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ABSTRACT

This paper reinterprets and explains the standard omitted variable bias

formula in the context of cross section regression when the true model

underlying behavior is unknown and possibly nonlinear. The vehicle employed

to analyze cross section regression in this case is the macroeconomic

interpretation of cross section OLS coefficients established in Stoker (1982a).

The exposition begins by indicating precisely the distributional

assumptions underlying a correctly specified linear cross section regression

equation when the true model is nonlinear and possibly unknown. By considering

the case of too many regressors, we show that the omitted variable bias

formula reflects constraints in distribution movement, which alternatively

allow the bias formula to be derived as a total derivative formula among

macroeconomic effects. By considering the case of too few regressors, we

show that the macroeconomic impact of the omitted variables can be measured

by their partial contribution to the variance of the dependent variable in

a cross section regression. Some practical implications of these results

are discussed and an illustrative example is given.



I. Introduction

The purpose of this paper is to reinterpret and explain standard omitted

variable bias formulae in the context of cross section regression when the

true model underlying behavior is unknown and possible nonlinear. The vehicle

employed to analyze cross section regression in this case is the macroeconomic

interpretation of cross section OLS coefficients established in Stoker (1982a).

The omitted variable bias formula is a very useful tool for judging the

impact on regression analysis of omitting important influences on behavior

which are not observed in the data set. In small sample form, the bias

formula was developed and popularized by Thiel (1957, 1971), and has been

used extensively in empirical research. The bias interpretation of the

formula, however, relies exclusively on the assumed linearity of the included

and omitted variables in the equation modeling the dependent variable.

The formula itself has an empirical counterpart which holds an identity

among computed OLS regression coefficients from equations with different

2
subsets of regressors. The question of interest here is whether this

regression coefficient relationship can be interpreted when the behavioral

model is general and possibly unknown. A macroeconomic interpretation for

cross section OLS coefficients in this case was established by Stoker (1982a).

In this paper we will extend the interpretation to the standard omitted vari-

able bias formula.

The precise issue addressed can be described in more detail as follows.

Stoker (1982a) established that OLS slope coefficients obtained from

regressing a dependent variable y on predictor variables X computed using cross

section data will consistently estimate the effects of changing mean X, E(X) on

mean y, E(y), provided that the X distribution varies through time via the
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exponential family form. This latter condition is of interest because it

implies no testable restrictions on the cross section data, and in particular

does not rely on a particular functional form of the relationship between

y and X. But suppose that X is partitioned as X = (X1,X2). The above result

can also be applied to say that the OLS coefficients of y on X1 consistently

estimate the effects of changing E(X1) on E(y). In this paper, we will explain

exactly how the assumptions underlying the macroeconomic interpretations of

these two regressions differ. In so doing, we obtain a general interpretation

of the omitted variable bias formula, which connects the coefficients of these

two regressions.

The results of the paper shift the misspecification question from the

behavioral model to the assumptions which control the way the population

distribution evolves through time. If the driving variables (to be defined)

of the predictor distribution are , then the proper macroeconomic effects

are estimated by the cross section regression of y on X1 only. The bias

formula connecting these coefficients to those of regression of y on X1 and

X2 just reflects the induced effect of E(X1) on E(X2). The development

showing this can be regarded as an alternative proof of the omitted variable

bias formula, obtained by manipulating derivatives of macroeconomic functions.

Alternatively, if the driving variables of the predictor variable

distribution are X1 and X2, then a cross section regression of y on X1 will

not uncover the full impact of distribution change on the mean of y, E(y).

In this case we show that the additional effect due to distribution change

can be measured by the partial contribution of X2 to the variance of y

holding X1 constant in a cross section regression. This result has some

practical implications for regression analysis when the true behavioral model

is unknown.
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The appeal of our results derives from two sources. First, the omitted

variable bias formula is an important tool for econometricians, which is covered

in virtually every intermediate level econometrics textbook, and should be

at work in judging coefficient robustness in any good empirical analysis. It is

therefore useful to understand its applicability in misspecified nonlinear

circumstances. Second, the results indicate how to use cross section data to

determine exactly what distributional influences are important to macroeconomic

equations. For instance, the auxiliary equations of the omitted variables

regressed on included ones provide observable constraints which will hold if

the omitted variable means can be correctly excluded from the model explaining

mean y.

To see this latter point, consider the simple example of characterizing

income and family size effects in the demand for a commodity such as food.

Supposing prices are constant for simplicity, it is certainly the case that for

each family size, the individual Engel curve relating food to income is nonlinear.

