
ON THE SIMPLEX ALGORITHM FOR NETWORKS AND

GENERALIZED NETWORKS

by

James B. Orlin

Sloan School of Management
MIT

Working Paper #146783

�I���_

On The Simplex Algorithm for Networks and

Generalized Networks

by James B. Orlin

Sloan School of Management

MIT

Abstract

We consider the simplex algorithm as applied to minimum cost

network flows on a directed graph G = (V, E). First we consider the

strongly convergent pivot rule of Elam, Glover, and Klingman as applied

to generalized networks. We show that this pivot rule is equivalent to

lexicography in its choice of the variable to leave the basis. We also

show the following monotonicity property that is satisfied by each basis

B of a generalized network flow problem. If b' b b* and if

< B-lb', B-lb* < u, then 5 B-lb < u ; i.e., if a basis is feasible for

b' and b* then it is feasible for b. Next we consider Dantzig's pivot rule

of selecting the entering variable whose reduced cost is minimum and using

lexicography to avoid cycling. We show that the maximum number of pivots

using Dantzig's pivot.rule is O(IV12 EI logIVI) when applied to either

the assignment problem or the shortest path problem. Moreover, the

maximum number of consecutive degenerate pivots for the minimum cost

network flow problem is O(VI JEJ loglVI).

�� IIB*i D-·s�-··sID-·slsP�·DI�-�------i---I---�-

1. Introduction

In this paper we consider the following linear program.

Minimize cx

Subject to Ax = b (1)

x<u ,

where A is an m x n integer-valued matrix with full row rank, b is an

integral m-vector, and c, p, and u are integral n-vectors.

The linear program (1) is called a generalized network flow problem if

each column of A has at most one positive entry and at most one negative

entry. If (1) is a generalized network flow problem and, in addition, all

entries are 0, 1, or -1 then it is called an (ordinary) network flow

problem.

It has been established (see, for example, Elam et. al. (1979) and

McBride (1981) that simplex-type procedures are very efficient in practice

for solving generalized and ordinary network flows. In this paper we analyse

the worst case behavior of the simplex algorithm as applied to ordinary

network flows.

The variant of the simplex algorithm that we consider is Dantzig's pivot

rule of selecting the entering variable whose reduced cost is minimum and

using lexicography to avoid cycling.

In Section 2 of this paper, we show that the "strongly convergent" pivot

rule developed by Elam et. al. for the generalized network flow problem is

equivalent to lexicography. This former rule is a generalization of the

"strongly feasible" pivot rule for ordinary network flows as developed by

Cunningham (1976) and independently by Barr et. al. (1977).

-iI�- -1·�---·-·---^-·----(--�---- ---·--- ^----------·YI-i�------^---·LI--s

2.

We also show that if a basis B for a generalized network flow problem

is feasible for (1) for right hand sides b' and b* with b' b*, then

B is also feasible for all right hand sides b satisfying b' b b*

In Section 3 of this paper, we consider Dantzig's pivot rule as

applied to ordinary network flows. Let u = max(uj - .. : j - 1, ..., n)
J

and suppose that w is an upper bound on the difference in objective values

between any two feasible solutions. We show that the maximum number of

consecutive degenerate pivots is O(m n log w *), and the maximum number of

pivots is O(m n u log w). In particular, the simplex algorithm with

'Dantzig's pivot rule leads to a polynomially bounded number of pivots for

both the shortest path problem and the optimal assignment problem. Moreover,

in the case that w is large, we can replace log w by n log n. In

fact, we show that the number of pivots for either the shortest path problem

or the optimal assignment problem is 0(m2n log m).

These latter results contrast with those of Cunningham (1979) who showed

that Bland's pivot rule and a different pivot rule using lexicography could

lead to an exponential number of degenerate pivots for the shortest path

problem. (His example was a modification of an example by Edmonds (1970)).

Cunningham also provided an alternative pivot rule that prevented "stalling",

which is the occurrence of an exponential sequence of degenerate pivots.

