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ABSTRACT

In this paper we present an optimization model for the Kanban system in a

multi-stage capacitated assembly-tree-structure production setting. We

discuss solution procedures to the problem and address two special cases of

practical interest.
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1. INTRODUCTION

The Kanban system is a multi-stage production scheduling and inventory

control system. It is motivated by the concept of just-in-time production and

aims at reducing the level of inventory to a minimum. Briefly speaking, the

concept of just-in-time production is that materials should flow through the

entire production sequence without being stopped or accumulated in an

intermediate stage. Under this concept, no inventory of any kind is viewed as

an absolute necessity.

Obviously, in many instances inventories are justified because of the

important role they play. For example, cycle stock is carried due to the

trade-off that has to be made between setup cost and inventory holding cost;

and safety stock is accumulated to protect against various uncertainties.

Unfortunately, the basic concepts that justify the existence of inventories

have been abused over the years. Managers very often accept the existence of

setup work without looking into the possibility of reducing it, which could

lead to a down-sized cycle stock. Similarly, instead of improving the

accuracy of forecasts of demand and lead times and ameliorating preventive

maintenance procedures, managers often choose to increase safety stock. In

short, inventory has become more of a cover-up of production problems than of

a solution to them.

The Kanban system, originally designed by Toyota to realize just-in-time

production, is intended to keep a tight control over inventory and force the

hidden problems to surface so that they can be identified and addressed

directly.
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1.1 Summary of the Operating Procedures of the Kanban System

For the purpose of this paper, we present a brief description of how the

Kanban system operates. For more details, the reader is referred to [3, 5, 6,

7, 10]. "Kanban", in the Japanese language, refers to a card or tag. It can

serve as a production, delivery, or purchase order. In the system, items are

put into containers and different types of items are held in different

containers. Once a container is full, a Kanban is attached to it. A Kanban

usually carries the following information: (1) item name, (2) item number ,

(3) description of the item, (4) container type, (5) container capacity, (6)

Kanban identification number, (7) preceding stage, and (8) succeeding stage.

In Figure 1, stage n represents an intermediate stage in a production

setting. It encompases a production process P and a subsequent inventory

point In . The type of production process involved can be fabrication,

subassembly, delivery, or purchase. Using as inputs the items stored in the

inventory point of the immediate predecessor, process P produces its own

items to fill a container and then stores the full container in In with a

Kanban attached to it. When the first piece of a full container in In is

used by the production process of the immediate successor, the Kanban

originally attached to the container is detached and kept aside. At the end

of each time period (for example, at the end of every half-shift), all the

Kanbans detached in In during the time period are collected and sent back to

P . These Kanbans then serve as new production orders for P . Generally

pn uses a first-in-first-out rule to process these orders. Once pn

produces a full container (i.e., P fills an order), the Kanban which

ordered the full container is attached to it and the container is sent to In

11
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Below, we outline four important observations regarding the system.

First, the total number of Kanbans circulating between pn and In is

unchanged over time, unless management interferes to drain Kanbans from, or to

inject more Kanbans into, stage n. Second, the maximum inventory buildup in

I is limited by the number of Kanbans circulating between P and In.

Consequently, by controlling the number of circulating Kanbans and requiring

that every full container have a Kanban attached to it, managers can be

assured that the inventory buildup will not exceed a certain limit. Third,

the movement of Kanbans between pn and I is triggered by the inventory

withdrawal from In by the immediate successor. In other words, Pn will

produce to replenish what has been withdrawn from In by the immediate

successor. Fourth, by circulating Kanbans within every stage, all the stages

in a production setting are chained together. Therefore, the production

schedule of the final stage is transmitted back to all the upstream stages.

Since a detached Kanban automatically becomes a new order, managers need not

issue any other document to trigger an order in an upstream stage. The

upstream stages can actually be self-operated.

Figure 1 depicts a serial production setting. Nevertheless, the reader

can easily observe that the operating procedure, as described above, will also

work with an assembly-type, a distribution-type, or a mixed-type production

setting.

1.2 Purposes of the Paper

The Kanban system, enabling Toyota to drastically cut its inventory

investment, has attracted much attention from production professionals

worldwide. Most research efforts to date have focused on the comparison of

the Kanban system, or the Japanese production methods in general, and the
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Western production methods. Rice and Yoshikawa [8] contrasted Kanban with MRP

(Material Requirements Planning). Schonberger [9] provided nine lessons on

Japanese manufacturing techniques from which Western companies could learn in

order to simplify their production problems. Most recently, Krajewski, King,

Ritzman, and Wong [4] conducted a simulation experiment to identify the

critical technical factors in the Japanese and U.S. manufacturing

environments, represented by Kanban and MRP, respectively. With the exception

of Kimura and Terada [3], efforts have not been made to develop mathematical

models for the Kanban system. In [3], the authors provided several basic

equations for the Kanban system in a multi-stage serial production setting to

show how the fluctuation of final demand influences the fluctuation of

production and inventory volumes at upstream stages. In their work, they

assumed small container size and unlimited production capacity.