In studying this relationship with traditional modeling techniques, the omitted

variable bias formula cannot be used to indicate the bias in the income effects

induced by omitting family size unless a) the true food equation is intrinsically

linear, depending on prespecified nonlinear income terms (logs, etc.) with only

coefficients to be estimated and b) exactly the right nonlinear income terms

have been specified.

The developments of this paper indicate how to interpret simple cross section

regression analysis results in a way which does not require the correct

specifications of the behavioral model; the family size augmented Engel curve

for food in this example. If the exponential family structure is adopted

for changes in the joint income - family size distribution, the cross section

OLS coefficients of food on income and family size consistently estimate the

effects of changing average income and average family size on average food.
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Now, average family size may be correctly excluded from an average food equation

if family size has a zero cross section food regression coefficient or if the

conditional distribution of family size given income is constant through time.

This latter condition says that average food is a function only of average income,

with average family size having no independent effect. It is for checking this

latter possibility that the omitted variable bias calculations are useful. In

particular, the estimated coefficients of the auxiliary equation of family size

regressed on income indicates the effect of average income changes on average

family size. If two or more time series observations on average income and average

family size are consistent with the estimated effects, then omitting average family

size from the average food model is suggested. If the estimated effects bear

no relation to the time series patterns of average income and average family

size, and if family size has a nonzero cross section regression coefficient in

a food equation, then average family size has an independent influence on

average food demand.

We begin with the notation, a discussion of the omitted variable bias

formula and a review of the OLS coefficient results of Stoker (1982a). In

Section 3 we consider the case of too many regressors in the cross section

equation, and present the alternative derivation of the omitted variable bias

formulae using macroeconomic derivatives. In Section 4 we consider the case

of too few regressors , indicating the macroeconomic analogue of coefficient

bias. In Section 5 we present an algebraic example, and in Section 6

discuss some related work.

2. Notation and Background Results

2.1 Individual Models and Cross Section Data

All of our results will concern interpretations of OLS regression

coefficients computed with cross section data observed at a particular time

period, say t = t . Denote by y a dependent variable of interest, and by X
O

III
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an M vector of predictor variables, The cross section data consists of K

observations on these variables Yk, Xk, k=l ... , K, which are assumed to

represent a random sample from a distribution with density P (y,X). Moreover,

the entire population at t = t of (say) N observations is assumed to be a
0

4
-.random sample from:the same distribution with N >> K. The following

assumption characterizes the cross section structure.

ASSUMPTION 1: The means, variances and covariances of y and

x exist, and the variance-covariance matrix of X is non-

singular and positive definite. The conditional distribution

of y given X exists,. with density qo(ytX), as does the mean

of y given X, denoted E(ylX) F(X).

:. For the purpose of considering omitted variables, we suppose that X is

partitioned into an M1 vector X 1 and an M2 vector X2 as X' = (X1' , X2 )

where M + M2 M. Denote the means of y and X by E (y) - pY and
1, .2 .0 0

EX -i * E (9 (, 2), the variance of y by oy, the variance-covariance
matrix of X yby.
matrix of X-;by

O

11
0
rXX

Z12

(2.1)

and the covariance matrix between y and X as

o =* ZX = [ A (2.
Xy 2

when the notation corresponds to the partitioning of X. The overall density

P (yjX) which underlies the cross section can be factored as Po(YIX) =
(X) is the marginal distribution of X.

qo(y1X ) P (X), where po(X) is the marginal distribution of X.

2)

f

12

22

t . : , 
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The conditional density q(yX) corresponds to the true econometric model

relating y and X for individual observations. In standard practice, in order

to study the relationship between y and X, one would spedify a behavioral

model y = f (X,u), where u represents unobserved individual heterogenteity and

y a set of parameters to be estimated, together with the stochastic distribution

of u given X, say with density q(uIX). Combining the behavioral function

and the heterogeneity distribution gives the conditional density q (yIX). We

assume y is equal to its true value, and thus suppress it in the notation.

For concreteness, consider the example given in the introduction, where y

denotes the demand for food by individual families, X1 income and X2 family

size. The true Engel curve with family size is represented by E(ylX) = F(X),

and q(ylX) reflects the Engel curve together with the stochastic specification

of the deviation y - F(X). If the true behavioral function was linear with

additive disturbance - i.e., y = f (X,u) = yO + 1 X1
+ y2 X2 + u - and the

distribution of u conditional on X was normal with mean 0 and variance a , then

qo(yX) denotes a normal distribution with mean F(X) = o + Y1'X1 + y2'X 2

2
and variance a . Alternatively, the framework will accomodate many other

standard econometric modeling situations - for example if y takes on only a

finite number of values and behavior is described by a discrete choice model,

then q(ylX) gives the choice probabilities for each of the possible values

of y given X, which could be of the probit or logit form with appropriate

specification of the distribution of unobserved individual influences on the

choice process.

