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1. Introduction

Deterministic dynamic/periodic optimization problems arise naturally in

various quantitative disciplines including Computer Science, Economics, and

Operations Research. These periodic models may be applied to long-range

economic planning, workforce scheduling, vehicle routing, machine maintenance,

and a host of industrial applications. In this paper we offer a unifying

framework for dynamic/periodic problems in "terms of dynamic/periodic

languages", and we discuss the complexity of these languages. In particular,

many such languages derived from NP-complete languages can be shown to be

polynomial space (PSPACE) complete. Among these are the dynamic/periodic

variants of the following problems: the 3-satisfiability problem, the 3-

dimensional matching problem, the number partition problem, the hamiltonian

path problem, and the independent set problem. We provide a straightforward

technique for showing how to prove the PSPACE-completeness of these periodic

problems derived from NP-complete problems.

PSPACE may be characterized in a number of different ways. Chandra and

Stockmeyer [CS] and Schaefer [Sc] showed that problems in PSPACE could be

reduced to certain 2 person games. More recently, Papadimitriou [P] showed

that the class PSPACE could be described in terms of certain generalizations

of Markov decision chains, or as he phrased it, "games against nature". Our

approach here is to describe the class PSPACE as those languages for which

there are "periodic certificates".

This interpretation lends itself well to proving that many NP-complete

languages have dynamic/periodic counterparts which are PSPACE-complete.

Moreover, these dynamic/periodic languages arise naturally via periodic

optimization problems.

In addition, Reif R] showed that a number of other dynamic problems are

PSPACE-complete. Although his class is different from the class described

here, his approach is conceptually similar to ours and his proof technique is

similar.

The results in this paper were presented in a preliminary form in [01].

The Outline of This Paper

In Section 2, we review some of the research on various dynamic/periodic

problems. In Section 3 we illustrate how to derive periodic problems from

problems in the class NP.
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In Section 4, we define "dynamic/periodic languages" and prove some

elementary properties of these languages. In Section 5, we prove the PSPACE-

completeness of certain periodic languages derived from NP-complete languages.

These results contrast with those by Graves and Orlin [GO] and by Orlin [02],

[03], 04], [05] and [06] who provide polynomial time recognition algorithms

for various dynamic/periodic languages derived from polynomial time languages,

including the following: linear programming, network flows, coloring interval

graphs, maximum matching, and 2-satisfiability.

In section 7, we discuss the real-time, complexity of dynamic/periodic

optimization problems. Here, periodic optimization problems are viewed as

real-time scheduling problems with known periodic data. We show that there is

a polynomial real-time scheduling algorithm for the periodic optimization

problems presented in Section 3 if and only if P - PSPACE.

In Section 6, we show that the periodic knapsack problem may be solved in

pseudo-polynomial time (i.e., in polynomial time if the data are unary

encoded), and thus it is meaningful to describe other PSPACE problems as

"strongly PSPACE complete", a counterpart to strong NP-completeness as

described by Garey and Johnson [GJ]. Finally, in Section 8, we present some

variations of dynamic/periodic language problems.

2. Some Periodic Optimization Problems

Dynamic/periodic optimization problems occur in a variety of settings.

Below we reference some examples of such optimization problems. The list below

is intended as a sampler and is far from comprehensive.

Cyclic Staffing

Two types of periodic optimization problems arise typically in

employment: shift scheduling and day-off scheduling. Both of these are

surveyed by Baker [B]. Many problems of this type arise in service industries,

and they may be classified according to the following parameters: types of

workshifts allowed, the demand structures, and the types of additional

constraints, possibly imposed by union contracts.

Vehicle Routing

Dantzig, Blattner, and Rao [D] consider the problem of determining an

infinite horizon tour for a tramp steamer so as to maximize its average profit

per day. The tramp steamer is required to travel among a fixed finite set of
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ports and receives a profit Pij each time that it travels from port i to port

j. The above problem, also called the minimum cost-to-time ratio circuit

problem, deals with a transportation problem in which the opportunities for

profit are periodic over time. Efficient algorithms for the tramp steamer

problem have been given by Dantzig et.al [D], Lawler Ll, and Megiddo [M].

Another setting for periodic problems is the area of airplane scheduling

(scheduling vehicles to meet a daily repeating set of demands) as surveyed by

Simpson [Si].