Other researchers have shown that special cases of the simplex algorithm

run in polynomial time. Zadeh (1979) showed that Dantzig's pivot rule for

the shortest path problem starting from an artificial basis leads to

Dijkstra's algorithm. Thus the number of pivots is 0(m2) if all costs are

non-negative. More recently, Hung (1983) developed a simplex method for the

assignment problem in which the number of pivots is 0(m3 log w*).

III

3.

2. On Strongly Feasible Bases

Preliminaries

Let us consider an instance of

(1) in which the constraint matrix

associate with A a directed graph

edge multipliers d, where V = {0,

with edge multipliers dl, ..., dn

the generalized network flow problem

A has columns Al, ..., An. We

G = G(A), where G = (V, E) with

1, ..., m} and E = {el, ..., en}

defined as follows.

(1) If Ak has a positive entry in row i and a negative entry

in row j, then ek = (i, j) and dk = ajk/aik.

(2) If Ak has a positive entry in row i and no negative

entry, then ek = (i, 0) and dk = l/aik.

(3) If Ak has a negative entry in row j and no positive entry,

then ek = (0, j) and dk = -ajk.

We have not used the usual convention of associating loops with

columns that have only one non-zero entry. With our convention the bases for

ordinary network flow problems correspond to spanning trees.

We illustrate the construction of the graph G(A) in Figure 1, which

corresponds to the matrix A of Table 1.

1

2

3

4

1 2 0 -1 0 0

-1 0 1 0 2 0

O -3 0 0 0 2

0 0 -2 0 0 -1

I
A constraint matrix for a generalized network.

_ _C��_______^I___�__Q___�____�I^L__II___I

Table 1.

4.
[Figure 1]

We assume that each circuit C of G has an associated orientation.

The edges of C that are oriented in the same direction as C are called

forward edges of C, and the other edges of C are called backward

edges. The flow multiplier of C is the product of the multipliers of the

forward edges of C divided by the product of the multipliers of the

backward edges of C, and we denote it as d(C). For example, if C is the

circuit 1, 2, 4, 3, 1 of Figure 1, then the forward edges are (1, 2) and

(2, 4) and d(C) = 8/3.

By a basis of A we mean a partition of the columns of A into a

triple (B, N1, N2) such that B is non-singular. The corresponding basic

solution is the unique solution x such that Ax = b and x = j for

Aj E N1 and x = uj for Aj e N2.

It is well known (see for example Elam et. al.) that a necessary and

sufficient condition for a submatrix B to be a non-singular submatrix of

A is that the corresponding graph GB satisfies the properties (2.1) and

(2.2) below.

(2.1) The connected component of GB containing vertex

has no cycle.

(2.2) Each of the components of GB not containing vertex

has exactly one circuit and the flow multiplier of this

circuit is not 1.

This condition generalizes the spanning tree property for ordinary

networks since the flow multiplier for every circuit in an ordinary network

is 1.

In order to simplify some of the definitions, we consider negations of

variables. Thus we allow the replacement of variable x. by x = -x..
J J J

5.

(This substitution replaces the upper and lower bound constraints on xj

by the constraints -u S x -j x< -, and the resulting edge multiplier is

l/d. This substitution corresonds to reorienting the edge ej in the graph

G defined above.) We say that a basis (B, N1, N2 is canonically oriented if

(3.1) - (3.4) are satisfied.

(3.1) N2 0-

(3.2) If vertex i 0 is in the same component as vertex 0, then

the path in GB from 0 to i is a directed path (i.e., all

edges are forward edges.)

(3.3) If C is a circuit in GB, then C is a directed circuit

oriented so that its flow multiplier is greater than 1.

(3.4) If i is a vertex in the same component as a circuit C,

then there is a directed path from a vertex j of C to the

vertex i.

In Figure 2, we illustrate a basis B that is canonically oriented.

In Figure 3a and 3b we illustrate bases that are not canonically oriented.

[Figure 2]

[Figure 33

A basis (B, N1, N2) is feasible if the corresponding basic solution

is feasible. A basis is called strongly feasible as per Cunningham (1976)

if it is feasible and if, in addition, when canonically oriented no variable

is at its upper bound. (Elam et. al. call such bases "strongly convergent.")