All of the exposition is concerned with interpretations of regressions

performed using the cross section data, The regression of y on X is

represented as
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yk = a + 1 by.1 2 k

= a +Xlkby + X'byy.12 1k y.1(2) 2k y.2(1) + k (2.3)

;. wh'ere by 1 -(byl(2), b: 2(1 )) are computed using ordinary least squares (OLS)y.12 Y.1(2)' .y.2(1)

and 'the notation reflects the partitioning of X' = (X1, X2). We denote the

large sample (probability.limit) values of the statistics from this regression

as' in

plim b
K-o y12

= ( -)1 E
y.12 =(y.1(2)' y.2(1))

plim a = a

plim E k/K = a - E0(ZO )-1 E
* yy Xy X X

= y.12

(2.4)

Also of interest is the regression of y on X1 only, which we denote as

a +X +wk y. Xlkby. + y1 k (2.5)

k = 1, ..., k.

The large sample values of these statistics are denoted as in:

plim b
K-_> y.l

(F )-1E0
11 ly

Y 1',
pl-m a 1 _.i ay_ _ io I

y.1

(2.6)

y. 1

Zwk = o - ( ) Z ly
:. yy ly I I l 

plim
K-*

= y. 1y.1 --

I

- I I __ -
y. 1

··,." 

"'

�·
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The slope regression coefficients of (2,3) and (2,5) are connected by the

identity

b =b +B b (2.7)b 1 = by.1(2) 2.1 y.2(1)

where B2.1 is the M1 x M2 matrix of OLS coefficients of the auxiliary

regression

X2k = A2. 1 + XB2.1 + k k=l,... ,K (2.8)

The version of (2.7) relating the large sample values of the coefficients is

= P 3-B 13 (2.9)Byl y.1(2) + B2.1 y.2(1)

where B2. 1 = (Z1) 12 = plim B2.1

2.2 The Omitted Variable Bias Formula

The standard omitted variable bias formula is an equation explaining the

small sample expectation of b when the true behavioral model pecifies y asy.1

a linear function of X1 and X2 with additive residual. The equation is formally

quite similar to (2.7) and (2.9), and we introduce it separately here for later

comparison with our general development.

We begin by assuming that q(yjX) is a distribution with mean E(y1X) =

F(X) o + Y'Xl +Y2 X2, or equivalently that the true behavioral model is

y = +y 1 X1 + 2'X2 + u (2.10)

where u has zero expectation conditional on X. In this case, it is easy to

verify thata y.12 Yo' y.1(2) = 21 and y,2(1) = using our previous

notation.

III
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The omitted variable bias formula is derived by inserting 2,10) evaluated

for Yk into the OLS formula defining b 1 of (2,5) and taking its expectation.

This yields

E(by.llX data) = y1 + B2 .1Y 2 (2.11)
2.

where B2.1 is defined as the OLS coefficients of (2.8) and X data" denotes

that the expectation is taken conditional on Xlk,X2k,k=l,. ..,K. (2.11) is the

omitted variable bias formula.

The practical usefulness of this formula can be illustrated using our

previous example. Suppose y is food expenditure, X1 is income, X2 is family

size and (2.10) is the true demand equation, with yl and y2 positive. (2.11)

says if one regresses food y on income X1 only (omitting family size X2)

that by 1 will on average overestimate (underestimate) the income effect Y

if the regression coefficient B2. 1 of family size X2 on income X 1 is positive

(negative). The magnitude of the bias E(by. lX data) - 1 depends on the size

of the true family size effect 2 and the amount of the correlation between

family size and income in the data.

Perhaps better use of the equation (2.11) occurs when X2 is not observed

in the data. Suppose for instance that y and X 1 are as above, but X2 now

represents an unobserved variable, say the amount of gambling done by each

family. If we suppose that gambling has a negative effect on food expenditure,

Y2 < 0, then (2.11) says that b.1 will on average overestimate (underestimate)

the true income effect if income and amount of gambling are negatively

(positively) correlated in the sample. If the analyst has outside information

that gambling activity is weakly correlated with income level, then (2.11)

provides an argument for robustness, namely that b 1 will on average equal

the true income effect y1.
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In our general framework, where we relax the linear model assumption (2.10),

it is difficult to characterize the small sample properties of b 1 and
y.'

so we lose the omitted variable bias formula (2.11) as a tool for analysis.

