table 3 gives the results for the decoupled

approach (produce to intermediate inventory) while Table 4 gives the

results for the nested approach (produce-to echelon inventory). In
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both cases the safety stock targets are SS = 100 and SS 2 = 120.

Table 3 shows that for the decoupled approach the production

smoothing behavior for the downstream stage is as predicted and is

independent of the upstream stage. The production behavior for the

upstream stage, for which we do not have an analytic prediction,

reflects the effect of double smoothing: the upstream production is

set by smoothing the forecast of downstream production, which itself

is a smoothed average of the demand forecast. Consequently, for a

fixed window length for the upstream stage there is greater _

smoothing as the downstream window length grows. In contrast with

the one-stage system, the fill rate provided by the safety stocks is.

very dependent on the level of production smoothing. In particular,

the fill rate declines dramatically with longer window lengths (more

smoothing) for the downstream stage. This is due to the fact that

the item forecasts of downstream production used by the upstream

stage become less accurate with longer window lengths for the

downstream stage.2 As a consequence, the intermediate inventory has

frequent stockouts, which ultimately results in poor customer

service.

In Table 4 we see the comparable production smoothing behavior

for the nested approach. Here, the analytic predictions of the

production smoothing for both stages are reasonably accurate.

Furthermore, the level of smoothing for the upstream stage is

totally independent of the downstream stage. And the fill rate is

virtually independent of the choice of smoothing parameters, as we

saw for the one-stage system.

To explore the impact of the safety stock levels, we contrast
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in Table 5 the fill rates from the two approaches for a series of

safety stock choices. Due to the fact that the fill rate for the

decoupled approach is very sensitive to the level of production

smoothing, we simulated a set of cases with substantial smoothing

(m=3, n=2) and another set with limited smoothing (m=l, n=O). We

chose the safety stock levels to provide insight into the proper

positioning of these stocks and to allow comparison with the one-

stage model (Table 2). We did not permit the downstream safety

stock target to be set below 40 lots, since below that we have no

hope of providing reasonable service (recall that ak = 25 lots when

= 1). Based on the results in Table 5, we make the following

observations:

a) For the nested approach (produce to echelon inventory), for a

fixed total safety stock (SS 1+SS 2), the fill rate is relatively

insensitive with slight improvement as more safety stock is

placed downstream.

b) For the coupled approach (produce to intermediate inventory)

the fill rate is very sensitive to both the amount of smoothing

and the positioning of the safety stock. As seen in Table 3,

service again deteriorates with increased smoothing. For a

fixed total safety stock, fill rate improves as more stock is

placed in the intermediate inventory as long as a minimal level

(SS 2 =40) is kept downstream; beyond this minimum, service will

be degraded.

c) In comparing the two approaches, we see that the nested

approach dominates the decoupled approach for the case with

substantial smoothing. When there is limited smoothing,
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however, the decoupled approach is slightly better, provided

the appropriate inventory positioning.

In comparing either of-the approaches for the two-stage model

with the one-stage model, we need more inventory with a two-stage

model than with a one-stage model fora given fill rate. For

instance, a safety stock of 120 lots with the one-stage model, gives

a 95-96% fill rate. The nested approach for the two-stage model

provides a 90%-92% fill rate for the same total safety stock; the

decoupled approach can provide a 94% fill rate but with limited

smoothing. However, it typically will cost less to hold stock in

the intermediate inventory than in the finished-goods inventory.

Thus, a two-stage model can be prefereable to the one-stage model if

the holding cost for the intermediate inventory is low enough

relative to the cost for the finished-goods inventory. For

instance, suppose a 90% fill rate is desired. We can achieve this

with the one-stage model with a finished-goods safety stock of 80

lots for window lengths n=2 and n=3. For comparable smoothing with

the two-stage model, we would need the nested approach with

smoothing windows m=3, n=2 and with intermediate safety stock of 80

lots and a finished-goods safety stock of 40 lots. Thus, the two-

stage model would be preferable if the holding cost for 80 lots of

intermediate inventory is less than that for 40 lots of finished-

goods inventory.
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FOOTNOTES

Note that we report the standard deviation of actual inventory,
rather than that of planned inventory as given by (13). Since the
actual inventory is given by

I(t+Z) = I(t+1) + 2 {P(t+i) - P(t+i)}
i=1

+ {(F (t+i) - D(t+i))
i=l t

we can express its variance in terms of the variance of I(t+i) given
by (13).

2
To disaggregate upstream production for the decoupled approach, we
need an item forecast of downstream production. We obtained this
forecast via an item-level version of (21) - (22). By using an
alternate forecasting method, namely proportioning the aggregate
forecast by the expected demand level, we could avoid the
degradation in fill rate seen in Table 3. However, this alternate
forecast method resulted in system performance that was strictly
dominated by the nested model (Table 4).

ll
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APPENDIX

Derivation of _81_and_91

By recursive substitution for P(t) in (7) we obtain

P(t+t) =)(n+
i=o n+ n+1

({Ft (t-l+.+n)

6t i(t-i,

where we assume that

t-i+I+n-1) + (t-i)}

an infinite time history exists. By assumption

we have that for all

E[Fti (t-i+t+n) + 6ti(t-i,

VarF ti(t-i+t+n) + ti (t-it-i t-i

t-i+t+n-1) +

, t-i+.+n-1)

E(t-i)] = D

2 2
+ C(t-i)] = D + P

Furthermore, we have assumed that these bracketed terms are

independent across time. Thus, we obtain

E[P(t+) = 
i

DVar[P(t+

Var[P(t+l) =

nDi n+1=0

I

i=0

(n1)2 (n)2i (o 2
n l n+i D

= (D + P)

+

i

and

2
+ O'p)

/ (2n +1)
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TABLE 1: DEMAND FOR TEST SAMPLE.
500 demand units equals one lot.