Below we show that a basis is strongly feasible if and only if it is

lexicographically positive. This equivalent is a c corollary of Lemma 1.

We write b <,0) to mean that each component of b is negative (resp.,

positive.)

LEMMA . Suppose that (B, N1, N2) is a canonically oriented basis

for a generalized network flow problem. Then for any m-vector b such that

b < 0 it follows that B b > 0. Moreover, if b < 0 then 13- 1 b > 0.

��_91__1___1____�_1�11__·--111---�-��� --- _

6.

PROOF. Let x = B -lb. Then x is the unique solution to Bx = b.

We first show that the flow x. for any non-circuit edge e. is strictly

positive. If e = (i, k) and if vertex k has degree 1, then

xj = -bk/d. In this case we can replace b i by b! = bi - x and iterate.

We eventually obtain a sub-basis such that no vertex has degree 1. Thus

this sub-basis is the union of disjoint circuits.

Suppose that C is a circuit of GB . Suppose further that we relable

the vertices and edges of GB so that C = (1, el, 2, e2, ..., ek, 1). By

a unit flow around C starting at vertex 1, we mean the flow in which

xl = (d(C) - 1) 1 and xi = dxi 1 for 2 i k. Thus the flow balances

at each vertex of C except that there is a gain in flow of one unit at

vertex 1. Thus to satisfy the demand of -bi units at node i, it suffices

to send a flow of -bi units around C starting at vertex i. By sending

such a flow for all vertices i in circuits, we see that the resulting

solution is strictly positive.

COROLLARY 1. Suppose that (1) is a generalized network flow problem

and that (B, N1, N2) is any basis of A. Then each row vector of B- 1 is

either non-positive or non-negative.

PROOF. If B is canonically oriented, then each row vector of B is

non-positive, by Lemma 1. If B is not canonically oriented, then there is

a non-singular diagonal matrix D such that BD is canonically oriented.

Then each row of (BD) = D B is non-positive, and hence each row of

B- 1 is either non-positive or non-negative.

The proof of Corollary 1 relies only on some elementary concepts in

Network Flow Theory. One can also construct an alternative proof that

relies on concepts from the linear algebra of Leontief and pre-Leontief

7.

systems. A pre leontief matrix is a matrix with at most one positive entry

per column. Generalized networks have the especially nice property that

they remain pre-leontief after negations of variables. We have relied on

concepts from network flow theory so as to make the exposition self-contained

and so as to make the connection between strongly feasible bases and

lexico-feasible bases more explicit. For more details on leontief and

pre-leontief systems, see Veinott (1968).

For each vector-valued function g(.) we define the parametric linear

program Pg as follows.

Minimize cx

Subject to Ax = b - g(O) Pg(O)

THEOREM 1. Let g be a continuous, vector-valued function such that

g(O) = O, g(O) > 0 for all 0 > 0, and for 1 < 82 it follows that

g(O1) < g(02). Then the following are true.

(i) A basis (B, N1, N2) is strongly feasible for (1) if and

only if it is feasible for Pg(8) for all sufficiently

small positive .

(ii) If a basis (B, N1, N2) is feasible (resp. strongly feasible)

for Pg(el) and Pg(O2) then it is feasible (resp., strongly

feasible) for Pg(0') for all O' with 01 0' 02.

PROOF. Without loss of generality, let us assume that the basis

(B, N1, N2) is canonically oriented. Let b' = b - (Ajj : Aj E N1).

Let us first consider property (ii). Assume that the basis (B, N1, N2)

is feasible for Pg(Ol) and Pg(82). Then

8.

B < B-lb' - g(Ol)] , B-l1 b' - g(2)] <UB (2)

Moreover, by Lemma 1, it follows that for all e' with e1 < 0 02

B-1l[b' - g(1)] B-1b' - g(O')] < B-1 b' - g(02)]. (3)

By (2) and (3) it follows that (B, N1, N2) is feasible for P(O').