We will instead concentrate on interpreting (2.9), the large sample version of

(2.7) and (2,11). For this task, we must first review the macroeconomic

interpretation of cross section regression coefficients, which characterizes

the large sample values and 3y.12'

2.3 Macroeconomic Effects and Regression Coefficients

The results of Stoker (1982a) (reviewed below) establish that cross section

OLS regression coefficients consistently estimate the macroeconomic effects of

changing the mean of X on the mean of y. In this section we review the

exponential family assumptions which are sufficient for the result. We then

provide an immediate proof of the result for the exponential family case.

In order to discuss a relationship between the mean of y and the mean of

X for a general behavioral model q(yX), we must specify precisely how the

population density P (y,X) changes through time. We assume that the behavioral

model q (9X) is stable through time, so that we can focus attention on how

the marginal X density Po(X) varies. In this paper we will employ a particular

structure for the X distribution, known as exponential family structure,

which is introduced through the following assumptions:5

ASSUMPTION 2: The La Place Transform of Po(X):

L(TI) = = (X) exp (H'X) dX (2.12)
eC () 

exists for in a convex open neighborhood of the origin in R
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DEFINITION: The exponential family generated by p (X) with

driving variables X is the family defined by

p (XlH) = C(n) Po(X) exp (IX) (2 .13)

where iEr and C(TH) is defined via (2.12).

As given the exponential family form is a standard distribution form known to

statistics, which encompasses virtually all of the "textbook" distribution

forms, such as Poisson, gamma, beta, multivariate normal and lognormal

distributions among others, found by appropriate specification of the generating

distribution and driving variables. Notice for our purposes that the natural

parameters serve to index movements in the X distribution,with = 0

corresponding to the cross section density p (X) = p (XIO). We formalize this as

ASSUMPTION 3A: For each time period t to , there exists

H such that the marginal X density at time t is given via the
t

exponential family form with driving variables X and parameter

Rt; i.e., Pt(X) = p (XIlt) of (2.12). The joint distribution

of y and X at time t has density Pt(y,X) = qo(YJX) p (XITt).

Assumption 3A provides sufficient structure to determine the means of

y and X as functions of the natural parameters of the X distribution. By

direct integration, we have

E(y) = Y = y q(yfX) p*(Xfn) dX - c (n) (2.14)

E(X) = = X p (Xn) dX H(n) (2.15)

where, for = 0 we have the cross section values of vY = ~ (0) and 0 = H(O).

The probldm with (2,14-15) is inconvenience, for it is not clear how to

behaviorally interpret the natural parameters E. To overcome this, we

---I_._�XII.-l�--�-l^ __·�_ -Ill_·--l�_l___�_�-X-�-XII__� -_...-.. .
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reparameterize the X distribution by - = E(X), and derive the relation

between E(y) = Y and E(X) = induced by (2.14-15). This is possible because

H() of (2,15) is invertible, and so we can redefine p (XII) as

p(XI) = p (XIH-i()) (2.16)

and derive the (macroeconomic) aggregate function between Y and as

E(y) = UY= fy q(ylX) p(X) dX ) (2.17)

Of course, we have pY = (p ) for the cross section parameter values.
0 0

Parenthetically, to see that H() is invertible, note that7

= (11) = - In C(T) (2.18)

(where is the gradient operator) is invertible locally at n = 0 if and

only if its differential (Jacobian) matrix is nonsingular. This matrix is

easily seen to be the covariance matrix of X via

a in C
= (2.19)

which is assumed nonsingular at = 0, the cross section value.

The aggregate function py = (p) represents the model of macroeconomic

behavior in our framework, corresponding with the individual behavioral model

qo(ylX) and Assumption 3A on the X distribution. The macroeconomic effects of

p = E(X) on PY = E(y) are defined as the first derivatives of ¢(p), denoted

by D. Our results are concerned with the value of these derivatives at

= 0 , the cross section parameter values.
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As a final bit of background notation, it is useful to introduce formulae

which capture the local behavior of the expectations (2.14), (2,15) at = 0.