The purpose of this paper is two-fold. First, it provides an optimization

model for the Kanban system in a multi-stage assembly production setting. The

model assists managers in determining the number of circulating Kanbans, and

hence the inventory level, at each stage. Contrasting with Kimura and Terada

[3], we make no assumptions on the container size (except for two special

cases in which we make assumption on the relative container size between

stages); in addition, we allow limited production capacity. As a result, our

model should be applicable in more general manufacturing situations. Second,

the paper investigates solution procedures, for the resulting Kanban model,

that will make it usable in practice. To this end, the initial model, which

is nonlinear integer in nature, is transformed into an integer linear

program. The integer linear program presents the following advantages: (1)

it is more tractable than the nonlinear model; and (2) it provides the same

set of feasible solutions and the same set of optimal solutions as the

nonlinear model in terms of the decision variables controlled by managers.
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To the same end, two special cases of practical interest are constructed on

the basis of the relative container size between stages. In one case, the

integer linear program is converted into a mixed integer linear program with

the number of integer variables greatly reduced. In the other case, the

linear programming (LP) technique is used and the relative error due to the LP

approximation is shown to approach zero asymptotically.

2. MODEL DESCRIPTION

The model that we present deals with a multi-stage capacitated assembly-

tree-structure production setting with each stage producing one type of item.

There are N+1 stages in the setting. Let n {0,1,...,N} index the stages

with the understanding that n < n2 if stage n1 succeeds stage n2.

We also denote an item by the index of the stage producing it. The final

stage, stage 0, includes only the final assembly operation P , while every

upstream stage n {1,2,...,N} includes a production process Pn and an

immediately succeeding inventory point In . An example of indexing is

provided in Figure 2. Let t {0,1,...,T} index the time periods with the

understanding that the planning horizon starts at the beginning of period 1

and finishes at the end of period T. For the final stage, a time-phased

production schedule is given and must be met. For each upstream stage, a

production quota for the whole planning horizon is given and the quota is

determined by the effective demand imposed upon the stage. Once an upstream

Pn has reached its production quota, all the detached Kanbans remaining at

pn or to be sent to pn in the future from In stop triggering any further

production and are drained from the system by management at the end of the

planning horizon.

II
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Throughout the paper, we shall use rZi to denote the smallest integer which

is larger than or equal to Z and zJ the largest integer which is smaller than

or equal to Z. Proofs of propositions are omitted whenever they are not

particularly difficult to reproduce.

Parameters

aOn = number of units of item n in a full container; an c

(1,2,...) (n=0O,,...,N). These parameters represent

container capacities.

1tn = production capacity, in terms of the number of full containers of

item n, at pn in period t; 3 {0,1,...} (n1l,...,N;

tll,...,T).

s(n) = immediately succeeding stage of stage n (n=l,...,N).

P(n) = set of immediately preceding stages of stage n (nO,1,...,N).

en,s(n) = number of units of item n which are required to make one unit of

item s(n); en 's(n) £ {1,2,...} (n=l,...,N).

vn = number of full containers of item n available in In at the end

of period 0; V e {0,1,2,...} (n-l,...,N). Note that

each of these full containers has a Kanban attached to it.

Wn number of units of item n remaining in a partially filled

container, whose Kanban has been detached, in I n at the end of

period 0; W£ e {O,1,...,an-1} (n=l,...,N).

X0 production requirement, in terms of the number of full containers
t

of item 0 (i.e., the final product), at stage 0 in period t;

X E 0,1,2,...} (t=l,...,T).t
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n,s(n) s(n) n s(n) n n n
Qn = max { , r(e a /a ) Q - vO - (wO/a)}

= production quota or effective demand, in terms of the number of

full containers of item n, imposed upon stage n for the whole

planning horizon; Q c {0,1,2,...} (n1l,...,N). Q0 is

T
defined as E X 

t=l t

We can define (n,l) {0,1,2,...} and 2.(n,2) C {1,2,...} as

the production lead time and information transmission time, respectively, for

stage n (nml,...,N). The production lead time (n,l) has the

interpretation that the full container of item n put into production in Pn

in period t will be made available in In in period t+L(n,l) for

withdrawal by pS(n) Similarly, the information transmission time (n,2)

has the interpretation that the Kanban detached in In in period t will

begin to serve as a production order in P in period t+t(n,2). Since the

Kanbans detached in In in period t are collected at the end of that period

and then sent back to pn, the information transmission time (n,2), as

used here, must be greater than or equal to one. To lessen the burden of

notation, we shall let (n,l) = 0 and (n,2) = 1 for nl,...,N from now

on. This simplification will have no impact on the results of the paper.

Note that at the beginning of the planning horizon, the initial inventory at

stage n includes Vn full containers and W0n units of item n
sta g n 

(nil,...,N). Also note that both Xt and 2A are allowed to vary

from period to period in order to give management more flexibility in

scheduling final assembly operations and shifting resources.
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Variables

xn = number of detached Kanbans of item n which respectively trigger
t

the- production of a full container in pn in period t

(n=l,...,N; tl,...,T).

yn = number of Kanbans of item n which are detached from their
t

associated containers in In in period t (nl,...,N; t=l,...,T).

Ut = number of detached Kanbans of item n which are available in pn

at the end of period t and have not triggered any production yet

(n=l,...,N; tl,...,T).