Scheduling Tasks on Processors

Many job shop problems may be formulated in an environment in which the

tasks arrive periodically over time, and the task due-dates also repeat

periodically. Subclasses of these problems have been studied by many authors

including Labetoulle [La], Dhall and Liu [DL], Lawler and Martel [L], and Mok

[Mo].

Continuous Problems

An entire literature exists on periodic problems in control with

applications to many industrial settings,- as described in detail in [Ma].

Furthermore, discrete approximations of these models are, in general, special

cases of the class of periodic languages defined in Section 4.

3. Dynamic/Periodic Languages Derived from Languages in the Class NP

In this section we describe dynamic/periodic languages that may be

considered extensions of languages in the class NP. All of the languages below

can be proved to be PSPACE-hard using the technique illustrated in Section 5.

These problems also serve to motivate the definitions and theorems of Section

4 on dynamic/periodic languages.

Notation

We let Z denote the set of integers. We let 1 denote a row vector each of

whose components has value one. The notation .1 refers to the sup norm.

In general, we will let superscripts denote a time dimension. If

S {sl, . .. , s n} is a finite set of elements then
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S - sP: i [l,,n and p Z).

We interpret the element si as the element si in period p. We will also refer

to sP as the p-th copy of element si. The successor of element sP is s+l and

is denoted SUC(sP). If T c S is a finite subset, then the successor of T is

the subset of S obtained by replacing each element of T by its successor. We

let the successor of T be denoted SUC(T).

Rather than use the cumbersome prefix "dynamic/periodic" throughout this

paper, we will typically use the abbreviation D/P.

BOUNDED D/P INTEGER PROGRAMMING

INPUT: m x n matrices A and B, m-vector d, scalar k.

QUESTION: Is there an infinite sequence {x : i Z} of non-negative

integer n-vectors such that Ixil < k and Axi + Bxi + ! - d for all i Z?

DIP PARTITION

INPUT: n-vectors a and b.

QUESTION: Is there an infinite sequence {xi: i Z} of boolean n-vectors

such that ax + + bx i - d (where d - (la+lb)/2) for all i e Z?

Suppose that U - ul,i,..., Un, n } is a finite set of literals. We say

that a set C of clauses defined on U is periodic if the following property

holds: c C if and only if SUC(c) C. (Here the successor of c is obtained

by replacing each literal of c by its successor in U ). We note that to

specify the input for a periodic set of clauses, it suffices to list those

clauses whose initial literal is in period 1.

D/P SATISFIABILITY

INPUT: A finite set U of literals and a periodic collection C of clauses

defined on U .

QUESTION: Is there a truth assignment for all variables such that C is

satisfied?

One can carry the analogy to NP-complete problems further. For example,

one can define D/P 3-Satisfiability to be special case of D/P Satisfiability

in which each clause has exactly 3 literals.



6

PERIODIC GRAPH THEORETIC LANGUAGES

Let V - {1,...,nl be a finite set of vertices. A set E of edges on is

said to be periodic if it has the following property: (iP,jr) E if and only

if (iP+l,J r +f ) E. (Equivalently, e E iff SUC(e) E.) In addition, there

are a finite number of edges incident to each vertex.

An example of a periodic graph is given in Figure 1. To specify the input

of a periodic graph it suffices to specify those edges whose tail is incident

to a vertex in period 1.

[INSERT FIGURE 1 HERE]

Given the richness of graph theoretic applications, it is not surprising

that periodic graphs are useful descriptors of dynamic/periodic problems. For

several applications of periodic graphs see [GO], 1021 and [05].

Periodic graphs are an infinite extension of time expanded networks.

These networks are well known and have been used, for example, by Ford and

Fulkerson [FF] in their work as dynamic network flows.

PERIODIC HAMILTONIAN PATH

INPUT: A periodic graph G - (V ,E)

QUESTION: Is there a path P in G that passes through each vertex exactly

once?

PERIODIC 3-COLORABILITY

INPUT: A periodic graph G - (V ,E).

QUESTION: Is it possible to color all of the vertices of G with only

three colors such that adjacent vertices have different colors?

PERIODIC INDEPENDENT SET

INPUT: A periodic graph G - (V ,E) and an integer k with 1 < k < IVI.
QUESTION: Is there set 'S c V such that no two vertices in S are

adjacent and such that S n iP: i V - k for all p Z?