For (2.15) we have that changes in 11 , d, are related to changes in X, d,

at 11 = 0 as in

d = XX dR (2.20)

which is obvious from (2.19). Similarly, for (2.14), it is easy to show that

changes in Y, d are related to d at = 0 as in

d -Y = E dI (2.21)
Xy

We refer to (2.20) and (2.21) as the "local equations" corresponding to (2.15)

aId (2.14) respectively.

The local equations provide very convenient methods for manipulating

derivatives of expectations in our framework. For an illustration, we provide

an immediate proof of the result of Stoker (1982a) that cross section (OLS)

coefficients always consistently estimate macroeconomic effects under

exponential family structure on the distribution of X. To see this, invert

(2.20) and insert into (2.21) as

dY = x d5 = 0 d
Xy Xy XX

(2.22)

(y.12 d

and so plim b 12= = , the macroeconomic effects. The above
y.1 2 y.12 a 

manipulations just reflect application of the chain rule to the aggregate

function (2.17).
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Before proceeding to discuss omitted variables, it is useful to point

out some salient aspects of the development preceding the OLS coefficient

result (2.22). First, the result holds for a virtually arbitrary behavioral

model q (yX) and cross section distribution p(X), which are restricted by

only the innocuous Assumptions and 2. Second, the driving variables X of

the exponential family play an important role, as they constitute the proper

regressors in the cross section equation whose coefficients consistently

estimate the macroeconomic effects. Elaboration of this relation is what

permits analysis of omitted variables and specification error, to which we

now turn.

3. Too Many Regressors

The result of Stoker (1982a) reviewed above provides a macroeconomic

interpretation of the OLS coefficients of any cross section regression performed,

under the corresponding set of distribution movement assumptions. In this

section we consider the case where the regression (2.5) of y on X1 is the

correct one for estimating macroeconomic effects, as opposed to the regression

(2.3) of y on X1 and X2.

The local equations (2.20), (2.21) and (2.22) are derived under the

structure where the latter regression (2.3) is appropriate. The equations (2.20)

and (2.21) rewritten to reflect the X' = (X1',X2 ') partitioning are

1 ~ 01 2
dp = ldl + 12'dn2 (3.la)

2 o o
dii =1 dl + 0 dI (3.lb)

Z12d 1 22 2

and

dpY =Edn + d12 (3.2)
lyd 1 2yl 2
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where 1' = (1', 2') is partitioned into the natural parameters corresponding

to X and X2. Equation (2.22), which established that plim by.12 = 0p, 

is written in partitioned form as

d = tl d 1 + y2(1)dp (3.3)

As noted at the end of Section 2, for the regression coefficients of y

on X i from equation (2.5) to consistently estimate macroeconomic effects, we

must adopt the corresponding assumption that the X distribution changes via the

exponential family with driving variables X1 only, as in

Pi (XInl) = cl(1l) Po(X) exp (X 1) (3.4)

where C1(H1) = C(H), the latter evaluated at 2 = 0. The parallel assumption

is written out as

ASSUMPTION 3B: For each time period t t there exists

TI t such that the marginal distribution of X at time t is

given via the exponential family with driving variables X1

and parameters Hlt ; i.e., pt(X) = (XIIlt) of (3.4). The

joint distribution of y and X at time t has density

p t (y,X) : qo(ylX) Pl(XlHlt)-

Under Assumption 3B, we can compute the mean of y and X1 as functions of II as

before

E(y) = Y = c(ni) (3.5)

E(X H (3.6)E(X1) = U= HI(]I1) (3.6)

____�__��11��1��1� ___
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and find the induced relation between Y and as

1y = 1(H1 (H )) = i (Hr 1)

the pertinant aggregate function for this case. The OLS coefficient

a(1()
result now says that plim b1 = = , where b 1 are the

coefficients of y on X1 in equation (2.5). The result can be verified easily

as above by directly deriving the local equations pertinant to (3.5) and (3.6),

which are

d-p y= Z 'd1 (3.8)

1 o0
di] = E 1dll (3.9)

and solving them for the induced local relation between Py and as

d = ly ( = y 1 dp1 (3.10)

The large sample omitted variable bias formula (2.9) arises out of the

differences between Assumptions 3A and 3B. A moments reflection indicates that

Assumption 3B is just Assumption 3A with the proviso that 2 is held constant

at 21 = 0. This is reflected in the fact that the local equations (3.8), (3.9)

coincide with (3.2) and (3.la) when d 2 = 0. Consequently, (3.10) and (3.2)

must coincide when d 2 = 0. Detailing this correspondence yields formula (2.9).