Vt = number of full containers of item n which are available in In

at the end of period t (n-l,..,N; tl,...,T).

Wt = number of units of item n remaining in a partially filled

container, whose Kanban has been detached, in In at the end of

period t (n'l,...,N; t=l,...,T).

Un = number of detached Kanbans of item n which are injected into pn

by management at the beginning of the planning horizon

(n-l,...,N).

We shall use the following abbreviations for variables:

(1) <U,V,W,X,Y> stands for all the variables involved, which includes

N(T+l) U-type variables, NT V-type variables, NT W-type variables, NT

X-type variables, and NT Y-type variables.

(2) <Uo,X> stands for N U-type variables with t0 and NT X-type

variables.

(3) <U > stands for <U 2 NU .,U>.

(4) <Xn stands for <tell ,..., v .

We describe mathematically the Kanban system as follows:
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+ yn
t-l

n _
t

- xn-n Ut = 
t t

Yn n_ O
t t

n
t-l t-1

n

Qn _ E Xn
1 3 tT=l

n-l,...,N; tl,...,T

n-l,...,N; tl,...,T

+ a X)/(e 'a n)j

all k P(n)

(2.4) akvk + W + ak > ek'°a XO
t-l t-l t-- t

(2.5) ) Y = F(ens(n)as(n)x( n) 1 )/an

Y o0

(2.6)

(2.7)

Wn + nyn n,s (n) s(n)xs (n)
t 1 t t

1n nonnegative integer

n
t

all k P(O); tl,...,T

nl, ...,N; t-l,...,T

n1l,...,N

n-l,...,N; tl,...,T

n-l,...,N

Constraints (2.1) and (2.2) describe the conservation of flow in pn and

I n , respectively, in terms of Kanbans. Constraints (2.3) indicate that the

number of full containers put into production in Pn in period t is

determined by the available detached Kanbans, production capacity, available

inventories in the previous stages, and remaining production quota.

Constraints (2.4) ensure that the production schedule of the final stage can

be carried out. Constraints (2.5) indicate the number of Kanbans which are

detached from their associated containers in In in period t. Constraints

(2.6) describe the conservation of flow in I for the number of units of

item n remaining in a partially filled container. The nonnegative integrality

of Un is enforced by (2.7). No setup is involved explicitly in (2.1)-

(2.7). If an upstream stage pn needs a setup in a particular period t (due,

(2.1)

(2.2)

(2.3)

Un
t-l

Vn

t-l

Xn mint

n-l,...,N; t-l,...,T
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for example, to the fact that the machinery in pn is scheduled for other

purposes in the previous period, i.e., Bt-1 = 0), the setup is assumed to

be executed externally to the model and the value of 3 is determined

after making allowance for the setup.

Theorem 2.1 If <U,V,W,X,Y> satisfies (2.1)-(2.7), then

t' t' t' t' t(a) Ut, Vt, Wt. Xn, and Yt are nonnegative

integers nl,..,N; t=l,...,T

(b) Y < V + Xn=l,..,N; tl,...,Tt- t-l t

(c) W < n _ 1 nl ,..,N; tl,...,T

0 0 t t t

T

(e) I Xn , Qn nl1,...,N
t=l

The above theorem shows that (2.1)-(2.7) implicitly enforce the following

properties: (a)In addition to U0 (n=l,...,N), the rest of the variables

are also nonnegative integers. (b) The number of Kanbans detached from their

associated containers in In in period t is smaller than or equal to the

number of full containers available in In at the end of period t-l plus the

number of full containers received by In in period t. (c) The number of

units of item n remaining in a partially filled container in In at the end

n
of period t is smaller than the container size a . (d) The number of

Kanbans circulating in each upstream stage is unchanged and equal to U +

Vn during the planning horizon. (e) The production quota imposed on each

upstream stage is met exactly.

We propose the following optimization model, henceforth referred to as

model (M), for the Kanban system:

II



-13-

Minimize

N
(2.8) £ C[U, + Vn + 1 - (l/an)]

n1 0

s.t. (2.1) - (2.7),

where Cn = accumulated value of one full container of item n; in other

words, C represents the sum of material, labor and all other manufacturing

costs which have been accumulated by the system in a full container of item

n. The cost objective (2.8) can be interpreted in two different ways. One

interpretation relates to the value tied up in the inventory. Note that the

expression U+ V represents the number of Kanbans circulating in
0 0

stage n. By considering the possibility of at most an - 1 units of item n

remaining in a partially filled container in In, the expression U +

Vn + 1 - (1/an) represents an upper bound for the inventory buildup,

in terms of the number of full containers of item n, in stage n at any point

in time. As a result, (2.8) represents an upper bound for the value tied up

in the inventory of all upstream stages (i.e., stage 1 through stage N) in the

system at any point in time. This bound is tight in the sense that it can be

attained, in some period of the planning horizon, in some cases as the

following example shows.

0 ,0 O 1 1 1
Example 1: Let N, T3, C 1 6, al1 3, e' 0 l, a0=l, a1 1 a2 1 3

Vo1. 1 , 1 2, X-2 , X8, and Q1-2.