Starred items(*) are excluded from Make-to-Stock System.

DEMAND

ITEM CODE

MEAN STD. DEV

*1 2 2

*2 1 1

*3 18 21

*4 8 16

5 651 961

6 214 362

*7 137 298

*8 11 15

9 325 238

10 237 293

11 483 569

*12 2 6

13 1315 1121

14 1953 1685

15 6729 4793

*16 1 3

17 554 722

*18 48 49

*19 20 30

20 1887 1951

TABLE 1 CONTINUED ON NEXT PAGE.



TABLE 1 (continued)

DEMAND

ITEM CODE

MEAN STD. DEV

21 2193 1908

22 587 604

23 615 728

24 833 665

*25 47 151

*26 8 11

27 1206 1603

28 15691 12278

29 1142 2286

30 336 677

*31 81 242

32 246 660

33 749 890

34 817 1199

35 232 636

36 360 822

37 279 634

38 819 1336

���-- --------



Window
Length

Safety Stock

Predicted
SS= 80 SS = 120 SS = 150 Std.

Deviations

n = 0 29.8, 30.1* 29.8, 30.2 29.1, 30.1, 28.5, 30.8
.92 .96 .98

n = 1 17.4, 34.0 17.3, 34.3 17.2, 34.1, 16.4, 34.9
.91 .96 .98

n = 2 13.1, 37.5 13.1, 37.9 13.0, 37.6, 12.8, 39.4
.90 .96 .97

n = 3 10.8, 40.8 10.8, 41.3 10.8, 41.0, 10.8, 43.6
.90 .95 .97

n = 4 9.3,44.0 9.4, 44.4 9.3,44.0, 9.5, 47.4
.89 .95 .97

n = 5 8.3, 46.8 8.4, 46.9 8.2, 46.7, 8.6, 51.0
.89 .95 .97

n = 6 7.6,49.0 7.6, 49.4 7.4, 49.3, 7.9, 54.4
.89 .94 .97

Predicted fillrate.90 .96 .98

Table 2: Results from One-Stage Model

: x = standard deviation of Pt;
A

y = standard deviation of it; z = fill rate.* x,y

z



Table 3: Production Standard Deviations for Two-
Stage Model: Production to Intermediate
Inventory (SS1 = 100, SS2 = 120)

: x = standard deviation of Qt; y =
standard deviation of Pt; z =
customer fill rate.

** No analytic prediction is currently available.

downstream

window upstream
length n=O n= 1 n=2 n=3 stage

up n stream l prediction
upstream

window length\

m=O 29.2, 27.4,* 24.1, 15.9,. 22.0, 12.4, 19.9, 10.6, **
.99 98 .93 .88

m= 1 17.2, 27.4, 15.9, 15.9, 14.7, 12.4, 13.6, 10.5,
.99 .98 .93 .88

m=2 13.0, 27.4, 12.6, 15.9, 11.9,12.4, 11.2, 10.5,
.99 .97 .92 .87

m=3 10.7, 27.2, 10.7, 15.9, 10.2, 12.4, 9.8, 10.5,
.99 .97 .92 .87

downstream
stage 28.5 16.5 12.8 10.8

prediction

*xy*LZ
zt



Table 4: Production Standard Deviations for Two-Stage Model:
Production to Echelon Inventory (SS1 = 100, SS2 = 120)

x = standard deviation of Qt; y
deviation of Pt.

= standard

Note, the fill rate is .98 for all instances.

downstream

indow
window upstream

engthn= n= 1 n=2 n=3 stage
gup nstream prediction

upstream

window length

m = 0 29.2, 27.4* 29.2, 15.9 29.2, 12.4 29.2, 10.6 28.5

m = 17.2, 27.4 17.2, 15.9 17.2, 12.4 17.2, 10.6 16.5

m = 2 13.1, 27.3 13.1, 15.9 13.1, 12.4 13.1, 10.6 12.8

m=3 10.9, 27.2 10.9,15.9 10.9, 12.4 10.9,10.6 10.8

downstream
stage 28.5 16.5 12.8 10.8

prediction

*xy

II



FILL RATE FILL RATE
(m=3, n=2) (m= 1, n =0)

PRODUCE TO PRODUCE TO PRODUCE TO PRODUCE TO
SS 1 SS 2 ECHELON INTERMEDIATE ECHELON INTERMEDIATE

INVENTORY INVENTORY INVENTORY INVENTORY

40 40 .83 .69 .84 .81

0 80 .83 .66 .85 .39

80 40 .90 .78 .91 .94

40 80 .91 .77 .92 .88

0 120 .91 .74 .92 .43

110 40 .93 .84 .94 .97

70 80 .94 .84 .95 .96

30 120 .94 .82 .95 .87

140 40 .95 .88 .96 .98

100 80 .96 .88 .97 .98

60 120 .96 .87 .97 .97
- _ I

Table 5: Comparison of Fill Rates for Two-Stage Models