2
By requiring d 2 = 0, Assumption 3B also structures the mean p = E(X2) as

a function of E1. By factoring the base density Po(X) into p (X) =

P2(X 2 1X1 )P1O(X1) where P 1O(X) is the marginal distribution of X1, we have
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E(X2) = 2 = Cl(l )

= G ( 1)

or in terms of ;

2 * -1 1 
v 1

(3.12)

The local behavior of G and G at H1 = 0 can be derived directly as before, or

equivalently by setting d 2
= 0 in (3.la-b). The local behavior of G is

found from (3.lb) to be

2 0dvi= o dli
12

Inverting (3.la) and inserting into (3.13) gives the local behavior of G as

d2 12 d 1 = (Z -11
12 1 12

(3.13)

(3.14)

2.1 di1

Consequently, equation (3.3) under d 2 = 0 is

dY y. 1(2) + fy. 2 ( 1)d

y.1(2)dl + y.2 ( B2.ld1

(3.15)

= (y. 1(2) + B2.1y.2(1)) d

= 8y1 d 11i 1

establishing the equivalence between (3,3) and (3,10).

(3.11)

______�I��_LI_11__^1__I_-.�·___�

P2 (X2IXI) P1 (Xi) exp (111IXlf d X1
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This development yields several interpretations of standard specification

analysis calculus in the context of a general population model, Equation (3,,12)

points out the macroeconomic interpretation of the auxiliary regressions (2.9)

of X2 and X1; namely that B2. 1 consistently estimates the induced effects of

1 2 1 'y
1 on . The development (3.13) just says that the overall effect of on Y

under Assumption 3B is the direct effect y.1(2) plus the direct effect

2 y 1 2of 1p on multiplied by the induced effect of p on p . Consequently,
y.2(1) 

the large sample omitted variable bias formula (2.9) is just the total deriva-

tive of p = (p) with respect to p under the constraint that d 2 = 0

Thus this development can be regarded as an alternative proof of equation (2.9)

found by taking macroeconomic derivatives.

The question of whether Assumption 3B is correct versus Assumption 3A

cannot be decided with cross section data, since each restricts only the way

the distribution changes away from the cross section. However, the auxiliary

equation coefficients B2. 1 do provide consistent estimates of the induced
2.1
2 1

effects on changes in due to changes when Assumption 3B holds.

Consequently, if small changes in p1 and p2 are observed (via time series)

^ 9
which are consistent with B2 .1, then Assumption 3B is not rejected.

Moreover, the development shows that including too many variables in a

cross section regression is not a problem in our general format. In particular,

if equation (2.3) of y regressed on X1 and X2 is estimated, the coefficients

will still estimate the independent effects of pi and p2 on pY. By recognizing

2 1
the dependence of the erroneously included variable means v on , the overall

effect on pY indicated is the same as that estimated by the properly specified

equation (2.5) of y on X1,

III
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4. Too Few Regressors

In this section we consider the classical omitted variables problem of

omitting pertinant regressors, in the context of a general behavioral model.

In the macroeconomic interpretation of cross section regression coefficients,

the pertinant regressors correspond with the driving variables of the

exponential family. Consequently, here we take that Assumption 3A represents

population movements, and consider the implications of performing the regression

(2.5) of y on X1, omitting X2.

The full impact of distribution movements under Assumption 3A is represented

by (3.3), reproduced here as

y.:( 2)dp + y2( 1)d12 (4.1)

Changes in p2 are no longer constrained as with Assumption 3B. Consequently,

the misspecified regression (2.5) cannot adequately estimate all possible

distribution effects, and the question becomes how to measure the extent of

what b 1 of equation (2.5) misses.

We can find such a measure by again adjusting the parameterization of

distribution movements under Assumption 3A. We introduced the exponential

family using the natural parameters ' = (1,' 2') in (2.12) and then

considered the mean parameterization i' = (p ',p ') in (2.16). Now we
10

reparameterize locally with the mixed parameter (pl, E2) This is accomplished

by manipulating the local equations (3.la) and (3.2) as follows. Solve (3.la)

for dl as

=1 -1 d (4.2)
d]T (E d)-ldp + (Z E du (4.2)

and insert into (3.2) as
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d = ly (l) dp + - 1 ( 1 1) 12 ')d12 (431 -l ly 11 I F~1 t· (C2y ly2 'd