Suppose that one new Kanban is distributed to P at the start of the

planning horizon, i.e., U l. The value given by (2.8) is 16. The

inventory buildup in I 1 at the end of period 2 includes two full containers

and a partially filled container of two units of item 1, whose value is

6(2+2/3) 16. This example shows the tightness of (2.8) as an upper bound.

Note that in the example model (M) requires U to be 1 in the optimal

solution. o
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Clearly, the multiplication of (2.8) by the inventory holding charge over the

planning horizon results in an upper bound for the inventory holding cost over

the same period. The other interpretation of (2.8) focuses on the number of

Kanbans in circulation. A smaller number of Kanbans circulating at a stage

reflects higher operating efficiency at that stage, and hence it is perceived

N
as a desirable goal by workers and management. Now, consider E Cn(Un + Vn)

n=l

instead of (2.8). Since U0 + V represents the number of Kanbans circulating at

stage n, the alternative objective function, which is to be minimized,

reflects a weighted total number of Kanbans circulating in the upstream stages

with Cn being used as the weight for stage n. The choice of Cn follows

naturally from the fact that Cn is the sum of the costs which have been sunk

into a full container up to the conclusion of manufacture at stage n. Note

that the difference between the original objective function (2.8) and the

N
alternative one is I Cn[1 - (l/an)], a constant term. Hence, the two objective

nl

functions are equivalent in terms of the sets of feasible and optimal

solutions to model (M). For the rest of the paper, we shall continue to use

(2.8) as the objective function.

3. MODEL SOLUTION

Model (M) is a complex integer problem. The nonlinear constraints (2.3)

and linear constraints (2.5), when re-expressed in more operational forms,

greatly increase the number of integer variables and the number of constraints.



-15-

3.1 Transformation

In this section, we shall transform model (M) into a simpler model such

that both have the same set of feasible, and optimal, solutions in terms of

<UQ>, and the same optimal value. The transformation is motivated by

the observation that if <U,V,W,X,Y> and <U,V,W,X,Y> are two feasible solutions

to (2.1)-(2.7) and <U = <U0>, then <U,V,W,X,Y> <U,V,W,X,Y>.

In other words, once U (n-l,...,N) assume their specific values, all

other variables in (2.1)-(2.7) are uniquely determined. This observation

corresponds to the characteristic of the Kanban system that it is self-

operational once the Kanbans have been distributed to the stages. The key

decision variables that need to be controlled by management are the Un

(n l,... ,N).

For future discussion, the following nomenclature will be adopted. A

partial solution is said to satisfy, or to be feasible in, a set of

constraints if there exists a complement to it such that the whole solution,

i.e., the partial one together with its complement, satisfies all the

constraints. For example, the partial solution <X,Y> satisfies, or is

feasible in, (2.1)-(2.7) if there exists <U,V,W> such that the whole

solution <U,V,W,X,Y> satisfies (2.1)-(2.7). Similarly, a partial solution

is said to be feasible (optimal) in an optimization model if there exists a

complement to it such that the whole solution is feasible (optimal) in the

model. Two optimization models are said to have the same feasible (optimal)

partial solution if there exist two complements, which may or may not be

different from each other, such that the two resulting whole solutions are

feasible (optimal) in the two models, respectively.
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Let En,s(n) = en,s(n) a(n)/an for nl,...,N. The parameter

E8(n) represents the number of full containers of item n required to make

one full container of item s(n). Depending upon the values of ens(n)

a s ( n ) , and a n , the value of En 's(n) may or may not be integral.

Also let 0< < min {l/an I n=l,...,N} < 1. Consider the

following optimization model:

minimize (2.8)

s.t.

t t

(3.1) (I/an) + V + , X" _ En,s(n) X(n) > 0

t t- t

n=l,...,N; tl,...,T

(3X3) {'...,N t=l,...,T
t

(3.4) U sn { 0,1,2, ...

We refer to the above model as model (MO). The relation between model (M) and

model (MO) is summarized in the next theorem.

Theorem 3.1 (M) is feasible if and only if (MO) is feasible. The two

models have the same set of feasible partial solutions <U0>, the same

set of optimal partial solutions <U0>, and the same optimal value.

(MO) is an integer linear program which has 2NT constraints, excluding

(3.3)-(3.4), and NT + N integral variables. The configuration of (MO) is

computationally more favorable than that of the nonlinear integer problem

(M). However, it should be pointed out that the constraints of (MO) do not

describe the operating procedure of the Kanban system while those of (M) do.

The link between (M) and (MO) hinges on U (nl,...,N), as shown in
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Theorem 3.1. Since U (n=l,...,N) are the only decision variables

controlled by management, we can solve (MO) and still obtain a relevant

feasible or optimal partial solution <U0> to (M).

The proof of Theorem 3.1 follows directly from the next two lemmas.

Le a 3.1.

(2.3)'

If <U,V,W,X,Y satisfies (2.1)-(2.7), then it also satisfies

Xn < Un + yn
t- t-l t-l

Xn < an
t - t

X < Lckvk 1 + + kXk)/( knan)]xt -- (- t - t-a1a

all k e P(n)

t-1
xn < Qn _ E xn
t - T

nul,...,N; t-l,·..,T.

and

(2.7)' Un, Xn nonnegative integers
' t

Also, if <U,V,W,X,I> satisfies (2.1)-(2.2), (2.3)', (2.4)-(2.6) and

(2.7)', then <U> is a feasible partial solution to (2.1)-(2.7).