D/P 3-DIMENSIONAL MATCHING

A collection of triples M c W x X x Y is called periodic if M has the
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following property: e e M if and only if SUC(e) M.

INPUT: A periodic collection M c W x X x y .

QUESTION: Is there a subset M' c M such that each element of

W u X u Y appears in exactly one element of M'?

THEOREM 1. The following language recognition problems are all PSPACE-hard:

Bounded D/P Integer Programming, D/P Partition, D/P 3-Satisfiability, Periodic

Hamiltonian Path, Periodic 3-Colorability, Periodic Independent Set, and D/P

3-Dimensional Matching. a

We will sketch the proof of Theorem 1 in Section 5. We note that the

first two problems of Theorem 1 are easily shown to be in the class PSPACE.

Without additional conditions it is not clear whether any of the periodic

graph problems listed above or D/P 3-SAT or D/P 3-Dimensional matching is in

class PSPACE.

4. Dynamic Peric tic Languages

In this section we define the class D/P, generalizing several examples of

the previous section. This description parallels one of the methods of

describing the class NP. As such, it is suggestive of the proof technique

given in Section 5. In addition, we show that D/P - PSPACE. For alternate

descriptions of the class PSPACE, see [GJ or [CS] or P].

In the following, the symbol 4 will serve as a delimeter. A k-input

language L is a language for which every element has k-I delimeters. The class

kP refers to the subclass of k-input languages that may be recognized in time

polynomial in the size of the first input (the string occurring prior to the

first delimeter.)

For each language L 2P, let

N(L) - {x: x4y L for some y).

REMARK 1. The class NP is equal to the set of languages such that

· t - N(L) for some L 2P.

The above remark is a well known alternate characterization of the class
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NP, For example, Papadimitriou and Steiglitz [PS] use essentially this

characterization as their definition of the class NP.

We will shortly show that a periodic variation of the generation of NP

from 2P can be used to generate the class PSPACE from the class 3P.

For each language L 3P, let D(L) be the dynamic/periodic language

defined as follows:

{x: there exists on infinite sequence [yi i Z

D(L) ' such that xyiiyi+ l e L for each i Z}.

It is easy to see that the bounded D/P Integer Programming Problem can be

written so that it is of the form D(L). Here the x would stand for the input

and the strings yi would correspond to the solution vectors. We also note that

without boundedness it is unlikely that D/P Integer Programming could be

described in this form. Here the difficulty occurs because the recognition of

the string xyi yi+l must be in time polynomial in xj. (That is how we

defined the class 3P.) Thus we could not allow the sizes of the elements yi

and y+l to be exponentially large in xi.

Suppose L 3P and x e D(L). We say that a certificate for x is a

sequence {yi: i e Z such that xyi4 yi+l L for each i Z. We say that a

certificate (yi) is periodic with period p if yi yi+P for each i Z.

THEOREM 2. Suppose that L e 3P. Then D(L) PSPACE. Moreover, there is a

polynomial function q(.) with the following property: for any x D(L) there

is a periodic certificate (yi) whose period length is at most 2q(lxi).

PROOF. Because L 3P, there is a polynomial p(.) for which the following is

true: if xyjy' L than yl < p(Jxl). Now suppose that x is any string. We

will show how to determine if x D(L) and, if so, construct a periodic

certificate for x using a standard technique in dynamic programming. Let Gx be

a graph whose vertex set V consists of all strings of size less than p(Ixi).

Let the edge set E consist of all edges (u,v) such that xugv L. Then

x D(L) if and only if Gx has a directed circuit. Moreover, the length of the

circuit is at most IVi which is bounded by CP(lxl), where C-1 is the number of

symbols in the alphabet.



Ill

9

If x D(L), then we may sequentially guess the periodic certificate in

polynomial space. Thus D(L) NPSPACE, the class of languages accepted by non-

deterministic turing machines uing a polynomially space bounded tape. Also

NPSPACE - PSPACE, as proved by Savitch [Sal. a

Let D/P be the set of all languages such that - D(L) for some

L e 3P. We also refer to D/P as the set of dynamic/periodic languages.

THEOREM 3. D/P - PSPACE

PROOF. We have already shown that D/P c PSPACE.