Suppose now that (B, N1, N2) is strongly feasible Pg(O). Then

similarly to (2) and (3),

<B(4)< -lB (b ' - g(0)) < uB (4)

and because g(O) > 0 for all O > 0, we obtain

2 B < B (b; - g(O)). (5)

It follows from (4) and (5) and the continuity of O that (B, N1, N2)

is strongly feasible for P g() fot all sufficiently small positive O.

Suppose now that (B, N1, N2) is feasible for Pg(0) for all

sufficiently small positive . Then we can choose a O' > 0 so that

R < B -1(b' - g(®) < B-l(b' - g(O')) < UB for all 0 < O < '

and thus by the continuity of g, (B, N1, N2) is strongly feasible

for (1). []

In particular, we can let g(O) be the vector whose jth component is

i. Then for sufficiently small positive 0 , the problem P (0) corresponds

to (1) with the negative of the usual perturbation.

COROLLARY. The canonically oriented basis (B, N1, N2) is strongly

feasible if and only if the corresponding vector x' of basic variable is

such that (xB - B, -B-1) is lexico-positive. O

We refer the reader to Dantzig (1963) for more details on the equivalence

of lexicography and perturbations.

11

9.

An interesting special case of P(E) is the case in which

g(O) = el, i.e., the j-th component is for all j. Cunningham (1976) showed

that a basis for an ordinary network flow problem is strongly feasible if

it is feasible for P g() for all sufficiently small for this special

case.

Since the strongly convergent pivot rule of Elam et. al. selects the

exiting variable so as to maintain strongly feasible bases, we have also

shown the following.

COROLLARY. The strongly convergent pivoting rule is equivalent to

lexicography in the way that if selects the variable to leave the basis.

The property (ii) of Theorem 1 is not typical of parametric linear

programs. Indeed, the property does not appear to be generalizable beyond

the class of generalized network flow problems.

A Concluding Remark

It appears in retrospect that the contributions of Cunningham and Elam

et. al. in the development of their strongly feasible and strongly convergent

pivot rules was not -- as they originally believed -- in the development of

a novel new pivot rule. Instead, their contributions may be viewed as the

novel treatment of a very old pivot rule. In particular, their pivot rules

may be viewed as a (network) topological interpretation of the usual per-

turbation method for linear programming, an interpretation that lends itself

well to an efficient implementation of the network simplex code.

3. On the Number of Simplex Pivots for Network Flows.

In this section we consider the simplex method as applied to ordinary

network flows. The entering variable will be selected according to the

'F in" rule of selecting the variable whose reduced cost is minimum (or
mmn

one whose reduced cost is maximum in the case of a variable at its upper

bound.) The existing variable is selected using lexicography so as to keep

the basis strongly feasible. This pivot rule is called "Dantzig's pivot rule"

IX. � � �.��------��-I--�����

10.

since he is the first to propose the 'min rule.

We show below that Dantzig's pivot rule as applied to the shortest

path problem and the optimal assignment problem runs in 0(m2 log w)

pivots, where w is an upper bound on the difference in objective values

for any two basic feasible solutions. Moreover, in the case that w is

more than exponentially large, we can improve the bound to O(m2n log n)

pivots. If we run Dantzig's pivot rule on minimum cost network flows, then

the number of pivots may be exponentially large, as demonstrated by

Zadeh (1973). In this case, we show that the number of pivots is

2* *
O(m u log w), and the number of consecutive degenerate pivots is

O(m log w) or O(m n log n), whichever is smaller.

To prove the convergence results, we first define the concept

"equivalence" of network flow problems. Let P = {min cx : Ax = b, x u},

and let P' = {min c'x : Ax = b', < x u}. We say that the linear programs

P and P' are equivalent if the following are true:

(1) A basis (B, N1, N2) is strongly feasible for P if and

only if it is strongly feasible for P',

(2) If (B, N1, N2) is any strongly feasible basis for P

reoriented so that it is canonically oriented, then

{j = in- = {-' 1, i.e., the variables that
J min J min

may enter the basis according to Dantzig's rule are the same

for P' and P.