Le a 3.2 If <U,V,W,X,Y> satisfies (2.1)-(2.2), (2.3)', (2.4)-(2.6),

and (2.7)', then <Uo,XP satisfies (3.1)-(3.4). If <Uo,X>

satisfies (3.1)-(3.4), then <U0> is a feasible partial solution to

(2.1)-(2.2), (2.3)', (2.4)-(2.6), and (2.7)'.

(The proof of Lemma 3.2 is provided in Appendix 1.)

Note that the constraints of model (MO), i.e., (3.1)-(3.4), do not
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specifically involve the production quota Qn. It can be easily shown that

T
i Xn > Qn for nl,...,N if <X> satisfies (3.1) and (3.3).

T =I

For any<U0,> satisfying (3.1) - (3.4), the proof of lemma 3.2 provides a

T
way for constructing < X > such that i Xn < Q for nl, ..., N and

<U0,> still satisfies (3.1) - (3.4). Obviously, the newly constructed

T
<X> does satisfy the constraints i Xn = Qn for n=l,...,N.

t=l

3.2 Feasibility Test

Before solving model (MO), it is important to know whether it is feasible

or not. Let 2 {<X> I <X> satisfies (3.1) and (3.3)}. It is

obvious that Q $ 0 if and only if (MO) is feasible. Gabbay [2] devised

a method to test if a multi-stage serial production setting is feasible. A

similar feasibility test can be applied to , which represents a multi-stage

assembly production setting. The algorithm of the feasibility test is given

below:

-O 0
(Step ) Xt - X for t=l,...,T

n - 1

(Step 1) Ql-max {0 1Ens(n) -s(n) n

n foo, rs(n) - n w - t-lQt-max {o, ) -s(n) n (W/an) } Q for t-2,...,T

t-T

(Step 2) Xn- min {Qt, nt}
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if tl, then go to step 3; else,

n n n n
Qt - Qt- + max , Qt -t

t - t-l

Return to the beginning of step 2.

(Step 3) If < Q' then = and exit; else, if nN, then a f % and exit;

else, n - n+l and return to step 1.

Through steps 1 and 2, the algorithm computes <Fn> C Q (n; X8(n))

t t

< |xn> I (W /an) + + - - Ens,) £ -Xs(n) o,0 T=I n -sn

t

Xt {O,l,...,t} for tl,...,T} such that XT n <

t
E XT (t l,...,T) for every <Xn> (n; (n) If 1< Q in step 3,

then such <Xrn does not exist and consequently g(n;X ( n )) =

4. MODEL SPECIALIZATION

In the previous discussion, we developed a general approach to the Kanban

system. In practice, managers may find certain choices of container size

desirable. In this section, we shall investigate the solution procedures to

the Kanban model for two particular choices of container size.

4.1 A Container-For-Container Mode

By container-for-container mode we mean that exactly one full container of

item n is required to make one full container of the subsequent item s(n) for

all n {1,..., . In other words, under this mode container sizes must

be adjusted properly so that ens(n) n = asn n or En,s(n) 1,

for all n {1(n) is given by the product
for all n c {1,...,N. Note that e is given by the product
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specification. The parameters to adjust are c for n=l,...,N. The

one-for-one scheme, whenever possible, is a convenient one and it is supported

by the philosophy of just-in-time production. It does not need handling

multiple containers from one stage to the next as would be the situation for

the case where Ens(n) is greater than one; neither does it tend to

accumulate the inventory of work-in-process as would be the situation for the

case where En 's(n) is smaller than one.

Consider the following optimization model:

minimize (2.8)

s.t.

t
(4.1) 1 

Tr=

t
(4.2) Un0 -

T=1

- Xs(n) > 0
T=l 

t-l 1(n)
+ X > 0

(4.3) 0 < Xt < t

(4.4) n c { 0,1,2,...}0

We refer

relation

to the above model as (M1).

between models (MO) and (M1).

n-l,...,N; tl,...,T

n=l,...,N

We summarize in the next theorem the

Theorem 4.1 Assume that En ' s(n) = 1 for all n e ({1,...,N}. (MO) is

feasible if and only if (Ml) is feasible. The two models have the same set of

feasible partial solutions <U0>, the same set of optimal partial

solutions <U0 >, and the same optimal value.

(The proof of Theorem 4.1 is provided in Appendix 2.)

n-l....,N; tl,...,T

n=l,...,N; t=l,...,T
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(Ml) is a mixed integer linear progam which has 2NT constraints, excluding

(4.3)-(4.4), and NT+N variables, of which N are required to be integral.

Recall that NT+N variables are required to be integral in (MO). Therefore, it

is easier to solve (M1) than to solve (MO); and Theorem 4.1 ensures that we

can still obtain a relevant optimal partial solution <U0 > for (MO), and

hence for (M), by solving (M1). Note that for any feasible solution <UO,X>

to model (M1), the proof of Theorem 4.1 provides a way for constructing <X>

such that <UoSP is a feasible solution to model (MO) under the container-

for-container mode.