ul "+ (Z2y 2 12 11 Zly) 2

This equation says that the misspecified regression coefficients of y on

X1 consistently estimate the effects of P1 changes on Y holding 2 constant,

an obvious finding in light of Section 3. The remaining distributional effects

arise from changes in 2' with their relative importance measured by the

coefficient of H2 in (4.3). This coefficient is easily seen to be

o 0 o - 1 o o 0 o
2y 12 11 ly 2y 2.1 ly

= Covy0 (X2 - B2 .1X1,y) (4.3)

y.2(1)

the partial covariance between X2 and y holding X1 constant. Consequently, the

local importance of 2 deviations in the mean of y (given ) is directly measured

by the independent contribution of X2 to the explanation of y in the true cross

section regression (2.3). This covariance can alternatively be written as

y.2(1) = 2. By. where a2. = plim vkv'/K is the large sample residual
y.2(1) 2.1 2(1) 2.1

variance matrix from the auxiliary regression (2.8) and y.2(1 ) is the true

macroeconomic effect of on y holding p1 constant.

This analysis, along with analysis of Section 3, provides an alternative

justification of some common practice techniques of regression analysis in the

context of unknown functional form of the true behavioral model. In particular,

for the purpose of characterizing macroeconomic effects, this work suggests

performing relatively large regressions (many X's), and choosing variables via

their importance in the explanation of the variance of y. Section 3 says when



-21-

the list of regressors is too large, there will exist induced constraints

between the means of erroneously included variables and means of the correcty

included ones. The local version of these constraints are given as the

large sample omitted variables formula (2.9), which equate the macroeconomic

effects on mean y indicated by the properly specified regression to those

from the regression with too many regressors. This section shows that

omitting proper variables has an impact on mean y which can be measured by

the partial covariance between the omitted variables and y in a cross section

regression. Consequently, in a circumstance of unknown functional form, this

analysis suggests including all variables which have large partial impacts,

since including too many will be reconciled by the induced constraints.

The other suggestion of this development concerns the characterization of

distribution movements, say with panel data or aggregate time series. For an

exponential family structure, the candidates of most interest for driving

variables are those which exhibit substantial contributions to y in a cross

section regression framework.

5. An Example

In this section we add some concreteness to the general development by

displaying the various regression and omitted variable formulae for a specific

behavioral function with normally distributed regressors. Suppose that the

true model gives y as a quadratic function of two scalar variables X and X2

and an independent (mean zero) disturbance u as

2 2
0 .1o+ X+ + 2 X + Y 12 X 1X 2 2+ +(5.1)

If the true form above were known, one would perform a regression including -

linear and quadratic terms to estimate all the y parameters. Here, we consider

I ----- -1- -1·· rl1-_ _ _~q - -
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the regressions of y on X and X2, and y on X1 with (5,1) as the true model,

Suppose that in the cross section (X,X2)' is joint normally distributed

1 2X
with mean = (' ,P ) and covariance matrix

o o

a11 1°2
o [ (5.2)

o o
i2 '22

The exponential family with driving variables X1 and X2 (Assumption 3A) consists

1 2of the normal distributions with varying means = ( , P and fixed

covariance matrix Z . The aggregate function relating E(y) = PY to E(X1) =

and E(X2) = 2 is

+ 1 2 12

Ey2 = 2 2() = + +1i + l (()2 + o11) (5.3)
+ y 12 ( 1 + -12) + Y22 ((2) 022)

12
Given the model (5.1), the following covariances can be verified

o o o 1 o
Cdv(y,'X1 ) 01y = y 1 1 + 2cY12 + 2 1 1 o a 11

o 1 20 2o
+ Y12 (G12o p + o +o 2y 22 (o 12 )

Orrv~~=0 c 0 + o 2 o (5.4)
Cov(yX ) = 2 Y 1o12 + Y 222 + 2 11 Foo12

+ 12 (O 2 + P1022) + 2 22 ( 12)
1 12O o 22 22~ ol2

The cross section OLS coefficients of y on X1 and X2 from (2.3) consistently

estimate -a evaluated at g = , Using the covariance formulae (5.4), this is

directly verified as
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plm by, y.12 2() 2y

2y 1 21

Y1 + 2Yll¥o + Y12o 
=I~~~ ~(5.5)

2 1

Y2 + 2Y2 2po + Y12po

a_, (p )I= o (0

For the regression (2.5) of y on X1 only, we must characterize the

exponential family with driving variable X1 in correspondence with Assumption 3B.