Conversely, supose that 2Z is accepted by a polynomially bounded turing machine

M. Let p(.) be the polynomial that bounds the space of M.

Let C denote the set of all possible configurations of M with the

restriction that the space is bounded by p([x[). Let L 3P consist of all

triples

x < n,y > < n2,z> satisfying the following:

(i) nl,n 2 are positive integers less than Cxl.

either (ii) n2 - nl + 1 and z is the configuration that would follow y

in M,

or else (ii') n2 - 1, y is'an accepting (terminal) configuration and z is

the initial configuration.

If x .2, it is apparent that x D(L). Moreover, by (ii) and (ii'), any

periodic certificate for x with respect to D(L) corresponds to the sequence of

steps taken by the turing machine M. Thus . - D(L). o

5. PSPACE-Completeness Proofs

The description of PSPACE in terms of dynamic/periodic language suggests

a range of problems that are candidates for the class PSPACE-complete. The

obvious first candidate is D/P Satisfiability. Unfortunately, the language as

defined is not necessarily in the class D/P or the class PSPACE. We remedy

this by adding an additional restriction.

We say that a clause c on U is narrow if any two literals up and vr of
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the clause are such that Ir-pl < 1. (We could relax the condition so that

Jr-pi q(JUJ) for some polynomial q. The relaxed condition would still be

restrictive enough for our purposes.) We say that a set C of clauses is narrow

if each clause is narrow. Similarly, a narrow periodic graph is a periodic

graph G - (V",E) such that each edge (iP,jr) is narrow, i.e., Ir-p 1.

REMARK 2. If we restrict attention to narrow inputs, the following problems

are all in the class D/P: D/P Satisfiability, D/P 3SAT, Periodic 3-

Colorability, Periodic Independent Set and Periodic 3-Dimensional matching.

The proof of Remark 2 is straightforward. Nevertheless it is not always

so straightforward to prove that graph problems on narrow periodic graphs are

in PSPACE. In particular, it is an open question as to whether the hamiltonian

path problem on narrow periodic graphs is in the class PSPACE. The difficulty

here is due to the fact that the property of being "hamiltoniaan" is not

locally defined, whereas each of the other graph problems listed above is a

local property. For example, to determine if S is an independent set of a

narrow periodic graphs, it suffices to verify that S n (VP u VP + 1) is

independent for each p Z, where VP is the set of vertices in period p.

A Scheme for Proving the PSPACE-Completeness of Dynamic/Periodic Problems

Suppose that 1 and B' are dynamic periodic variants of NP-complete

problems L and L'. Furthermore, suppose thatat is known to be PSPACE-complete.

To prove that'I'is PSPACE complete, first transform L into L' in polynomial

time. Then transforam, into A' in polynomial time.

This approach might be viewed (albeit,cynically) as the "greedy approach

to proof generation". If 3SAT is used to prove that 3-Colorability is NP-

complete, then one might optimistically hope that D/P 3SAT could be used to

prove the PSPACE-completeness of periodic 3-Colorability. The remarkable thing

is that this greedy approach to PSPACE-completeness proofs usually works.

Intuitively, the description of PSPACE in terms of periodic certificates

is sufficiently close to the description of NP in terms of certificates.Thus

one can prove Theorem 1 by essentially copying the corresponding NP-

completeness proofs from Garey and Johnson [GJ] while keeping careful track of

the superscripts which denote the period. We will omit all the proofs except
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for D/P Partition, whose proof we include for a different reason.

Of course, such a proof technique is not easily formalized, and such a

mimicking does not exist in general. Moreover, the "mapping" of NP problems

into D/P problems is not clearly defined. For example, the periodic

counterpart to the hamiltonian circuit problem may not be the D/P hamiltonian

path problem. Maybe the correct counterpart is the problem finding a subgraph

S such that when restricted to the vertex set VP u VP + 1, S is a hamiltonian

circuit.

The above definition is the "natural" generalization in terms of the

class D/P, but it is less natural from a graph theoretic point of view. The

D/P generalization of the clique problem is just as unnatural from a graph

theoretic point of view, viz., select a set S such that S n (VP u VP+1) is a

clique for all p c Z.

Although the greedy approach to PSPACE-completeness proofs works usually,

we illustrate below a case in which an added degree of subtlety is required.

In the remainder of this section we show how to transform the D/P knapsack

problem into the D/P partition problem.

KNAPSACK

INPUT: non-negative integer n-vector a, and integer d.

QUESTION: Is there as 0-1 n-vector x such that ax - d?