4.2 A One-Container-For-Multiple-Containers Mode

By one-container-for-multiple-container mode, we mean that one full

container of item n is required to make an integral number of full containers

of the subsequent item s(n) for all n E {1,...,N}. Under this mode, the

container sizes must be adjusted properly so that the inverse of En ' s ( n ) is

an integer for all n {1,...,N}. This mode is not supported by the

philosophy of just-in-time production because it encourages large-sized

containers in the upstream stages and tends to create partially filled

containers. Nevertheless, the specialization of the model to a one-container-

for-multiple-containers mode is motivated by the following result regarding

the lot-sizing problem for multi-stage assembly production. Under the

assumptions of constant continuous final-product demand over an infinite

planning horizon with a fixed setup cost per lot and a linear inventory

holding cost on echelon inventory in each stage, Crowston, Wagner, and

Williams [1] proved that the optimal lot sizes in minimizing average cost per

time period have the following property: the optimal lot size of item n is an
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integral multiple of the optimal lot size of item s(n) for all n 1,.,.,N}.

We impose the following conditions: (a) the inverse of En s (n) is an

n
integer for all n C {1,...,N}; and (b) W 0 is an integral multiple of

en's(n)as(n) or equivalently (W/an) is an integral multiple

of En 's(n), for all n {1,...,N}. Condition (a) is the definition of

one-container-for-multiple-containers mode. Condition (b) deals with the

partially filled containers which exist at the beginning of the planning

horizon. As shown in the next theorem, condition (b) can always be enforced

under condition (a).

Theorem 4.2 Assume that condition (a) holds. Let Wn c (O,l,...,an-l} and

= enS(n)as (n) * L/(ens()c�s (n)) for n=l,...,N. Then, <UO,X

satisfies (3.1)-(3.4) with <W0> 
= <W0> if and only if <U0,X> satisfies

(3.1)-(3.4) with <W? = <WO>.

(The proof of Theorem 4.2 is provided in Appendix 3.)

According to Theorem 4.2, we can always replace W by

n 8(n)Ocxn) *Lw/(e ens(n)as(n))j in model (MO) without

altering the feasible region of the model under the one-container-for-

multiple-containers mode. As a result, condition (b) does not really impose

any additional restriction.

Consider the following optimization model:

minimize (2.8)

s.t. (3.1), (3.2)

(3.3)' 0 < Xn < an nl,...,N; tl,...,T
- t- t
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(3.4)' > nl,...,N
0-

We refer to the above model as model (M2). The model is a linear programming

relaxation of (MO). We summarize their relation in the next theorem.

Theorem 4.3 Assume that conditions (a) and (b) hold. (MO) is feasible if

and only if (M2) is feasible. If <UO,X~ is feasible for (MO), it is

also feasible for (M2). If <UO,X> is feasible for (M2), then

< Ful1 + 1,..., rU1 + > is a feasible partial solution to (MO).

(The proof of Theorem 4.3 is provided in Appendix 4.)

It is easier to solve (M2), a linear program, than to solve (MO), an

integer linear program. Theorem 4.3 provides a way to approximate the optimal

partial solution <U? of (MO) by solving (M2). We are therefore

interested in knowing the performance of the approximation. Let Z0 be the

optimal objective value of (MO) and Z2 the objective value given by

<rul + 1, ... , r + > where <U> is an optimal partial

solution to (M2). The next theorem shows that the relative error

(Z2-Z0)/Z 0 caused by the LP approximation approaches zero asymptotically.

Theorem 4.4 Assume that conditions (a) and (b) hold. Also assume that

(MO) and (M2) are feasible. Then, (Z2-Z0 )/Z0 + 0 as Q/T .

(The proof of Theorem 4.4 is provided in Appendix 5.)

In the above theorem, Q 0/T represents the average production requirement

(in terms of the number of containers) per period at the final stage. When

Q0/T becomes very large, the relative error due to the approximation of (MO)

by (M2) becomes negligible.
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ExAmple 2 Let N, T2, C l=l, a15, e 1, a 01, E1,0 =0. 2, 0,
1

a2, E'0.1, V l0 , W4, X04, and X26. At optimality, U 1=6

for (MO) while U1=4.3 for (M2). Since 4.31 + 1 - 6, the approximation method

actually finds the optimal U1 for (MO) in this example. O

1 1 l,0 0 E1,0 1= WExample 3 Let Nl, T2, ClI, a =4, e =1, al, E1 ' 0 25
1 2

e=0.1, V0, W 0, and O=XO=8 . At optimality, U =2 for (MO)

while Ul.1 for (2]). Since Fl.l] + 1 = 3 > 2, the approximation

1method finds a non-optimal feasible U for (MO) in this case. With0

QO/T = 8, the relative error (Z2-Z 0)/Z0 = 4/11.