REMARK. If P is equivalent to P' and if f is an upper bound on

the number of pivots for P using Dantzig's rule, then f is also an

upper bound on the number of pivots for P'. 0

Although the above remark is obvious, we note that the number of pivots

for P and P' may not be the same. It is possible that ties for the

III

11.

entering variable would be resolved differently for P and P' under some

implementations of Dantzig's pivot rule.

In order to apply the above remark, we state and prove an elementary

lemma on linear convergence.

LEMMA 2. Suppose that zk is the objective value of the basic

feasible solution for the network flow problem (1) subsequent to the

k-th pivot. Suppose further that there is a real number a with

< a < 1 and zk+l < k - a (zk _ z*) for all k 1, where z* is the

minimum objective value. Then the number of pivots is O(a- 1 log w).

PROOF. Let us assume the hypothesis of the Lemma, i.e.,

(zk+ l _z) (1 -a)(zk _ z*). Inductively, it follows that

k+l k l *1 k
(Z - z (1 -a) (z - z*) (1 - a) x . Moreover, by the integrality

k * k+l * k+l *
of z and z , if z - z < 1, then z = z . Hence, the number of

pivots is at most log w /(-log(l - a)), which is O(a log w).

THEOREM 3. Suppose that the simplex method using Dantzig's pivot rule

is applied to the minimum cost network flow problem (1). Then the number

of pivots is O(mnu log w*).

PROOF. We assume that we start with a strongly feasible basis in

Phase 2. The result for Phase 1 is a special case since the Phase 1

problem is also a minimum cost network flow problem.

Let gi(e) = O for i = 1, ..., m and let P(O) be the parametric

program min(cx : Ax = b - g(O), < x u). We first claim that the

original problem P(O) is equivalent to the problem P((m + 1)). To

see this we first note that by Theorem 1, P(O) is equivalent to P(e)

for all sufficiently positive . We next note that by the unimodularity

of each basis B,

� ·1111^ 11_1�_�_��_

12.

0 <'11 B-1 g(e)Ij < m ,

where |1 -*1 denotes the sup norm. By the above and the integrality of

Q, u and b, we may choose e = l/(m + 1).

Without loss of generality, assume that the basis prior to the

(k + l)-st pivot is canonically oriented. Then the entering variable

increases its value by at least (m + 1) , since no basic solution for

P((m + 1) 1) is degenerate and B is unimodular. Thus

k+l k -1-
z - z _< (m + 1) cmin (6)

Moreover, by relaxing the constraints "Ax = b", we see that

z* - z (u - j) Cj > n u C (7)
j=l jm

Combining (6) and (7), we obtain the inequality

k+l k <- ((m + 1) n u*-l (

and the result then follows from Lemma 2.

As a corollary, the number of pivots for the shortest path problem

and for the optimal assignment problem are both bounded by a polynomial in

the data. Similarly, the number of consecutive degenerate pivots is

polynomially bounded since we can restrict attention to problems for which

u < 1, as described below. In order to show that the number of pivots is

polynomially bounded in m and n independent of c, we show how we may

restrict attention to problems in which the costs are "small".

LEMMA 3. Let P be the minimum cost network flow problem

min(cx : Ax = b, x u). Then there is a vector c' with

I c'11 < 4 n (n!)2 such that the network flow problem

min(c'x : Ax = b, < x u) is equivalent to P.

III

13.

PROOF. Let (B, N1, N2) be a feasible basis that is canonically

oriented, and let T be the corresponding tree. For each e E E - T,

let C(T, e) be the circuit created upon adding edge e to T oriented

in the same direction as e, and let c(T, e) be the cost of the circuit.