D/P KNAPSACK

INPUT: non-negative integer n-vectors a and b, and integer d.

QUESTION: Is there an infinite sequence x - {xi: i Z} of 0-1 n-vectors
i+1 i

such that ax + bx - d for all i Z?

The partition problem is the special case of the knapsack problem in which d =

la/2.

The usual polynomial time transformation from the knapsack problem into

the partition problem is straightforward. Let a and d be the input for the

knapsack problem. Let a' be the (n+l)-vector

a,al where a' - 12d-lal, and let d' - la'. Then there is a 0-1 vector x
n+1 r+1

such that ax - d if and only if there is a 0-1 vector x' such that a'x' - d'.

The validity of the "if" direction depends on the following simple

III
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observation: if a'x' d', then '(l-x') - d'. The solution to the knapsack

problem is either x' or l-x' according as xt - 0 or x' - 1.n+1 n+1 
The same argument does not apply to the D/P knapsack problem. Suppose one

were to attempt to transform the D/P knapsack problem with inputs a,b,d into

the D/P partition problem with input (a',b',d') defined as follows:

a' - (a,a;+l), b' - (b,O) and al - 2d-la-lbl, and d' - (la'+lb')/2.

If there is a solution to the D/P knapsack problem then this is a solution to

the D/P partition problem, but the converse is not true. A simple example is

the problem "3xi + 4x + l * 4", which admits no periodic solution.

Nevertheless, the problem 3x + yi + 4x+1 _ 4" does have a periodic

solution.

There are two remedies: change the problem or change the transformation.

The first remedy is actually not frivolous, since it raises a relevant issue.

Perhaps the appropriate formulation of knapsack and D/P knapsack are as

follows.

KNAPSACK II

INPUT: non-negative integer n-vector a, and integer d.

QUESTION: Is there a 0-1 n-vector x such that either ax - d or else

ax - (la-d)?

D/P KNAPSACK II

INPUT: non-negative integer n-vectors a and b, and integer d.

QUESTION: Is there an infinite sequence x - {xi: i Z of 0-1 n-vectors

such that axi+ l + bxi - d or la + lb - d for each i Z?

Knapsack and knapsack II are the same problem. However, D/P knapsack II

is different from D/P knapsack; moreover, the above transformation shows that

D/P Partition is PSPACE-complete assuming that D/P knapsack II is PSPACE-

complete. The point is that the failure of the mimicking of the NP-

completeness proof may be due in part to the ambiguity in how one should

define D/P knapsack.

To transform D/P knapsack into D/P partition is not difficult, but it is

more difficult that the corresponding NP-complete transformation. Let a,b,d be

the input for D/P knapsack. Let a' - ala 2 and let b' - b,bl,b 1l, where,an1'+2
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b' -M + 2d - la - lb

n+l
' - 1n+2

d' - (la'+lb')/2,

where M is greater than la + lb. The reader can verify that the transformation

is correct. The key difference between this transformation and the previous

one is that in any feasible solution to the D/P Partition problem we must have

that xP and for each p Z.
n+1 n+1 n2 n+2

6. A Pseudo-Polynomial Algorithm for the D/P knapsack Optimization Problem

The following rules of thumb appear to be widely applicable. If a

language L is NP-complete then the analogous dynamic/periodic language is

PSPACE complete. If a language L is in the class P, then the analogous

dynamic/periodic language is also in the class P. Examples of dynamic/periodic

problems soluable in polynomial time may be found in Graves and Orlin [GO] and

in Orlin [02], [03], [041, [05] and 06]. Although the above rules of thumb

are not true in general, they do appear to be true for many "natural"

problems.

The above rules of thumb suggest that the D/P knapsack problem should be

soluable in pseudo-polynomial time and should be PSPACE-complete. In fact,

both properties are true. Below we will show how to solve the following

optimization version of the D/P knapsack problem in pseudo-polynomial time.

Minimize p cx
i-l

i i+l
ax + bx d for i - 1,...,p-

Subject to
axp + bx = d

O < xi < 1, xi integer

p > 0 integer.

Here, for convenience, we have written a periodic description in which the

period length p is a variable.

To solve the problem, we create a directed graph G(a,b,c,d) - (V,E),

III
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where V - {O,...,d). Moreover, tere is an edge (i,j) with cost k in E if

there is a 0-1 n-vector x such that ax - , bx - d-i, and cx - k. The graph

may be constructed in O(nd2) steps using a dynamic programming recursion.