As can be easily verified, under this family the marginal distribution of X1

is normal with varying mean 1 and fixed variance a11. The conditional

distribution p2(X2IX ) is stable over time under this assumption and is given

by a normal distribution with mean E(X2jX1) = c + pX1 and

o o 2 o o /
variance 22 - (a 12 /a,11' where p = o12/ 11

Thus, under Assumption 3B, the mean of X2 is given in terms of p1 as

2 1-
= c + p 1 - (5.6)

The macroeconomic function between PY and under Assumption 3B is

now

Y' +y( 1 1)2E(y) = Y =(P ) = 2(c+ + Yli(( + l)

+ Y (c l+ ()1 + p 2 + (5.7)

+ * Y22 (c + 2cppl + p (p12 + a22)

_1__1_ __ _��_��� I_
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Under this assumption, the cross section OLS regression coefficient of

y on X 1 consistently estimates -1 evaluated at pi P1, To verify this,
ali

use (5.4) as

Oa 

plim b = BS =ly.1 y,1 o
o1.1

G12 1 12 o 2
=Y1 + 2 1 + 2Yil( + 2P

12 . ....

+2Y22 (a (5.8)

the latter equality following from fo = c + pu and D = 012 12 C

2 1
c ' po - Peso'

The large sample omitted variable bias formula (2.9) can easily be verified

using formulae (5.5) and (5.9), while recognizing that the large sample value

1^ 2
of the OLS auxiliary coefficient of X2 on X1 is plim B2 B 1 P

1 2 11
which similarly is the induced effect of p1 on 12 from (5.6).

6. RRelated.. Work

In this paper we have.reinterpreted the standard omitted variable bias

formula for cross section regression in the context of a general model between

dependent and independent variables. We have utilized the macroeconomic

interpretation of cross section regression -coefficients to show how the omitted

variable bias formula and auxiliary regression coefficients reflect induced

constraints :between the means of 'included and excluded regressors and their

"It
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macroeconomic effects on the dependent variable mean. Moreover, we have shown

that the impact of excluding variables on the mean of the dependent variable

can be measured in general by the partial contribution of the excluded variables

to the cross section regression on y.

The "properly specified" regression for estimating macroeconomic effects

was seen to be determined by ethe driving variables of the exponential family,

or in more general terms, the score vector of distribution movements. The

general theory of the score vector and its role in the cross section

estimation of macroeconomic effects is given in Stoker (1983a), which establishes

the correspondence between cross section regression and the efficiency

properties of data aggregates. This general development yields a macroeconomic

interpretation of cross section instrumental variables estimators, which is

then extended and developed by Lewbel and Stoker (1983). Finally, the impact

of structural changes in individual behavior on macroeconomic functions is

treated in Stoker (1983b).

-------�-�-�LIIIIIl1P�P�--- � �-� -��-------
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NOTES

1. As with any standard tool, to attempt to cite all references to the
omitted variable bias formula would result in a bibliography much longer
than this paper. For an introduction to the skillful use of the
formula, the work of Zvi Griliches is strongly recommended - some good
examples are Griliches (1957,1971) and Griliches and Ringstad (1971).

2. These relationships have a long history, dating back at least to
Frisch (1934), and are included as standard material in textbooks on
regression analysis - see Kendall and Stuart (1967) and Rao (1973) for
example.

3. The terms "predictor variable" and 'regressor" are used interchangeably
to describe X in the regression y = + bX + .

4. This feature eliminates sample selection problems from our framework.

5. For a treatment of cross section regression and macroeconomic effects for
general movements in the predictor variable distribution, see Stoker (1983a).

6. For standard textbook treatments of the exponential family, see
Ferguson (1967) and Lehmann (1959). For modern treatment, see
Barndorff Neilson (1978) and Efron (1978).

7. For derivatives of expectations taken over an exponential family, see
Stoker (1982a), Lemma 6.

8. In other words, by altering the driving variables of the exponential family,
one obtains a different sequence of marginal distributions of X through
time, and if F(X) is nonlinear, a different set of macroeconomic effects.

1 2
9. In particular, if 1 and P1 are the means of X1 and X2 observed in a time

1 22 2 1 1
period adjacent to the cross section, we would expect 1( 1 -')
under Assumption 3B.

10. For a theoretical treatment of mixed parameterizations of exponential
families, see Barndorff Neilson (1978).

11. This idea suggests studying the possibility that y itself is a driving
variable. This is pursued in Stoker (1983b), and gives rise to an
interesting characterization of residual variance a in a general
functional form framework. y.

12. These are easily found by differentiating and evaluating the moment
generating function of X1 and X2.
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