It is well known that the reduced cost of edge e with respect to the

spanning tree solution induced by T is c(T, e). Suppose that

S = {C1, C2, ..., Ct} is the set of all circuits in G that have a non-

negative cost. (Thus every circuit of G is in S or its reversal is in S,

or both are in S if their cost are 0). Suppose further that the C's are

arranged in non-decreasing order of cost. Then a sufficient condition for

the network flow problem min(c'x : Ax = b, x u) to be equivalent to

P is that:

If c(C1) = 0 then c'(C 1) = 0 . (8)

If c(C1) > 1 then c'(C 1) 2 1. (9)

and for j = 2, ..., t the following are true

If c(Cj) = c(Cjl) then c(Cj) then c'(C) =
1) (10)

If c(Cj) > c(Cj_ 1) then c'(Cj) 2 c'(Cj_ 1) + 1. (11)

If we consider c,..., c' as linear variables, then the constraints

(8)-(11) may be written as a system of linear equalities and inequalities

in which the constraint matrix coefficients are all 0, 1, -1, 2, or -2

and where the right hand side coefficients are 0 or 1.

Suppose first that the feasible region induced by (8)-(11) has at

least one corner point. Then any such feasible corner point solution may be

expressed as c" = D d, where D is a submatrix of the constraint matrix

and d is a subvector of the right-hand-side vector. Using Kramer's rule

1_1_��____1__��_______^_�·_�I____ ___�_

14.

and the fact that the determinant of any submatrix of D is at most 2 n!,

the numerator of c"'' and the common denominator of the components of c"''

are both bounded by 2n n! Multiplying through by the common denominator,

we obtain an integral vector c' satisfying (8)-(11) such that

IIc'11 < 4n (n!)2 .

In the case that the feasible region has no corner points, we may add

a constraint of the form c = 0 so as to maintain feasibility. If we
J

iterate in this way we eventually obtain a system with corner points, and

the argument then reduces to the above.l

THEOREM 4. Let P be the minimum cost network flow problem

min(cx : Ax = b, x u). Suppose further that Dantzig's pivot rule is

applied to P. Then the maximum number of consecutive degenerate pivots is

O(m2n log n) [also, 0(m2 log w*)]. Moreover, if the network flow problem

is either the optimal assignment problem or the shortest path problem then

the number of pivots is O(m 2n log n) [also 0(m2 log w)].

PROOF. Let us first consider the maximum number of consecutive

degenerate pivots. Let (B, N1, N2) be the current strongly feasible basis,

and without loss of generality let us assume that the basis is canonically

oriented. Suppose that x is the current basic solution. Let us con-

sider a related problem P' = min(cx : Ax = b, ' x u') where ' and

u' are defined as follows: 2 = x. and u' = x. + 1. (u! < u. because

the basis is canonically oriented). Then any non-degenerate pivot for P

is also a non-degenerate pivot for P'. Thus we have shown that we can

replace u by 1.

Consider the problem P'(e) where gj(O) = O as in the proof of

Theorem 3, and let z denote the minimum objective value that can be

I

15.

obtained such that no variable x. is at its upper bound. (Such a

variable could only have resulted from a non-degenerate pivot). Thus there

are at most m basic variables, and

* k
z - z > m Cmin. (12)

Combining (6) and (12), we obtain the inequality

k+l k < [(m + l)m]-l (z - k),

and by Lemma 2 the number of consecutive degenerate pivots is

2
O(m log w). Moreover, we may replace w by (c i : 1 i n) for

the c' described in Lemma 3. Thus the number of pivots is O(m2n log n).

Next we consider the shortest path problem. In this case we assume

that the problem is written as: (min cx : Ax = 1, 0 < x < m + 1 for

1 < j n). In this case, every feasible basis is strongly feasible so

that

zk zk < min . (13)

In addition, u = (m + 1) and no variable is ever at its upper bound

unless there is a negative cost circuit. Thus each non-basic variable has

value 0, and

z* zk m (m + m) (14)
Cmin min

Combining (13) and (14) and applying Lemma 2, we obtain that the number

of pivots is 0(m2 log w). Then by Lemma 3, the number of pivots is

O(m2n log n).