THEOREM 4. There is a feasible solution to the D/P knapsack problem if and

only if G(a,b,c,d) has a directed circuit. The optimum solution, if one

exists, is induced by the circuit C in G which minimizes the ratio of the cost

to the number of edges. (This ratio is called the minimum cycle mean).

PROOF. Let C be a directed circuit in G with edges el,...,e p . Let xl,...,xP be

the 0-1 n-vector that induced the edge. Then xl,...,xP in a periodic solution.

Moreover the average cost of the circuit C is pl(cxl+...+cxP), which is the

cycle mean of C. It is easy to verify that the correspondence between circuits

of G and periodic solutions is 1:1.

We note that the minimum cycle mean of G may be determined in O(d3) steps

using an algorithm of Karp [K].

7. Real time scheduling

In the dynamic/periodic optimization problems described in Section 2, the

schedule (certificate) is the crucial output to obtain. Moreover, even if one

had an oracle to solve the language recognition problem, there is no apparent

polynomial algorithm to find the certificate. Indeed, the certificate will

often be exponentially long.

In most of the scheduling problems of Section 2, the schedule is to run

over an infinite horizon. Generally, it is unnecessary or unimportant to

obtain the infinite-horizon schedule in polynomial time. It suffices to

determine the schedule for the first i periods in time polynomial in the data

and in i. We might view such an algorithm as a polynomial real time algorithm.

We will show below that none of the D/P problems of Theorem 1 have

polynomial real time algorithms, unless P - PSPACE. In fact, we will show that

just to determine the certificate for period 1 is PSPACE-hard.

Let L c 3P. The initialization problem for D(L) is as follows.
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INPUT: y D(L)

PROBLEM: Determine xI such that there is a periodic certificate

(xi: i 1 ,...,p).

THEOREM 5. The initialization problem is PSPACE-hard for all of the D/P

problems in Theorem 1.

SKETCH OF PROOF. Modify the proof that D/P satisfiability is PSPACE-complete

as follows. Starting with an arbitrary language A PSPACE and an instance x,

transform x to an instance x' such that x' D/P Satisfiability, and any

certificate (yi) for x' has the following property

(i) The first symbol of yi is 0 for all i if x .

(ii) The first symbol of yi is 1 for all i if x I.

The details of the transformation are detailed but straightforward. Also, if

yi is part of a valid certificate for x', one can determine whether x , and

thus the initialization problem for D/P satisfiability is PSPACE-hard. The

other proofs are analogous.

We note that in our proof that D/P PSPACE, all the PSPACE languages

I- D(L) so constructed are polynomially real time solvable.

8. Extensions

Suppose that L 3P and S,T P, and t Z. One can consider variations

of the language D(L) as follows.

FIXED PERIOD PROBLEM

INPUT: x,t

QUESTION: Is there a periodic certificate (yi: i-l,...,t) for x?

INITIAL CONDITION PROBLEM

INPUT: x,S

QUESTION: Is there a certificate (yi: i Z+) for x such that yl S.
(i.e., xyi+yi + l L for i > 1 and yl S).
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INITIAL AND TERMINAL CONDITION PROBLEM

INPUT: s,S,T

QUESTION: Is there a certificate yl,..,yt such that xtyiyi+l e L

for i 1,...,t-1 and yl ¢ S and yt T.

One may also form the latter problem with a fixed period length. As long as

the period length is not bounded, all of the PSPACE-completeness Theorems of

this paper extend to the above generalizations.

9. Open Problems

In order to prove that the periodic graph problems are in the class

PSPACE, we restricted attention to narrow periodic graphs. It is an

interesting open question as to whether the non-narrow periodic graph problems

are in the class PSPACE. (This seems quite unlikely.) If not, they may form an

interesting class of problems that provably require an exponential amount of

space. Also, the complexity of the periodic hamiltonian path problem on narrow

periodic graphs is of interest. (We know that it is PSPACE-hard.)

On a broader scope, it is of interest to know if there are general

properties that an NP-complete problem may have so as to guarantee that the

corresponding D/P problem is PSPACE-complete. Currently, we have no meta-

theorems concerning these PSPACE-completeness results.
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Figure 1. A subgraph of a (narrow) periodic graph.
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