Now let = 800 while the other parameters remain

unchanged. At optimality, U1 200 for (MO) while U = 199.1 for
O 0

(M2). With QO/T = 800, the relative error (Z 2-Z)/Z = 4/803. 0

5. CONCLUSION

In this paper we have presented an optimization model for the Kanban

system. The model is intended for a multi-stage capacitated assembly-type

production setting. We have also provided a general solution procedure to the

model and discussed two special cases of practical interest. Future research

topics would include the development of Kanban models for the distribution-

type and mixed-type production settings and the inclusion of independent

(external) demands for upstream items.
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APPENDIX 1: Proof of Lemma 3.2

[Proof] Let <U,V,W,X,Y satisfy (2.1)-(2.2), (2.3)', (2.4)-(2.6), and

(2.7)'. It follows from (2.2), (2.3)', (2.4), and (2.6) that e 's()a (n)x (

t-l t-l t-l
< anvn +W + nxn an(Vn+ X - Yn)+(W n + a E Yl

t-1 t
- en,s(n)as(n) E xs (n)) + anxnx Hence, (Wn/an) + + ' Xn

T E O

- En,(n) Xs (n ) > 0. So, <U 0,> satisfies (3.1). It follows from

t t
(2.5) and (2.6) that Yn r(ens'(n)as(n) X( " )

=1 T rdI 'rl(1

t n
and it follows from (2.1) and (2.3)' that U - X +

T1I

- wn)/an1

t-1
£ yn> 0.

T= 1 T -

n _ E x + En,s((n) ( n ) (W/an) + 1 - >
0 r-1lT Tal T W

t

0 rI T

Fens(n),s(n) £ xs(n) - n)/an1 _

t t-l
n X + Yn >0. So, <U

X+ [ y> O. Sol <UosP satisfies (3.2).~ ~1 -
The first half of the

lemma is then proved.

Let <Uo,P satisfy (3.1)-(3.4). Define < as follows:

t t-l
X1n min {X , Q and Xn - min { , Q - min { n, Qn) for t2,...,T.ta1 t=I

t t
It follows from the definition of <X> that X min { I X' Qn}

r "1 T=1

Hence,

I '- �I-"---�----

;
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T
for tl,...,T and in particular, E xn < Q. We now show that <UO,X> also

l--

satisfies (3.1)-(3.4). It follows from the definition of Qn that

(W/a n) + V + Q - Ens(n)QS(n) > 0. Since <U0,X> satisfies (3.1),. ,

(Wn/a n) n+ t xn- En,s(n) Xs(n) (Wn/an) + n +

0 0 1 Ir T=l 0 0

m -n n ns(n)* m s(n) s(n)
mi t )nq E min ={ I X I Q (n)} and hence <UOX>

satisfies (3.1). It also follows from the definition of Qn and e that

-Qn + E ns(n)Qs(n) - (W0 /a) + 1 - > 0. Since <U0 ,X> satisfies (3.2) and

t t-l
(3.4), U Xn + n(n) s(n) - (Wn/an) + 1 - =Un
(3.4), U X~ + E T10 0

min { Xr' Q min (n) Qs(n)} _ (Wn/an) + 1 - > 0 and

hence <UO,X satisfies (3.2). By construction, <X> satisfies

(3.3). We have hence proved that <U0, satisfies (3.1)-(3.4). We next

show that <UO,X is a feasible partial solution to (2.1)-(2.2), (2.3)',

(2.4)-(2.6), and (2.7)'. To construct a complement to <UO,X>, we let

Ut, Vt, Y, and W. (n-l,...,N; tl,...,T) be defined

according to (2.1)-(2.2) and (2.5)-(2.6). If Unt + Yn <
t-1 t-1

Xn , then Un - Xn + yn < -1 since all the variables
t t-l t t-l

t t-l
involved are integers. As a result, Un Xn Ens(n) X(n) -

t r ( t-l
(Wn/an) + 1 - + tEn's(n) t s(n) - (Wn/ 

0 0 rl 'l 0 / 1r =I

Ut- - Xt + Y + 1 - < - 1 + 1 - - < 0. A contradiction arises andtl t t_1
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hence Ut + Y1, > Xn By straightforward substitution, we

can show that <U,V,W,X,YP satisfies (2.3)' and (2.4). The second half of

the lemma is then proved. 0

Appendix 2: Proof of Theorem 4.1

[Proof] Let <UO,X> satisfy (3.1)-(3.4). Since all the variables

involved are integral, 0 < (W/an) < 1, 0 < - (Wn/an)

+ 1 - E< 1 and Ens(n) - 1, we conclude that <UO,X> also satisfies

(4.1)-(4.4).

Let <U0, >P satisfy (4.1)-(4.4). We want to show <U0> is a feasible partial

solution to (3.1)-(3.4). To construct a complement to <U0>, we let X1 FlX

t t-l t

ad FE ' 1 : = x for t2...,T It follows that i -

| ] and Xn is a nonnegative integer. If Vn+ Xn Xs(n) < 0, then
TEI Tl T'l

t t
V0 + In - X s (n)< -1 since all the variables involved are integral. Then,

t t t t t t
V > o · ~. Xn -+ : xn) _ x'_ >+. is (n)) <

V° T 1 T 1 T - E X T <+ rWl T-1 T~l Tal T"l TWl

t t

-1 + ( X X ) < 0, which contradicts (4.1) for <U, X>.