Finally we consider the optimal assignment problem. Here, u = 1,

and each non-basic variable is at its lower bound. Thus

* k -
z -z mmi n (15)

Combining (6) and (15) and applying Lemma 2, we obtain that the number of

---- � 111�-- � ^I�a�--·*rr�n·9��*r�-�-�-rc----�-------- -

16.

pivots is (m2 log w). By applying Lemma 3, we see that the number of

pivots is O(m2n log n).O

Some Concluding Remarks

The proof of Theorem 3 relies on (1) the equivalence of the original

problem to the perturbed problem and (2) each non-degenerate pivot with

Dantzig's pivot rule leads to a geometric improvement towards the optimal

solution. Hung (1983) developed a different polynomial time pivoting

procedure for the optimal assignment problem by exploiting property (2)

above. His procedure performs as many consecutive degenerate pivots as

possible followed by a non-degenerate c in pivot.
min

Professor G.B. Dantzig (1983) independently proved that his simplex

rule in conjunction with Cunningham's strongly feasible pivot rule converges

geometrically to the optimum solution. His argument is essentially the same

as the one given here for the proof of Theorem 3.

Although the above worst-case analyses are based on the use of Dantzig's

pivot rule, we may relax this restriction substantially. For example, the

same bound is valid if we consider an alternative pivot rule in whi the

cmin - variable is selected at least once every k pivots for some fixed k.

Also, the same bound is valid if the entering variable x. is such that

k Cj< C.minl for some fixed k.

Finally we note that the worst case analysis is unduly pessimistic and

in no way reflects the average performance of the simplex method. In a

recent very elegant paper, Haimovich (1983) gave a detailed probabilistic

analysis of a variant of the simplex algorithm and proved that under suitable

probabilistic assumptions the average number of pivots is O(n).

17.

The graph G(A) induced by matrix A of Table 1.

� OQI�LI---�- _�___

Figure 1.

1

2

A canonically oriented basis.

18.

1

III

Figure 2.

.

Figure 3a

3 ,1/2

/ 2

Figure 3b

Figures 3a and 3b. Bases that are not cononically oriented. In 3a, edge
(5,4) is oriented incorrectly. In 3b the cycle has
a flow multiplier that is less than 1.

19.

·'�----- Ir^- �__�.1_�.�^_1�_____�_I__�______�__

1 2

(0�

20.

ACKNOWLEDGMENTS

I wish to thank John VandeVate for his suggestions, which led to

improvement in the exposition.

21

REFERENCES

Barr, R., F. Glover, and D. Klingman (1977). The alternating basis algorithm

for assignment problems. Mathematical Programming 13, 1-13.

Cunningham, W. H., (1976). A network simplex method. Mathematical

Programming 11, 105-116.

Cunningham, W.H., (1979). Theoretical properties of the network simplex

method. Mathematics of Operations Research 4, 1976-208.

Dantzig, G. B. (1963). Linear Programming and Extensions, Princeton University

Press, Princeton, N.J.

Dantzig, G. B. (1983). Personal communication.

Edmonds, J. (1970). Unpublished manuscript.

Elam, J., F. Glover and D. Klingman (1979). A strongly convergent primal

simplex algorithm for generalized networks. Mathematics of Operations

Research 4, 39-59.

Haimovich, M. (1983). The simplex algorithm is very good! - On the expected

number of pivot steps and related properties of random linear programs.

Unpublished manuscript.

Hung, M. (1983). A polynomial simplex method for the assignment problem.

Operations Research 31, 595-600.

McBride, R. (1981). Efficient solution of generalized network problems.

Unpublished manuscript.

��.-����-�-�I----�-�-�---�.�.-

22

Orlin, J. (1983). A polynomial time parametric simplex algorithm for the

minimum cost network flow problem. Unpublished manuscript.

Veinott, A.F., Jr. (1968). Extreme points of Leontief Substitution Systems.

Linear Algebra and its Applications 1, 181-194.

Zadeh, N. (1973). A bad network flow problem for the simplex method and

other minimum cost flow algorithms. Mathematical Programming 5, 255-266.

Zadeh, N. (1979). Near-Equivalence of network flow algorithms. Technical

Report 26, Department of Operations Research, Stanford University,

Stanford, CA.