Hence, we conclude that V0 + E x (n) > 0 and <UO,X> satisfies (4.1).
Tul 1 t T' -

Similarly, we can show that <U,X> satisfies (4.2). It follows from the
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construction of <> that Xt = T r _ 
'T= T=I

t-l

-T l T" < tin]

- t - ( t1 I

< n ; hence, <UO,X satisfies (4.3). Noting that all the
--t'U

variables in <UO,P are integral, 0 < (Wn/an) < , 0 < - (Wn/an) + 1

- e < 1 and En' s(n) 1, we conclude that <U,X also satisfies (3.1)-(3.4).

Appendix 3: Proof of Theorem 4.2

-n =n n,s(n) s(n)
[Proof] Note that 0 < W0 - W < en n) (n)O 0-

- 1, or equivalently,

0 < (n/an) (/an) < En,s(n) - (/an). Also note that 0 < c < (1/an) < En ' s(n)

Let <U0, satisfy (3.1)-(3.4) with <W =<W0> = <W0>. It follows from

( ) a / t t
(3.1) that ( n) + Vn _n, ( n) n(nn)+Vn

U t=l T1 T 0 0

t n En,'s(n) Xs (n)
T=1 T1=l

- [(Wn/an) - (/an)] > - [(wn/an) (Wn/an)] > 
0 0 - 0 ~0 -

[IEn - (l/a). Since (Wn/,n), V0, Xn (for T=l,...,t) and En's(n)xs (n )
= 0Tr T

(for 1,...,t) are all integral multiples of En's(n), we conclude that (./n) +

t t s(n)
VO + E XT nEns (n) X s(n)> 0. It is straightforward to show that

t t-l
n n x" + s(n) s(n) n/n) + 1 - > 0.U0 - 0 - -O= 't= I 

Let <Uo,X> satisfy (3.1)-(3.4) with <W0> <Wf0> . It follows from (3.2)
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that U 0_ n + En,s(n) xs(n) =n n) 0 Ithat E - E E (W0/a ) + 1 > Es(n) since U0, X (for

T-, ..,t), En's(n)xs(n) (for t¶l,..,t-1), (WO/an) and 1 are all integral

multiples of E ' s(n) while 0 < < < (1/an) < Es(n)

t-1
Ens(n) [ Xs(n)

t 
· Consequently, U - n +

iT7

( n) + 1 Un + Ens(n) 0 0 r lITlf Tt

(W /an) + 1 - + (Wn/an ) - (Wn/a n) > En' s ( n ) - E n 8 ( n ) + (1/ n ) > 0. It

is straightforward to show that (W/an) + + E - s (n ) Xs(n) > °.

0

Appendix 4: Proof of Theorem 4.3

[Proof] We shall prove only the third part of the theorem. Let <UO,X>

satisfy (3.1)-(3.2), (3.3)' and (3.4)'. Define unO rUnl +1, X F rXi1 and

t T i 1
t- li

- I I T for t2,...,T. We want o show hat < X>
T' 1

t
satisfies (3.1)-(3.4). If (W/an) + V+ X n- Ens(n)

T 1

tst (n) < O,
Ir 

then

(WnO/an) + + E x - Ens(n) X(n) < - E() Hence, (Wn an) + Vn +
0£ -l E Hence (W/a + 0O

n- Ens(n) X s(n) < ns(n) En,s(n) [i (n)1 - (n
'r "1 Tarl r1 T1i

< 0, which contradicts (3.1) for <UO,X >. Thus, we conclude that <Uo,X

~~~~~~~'~"^~~"- ` "^ I~~~. ~._ ._ __ 
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satisfies (3.1). Since <UO,5 > satisfies (3.2), it follows

n s ( n ) t- Xs(n )E X
T =i

- (/an) + 1- C > 1 (IX1

conclude that <U0,> satisfies (3.2).

Appendix 5: Proof of Theorem 4.4

t

-
T-1

t
that U -

T--

Xn) > O0 and we

[Proof] Let <U 0, P and <U,Xo be the optimal solutions to (MO) and (M2),

N
respectively. Since E Cn - <

n=wl 1

we conclude that Z2

t-1

(/ n ) + v+EX
T=1

1=

N

n1 l

N

n=l

N
+ 1) < C (Un0

n l

N
ZO < 2 E Cn. Since <U0, satisfies (3.1) and (3.2),

n=1

t-1 t
Ens( n) E Xs(n) > 0 and Un -

T=1 = 1
Xn

- (0/an) + 1 - > O0. By adding the previous two0 

n n n
inequalities together, we have U + V - X + 1-c > 0.0 0 t

all integral and 0 < 1- < , we have U + V > X S0 0 - t

Since U, V and X are
0 0O t

ince U + V > X
0 0- t

holds

T
for all tl, ...., T, we have + V > ( 

T=1

N

Zo > Cnqn/T and (Z2 - Z0 )/Z 0 <n"l

N
2 
n-l

Cn

Xn)/T > Qn/T.

N
/ ( CnQn/T).

n=l

It follows that

By the definition

Hence, (Z2 - Z0)/ZO + 0 as Q/T .of Q, Qn/T + - as Q/T + . O

Xn +
T

O

+ 2),
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